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Plague, caused by Yersinia pestis infection, continues to threaten low- and
middle-income countries throughout the world. The complex interactions
between rodents and fleas with their respective environments challenge
our understanding of human plague epidemiology. Historical long-term
datasets of reported plague cases offer a unique opportunity to elucidate
the effects of climate on plague outbreaks in detail. Here, we analyse
monthly plague deaths and climate data from 25 provinces in British India
from 1898 to 1949 to generate insights into the influence of temperature, rain-
fall and humidity on the occurrence, severity and timing of plague
outbreaks. We find that moderate relative humidity levels of between 60%
and 80% were strongly associated with outbreaks. Using wavelet analysis,
we determine that the nationwide spread of plague was driven by changes
in humidity, where, on average, a one-month delay in the onset of rising
humidity translated into a one-month delay in the timing of plague out-
breaks. This work can inform modern spatio-temporal predictive models
for the disease and aid in the development of early-warning strategies for
the deployment of prophylactic treatments and other control measures.

provided by Warwick Research Archives Portal R
1. Introduction
Plague (caused by infection with Yersinia pestis) is a historical bacterial disease
which remains a substantial concern to global public health [1]. In the past
decade, plague outbreaks have been reported in Madagascar [2], the Demo-
cratic Republic of Congo [3] and Peru [4], and the bacterium is regularly
detected among different small rodent reservoirs in the USA [5], China [6]
and Kazakhstan [7]. These small rodents have the potential to spread the dis-
ease to humans via bites from infected fleas [8]. Infected humans will
develop tender swollen lymph nodes, known as buboes [9], from which the
infection may later spread to the lungs via the bloodstream leading to second-
ary pneumonic plague [10]. At this point, the bacteria can be directly
transmitted from human to human through respiratory droplets [11].

Several pathways within this transmission cycle are influenced by climate
[12]. Cold and dry environments can hinder the survival and development
rates of flea eggs and larvae [13,14]. Ambient temperatures that are too low or
too high can also inhibit flea-gut blockage [15–17]—a proposed mechanism of
successful bacterial transmission [18]. However, if blockage has already occurred,
the role of temperature on bacterial survival could be more crucial in determining
transmission efficiency [19]. The population dynamics and behaviour of rodent
hosts are also affected by seasonal variation in temperature and precipitation
[20]. High rainfall can flood rodent burrows, driving them towards urban
areas [21] and low resources during winter can reduce rodent populations [22].
Combining these factors can have drastic effects on plague epidemiology
[23–25]; climate drivers can facilitate the introduction of bacteria into naive
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Figure 1. Provinces in British India. The map shows the location of each province identified in the plague data from the annual Chief Commissioner reports. The data
encapsulated modern-day Pakistan, India, Bangladesh and Myanmar. Provinces without any available plague data from 1898 to 1949 are shown in grey.
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rodent populations [26,27], from which plague outbreaks can
emerge annually within human populations [9,28].

In the absence of an effective licensed vaccine [29], it is
important to understand the epidemiological drivers of
plague to inform public health planning. Detailed historical
records offer a valuable opportunity to study long-term
plague on a large spatio-temporal scale given the scarcity of
modern-day outbreaks. The extent of the third plague pan-
demic, originating in Yuhan Province, China around 1855 [30]
before spreading globally throughout the nineteenth and twen-
tieth centuries [31], allows us to rigorously quantify the effects
of climate on plague epidemiology across different spatial con-
texts. The effects of climate on the annual cases of plague in
China [32] and pre-industrial Europe [33,34] have already
been demonstrated; here, we consider the dynamics at a finer
scale, andpresent a 50 year historical dataset ofmonthly provin-
cial plague-related deaths during the third plague pandemic in
British India, one of the most severely affected regions during
the third plague pandemic [35,36], including modern-day
Pakistan, India, Bangladesh and Myanmar. We analyse how
plague emerged annually throughout the region from 1898 to
1949 and, using temperature, rainfall and humidity data from
the same time-period, we show the role of climate on the likeli-
hood of outbreaks occurring. Finally, we demonstrate the
relationship between the timing of annual plague outbreaks
throughout British India against seasonal climate variation.
2. Material and methods
(a) Plague data
After the introduction of plague into British India in 1896, data
for monthly plague deaths per province in India were available
throughout 1898–1949 in the annual reports of the Chief
SanitaryCommissioner of India [36]. The reports also contained
monthly plague deaths for Bombay City (Mumbai), Madras
City (Chennai), Calcutta City (Kolkata) and Bangalore Civil
and Military Station. For Upper and Lower Burma, data were
onlyavailable from1904 to 1922; other years contained spatially
aggregated averages for the whole of Burma. Provinces consti-
tuted parts of modern-day Pakistan, India, Bangladesh and
Myanmar. Each location was indexed from the north, starting
with North-West Frontier Province, to the southern tip of
the Indian Peninsula. The location of each province and
corresponding identification number are shown in figure 1.

