
Timing Failure Detection with a Timely
Computing Base

António Casimiro
Paulo Veŕıssimo

DI–FCUL TR–99–8

November 1999

Departamento de Informática
Faculdade de Ciências da Universidade de Lisboa

Campo Grande, 1700 Lisboa
Portugal

Technical reports are available at http://www.di.fc.ul.pt/biblioteca/tech-reports. The
files are stored in PDF, with the report number as filename. Alternatively, reports
are available by post from the above address.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade de Lisboa: Repositório.UL

https://core.ac.uk/display/32330654?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




Timing Failure Detection with a Timely Computing Base

António Casimiro Paulo Veŕıssimo
casim@di.fc.ul.pt pjv@di.fc.ul.pt

FC/UL∗ FC/UL∗

Abstract

In a recent report we proposed an architectural con-
struct to address the problem of dealing with timeli-
ness specifications in a generic way. We called it the
Timely Computing Base, TCB. The TCB defines a set
of services available to applications, including timely
execution, duration measurement and timing failure
detection. We showed how these services could be
used to build dependable and timely applications. In
this paper we further extend the description of the
TCB, namely by presenting a protocol for its Timing
Failure Detection (TFD) service. We discuss the es-
sential aspects of providing such a service under the
TCB framework and make some considerations rela-
tive to the service interface.

1 Introduction

In the last few years we have assisted to the ex-
pansion of distributed systems and to the appearance
of more demanding applications. While many of these
applications can take advantage of growing system ca-
pabilities like processing speed, storage size or memory
size, others have requirements, like real-time or fault-
tolerance, that do not depend exclusively on hardware
capabilities.

For instance, the implementation of services with
high interactivity or mission-criticality requirements
must be based on solid and adequate system models
and correct software protocols. This kind of services
are usually demanding in terms of timeliness, either
because of dependability constraints (e.g. air traffic
control, telecommunication intelligent network archi-
tectures) or because of user-dictated quality-of-service
requirements (e.g. network transaction servers, mul-

∗Faculdade de Ciências da Universidade de Lisboa. Bloco
C5, Campo Grande, 1700 Lisboa - Portugal. Tel. +(351) 21
750 0087 (secretariat); +(351) 21 750 0103 (direct) (office).
Fax +(351) 21 750 0084. The Navigators Group Web page:
http://www.navigators.di.fc.ul.pt/.

timedia rendering, synchronized groupware). An in-
tuitive approach to cope with such timeliness needs
is to use a synchronous system model. However,
large-scale, unpredictable and unreliable infrastruc-
tures cause synchronous system models to work in-
correctly. On the other hand, asynchronous models
do not satisfy our needs because they do not allow
timeliness specifications.

In order to clarify the problem and create a generic
framework to deal with this problem, we introduced
the Timely Computing Base (TCB) model. It as-
sumes that any system, regardless of its synchrony
properties, can rely on services provided by a spe-
cial module, the TCB, which is timely, that is, syn-
chronous. In this paper we further extend the de-
scription of the TCB, namely by proposing a protocol
for its Timing Failure Detection (TFD) service. We
show that synchronized clocks are not required to im-
plement such a TFD service. We also analyze the
problem of node crashes – how this affects the TFD
service – and propose a solution to deal with it. To
keep the protocol generic we do not assume any spe-
cific environment or computational platform.

The reminder of the paper is organized as follows.
Next section presents some related work. Section 3
describes the TCB model and its services. Section
4 is dedicated to the presentation and discussion of
the TFD service. In section 5 we discuss some issues
related to the service interface. Finally, we conclude
with a summary of what has been done and highlight
some topics for future work.

2 Related Work

The problem of failure detection is strictly related
to system assumptions. In the past few years, sev-
eral authors have addressed this problem under differ-
ent perspectives and assuming varying degrees of syn-
chronism properties. One of the first known results,
derived for fully asynchronous systems, describes the
impossibility of distributed consensus in the presence

1



of failures [11]. In such a time-free model the specifi-
cation of a useful failure detector (one that could allow
some progress) turns out to be impossible.

Chandra & Toueg proposed a classification model
for failure detectors [5]. The merit of their work lies
in the formal way the problem was treated, and how
they managed to isolate and specify the exact prop-
erties determining the possibility or impossibility of
solving various distributed system problems like con-
sensus, atomic broadcast or leader election.

The timed asynchronous model adds some synchro-
nism to the system by assuming the existence of local
hardware clocks with bounded drift rate [7]. This al-
lows processes to measure the passage of time and use
timeouts. In timed systems it is possible to construct
a special failure detector, a fail-aware failure detec-
tor [8], which can be implemented if some additional
progress assumptions are made. In [10], Fetzer pro-
poses an approach to calculate upper bounds for the
transmission delay of messages inspired on the round-
trip clock reading method [6]. Our work uses these re-
sults as a building block to construct the timing failure
detection service.

