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PERFECT SOLIDITY: NATURAL LAWS AND THE PROBLEM OF MATTER 

IN DESCARTES' UNIVERSE 

 

EDWARD SLOWIK 

    

In the Principles of Philosophy, Descartes attempts to explicate the well-known 

phenomena of varying bodily size through an appeal to the concept of "solidity," a notion 

that roughly corresponds to our present-day concept of density. Descartes' interest in 

these issues can be partially traced to the need to define clearly the role of matter in his 

natural laws, a problem particularly acute for the application of his conservation 

principle. Specifically, since Descartes insists that a body's "quantity of motion," defined 

as the product of its "size" and speed, is conserved in all material interactions, it is 

imperative that he explain how solidity influences the magnitude of this force. As a 

means of resolving this problem, Descartes postulated an idealized condition of "perfect 

solidity" which correlates a body's "agitation" force (a forerunner of Newton's concept of 

non-accelerating, or "inertial" motion) with the interplay of its volume, surface area, and 

composition of minute particles. This essay explores this often misunderstood aspect of 

Descartes' physics, as well as the special function of idealized conditions in his collision 

rules. Contrary to those commentators who regard "perfect solidity" as a stipulation on 

bodily impact, this notion, it will be argued, is primarily concerned with the internal 

composition of macroscopic bodies, and only indirectly with their collision 

characteristics. Along the way, many of Descartes' hypotheses will be shown to display a 

level of sophistication and intricacy that, despite their essential incompatibility, belie 

several of the common misconceptions of Cartesian science. 

 

1. "Perfect Solidity" and the Natural Laws.  

Among the ideal conditions that appear in his Principles of Philosophy (Pr II 37-

52), Descartes remarks that his seven rules on the impact of material bodies "could easily 
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be calculated . . . if [the two colliding bodies] were perfectly solid (durus). . ."(Pr II 45).1 

Although this stipulation was intended to assist in the application of the collision rules (as 

instances of his third natural law), the complex and puzzling concept of "perfect solidity," 

or "perfect hardness," is perhaps also notable for having generated several divergent 

interpretations among recent commentators. In some instances, "perfect solidity" has 

been translated into the modern dynamical locution "perfect elasticity," which denotes a 

class of material bodies that return to their original shape, volume, etc., after deforming 

under impact.2 The translators of the first complete English edition of the Principles, V. 

R. Miller and R. P. Miller, for example, assume that Descartes had elasticity in mind in 

the passage quoted above.3 While it is true that most commentators regard Cartesian 

bodies as "inelastically hard" (i.e., they do not alter their shape during collision), even a 

few of these scholars have been unable to completely resolve their doubts. For instance, 

R. S. Woolhouse has recently concluded that "since the 'before and after' of a perfectly 

hard collision is the same as the 'before and after' of a perfectly elastic one, there is some 

justification for the sometimes-made assumption that by 'hard' [solid] Descartes really 

means 'elastic'."4 Notwithstanding the merits of this elastic/inelastic controversy, it would 

appear that such disputes overlook a more fundamental question that lies at the heart of 

the "perfect solidity" issue: Does Descartes' use of the "perfect solidity" concept 

encompass only the interactive, collision properties of bodies (i.e., how they behave 

under impact), or are other individual, non-interactive factors implicated as well, such as 

their internal composition and configuration of elementary particles? This essay presents 

the latter interpretation of perfect solidity, claiming that it constitutes the only means of 

correlating much of the information found in the latter portions of the Principles with the 

natural laws put forth in Part II. Despite its apparent connotations, "perfect solidity" 

pertains to the internal constitution of the basic particles that make up macroscopic 

bodies, and only indirectly the dynamic properties manifest in bodily collisions.    
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In order to demonstrate that Cartesian solidity is not merely a stipulation on 

bodily collisions, however, we will need to explore the interrelationship between the 

Cartesian conserved property of quantity of motion (often described as "size times 

speed") and the three bodily properties of volume, surface area, and quantity of matter. 