(b) Population data
Population data for each province in India were obtained from
1901, 1911, 1921, 1931 and 1941 census of India [37]. Population
sizes between these years were estimated using cubic spline
interpolation through this data [38]. The number of plague
deaths per 1 000 000 individuals per province from 1898 to
1949 was then calculated using these population estimates.

(c) Climate data
Climate data were obtained from the annual and monthly
weather reviews of India provided by the National Oceanic
and Atmospheric Administration [39]. Climate records on
the same spatio-temporal scale as the plague data were
only available for the years between 1907 and 1936. These
data contained monthly averages for temperature (in °F), rela-
tive humidity and total rainfall (in inches). Monthly weather
records were not consistently available for Delhi, Ajmer Mer-
wara, Coorg, Bombay City, Bangalore Civil and Military
Station, Madras City and Calcutta. Humidity data were also
not available for Upper and Lower Burma, Jammu and Kash-
mir and Baluchistan Agency. In the place of Lower and
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Upper Burma, spatially averaged relative humidity was avail-
able for the entirety of Burma. Some records had missing
values for monthly climate averages from select provinces.
These missing values were replaced by manually averaging
across all available data from weather station records found
in the appendix of the weather reviews. These climate data
were digitized by image processing tables of values in
GIMP [40] and performing image recognition in R using the
tesseract package [41,42]. In total, 16 837 climate record
entries were digitized. All digitized data were then manually
checked against the annual and monthly weather reviews
and adjusted to match the raw data.

(d) Historical maps
Historical maps depicting administrative boundaries in the
years 1901, 1911, 1921, 1931 and 1941 were obtained from the
Administrative Atlas of India [43]. These maps were then digi-
tized in QGIS [44] down to the provincial level. Missing maps
(owing to administrative boundary changes in intermediate
years) were then constructed. For each year, plague data were
then pairedwith themapwhich contained the same provinces.

(e) Timing of plague outbreaks
Wavelet analysis [45] was performed on the time-series of
monthly plague-related deaths per 1 000 000 individuals for
each province using the R package WaveletComp [46]. This
approach deconstructed each time-series into a series of
Mortlet wavelets of different periodicities [45]. The period-
icity of plague outbreaks in each province was then
calculated as the mean period of the wavelet with the largest
magnitude across all time points. The timing of annual
plague outbreaks and oscillations in temperature, rainfall
and humidity was then calculated by comparing the phase
of annual wavelet components to give the approximate
time during the year at which plague outbreaks and fluctu-
ations in climate peaked for each year. To understand the
role of climate on the timing of plague outbreaks, time lags
between plague outbreaks and climate for each location,
denoted here as ctp=tc (t, l), were calculated as follows:

ctp=tc (t, l) ¼ ftp (t, l)� ftc (t, l),

where ϕp (t, l ) and ϕc (t, l ) are the phases of the annual wave-
let components corresponding to time t and location l for the
plague outbreaks and climate time-series, tp and tc, respect-
ively. The mean annual time lag for each province was then
calculated by averaging over the time lag across all months
in each year.

( f ) Climate effects on plague outbreaks
In order to assess the relationship between climate and
plague outbreaks in British India during 1898–1949,
regression models were fitted to the empirical data within a
Bayesian framework. For all models, weakly informative
independent Cauchy priors were used for the coefficients,
βi, with mean zero and scale parameter equal to 10 and 2.5
for the intercepts and slopes respectively. Exponential
priors with rate one were used for variance parameters. For
models with multiple predictors, all covariates were orthog-
nalized using QR-decomposition, models fitted and
coefficients back-transformed to the scale of the data [47].
All models were fitted using the package rstanarm in R
[48] and convergence and fit was assessed through visual
inspection of the posterior predictive distribution and
Gelman–Rubin statistic, R̂ [49].