The quasi-synchronous model introduces the notion
of timing failure detectors [13]. In [2], Almeida de-
scribes a TFD service for the quasi-synchronous model
which assumes local clocks are synchronized and is
used as a specific tool to implement a group commu-
nication protocol providing total temporal order. In a
more recent work, it was shown that the timing fail-
ure detector has such properties that allow a timely
failure detection, so that, despite the eventual failure
of synchrony assumptions, protocols can adapt to tim-
ing failures and allow the system to remain correct [3].
The TFD service we propose in this paper also has
these properties. However, its construction is ruled
by other objectives. First, we show that it is possible
to timely detect timing failures without synchronized
clocks. Second, we propose a self-contained service
with a clearly defined objective, which is solely the
provision of timeliness information about events oc-
curring in the system. As opposed to the service pre-
sented in [2], no application related information can be
sent through this service. Finally, we envisage a TFD
service that gives more than just timeliness related in-
formation since it may keep, and manage, historical
information about the system behavior.

3 The TCB Model

The assumed system model is composed of partic-
ipants or processes (both designations are used inter-

changeably) which exchange messages, and may exist
in several sites or nodes of the system. Sites are in-
terconnected by a communication network. The sys-
tem can have any degree of synchronism, that is, if
bounds exist for processing or communication delays,
their magnitude may be uncertain or not known. Lo-
cal clocks may not exist or may not have a bounded
rate of drift towards real time.

In terms of fault assumptions, the system is as-
sumed to follow an omissive failure model. This
means that components only do timing failures— and
of course, omission and crash, since they are subsets
of timing failures— no value failures occur.

Given the above assumptions, systems have to face
the problem of uncertain timeliness (bounds may be
violated) while still being dependable with regard to
time (timely executing certain functions). This can
be achieved if processes in the system have access to a
Timely Computing Base, a component that performs
the following functions on their behalf: timely execu-
tion, duration measurement, timing failure detection.
In this paper we deal with the latter and define the
protocols and interfaces for a Timing Failure Detec-
tion service.

There is one local Timely Computing Base at every
site, fulfilling the following requirements:

Interposition - the TCB position is such that no di-
rect access to resources vital to timeliness can be
made in default of the TCB

Shielding - the TCB construction is such that it is
itself protected from faults affecting timeliness

Validation - the TCB functionality is such that it al-
lows the implementation of verifiable mechanisms
w.r.t. timeliness

Each local TCB enjoys the following synchronism
properties:

Ps 1 There exists a known upper bound T 1
Dmax

on
processing delays

Ps 2 There exists a known upper bound T 2
Dmax

on the
rate of drift of local clocks

Property Ps 1 refers to the determinism in the ex-
ecution time of code elements by the TCB. Prop-
erty Ps 2 refers to the existence of a local clock in
each TCB whose individual drift is bounded. This
allows measuring local durations, i.e., the interval be-
tween two local events. These clocks are internal to
the TCB. Remember that the general system may or
not have clocks.

2



Site C

TCB

P Site A

TCB

Site B

TCB

P

P

P

P

P

P

TCB

Global
Network

Figure 1: The TCB Architecture

A distributed TCB is the collection of all local
TCBs in a system, interconnected by a communica-
tion means by which local TCBs exchange messages.
The interposition, shielding and validation require-
ments must also be satisfied by the distributed TCB
such as the communication among local TCBs, which
must still be synchronous. Property Ps 3 refers to the
determinism in the time to exchange messages among
participants via the TCB:

Ps 3 There exists a known upper bound T 3
Dmax

, on
message delivery delays

The architecture of a system with a TCB is sug-
gested by Figure 1. Whilst there is a generic, payload
system over a global network, or payload channel, the
system admits the construction of say, a control part,
made of local TCB modules, interconnected by some
form of medium, the control channel. The medium
may be a virtual channel over the available physical
network or a network in its own right. Processes p exe-
cute on the several sites, making use of the TCB when-
ever appropriate. The TCB subsystem, dashed in the
figure, fulfills the interposition, shielding and valida-
tion requirements. Altogether, it preserves proper-
ties Ps 1 to Ps 3.

The nature of the modules and the interconnection
medium is outside the scope of this paper. The inter-
ested reader can refer to [14] where a few hints on how
to implement a TCB are given.

4 The TFD Service

In this section we present and discuss a protocol the
TCB Timing Failure Detection service. We first intro-

duce the formal definitions of timing specification and
timing failure, that are necessary to subsequently un-
derstand how the TCB, and more specifically the TFD
service, handles application timeliness requirements.
Given that, we introduce the properties required for
the TFD service and briefly overview what they imply
in terms of system model. We then propose a generic
protocol and prove it satisfies those properties.