The specific function of these latter three properties is an issue that has received scant 

attention among Cartesian scholars, but it is crucial to a full understanding of Descartes' 

physics. For example, in the canonical presentation of the conservation law for the 

quantity of motion, Descartes' Principles specifically incorporates bodily surface area as 

a key factor in the determination of quantity of motion: 
 
We must however notice carefully at this time in what the force of each body 

to act against another or resist the action of that other consists: namely, in the single 
fact that each thing strives, as far as is in its power, to remain in the same state . . . . 
One which is at rest has some force to remain at rest, and consequently to resist 
everything which can change it; while a moving body has some force to continue its 
motion, i.e., to continue to move at the same speed and in the same direction. This 
force must be measured not only by the size of the body in which it is, and by the 
[area of the] surface which separates this body from those around it; but also by the 
speed and nature of its movement, and by the different ways in which bodies come 
in contact with one another. (Pr II 43) 

Thus, the quantity conserved in the motion and impact of bodies, which Descartes refers 

to as "quantity of motion," is determined by three factors: size, surface area, and speed  

(where speed is conceived as a non-directional scalar property, unlike velocity). Although 

the role of surface area is not revealed at this stage in the Principles, the derivation of his 

natural laws in Part II apparently equates a body's size with its volume, and its quantity of 

motion with the product of its size and speed (e.g., "when one part of matter moves twice 

as fast as another twice as large, there is as much [quantity of] motion in the smaller as in 

the larger" Pr II 36.). Given his thesis that spatial extension (in three dimensions) 

constitutes the essential property of material substance (Pr II 11), it is probably not 

surprising that the alleged identification of Descartes' term 'size' with 'volume' is often 

accepted as an elementary fact of Cartesian science.5 Nevertheless, it is also true that 

Descartes' conservation law implicates both size and surface area in the determination of 
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quantity of motion, two properties whose exact interrelationships, and hence contribution 

to the conservation law, are never clearly detailed in the Cartesian theory of matter.  

The problem of harmonizing Descartes' sporadic references to surface area, 

volume, and quantity of matter with his principal use of the term 'size' has long been a 

source of irritation among Cartesian scholars. Many who are aware of the ambiguous 

contribution of Cartesian matter to the natural laws have only mentioned this difficulty in 

passing, since their main research concerns others aspects of Descartes' physics. To 

illustrate, in an important essay on Cartesian force, M. Gueroult's only reference to these 

issues is the observation that "the notion of mass identified with volume remains very 

obscure in Descartes."6 In other cases, scholars will draw attention to the imprecise 

meaning of Descartes' term by placing it in quotation marks (i.e., 'size'), as does A. 

Gabbey in the following: "for Descartes, . . . the force of motion of a body, . . . is the 

product 'size'  speed . . . ."7 Overall, the sentiment of many of these Cartesian 

researchers is probably best captured by D. M. Clarke's remark that "the details of 

[Descartes'] theory are never sufficiently developed, so that one finds the same rather 

vague references to size, surface area, resisting media, and speed . . . ."8 

Nevertheless, the details of Descartes' theory are less vague than most 

commentators have assumed. To demonstrate this point, Sections 1.1 through 1.4 will 

examine how the bodily properties of volume, surface area, and quantity of matter are 

integrated by Descartes' concept of perfect solidity. On the basis of this discussion, we 

will then return, in Section 1.5, to the question posed at the outset: i.e., Is "perfect 

solidity" chiefly a collision, or composition, property of macroscopic bodies? Perfect 

solidity may have other applications, however, especially with respect to the interactions 

of bodies that operate outside of the special conditions of the impact rules. Thus, Section 

2 will examine various methods of utilizing the perfect solidity concept to resolve the 

problems that arise under these non-idealized conditions. The Cartesian concept of 

"rigidity", which will be introduced in Section 2.2, will also be seen to have important 
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repercussions for our discussion in Section 1.5, providing further reasons for regarding 

perfect solidity as primarily a stipulation on bodily composition.          