Bayes factors [50], B, were used to assess the strength of
evidence in favour of each model against their respective
null model—a model containing no linear covariates. A
Bayes factor of greater than one indicated favour towards the
model, whereas less than one indicated favour towards the
null model. A more detailed interpretation of Bayes factors
can be found in the electronic supplementary material, table
S1. The R-package bayestestR [51,52] was used to compute
Bayes factors via bridge-sampling [53] to estimate the mar-
ginal-likelihood of each model (see [54] for more details).
Bayes factors were also calculated to determine the relative
probability that each model parameter was non-zero, denoted
Bbi

, using the Savage-Dickey density ratio [55]. Each model
was fitted to temperature, rainfall and humidity data separ-
ately. All regression model results are presented in the
electronic supplementary material, tables S2–S4.

(i) Effect of climate on outbreak occurrence
An outbreak was said to occur if the total number of plague-
related deaths per 1 000 000 individuals within a year was
(strictly) more than some outbreak threshold. The following
logistic regression model was then fitted to estimate the prob-
ability of outbreaks occurring based on annual climate
averages:

xa � Binom (1, p),

logit (p) ¼ b0 þ b1xþ b2x
2,

where xa was whether an outbreak occurred or not given an
outbreak threshold α, and x denotes annual climate averages.
For rainfall, an additional cubic term, β3x

3 was added to the
model. Outbreak thresholds of 0, 1, 10 and 100 plague-related
deaths per 1 000 000 individuals were tested.

(ii) Effect of climate on outbreak magnitude
The magnitude of an outbreak was defined as the total
number of plague-related deaths reported during each year
where an outbreak had occurred given an outbreak threshold
of zero. The effects of temperature, rainfall and humidity on
outbreak magnitude were then estimated using the following
model:

log (y) � N(my, s
2
y),

my ¼ b4 þ b5xþ b6x
2,

where y was the total number of reported plague deaths per
year, x denotes annual climate averages and s2

y is the variance
of log (y) to be estimated. Similarly to the above regression
model, an additional cubic term, β7x

3 was added to the
model for rainfall.

(iii) Effect of climate on outbreak timing
In order to estimate the relationship between the timing of
plague outbreaks and oscillations in climate, the following
model was fitted to the time at which plague outbreaks
peaked during the year within each province, τp:

tp � N(mtp , s
2
tp
),

mtp
¼ b8 þ b9tc,
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Figure 2. Annual plague deaths in each province of British India from 1898 to 1949. The total number of plague deaths showed large variation between each
province within the same year. When the third pandemic began in around 1898, the total number of plague-related deaths per province rapidly increased each year.
From 1905 onwards, plague-related deaths steadily decreased to low levels during the 1940s. (Online version in colour.)
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where τc denotes the time at which oscillations in climate
peak (calculated from Wavelet analysis), and s2

tp
is the var-

iance of τp to be estimated. The estimated coefficient β9
represented the additional (on average) time-lag of a plague
outbreak given a one-month time-lag in oscillations of each
climate variable.
3. Results
Plague was first reported to the Chief Sanitary Commissioner
of India during the latter part of 1896 in the west of the Indian
Peninsula. By 1898, plague-related deaths were reported
throughout British India. Annual deaths within each pro-
vince increased until 1905, when over 22 of the 25
provinces experienced over 100 deaths per one million indi-
viduals (figure 2). The size of annual outbreaks in each
province then decreased until 1930 to around five deaths
per one million individuals. From there on, a low level of
background transmission was maintained until 1950. Over
13 million plague-related deaths in total were reported
across British India from 1898 to 1949.
(a) Spatial spread of plague in British India from 1898
to 1949

During this period, the north, northwest and west of the
Indian Peninsula were the most severely affected. These
regions included Bombay Presidency and Punjab provinces,
which reported over two and three million cases, respect-
ively. By contrast, cases were infrequently reported in the
drier far northwest and wetter northeast of British India,
including the provinces Baluchistan Agency, North-West
Frontier Province and Assam. This high degree of spatial
variation of cases was largely consistent between years (elec-
tronic supplementary material, figure S1). That is, provinces
which had experienced large outbreaks in previous years
reported a high number of cases in subsequent years.