4.1 Timing Specifications and Timing
Failures

The TCB model considers the system to be speci-
fied in terms of (logical) safety and timeliness (safety)
properties. Timeliness properties belong to the class
of properties where, in order to verify their correct-
ness, we need to specify and observe every individual
run [12]. Each individual run can be characterized by
a runtime timing specification, or simply timing spec-
ification, for an event to be produced by a process,
as the latest real time instant when the event must
take place. In consequence of an execution dictated
by a given property, the component must obey one,
several or infinitely many timing specifications . For
example, timeliness property “any delivered message
is delivered until Td from the send request” translates,
in a given run for a message M , to timing specifica-
tion “for event send request(M) issued at real time
ts, the event delivery of message(M) must occur by
real time ts + Td”. We define timing specification:

Timing Specification - Given process p, event e,
and real time instant te, a timing specification
is: S(p, e, te) ≡ p produces e at t ≤ te

The correctness of the execution of a timing speci-
fication is affected by timing failures:

Timing Failure - given the execution of a timing
specification S(p, e, te), there is a timing failure
at te, iff e takes place at a real time instant t

′
e,

te < t
′
e ≤ ∞. The lateness degree is the delay of

occurrence of e, Ld = t
′
e − te.

An execution, or run Ri, of a timing specification
Si is a tuple 〈i, Si, T (i), timely〉. For each specification
S(p, e, te), te is generated such that it is a function of
a given duration T dictated by a timeliness property:
te = f(T ). In consequence, for a run i of Si, there is
a measurable duration T (i) related to T . That is, if
a property says something about a specified duration
T (through a time operator), the observed duration
T (i) in run Ri is the measure of T in that run. Fi-
nally, timely is a Boolean which is true if the timing

3



specification was executed on time, or false otherwise,
according to the definition of timing failure.

4.2 TFD properties

As specified in the TCB model, the Timing Failure
Detector service must have the following properties:

TFD 1 Timed Strong Completeness: There ex-
ists TTFDmax such that given any timing failure of p
in a specification S(p, e, te), the TCB detects it at a
real time instant t ≤ te + TTFDmax

TFD 2 Timed Strong Accuracy: There exists
TTFDmin such that given any specification S(p, e, te),
and the occurrence of e at p, at any real time instant
t ≤ te − TTFDmin , the TCB considers p timely

These quite strong properties, that define a Perfect
Timing Failure Detector (pTFD), can only be guar-
anteed if certain conditions are met. The underly-
ing system synchrony is the crucial factor dictating
whether or not these properties can be satisfied. Re-
member we are now considering the environment un-
der which the TCB and its services are run. In totally
asynchronous, or time-free systems, it is obviously im-
possible to construct such a timing failure detection
service since by definition the notion of time (thus of
timing failures) is absent. Adding a short amount of
synchrony, namely by allowing processes to access a
local clock with bounded drift rate, it becomes possi-
ble to tackle problems with timeliness specifications.
In particular, it is possible to detect late events and to
construct fail-aware services [9]. However, achieving
simultaneously the two properties required for perfect
timing failure detection is still not possible [4]. That is
only possible, in fact, if the model over which the TFD
service is constructed is, at least in part, synchronous.
This has implications both in terms of the commu-
nication medium and at the operating system level.
There must exist a synchronous control channel inter-
connecting every local TCB module and the system
must be scheduled in order to ensure that TCB tasks
are hard real-time tasks, immune to timing faults in
the other tasks.

4.3 TFD protocol

The problem we have to solve is how to build a tim-
ing failure detector which satisfies properties TFD 1
and TFD 2. This requires a protocol to be executed
by all TFD modules on top of the above-mentioned
synchronous control channel. To better understand

the intuition behind the protocol we will proceed step
by step and discuss some aspects we consider relevant.

Any timing specification describes an event that
must take place at a specific time instant. Thus, a
new timing specification is issued whenever some ac-
tion dictates an event to occur at some later time. We
make a clear distinction between an event and its cor-
responding timing specification. If the event occurs it
may do so at any given instant. The timing specifica-
tion tells the allowed interval of timely occurrence of
the event.

We further consider the existence of two kinds of
events. Those that occur locally to the TCB where
they were specified, and those that occur in a remote
site. Then, we also distinguish the timing specifica-
tions of such events: the former are described by local
specifications, and the later by remote specifications.
Formally, a specification S(p, e, te) is local if it is gen-
erated by processor p and remote otherwise (when gen-
erated by some q 6= p).

In practice, local specifications are issued whenever
there is a local function execution. The event referred
to in the specification consists on the function termina-
tion. Remote specifications are issued when a message
is sent to another site. In this case the specification
refers to the remote receive event.