1.1. Rarefaction and Condensation. Descartes' definition of solidity first appears 

in Part II of the Principles, Articles 54: "Those bodies whose particles are all contiguous 

and at [relative] rest, are solid." In this passage, "contiguous" is the term requiring further 

elaboration, since the appeal to the "relative rest" of the particles pertains to Descartes' 

rejection of a binding force among the infinitely-divisible particles of matter (Pr II 20, 

55). Essentially, Descartes treats the observed phenomenon of varying bodily density, or, 

as he phrases it, "solidity," through an appeal to the spaces between the particles of 

matter. With respect to those processes which either decrease or increase the size of 

material bodies (labeled, respectively, rarefaction and condensation), he states: "rarefied 

bodies are those with many spaces between their parts which are filled by other bodies. 

And rarefied bodies only become denser when their parts, by approaching one another, 

either diminish or completely eliminate these spaces; . . ." (Pr II 6). Thus, bodies whose 

particles are contiguous (i.e., they are not separated by an influx of foreign matter) are 

deemed "solid." Descartes evidently found these natural processes of varying density 

rather disturbing, for they "might lead one to doubt whether the true nature of body 

consists in extension alone," a remark that also explains their presence at so early a stage 

in the Principles. Yet, only in Part III, 48-52, are we first introduced to the hierarchy of 

material elements responsible for the swelling and shrinking of these large macroscopic 

bodies. Briefly, Descartes procures a threefold subdivision of matter in order to explicate 

the underlying mechanisms that operate his matter-filled, or plenum, world. These basic 

particles, largely differentiated by size and function, are: (i) the large, macroscopic third 

elements of matter, and (ii) the much smaller, globule-shaped second elements of matter; 

while the minute debris formed from the collisions of the second and third elements, 

known as (iii) the first elements of matter, serve to fill the lacunae manifest between these 

larger particles.      
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In Part III of the Principles, Descartes presents a somewhat more elaborate 

analysis of the problem of solidity. Quite possibly, he felt compelled to furnish a 

systematic explanation of this phenomenon after reflecting upon the variety of diverse 

behavior produced by identically-sized bodies in resisting or sustaining motion--behavior 

which today we would call inertial effects. That is, there often exists a disparity among 

bodies of the same spatial volume, such as two identically sized globes composed, 

respectively, of gold and wood, in resisting changes to their states of motion. (e.g., one is 

much harder to move than the other!) One of the principal motivating factors in the 

formulation of the Cartesian theory of solidity is the need to explicate the origin of these 

"inertial" effects (although Descartes would not have used this term). In fact, a discussion 

of the motions of celestial bodies occasions Descartes' next attempt at a definition: "the 

solidity of [a] star is the quantity of the matter of the third element, . . . in proportion to its 

volume and surface area" (Pr III 121). As defined, solidity is thus a function of three 

variables: quantity of third element matter, surface area, and volume. Since the 

distinction between these three quantities, and their role in affecting density, is often 

misunderstood, we shall examine this three-part interrelationship below. 

1.2. Volume, Quantity of Matter, and the Agitation Force. At one point in the 

examination of solidity, Descartes utilizes his ratio of quantities to resolve the problem, 

just described, of divergent motions that originate from bodies of equal volume. He 

explains:  
 
Thus, here on earth, we see that, once moved, gold, lead, or other metals retain 

more agitation, or force to continue in their movement, than do pieces of wood or 
rocks of the same size and shape; and consequently metals are also thought to be 
more solid, or to contain more matter of the third element and smaller pores filled 
with the matter of the first and second elements. (Pr III 122)     

Descartes' remarks contain an implicit conjecture on the origins of inertial effects 