To robustly demonstrate these trends, wavelet analysis
was performed on the monthly reported cases within each
province. By comparing the annual components of each
wavelet, the timing of each outbreak during the year was cal-
culated. This analysis confirmed the annual frequency of
outbreaks within each province, and also showed that the
timing of these outbreaks was largely consistent over time
(electronic supplementary material, figures S2–S4). However,
outbreak timing varied considerably between provinces
(figure 3). Outbreaks started in the south of the Indian Penin-
sula in October each year and radiated out towards the north
over a period of six to seven months. Simultaneously, annual
plague outbreaks cycled between the Burmese native Shan
state in September, to Upper Burma in January, finishing in
Lower Burma in April. We also found that the timing of out-
breaks between most dense population centres (Bangalore
Civil and Military Station, Madras City and Calcutta City)
and their respective provinces was within one month of
one another. By contrast, the timing of outbreaks between
Bombay City (Mumbai) and Bombay Presidency differed by
approximately six months (electronic supplementary
material, figure S5).
(b) Effect of humidity on outbreak occurrence
We tested the probability of annual outbreaks occurring
based on observed climate values for each province, using
different thresholds to define an outbreak. A range of
outbreak thresholds was tested, from more than 0 deaths
per 1 000 000 individuals to 100 deaths per 1 000 000 individ-
uals within a calendar year. For all thresholds tested
(B > 1000), moderate mean annual humidity levels of between
60% and 80% were associated with plague outbreaks
(figure 4). Outbreaks were 1.9 (95% credible interval
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(CI) = [1.5, 2.6]) and 2.2 (95% CI = [1.7, 2.8]) times more likely
to occur given moderate annual humidity levels (60–80%)
compared to lower (40–60%) or higher (80–100%) humidity.
Moderate humidity levels were also associated with out-
breaks of greater magnitude, although there was substantial
variation in outbreak magnitude across all observed mean
annual humidity values (electronic supplementary material,
figure S6). Outbreaks were also more likely to occur at
extreme temperatures and moderately low precipitation
(B > 1000), however, this relationship was generally not con-
sistent across different outbreak thresholds (electronic
supplementary material, figures S7–S8). From herein, out-
breaks were defined as more than 10 per 1 000 000 plague-
related deaths in a single year.
(c) Effect of humidity on outbreak timing
We investigated if the systematic pattern (south to north) in
the timing of plague outbreaks could be explained by
annual oscillations in climate. To that end, temperature, rain-
fall and humidity data for each province during 1907–1936
was obtained from written records (electronic supplementary
material, figure S9 shows these data over time in five different
provinces throughout British India). The annual periodicity
of the climate data was confirmed using wavelet analysis,
and wavelets for each climate variable were compared
against annual wavelet components generated from the
plague outbreak data. This allowed us to quantify the lag
in time between oscillations in climate and plague outbreaks
for each year and location.

We found that the time delays between oscillations in cli-
mate and plague outbreaks were largely consistent across
time within each province. That is, within the same region,
there was little variation in the lag between outbreaks
(when they occurred) and temperature, rainfall and humidity
(electronic supplementary material, figure S10). However,
these time lags were different between locations and exhib-
ited a similar systematic spatial pattern to the plague
outbreak data: shorter time lags were found in the southern
tip of the Indian Peninsula and lengthened towards the
north of India and modern-day Pakistan. In general, over
half of all plague outbreaks lagged four to eight months
behind peak rainfall and six to nine months behind peak
temperature. The time lags between oscillations in humidity
and plague outbreaks were the shortest and most similar
across space with delays of three to five months between
the peak of humidity and the peak of plague deaths
(electronic supplementary material, figure S11).

Owing to the variation in lag times between provinces, we
investigated if the timing of seasonal oscillations in climate
could reliably infer outbreak timing. Across all of British
India and all years, oscillations in temperature and rainfall
had strong relationships with plague outbreaks (Spearman
ρS = 0.75, Pearson ρP = 0.64, B > 1000 and ρS =−0.62, ρP =
−0.57, B > 1000, respectively) (electronic supplementary
material, figure S12). A simpler linear relationship was
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detected (ρS = 0.53, ρP = 0.53, B > 1000) between seasonal
changes in humidity and the timing of outbreaks (figure 5).
At the national scale, outbreaks would occur approximately
one month (95% CI = [0.9, 1.2]) later on average throughout
British India for every month peak humidity was delayed.