In the TCB model, an event timing failure can only
be signaled if its corresponding specification is known,
that is, it is necessary to know the deadline for that
event. For local events this is not a problem since the
specification is locally available. However, for remote
ones this requires the timing specification to be deliv-
ered to the appropriate TCB module. This, in part,
justifies the necessity of a protocol that allows TCB
modules to exchange and share information. Another
reason is due to the requirement for timely detection.
In fact, timely detection can only be achieved if there
is a protocol which forces the TFD to make a decision
in a bounded time. Simply waiting for an event to
occur is certainly not sufficient.

Making decisions about timeliness of events is based
on time values. According to the formal specification
of timing failure, a TFD module detects a timing fail-
ure if the event occurs at a real time instant greater
than the deadline instant of its specification. Since the
TCB model only assumes the existence of local clocks
(property Ps 2) and does not even require clocks to
be synchronized, reasoning in terms of a global time
frame is not possible. Consequently, another method-
ology must be chosen. Using local clock values to spec-
ify deadlines is a simple and acceptable solution for
local specifications. But for remote specifications ab-

4



solute time values must be replaced by relative ones,
that is, the arrival deadline on the remote local clock
must be specified in terms of a duration related with
the message send time. This requires some form of
relating both clocks. The round-trip duration mea-
surement technique described in [6] can be used for
this purpose.

In what follows we present and describe the TFD
protocol. Since local and remote specifications can be
treated differently we first deal with failure detection
of remote events and only then present a brief descrip-
tion of an algorithm to handle local timing failures.

Remote timing failure detection

The protocol that implements the “remote” part of the
TFD service is presented in figure 2. It is executed in
rounds, during which each TFD instance broadcasts
all information relative to new (remote) timing spec-
ifications and to specifications evaluated during last
interval (since last round). The protocol uses three
tables to store this information: a Timing Specifica-
tions Table (TSTable), an Event Table (ETable) and
a Log Table (LTable). The TSTable holds informa-
tion about timing specifications that must be delivered
to remote sites during the next round. The ETable
maintain information about timing specifications and
receive events, which will be used later to make the
decisions. The last table is where timing failure de-
cisions are output and is also used to keep timeliness
information of past events.

Activity within the TCB is triggered by a user re-
quest to send a message (line 8). We assume the TCB
is capable of intercepting send requests, since it occu-
pies a privileged position in the system. How this is
done is an implementation issue out of the scope of this
paper. Upon intercepting a message, a unique mes-
sage identifier mid is generated (using some function
get uniqId()) and assigned to both the message and
the specification (lines 9-11). This identifier makes
the association between a message and a timing speci-
fication and it must be unique within the (distributed)
TCB to avoid wrong associations.

The intercepted message is then sent to the payload
channel using a special timed-send service, which in-
serts additional timestamping information in the mes-
sage. This is required to allow the computation, at the
receiver, of an upper bound for the effective message
transmission delay. A detailed description of this tech-
nique can be found in [10]. The timed-receive() func-
tion, counterpart of timed-send(), delivers the mea-
sured transmission delay (Tmid) and the receive times-
tamp (Trec) values (line 17).

For each TFDp instance

01 // Tsend is the duration of send actions
02 // r is round number
03 // Π is the period of a TFD round
04 // C(t) returns the local clock value at real-time t
05 // RTST is the set of all records in TSTable
06 // RET is the set of all complete records the in ETable
07
08 when user requests to send 〈m〉 to D do
09 mid := get uniqId();
10 timed-send(〈m, mid〉,D); // to payload channel
11 insert (mid,D, Tsend) in TSTable;
12 od
13 when C(t) = rΠ do
14 broadcast (〈RTST ,RET 〉); // to control channel
15 r := r + 1;
16 od
17 when timed-receive(〈m, mid〉, q, Tmid, Trec) do
18 if ∃R ∈ ETable : R.mid = mid then
19 R.Tmid := Tmid;
20 R.q := q;
21 if R.Complete = False then
22 stop (timer〈mid〉);
23 R.Complete := True;
24 fi
25 else
26 insert (mid, Tmid, q,⊥, False) in ETable;
27 fi
28 deliver (〈m〉, mid, Trec, q) to user ;
29 od
30 when message 〈RTST ,RET 〉 received from q do
31 foreach (mid,D, Tsend) ∈ RTST : p ∈ D do
32 if ∃R ∈ ETable : R.mid = mid then
33 R.Tsend := Tsend;
34 R.Complete := True;
35 else
36 insert (mid,⊥,⊥, Tsend, False) in ETable;
37 start (timer〈mid〉, Tsend);
38 fi
39 od
40 foreach (mid, q, Tmid, Tsend) ∈ RET do
41 if Tmid = ⊥ then
42 Failed := True;
43 else if Tmid > Tsend then
44 Failed := True;
45 else
46 Failed := False;
47 fi
48 insert (mid, q, Tmid, Tsend, Failed) in LTable;
49 od
50 od
51 when timer〈mid〉 expires do
52 search R ∈ ETable : R.mid = mid;
53 R.Complete := True;
54 od

Figure 2: Timing Failure Detection protocol.