(although, as previously noted, Descartes did not hold the modern concept of inertia):9 A 

body's "force to continue in its movement," or "agitation," is directly proportional to its 

amount of third element matter. Therefore, provided two bodies of equal volume (and 
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equal speed), the more solid object will possess the greater quantity of third element 

matter, and consequently produce a greater tendency to continue in its motion (or 

agitation). This interpretation of the passage is verified by his discussion of the motions 

of stars: "The force which [a star] acquires from its motion . . . to continue {to be thus 

transported or} to thus move, which I call agitation; must be estimated neither by the size 

of its surface area nor by the total quantity of matter {which composes it}, but only by 

the quantity of the third element matter . . ." (Pr III 121). In Part II, furthermore, a 

moving body's "quantity of motion" (or "size times speed") constitutes a measurement of 

its "force to continue its motion, i.e., to continue to move at the same speed in the same 

direction" (Pr II 43); which is the same description Descartes provides for his force of 

agitation in Part III (see Section 1). Quantity of motion is hence a gauge of agitation 

force, a conclusion that will later assume importance.10       

At this juncture, one may begin to question the overall consistency of combining 

Descartes' agitation force hypothesis with his theory of matter. If, as Descartes believes, 

matter is mere spatial extension, then why should the agitation force of, say, a body 

entirely composed of tertiary matter differ from that of a body (of equal volume) 

containing only first element matter? Since all matter is extension, it would seem that 

both bodies should behave in exactly the same manner. Descartes, however, is quick to 

provide a rationale for this association. He reckons that, because the individual motions 

of a collection of elementary particles are not entirely unified, a volume of secondary 

globules cannot produce an agitation force equal to that of an identical volume of tertiary 

matter. In an insightful passage concerning stellar motion, he compares the agitation 

force of a star composed of third element matter against the force produced by an equal 

volume of secondary globules:         
   
Because these globules are separated from one another and have various 
{individual} movements; although their united force acts against the star, they 
cannot all unite their force simultaneously in such a way [as to ensure] that no part 
of their force is wasted. In contrast, all the matter of the third element . . . forms one 
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single mass which is moved together as a whole, and thus all the force which it has 
to continue in its motion is applied in a single direction. (Pr III 124) 

Put simply, the variably-directed motions of the individual globules of secondary matter 

(and, presumably, first element matter) lessen the total agitation force of the composite 

volume in any single direction. The motion of the star is not subject to these same effects, 

on the other hand, since all of the matter of third element constitutes a unified whole 

which moves in a single direction. Therefore, it is not the case that tertiary matter 

possesses some internal property that makes it qualitatively different from the other 

material elements; rather, it is simply the relative rest of the particles that comprise the 

third element which account for its role in determining the agitation force of macroscopic 

bodies, such as stars. Since the three types of Cartesian matter are identical in all respects 

except their relative size, Descartes' agitation theory is thus also applicable to particles 

entirely composed of primary and secondary matter. For instance, among secondary 

particles, the globules that possess more secondary matter will harbor the greater 

agitation forces (as will be evident in later sections).    

Although Descartes' reasoning is rather ingenious, it does not entirely justify his 

correlation of a macroscopic body's agitation force with its quantity of third element 

matter. For, even if the individual motions of the first and second elements cannot 

simultaneously unite their forces in a single direction "in such a way [as to ensure] that 

no part of their force is wasted," it is still the case that they will contribute some force, 

albeit small, in that given direction. The force generated by these particles will probably 

be insignificant in comparison to the force provided by the tertiary matter, but it is still a 

distinct force, and thus it must make some contribution to the overall agitation force of 

the composite body (i.e., the star). In fact, Descartes seems to admit this interpretation of 

his theory: "As for the matter of the first or even the second element, it is continually 

leaving [a] star and being replaced by new matter. Consequently, this new matter 

approaching cannot retain the force of agitation acquired by the matter which has already 
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left, which, in any case, was very small" (Pr III 121). If, as Descartes concedes, the 

departing first and second elements have acquired a force of agitation from the star, then 

this acquired force must have contributed something to the star's total quantity of motion, 

a force these particles obtained while inside the star. On this rendering of the evidence, it 

thus appears that a Cartesian body's agitation force should be equated with its total 

quantity of matter, and not just its quantity of third element matter. 