Focusing on the variation within a province, we again
find that there is a linear relationship between the timing
of outbreaks and humidity oscillations (ρS = 0.43, ρP = 0.42,
B > 1000) but no evidence to support a relationship with temp-
erature or rainfall (B < 0.001 and B < 0.001, respectively). In
particular, within a province we find that a one-month delay
to oscillations in humidity translated to a three and a half-
week delay in the timing of outbreaks on average (95%
CI = [2.5, 4.5]), although there was considerable variability—
from two weeks in Madras Presidency to 12 weeks in Burma
(electronic supplementary material, figures S13–S15).
4. Discussion
Zoonotic pathways of Y. pestis transmission are affected by
climate, driving plague epidemiology. Optimal environ-
mental factors, such as temperature, precipitation and
humidity, can create the ideal conditions from which plague
can emerge from zoonotic rodent reservoirs. The exact
relationship between climate and plague outbreaks varies
between different spatio-temporal contexts and is typically
inferred from short time periods. Therefore, in order to
understand these relationships in more detail, analyses of
longitudinal data across spatial foci are important. Given
the global extent of the third plague pandemic [31,56], histori-
cal datasets from this period allow us to rigorously explore
these effects on large spatio-temporal scales. During the
course of the third plague pandemic, India reported over 13
million plague-associated deaths [35,57]. British India was,
therefore, an appropriate setting for studying the effects of
climate on plague epidemiology. To that end, we were inter-
ested in whether climate could explain the occurrence,
severity and timing of outbreaks in British India during the
third plague pandemic.

We started by analysing the timing of plague outbreaks in
British India from1898 to 1949. Similar to the subset of data pre-
sented by Yu & Christakos [58], outbreaks would begin
annually in the southern tip of the Indian Peninsula and
spread up towards the north over six months. Outbreaks
would simultaneously start in the east of Burma, and move
towards the south. These two separate cycles of plague spread
have previously been demonstrated through phylocartographic
analysis of Y. pestis isolates from the third pandemic, where
strains in Burma were found to be distinct from the those of
the Indian Peninsula [31]. Their study inferred different direc-
tions of plague spread, however. That is, the data presented in
this study implied that Burmese plague originated in the
north and spread southward, whereas they found that strains
were introduced from Vietnam and spread north towards
China. Plague was also introduced into Bombay and Calcutta
City via shipping routes during the late nineteenth century
[59,60], but annual outbreaks would not start in these regions.
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These contrasting findingsmay imply that onceplague has been
introduced and established among zoonotic reservoirs, the re-
emergence of outbreaks is dictated by local environmental
and socio-demographic factors. Indeed, Rattus rattus (formerly
Mus rattus) and Rattus norvegicus (formerly Mus decumanus)
from several regions of British India tested positive for plague
in the early twentieth century [61]. However, if local conditions
are insufficient to allow the establishment of zoonotic reservoirs,
then large scale outbreaks might rarely occur. This was the case
in Assam in the north east of India, where exceptionally wet cli-
mates throughout the year and poor transport links with
neighbouring provinces [62,63], crucial in the spread of
plague throughout pre-industrial Europe [64,65], hindered
transmission.

Outbreaks of plague were more likely to occur at moder-
ate relative humidity levels of between 60% and 80% than at
higher or lower humidity, which was independent of how
outbreaks were defined in terms of reported deaths. This
was in agreement with a similar study looking at the effects
of climate during the third pandemic in China [32,66], finding
that plague spread fastest at moderate levels of wetness.
These findings may be down to the sensitivity of flea egg
and larvae survival rates to changes in soil moisture, a
proxy for humidity. This could explain the substantial differ-
ence in average outbreak timing between Bombay City
(Mumbai) and Bombay Presidency. Despite the absence of
Bombay City in the presented climate data, Bombay City
did indeed have generally higher humidity than the rest of
the region encapsulating Bombay Presidency [67]. In contrast
to the rest of the country, Bombay City may have, therefore,
only been climatically suitable for plague transmission once
humidity dropped, offsetting outbreak timing by roughly
six months. This feature could be an important consideration
when investigating the effects of climate on modern out-
breaks, as regions such as Madagascar and the Democratic
Republic of Congo have very high humidity throughout the
year. The outbreaks in Madagascar in fact do correlate with
time periods where humidity subsides, and the suitability
of local flea species improves drastically [68].