After sending the message, a new record is added
to the Timing Specifications Table (line 11). Each
record contains the following items: the unique mes-
sage identifier mid, the set of destination processes D
and the specified duration for the send action, Tsend.
The value of Tsend is kept by the TCB but may be

5



changed at execution time. For instance, a Timeliness-
Tuning Algorithm, as explained in [14] may do this. It
is worthwhile to point out the generic and innovative
perspective of assuming a dynamic system evolution
in terms of timeliness parameters. In essence, this dy-
namic behavior allows a certain class of applications
to adapt to environment changes and achieve coverage
stability, as described in [14].

As said earlier, each TFD instance periodically dis-
seminates new information concerning timing specifi-
cations and specification runs. The period Π depends
on several factors, including the control channel band-
width, the number of processes and the maximum
amount of information sent in each round. Ideally,
the value of Π should be the lowest possible to mini-
mize the timing failure detection latency (see section
4.3). The TFD service wakes up, timely, when the
local clock indicates it is time for a new round (line
13). The contents of the TSTable and the complete
records in the ETable are then broadcast on the con-
trol channel. A record is considered complete (and
marked accordingly) when all the information neces-
sary to make a decision has been collected, or when
this decision can be made solely with the timing spec-
ification information or if a special failure situation is
detected (see section 4.3). The Complete field is not
included in the control information. Figure 3 shows an
Event Table record and indicates which events trigger
the filling of each field.

Event Table Record

Mess Received Spec Received

mid × ×
Tmid ×
q ×
Tsend ×
Complete When all info received or timer expires

Figure 3: Event Table record and filling triggering
events.

Synchronization among TFD instances is not en-
forced. Therefore, dissemination rounds of all in-
stances may be spread in an interval of duration Π.
However, since we assume bounded delays for TCB
tasks (property Ps 1) and a synchronous control chan-
nel (property Ps 3), the inter-arrival interval of control
information from a given instance is bounded. This
knowledge can be used, as we will see, to detect the
crash of a TCB module.

A message arriving from the payload channel is
received with the already mentioned timed-receive()
function (line 17). This function is the one responsible

for calculating the message transmission delay and it
does so using send and receive timestamps of a round-
trip message pair. Since the exact transmission delay
cannot be determined, its upper bound is used instead.
The error associated to this upper bound yields the
value of TTFDmin specified in property TFD 2.

When the message arrives, three situations are pos-
sible: (a) the timing specification has not arrived and
thus there is no entry in ETable for the message; (b)
there is an entry which is not complete; or (c) there is
a complete entry for that message. As for (a), a new
record is simply created with the received information
(line 26). We use ⊥ to denote absence of value (or
a special value). As for (b) and (c), a specification
for message mid has already been received, so Tmid

and the sender process identification, q, are stored in
the existing record (lines 18-20). If the record is not
yet complete, this means the TFD was still waiting
for the message to arrive and so timer〈mid〉 is stopped
and Complete is set to True (lines 21-23). Otherwise,
it means the message arrived late and a positive fail-
ure decision was, or will be made. Whichever is the
case, in the end the message is always delivered to
the user along with the (TFD internal) message iden-
tification and the receive instant timestamp (line 28).
Note that the objective of the TFD service is just to
provide information relative to timing failures within
a bounded and known amount of time. No filtering
of any kind is done to messages, and applications are
free to handle the information provided by the TFD
service in a manner that makes sense at their level of
abstraction. But we will come back to this interesting
interface problem in section 5.

Each message received from the control channel
provides two kinds of information: timing specifica-
tion records and complete event records. For a certain
process p, the relevant timing specifications are those
of messages delivered to p (line 31). Timing specifi-
cations of messages not yet received are inserted in
ETable and a timer is started to allow a timely failure
detection (lines 36-37). If the timer expires before the
message arrives, the message will never be considered
timely. Therefore, since we have to preserve property
TFD 2 assuring that timely messages are never con-
sidered late, the smallest timeout value we can use is
Tsend. This value is obtained assuming that a tim-
ing specification can be processed (by the remote site)
as soon as it was generated. If a more pessimistic,
although realistic assumption were made, the timeout
value could be relaxed to a lower value1. Nevertheless,

1At least, the minimum message delivery time for the control
channel could be taken into account.

6



this would not improve the maximum latency time for
failure detection in the general case.

Complete event records are treated next. By then,
the TFD service finally makes a decision: the specified
delivery delay is compared with the measured one and
the variable Failed is asserted a Boolean value (lines
41-47). If the value of Tmid is empty (⊥) this means
that the record in ETable was marked complete be-
cause timer〈mid〉 expired and that the message did not
arrive yet. The message is of course late. Each record
in the LTable contains the (TFD) message identifier,
the sender, the specified and measured durations and
the Failed flag. We will see in section 5 possible uses
for this information.