It is unfortunate that Descartes did not adequately explain his reasons for 

disregarding the contribution of the primary and secondary elements to the agitation force 

of macroscopic bodies, but his brief statements may indicate two possible motives for this 

decision. First, as specifically mentioned in the quotation above, the primary and 

secondary elements of matter are continuously leaving a star and being replaced by new 

matter. Hence, these minute particles are best seen as foreign bodies that only temporarily 

occupy the macroscopic host body, and do not assist in the composition of that body. Of 

course, if these foreign particles do not qualify as constituent members, then the effects of 

their individual agitation forces on the host body can be ignored. This interpretation has 

the added bonus of nicely correlating with a claim made early in Part II: "whatever 

extension there is in the spaces between [a body's] parts must in no way be attributed to 

it, but to whatever other bodies fill those spaces" (Pr II 6). Nevertheless, it should be 

noted that this form of response does not sit well with Descartes' definition of an 

individual body; where "by one body, or one part of matter, I here understand everything 

which is simultaneously transported; even though this may be composed of many parts 

which have movements among themselves" (Pr II 25). As for the second possible 

rationale, since Descartes holds that the agitation force acquired by the first and second 

elements is "very small," he may believe that this minute quantity can be conveniently 

ignored when determining the body's overall agitation force. In other words, one can 

secure a fairly accurate approximation of a body's quantity of motion by simply taking 

the product of its total quantity of tertiary matter and speed. Regardless of which 
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construal of Descartes' reasoning we adopt, his correlation of agitation force and third 

element matter in the case of macroscopic bodies remains somewhat obscure; but it will 

assume great importance below (in Section 2.2) when we discuss the impact of such 

composite bodies.  

1.3. Surface Area and the Agitation Force. Besides quantity of tertiary matter, a 

body's agitation force is also substantially influenced by the magnitude of its surface area. 

On the whole, Descartes is well aware that the agitation force of a body can be modified 

by simply changing its shape. For instance, a golden sphere can assume shapes that will 

allow a less-dense wooden sphere to possess a "greater agitation; . . . if [the golden 

sphere] is drawn out into threads or {forged} into thin plates or hollowed out with 

numerous holes like a sponge, or if it in any other way acquires more surface area, in 

proportion to its matter and volume, than the wooden sphere" (Pr III 122). In this case, 

the magnitude of an object's surface area is clearly implicated in the resulting agitation 

force: The larger the proportion of surface area to third element matter, the smaller the 

resulting force. This formula likewise holds for the individual globules of secondary 

matter. In discussing the agitation force of various sized globules, he argues that "the 

smaller [globules] have {less force, because they have} more surface area {in proportion 

to the quantity of matter} . . . than the larger ones . . ." (Pr III 125).   

Yet, the relationship between surface area and quantity of matter in Cartesian 

natural philosophy is a rather complex affair, and possibly uncertain. As quoted above, 

Descartes claims that a star's agitation force is a sole function of its quantity of third 

element matter, with surface area playing no role. In the very next article, though, he 

openly admits that a body's surface area can greatly change the magnitude of its agitation 

force. Contradictions of this sort bedevil much of the Cartesian theory of solidity and 

agitation, which provides a possible explanation for their lack of serious coordinated 

analysis. In essence, Descartes seems to desire a simple correlation between a body's 

agitation force and its quantity of second or third element matter; but, he also recognizes 
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the important role of surface area in modifying this force, a variable he cannot completely 

ignore.  

Descartes' uncertainty regarding the role of surface area is a dilemma that can be 

traced back to the definition of quantity of motion in Part II. On the whole, Descartes was 

cognizant of the plenum's capacity to retard the motions of bodies: "It is obvious, 

moreover, that [bodies] are always gradually slowed down, either by the air itself or by 

some other fluid body through which they are moving. . ." (Pr II 38). If we conjoin this 

observation with Descartes' comments on the motions of various shaped material objects 

(as noted above), then it seems plausible to infer that Cartesian surface area merely 

functions to change a body's existing agitation force, rather than assist in constituting that 

force. More carefully, a large surface area "slows down" a moving body by increasing the 

number of plenum particles it encounters along its path: the greater the magnitude of the 

body's surface area, the more particles it will confront (as opposed to a smaller shape), 

and hence the more quantity of motion it will lose or transfer to the surrounding 

plenum.11 This interpretation of the role of surface area in Descartes' physics has been 

duly noted by R. S. Westfall: "Descartes asserted frequently that the quantity of surface 

on which other bodies can impinge modifies the force of a body to continue its motion" 

(ibid., 70). This realization most likely prompted Descartes to incorporate surface area 

into his definition of the quantity of motion, the force that is conserved in all bodily 

collisions (as quoted in Section 1). "This force must be measured not only by the size of 

the body in which it is, and by the [area of the] surface which separates this body from 

those around it; but also by the speed and nature of its movement . . ." (Pr II 43). 