The timing of plague outbreaks in British India was
associated with seasonal changes in humidity. We found
that a one month delay in humidity led to an approximate
one month time delay in the plague outbreak on average,
but with substantial variation between provinces. In addition
to driving change in flea suitability, oscillations in humidity
may indirectly influence rodent population dynamics via
timing of harvest. Harvest has been suggested to draw
rodents towards rural agriculture [69], putting farm workers
at increased risk of infection. In the case of British India, this
may explain the bi-annual nature of plague outbreaks within
some regions, such as Burma, where harvest used to occur
twice a year [70]. Agricultural land-use has indeed previously
been correlated with higher seroprevalence of Y. pestis among
rodents compared with other land types [71], but it is unclear
where they were infected. That is, either rodents became
infected before migrating to agricultural land or were infected
from fleas within the fields themselves. Regardless, once har-
vest is complete, food trade into urban centres could drive
infected rat populations into urban areas, sparking a large
outbreak.
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Given our findings on the effects of humidity on the
occurrence and timing of plague outbreaks, one might
expect there to be equally strong associations between temp-
erature, rainfall and plague. We did not find this in our data.
This was in contrast to a study by Xu et al. [27], demonstrat-
ing high speeds of plague spread globally during the third
plague pandemic influenced by temperature. Our findings
may be attributable to temperature and rainfall gradients
being fairly flat across most of the Indian Peninsula (in
terms of magnitude and timing), so it was unlikely that temp-
erature or rainfall played decisive roles in dictating plague
outbreaks in British India during the third pandemic. On
the other hand, there was evidence to suggest that rainfall
was positively associated with the timing of outbreaks in
Burma. This lack of consistent and uniform drivers in our
data was unsurprising given previous claims that plague out-
breaks can occur under a diverse set of landscapes for a wide
range of environmental conditions [72].

The statistical analysis of epidemiological data is fraught
with potential limitations. Most notability data quality may
be highly variable in quality with discrepancies in both
space and time [73]. This is probably an issue with our
data, where more populated regions may have had greater
resources for observing and recording plague cases. Cases
may also have been over-reported where deaths were mis-
diagnosed as being owing to plague. This is of particular
concern in the case of modern-day pneumonic plague out-
breaks which can be misdiagnosed in conjunction with
other respiratory infections [74]. Pneumonic plague trans-
mission could add additional layers of complexity in trying
to understand the drivers of plague epidemiology, as once
an outbreak is established, both rodent and flea populations
are no longer required. However, the scale of under- or
over-reporting over both time and space should not heavily
influence our findings, which are primarily concerned with
the occurrence and seasonal timing of outbreaks. We stress
that climate alone is not enough to infer the size of an out-
break and we also restricted our analyses to relatively large
scale outbreaks, eliminating concern about including intro-
duction events which may bias results.

Historical records were only available at the provincial level
for themonthly plague deaths and climate data. The space–time
aggregation of these data across a wide geographical and tem-
poral scale may lead to inappropriate generalizations of
climate effects at lower resolutions. That is, the mechanisms
that underlie plague epidemiology are complex and poorly
understood, such that other abiotic factors may dictate the
timing of plague outbreaks over finer spatial scales, and thus
the statistical approach taken here may only be applicable
within spatial contexts similar to our data. This does raise an
area for future work where the influence of climate and socio-
ecological factors, such as rat population dynamics, on plague
epidemiology should be studied at the sub-provincial level.
Altitude and the cold, dry season have indeed been correlated
with plague foci in Madagascar [2,75]. Given its climatic
diversity [76], perhaps temperature, precipitation and humi-
dity could explain the spatially heterogeneous patterns of
plague found in Madagascar [77]. However, without a clear
mechanistic understanding linking climate factors to plague
epidemiology, the direct application of our results to modern
outbreak settings might be inappropriate.

In summary, we have shown that humidity was the most
important climate factor in dictating the occurrence and
timing of plague outbreaks during the third plague pandemic
in British India. Humidity data could therefore go a long way
in assessing disease risk using spatio-temporal prediction
models from recent bubonic plague outbreaks [78]. However,
it would also be important to understand how human social
contact networks influence plague spread, in order to mini-
mize the impact of pneumonic plague outbreaks [79]. By
monitoring local climate factors, our findings could enhance
the identification of regions with imminent outbreak risk,
thus improving the management of chemoprophylaxis and
highlighting settings in which imminent candidate vaccines
could be effectively trialled.
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