In the presented protocol we intentionally omitted
the problem of table size and possible memory exhaus-
tion to simplify the problem. Although it is simple to
devise a solution to clean table records after the TFD
has made the decisions, it may be useful to keep an
history of timing specification runs, and this raises the
problem of choosing an adequate criterion to make the
deletions. Solutions to this problem can only be dealt
with by taking into account the possible uses of the
information, and these depend on the application.

Local timing failure detection

As noted above, detection of local timing failures can
be done more easily than remote ones. In fact, since
all events in a same site can be timestamped using the
same local clock it is easy to measure time intervals
between events. Hence, it is simple for the TCB to
measure the duration of any executed function.

In figure 4 we present an algorithm to keep track
of local timing failures. In this algorithm we assume
that the TCB can intercept function calls and that
recursion is not possible in function calls (an extended
version of the algorithm could be devised to cope with
this). We also assume that the specified duration Tf

is known within the TFD service and is initialized to
some value which can be changed by the application
later on.

Again we are not too worried with the interface.
The interesting feature is that we can have a service
that measures timeliness of functions executed by the
application. Whether the application uses this service,
and how, is another problem that we will tackle in a
future paper.

Perfect timing failure detection

We are now able to state the following theorem.

For each TFD instance

01 // Tf is the duration of function f
02 // C(t) returns the local clock value at real-time t
03 // Rf is a local record for function f
04 // The Rf .T field keeps the specified duration
05 // The Rf .Start field stores the start timestamp
06 // The Rf .Run field stores the measured duration
07 // The Rf .Failed field indicates the failure decision
08
09 when user calls function f do
10 start (timerf , Tf );
11 Rf .T := Tf ; Rf .Run := ⊥; Rf .Failed := ⊥;
12 Rf .Start := C(t);
13 od
14 when function f terminates do
15 Rf .Run := C(t) − Rf .Start;
16 if Rf .Failed = ⊥ then
17 stop (timerf );
18 Rf .Failed := False;
19 fi
20 od
21 when timerf expires do
22 Rf .Failed := True;
23 od

Figure 4: Algorithm for local timing failure detection.

Theorem 1 The algorithms of figures 2 and 4 satisfy
properties TFD 1 and TFD 2.

Informal Proof:

The proof follows directly from the discussion of
the protocols. Nevertheless we explain how the val-
ues of TTFDmax (TFD 1) and TTFDmin (TFD 2) are
obtained. We only discuss the case for remote timing
specification, since this is the harder one.

Consider the example depicted in figure 5. It illus-
trates a situation where a process p sends a message m
to a process q with a specified duration of zero. Obvi-
ously, since no message can be sent instantaneously, a
timing failure will occur as soon as the message is sent.
Clearly, no timing failure can occur sooner than this.
At worst, the TFD of processor p wakes up Π units
of time after the timing failure, to send the specifica-
tion of m into the control channel. This information
is delivered at most ∆ time units later to the TFD
of processor q. It is inserted in the Event Table and
the record for message m is marked as complete. This
happens independently of m having arrived, since the
timeout of timer〈mid〉 is set to zero (the value of Tsend)
and hence will expire immediately. Hence, it may be
possible to wait another Π+ ∆ time units until TFDq

disseminates the complete record to all TFD instances.
Only then the decision about the timing specification
will be made, that is, at most 2(Π+∆) after the timing
failure.

7



p

q

TFDp

TFDq

Π ∆ Π ∆

m

Insert (mid, Tmid , p)
in ETable

Merge (Tsend) in ETable,
Set Complete to True

Insert decision
in LogTable

Tsend= 0 Timing Failure of m⇒

Figure 5: Example of earliest timing failure and max-
imum detection latency.

The value of TTFDmax is then 2(Π + ∆).
The value of TTFDmin derives from the error of the

delivery delay measurement. Since the exact value of
this delay is unknown, the higher bound is used to
assure that a late event is never considered timely.
In our protocol, the message delivery delay is mea-
sured by the timed-send service, which delivers the
upper bound value. The associated error depends on
the drift rate of local clocks (ρp, ρq), on the maximum
drift rate (ρ), on the send and receive timestamps of
a round-trip message pair 〈m1, m2〉 (Sm1, Rm1, Sm2,
Rm2), on the minimum message delivery delay (δmin)
and on the measured delivery delay of message m1
(Tm1). Assuming that m1 is first sent from q to p and
then m2 from p to q, the error associated to the trans-
mission delay of m2 can be expressed as follows [10]:

e(m2) = (Rm2 − Sm1)(ρ + ρq)+
(Sm2 − Rm1)(ρ − ρp)+
(Tm1 − δmin)

The value of TTFDmin is then e(m).
2

Impact of crash failures

The discussion of possible implications of a TFD in-
stance crash was postponed to this point since it raises
some model related questions that, if presented earlier,
could confuse theexplanation of the protocol. We also
did so because we believe that the cases described be-
low do not compromise what has been said until now.