Nevertheless, the prospects of "quantifying over" the retarding effects of surface 

area must have presented a serious obstacle to the formulation of the Cartesian 

conservation law. Prior to the analysis of the collision rules, and just after his definition 

of quantity of motion, Descartes strives to eliminate this extra variable by insisting that 

his "[colliding bodies are] separated from all others {both solid and fluid} in such a way 
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that their movements would be neither impeded nor aided by any other surrounding 

bodies . . ." (Pr II 45). Accordingly, with the aid of this additional idealized condition, it 

is no longer necessary to take into account a body's particular shape when calculating its 

quantity of motion. In the presentation of the collision rules, the mitigating effect of 

surface area on the agitation force has been ruled out by definition, thus explaining its 

conspicuous absence in the derivation of these seven hypotheses.12 Yet, Descartes' ideal 

conditions only prevail for the collisions depicted in this section of the Principles. In Part 

III, the reemergence of surface area as a factor in the motions of bodies clearly indicates 

that such conditions are no longer in effect. It is a general mistake, therefore, to disregard 

the influence of surface area when ascertaining a body's quantity of motion outside the 

context of the idealized conditions utilized in the collision rules. 

1.4. Agitation and Solidity: Towards a Synthesis. In determining the factors 

involved in Descartes' agitation theory, we have examined thus far the functional 

relationship between surface area and quantity of matter, and between volume and 

quantity of matter; but the exact means by which all three quantities are integrated into a 

single concept or formula remains largely unexplained. Fortunately, in a discussion of the 

mitigating effects of surface area on a star's agitation force (relative to the agitation force 

of secondary globules), Descartes provides an outline of this three-part interrelationship: 
 
It can happen that [a star] has less solidity, or less ability to continue its movement, 
than the globules of the second element which surround it. . . . For these globules, in 
proportion to their size, are as solid as any body can be, because we understand that 
they contain no pores filled with other . . . matter; and because their figure is 
spherical; the sphere being the figure which has the least surface area in proportion 
to its volume. . . . (Pr III 123) 

In this two-part analysis, Descartes essentially provides the clearest formulation of his 

theory of solidity, and of the means by which a body's agitation force is linked to its 

solidity. With respect to his first claim, a globule completely packed with (secondary) 

matter is more solid than any other globule of identical size; where, as exercised in this 

quotation, the notoriously obscure term "size" apparently denotes volume. That is, 
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without pores filled with matter (presumably first element), these globules are fully 

condensed (as defined above), and thus possess the highest degree of solidity. Given the 

earlier reference to the solidity of stars, it is safe to assume that this account of solidity 

must also hold for bodies entirely composed of tertiary matter, rather than just the 

globules composed of secondary matter. As a result, we can translate the expression 

"contiguous" in Descartes' first definition of solidity with the degree of bodily porosity. 

For the second part of his definition, Descartes claims that a spherical body is more solid 

than any other figure of the same "size" (volume), since the sphere manifests the smallest 

proportion of surface area to volume.13 Presumably, these identically-sized objects 

possess a similar quantity of second or third element matter; for, if they did not, a highly 

rarefied spherical body could conceivably retain more solidity than a fully condensed 

non-spherical body of similar volume, in direct violation of the first part of the definition. 

We can generalize this section of Descartes' hypothesis as follows: provided two bodies 

of identical volume and identical quantities of third element matter (or second, if it is a 

globule), the body possessing the smallest surface area will harbor the greatest agitation 

force. Therefore, inasmuch as agitation force is linked to solidity, our three quantities--

volume, surface area, and quantity of matter--are essential ingredients in the magnitude of 

this force. 

All told, at least one important lesson can be extracted from Descartes' complex 

and troublesome theory of solidity: Any attempt to simply identify a body's quantity of 

motion with its volume and speed, as seemingly implicated in the definition of quantity 

of motion, is inconsistent with the analysis of solidity offered in Part III. Given our 

analysis, it is thus evident that, if used outside of the context of the idealized collision 

rules, quantity of motion tacitly expresses an intricate relationship between a body's 

volume, surface area, and its total quantity of second or third element matter (besides 

speed). In various circumstances, these variable magnitudes determine the agitation force, 

and hence quantity of motion, of all physical bodies in the Cartesian plenum. In other 
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words, inasmuch as agitation or quantity of motion are directly dependent upon our three 

quantities, the theory of solidity presented in Part III informs and governs the operation 

of the conservation law under the normal, non-idealized conditions that prevail in the 

Cartesian plenum. Most expositions of Descartes' laws of nature do not disclose or 

investigate this important aspect of the Principles, but it is crucial to a full understanding 

of Cartesian dynamics.14 In fact, one can find in the Cartesian literature numerous 

attempts to isolate spatial volume, or quantity of matter, as the sole contribution of 

Cartesian matter to the conservation law (size times speed).15 Yet, these readings of 

quantity of motion only hold for the highly idealized conditions assumed in the collision 

rules; where, as discussed in Section 1.3, the role of surface area in modifying the 

agitation force has been negated by Descartes' exclusion of disrupting plenum effects. 

1.5. Perfect Solidity and the Natural Laws: A Proposal.  We can now return to the 

analysis of the impact behavior of Descartes' "perfectly solid" bodies, which has been the 

motivating cause of our lengthy investigation. As we have seen, Descartes couples the 

agitation force to an intricate relationship among three different bodily quantities. 

Provided this theory, it would seem an almost impossible task to secure a systematic 

quantitative description of the inertial tendencies and conserved motions of material 

bodies. In order to produce such a law, one would need to determine the exact means by 

which the relative proportions of quantity of matter, volume, and surface area, contribute 

to the overall conserved motions of the colliding system. Yet, rather than undertake these 

potentially unrealizable determinations, Descartes circumvents the problem by (1) simply 

confining the scope of his collision laws to the impact of completely solid bodies, and (2) 

ignoring the plenum's capacity to retard bodily motion via bodily surface area. More 

precisely, if the globule or body is fully condensed (contains no pores), then it embodies 

as much second or third element matter (respectively) as its volume permits. No longer is 

it necessary to compute the ratios of quantity of matter to total bodily volume among the 

colliding bodies--under this requirement, all that is obligated is a measurement of their 
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relative bodily volumes. In addition, without the need to consider surface area, a body's 

total quantity of second or third element matter, or volume (given perfect solidity), can 

now be conveniently equated with its agitation force (after taking its product with speed, 

of course). It is thus no longer necessary to calculate how different shapes affect the 

quantity of motion of bodies with identical volume. 

 As utilized in the collision rules (Pr II 46-52), the requirement for perfect solidity 

can be therefore largely viewed as a stipulation for completely dense, pore-less bodies. 

That is, provided the evidence of the entire Principles, Descartes' appeal to perfect 

solidity partially amounts to a restriction on the potential ratio of a colliding body's 

quantity of matter to its total volume. The motivation underlying this restriction stems 

from the obvious need for a simplified and manageable treatment of the variables 

influencing a body's agitation force, and hence quantity of motion. As mentioned at the 

outset, despite the strong dynamic connotations, perfect solidity is not a requirement 

exclusively allied with the impact behavior of material bodies--other non-interactive 

properties, such as internal composition, form an important part of this concept. 

Put slightly differently, one can view perfect solidity as "an attempt to isolate 

behavior that can be regarded as fundamental given Descartes' metaphysics of matter," as 

J. Carriero has recently suggested.16 Since Cartesian matter is pure extension, the perfect 

solidity criterion frees the collision rules from the internal complications--via elementary 

particles--that beset the interactions of most macroscopic bodies (see Section 1.2). 