There are two situations in which the crash of a
TFD instance must be carefully analyzed to prevent
the misbehavior of remaining instances or, even worse,
incorrect information to be output. The key issue is
the loss of information that, in this case, concerns tim-
ing specifications and complete event results.

Figure 6 illustrates a situation in which the in-
formation contained in the TSTable is lost. When

p

q

TFDp

TFDq

Π+∆

m

Insert in
ETable

timer<TFDp> timeout
Set Complete to True

Failed := ⊥

Π

Insert in
TSTable

∆ ∆

Figure 6: Example of crash failure before specifica-
tions are sent to control channel.

process p sends m to q, TFDp stores the timing in-
formation of m in TSTable. Normally, this informa-
tion would then be delivered to TFDq and inserted in
ETable. However, if TFDp crashes before sending the
control message, the timing specification of m will be
lost and therefore it will be impossible to decide about
the timeliness of m. At first glance, this impossibility
may seem a violation of properties TFD 1 and TFD 2.
However, the fact that a crash failure occurred can be
detected and this allows a special decision to be taken
without knowing the timeliness specification. Thus,
while the TFD service cannot say if message m was
timely or late, it indicates that a crash of processor p
occurred and that no decision can be made. It is then
up to the application to handle this information and
act upon it.

A generic solution to the problem of crash detection
was discussed by Almeida in [1]. In what follows we
present a specific extension to the TFD protocol to
handle TFD crashes, and then finalize the discussion
of figure 6.

The extension protocol uses a timer for each active
process, which is restarted every time new control in-
formation is received from that process (line 6). Since
the channel is synchronous, the interval between the
reception of successive control messages from a given
process is bounded by Π+∆. Hence, if the timeout is
set to this value, the timer will expire only if that pro-
cess has crashed. In the figure it is possible to observe
when TFDq detects the crash of p. Since a decision
has to be delivered, all pending events are marked as
complete (lines 20-22). A set containing all crashed
processes is maintained so that future decisions (for
messages still in transit) can be taken (lines 25-26).
At decision time, if the field containing the value of
the specified duration is empty (⊥), the special empty
value ⊥ will also be assigned to Failed in the LTable,
meaning that it was not possible to make a decision

8



For each TFDp instance

01 // Π is the period of a TFD round
02 // ∆ is the Max delivery delay in control channel
03 // C is the set of crashed processes
04
05 when message 〈RTST ,RET 〉 received from q do
06 (re)start (timer〈TF Dq〉, Π + ∆);

07 if q ∈ C then remove q from C fi
08 (... treat RTST as before ...)
09 foreach (mid, r, Tmid, Tsend) ∈ RET do
10 if Tsend = ⊥ then
11 Failed := ⊥;
12 else
13 (... decide as before ...)
14 fi
15 insert (mid, q, Tmid, Tsend, Failed) in LTable;
16 od
17 od
18 when timer〈TF Dq〉 expires do

19 add q to C;
20 foreach R ∈ ETable : R.q = q do
21 R.Complete := True;
22 od
23 od
24 when timed-receive(〈m, mid〉, q, Tmid, Trec) do
25 if q ∈ C then
26 insert (mid, Tmid, q,⊥, T rue) in ETable;
27 fi
28 deliver (〈m〉, mid, Trec, q) to user ;
29 od

Figure 7: Extension of the TFD protocol to handle
crash failures.

(lines 10-11).

Having considered the possibility of crash failures,
the value previously obtained for TTFDmax must be
reconsidered. In fact, since the perception of a crash
failure may take longer than the reception of control
information, we get a value slightly higher than be-
fore. Observe figure 6 and suppose TFDq only sends
the control message Π time units after detecting the
crash. Consider also that for the purpose of calculat-
ing TTFDmax we may admit that m suffered a timing
failure as soon as it was sent. Then, the new value
will be 2Π + 3∆.

The other potential problem is due to the loss of
information in the Event Table. Since this table con-
tains results of specification runs, an intuitive ap-
proach would make them immediately available (in
LTable) at the local site. However, if a crash occurred
before the broadcast of those results, this would mean
a decision had been taken in one site and not in the
others. To prevent this, we assure that decisions are
only made upon reception of ETable records, and so
either all or none will output timeliness decisions.

5 TFD Service Interface

We have seen that remote timing specifications are
generated upon interception of send requests and that
local function calls are also intercepted by the TFD.
This mode of operation was intentionally devised to
obtain a transparent service invocation. This means
that applications do not have to be modified to explic-
itly request a timeliness evaluation of each action they
perform. Instead, they are allowed to configure timeli-
ness parameters, namely by defining the required du-
ration for a certain kind of action, and then only have
to query the service to collect the results. This trans-
parency can be useful to deal with different kinds of
applications, specifically in terms of their synchrony
assumptions.

The main source of information output by the TFD
service is the Log Table, where timeliness information
about events is kept. The idea to access this infor-
mation is to have some kind of event identifier that is
used to query the TFD service. This is why messages
delivered to applications are accompanied by the iden-
tifier mid and by the receive instant timestamp. The
application may not use these values, but if it wants it
may use the timestamp to know when will the timeli-
ness information be available (remember the TTFDmax

constraint) and the mid to obtain it.
For a certain kind of applications it may be useful,

at some moment, to know the activity in the payload
channel. For instance, it may be interesting to know if
there are any messages sent by some processor, which
are supposed to be received. We know that the TFD
service may be able to provide this information by
checking the timeliness specifications registered in the
Event Table. So it may be convenient to provide an
interface to access this particular table.

6 Conclusions

The TCB model provides a framework to deal with
application timeliness requirements. It defines a num-
ber of services to be required including a Timing Fail-
ure Detection service. This paper has discussed sev-
eral important aspects related to the provision of this
service and a protocol with perfect timing failure de-
tection properties has been presented. We have shown
that clock synchronization is not an essential require-
ment to be able to timely detect timing failures. Some
general issues relative to the TFD service interface
have finally been discussed.

To conclude, we consider the implementation of a
fully-fledged TCB prototype to be a long-term goal.

9



We are currently doing research on the requirements
for an adequate and generic interface between control
and payload modules exhibiting any degree of syn-
chrony.

Acknowledgments

The authors are grateful to Christof Fetzer and
Flaviu Cristian for extensive discussion on these is-
sues.

References

[1] Carlos Almeida. Comunication in Quasi-Synchronous Sys-
tems: Providing Support a for Dynamic Real-Time Appli-
cations. PhD thesis, Instituto Superior Técnico, January
1998. (in Portuguese).

[2] Carlos Almeida and Paulo Veŕıssimo. Timing failure
detection and real-time group communication in quasi-
synchronous systems. In Proceedings of the 8th Euromicro
Workshop on Real-Time Systems, L’Aquila, Italy, June
1996.

[3] Carlos Almeida and Paulo Veŕıssimo. Using light-weight
groups to handle timing failures in quasi-synchronous sys-
tems. In Proceedings of the 19th IEEE Real-Time Sys-
tems Symposium, pages 430–439, Madrid, Spain, Decem-
ber 1998. IEEE Computer Society Press.

[4] A. Casimiro, F. Cristian, C. Fetzer, and P. Veŕıssimo. Pri-
vate communications, September 1998.

[5] Tushar Chandra and Sam Toueg. Unreliable failure detec-
tors for reliable distributed systems. Journal of the ACM,
43(2):225–267, March 1996.

[6] Flaviu Cristian. Probabilistic clock synchronization. Dis-
tributed Computing, 3(3):146–158, 1989.

[7] Flaviu Cristian and Christof Fetzer. The timed asyn-
chronous system model. In Digest of Papers, The 28th
Annual International Symposium on Fault-Tolerant Com-
puting, pages 140–149, Munich, Germany, June 1998. IEEE
Computer Society Press.

[8] Christof Fetzer and Flaviu Cristian. Fail-aware failure de-
tectors. Technical Report CS96-475, University of Califor-
nia, San Diego, October 1996.

[9] Christof Fetzer and Flaviu Cristian. Fail-awareness in
timed asynchronous systems. In Proceedings of the 15th
ACM Symposium on Principles of Distributed Computing,
pages 314–321a, Philadefphia, USA, May 1996. ACM.

[10] Christof Fetzer and Flaviu Cristian. A fail-aware datagram
service. In Proceedings of the 2nd Annual Workshop on
Fault-Tolerant Parallel and Distributed Systems, Geneva,
Switzerland, April 1997.

[11] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Im-
possibility of distributed consensus with one faulty pro-
cess. Journal of the Association for Computing Machin-
ery, 32(2):374–382, April 1985.

[12] Zohar Manna and Amir Pnueli. The Temporal Logic of
Reactive and Concurrent Systems. Springer, New York,
1992.

[13] Paulo Veŕıssimo and Carlos Almeida. Quasi-synchronism:
a step away from the traditional fault-tolerant real-
time system models. Bulletin of the Technical Commit-
tee on Operating Systems and Application Environments
(TCOS), 7(4):35–39, Winter 1995.

[14] Paulo Veŕıssimo and António Casimiro. The timely com-
puting base. DI/FCUL TR 99–2, Department of Computer
Science, University of Lisboa, April 1999. Short version ap-
peared in the Digest of Fast Abstracts, The 29th IEEE Intl.
Symposium on Fault-Tolerant Computing, Madison, USA,
June 1999.

10