Without the need to factor in these interfering effects, perfect solidity thus allows the 

collision rules to describe the "pure" or "actual" collision behavior of Descartes' extended 

bodies. However, even on this interpretation (which is complimentary to the one 

advanced here), perfect solidity still remains primarily a stipulation on bodily 

composition, and not a description of how bodies behave during impact (e.g., by losing 

and regaining their original shape, or completely reversing their direction of motion). Of 

course, there is a sense in which any specification of the composition of bodies is relevant 
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to their collision properties, due to the simple fact that a body's constitution affects its 

interactions. But, bodily composition does not directly outline or detail such interaction 

behavior: rather, bodily composition, i.e., perfect solidity, is only indirectly concerned 

with the outcomes of bodily impact. In the next section, the analysis of the concept of 

"rigidity" will further substantiate this rendition of Descartes' perfect solidity concept.    

 

2. Non-Idealized Conditions and the Natural Laws.  

This section examines the prospects of successfully applying the Cartesian 

conservation principle without relying on the highly idealized conditions presupposed in 

the collision rules; that is, without limiting the scope of the natural laws to the 

interactions of just poreless bodies. As will become evident, many facets of Descartes' 

theory of matter and motion can generate substantial difficulties for this undertaking. 

Nevertheless, we will consider various methods of utilizing the insights gained from our 

study of Cartesian solidity, and of our forthcoming analysis of Cartesian rigidity, to 

overcome these obstacles. 

2.1. The Problem of Size Invariance. Besides definitional or computational 

simplicity, there may exist an aspect of Descartes' solidity hypothesis that specifically 

concerns the effects of bodily motion and impact. To demonstrate this point, we need to 

investigate the origins of Descartes' plenum universe. According to the Cartesian 

cosmological hypothesis, all space (matter) was initially divided into homogeneous parts 

of equal size, and impelled with a conserved quantity of motion: "God, in the beginning, 

divided all the matter of which He formed the visible world into parts as equal as possible 

and of medium size . . . . [Also] He endowed them collectively with exactly that amount 

of motion which is still in the world at present" (Pr III 46). Eventually, the collisions of 

these equally-sized spatial parts formed the three Cartesian elements of matter, as well as 

the vast diversity of material bodies comprised from these elements. The initial impact of 

Cartesian matter could not have been elastic, consequently, because of the absence of the 
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fragmented particles necessary for the composition of porous bodies. Without pores, the 

original bodies in Descartes' universe were perfectly solid. Yet, these bodies were clearly 

not perfectly solid in the sense required for Descartes' collision rules, since their impact 

ultimately resulted in a loss of size through fragmentation. When objects disintegrate or 

shed particles in this manner, their total quantity of motion will inevitably decrease.17 

More specifically, macroscopic bodies that do not possess determinate volumes do not 

possess determinate quantities of motion, which is defined as the product of speed and 

size (or volume, recalling the interdependence of these concepts as discussed above). Of 

course, a Cartesian will probably insist that any lost quantity of observable bodily motion 

is merely transferred to the realm of the surrounding microscopic particles, thus 

preserving the total universal quantity of motion. This form of response, although 

possibly correct, does not remedy the plight of Descartes' collision rules, however. If the 

Cartesian collision rules are to be applied successfully at the level of macroscopic 

objects, it is necessary that they conserve the total bodily quantity of motion by 

maintaining an invariant magnitude of bodily size. Hence, besides the absence of bodily 

pores, Descartes' perfect solidity criterion may also be interpreted as sanctioning a 

property of unchanging bodily size (or volume).             

Moreover, the union of the Cartesian theory of matter with a plenum universe 

poses major obstacles for the successful application of the Cartesian conservation law. 

This conflict probably stems from Descartes' denial of a material binding force; for when 

this theory, that relatively resting particles constitute solid bodies, is conjoined with any 

explication of bodily motion in a plenum, it becomes very difficult to accommodate the 

further contention that moving objects do not change volume over time. If the particles 

that comprise a solid object are at rest (relative to one another), the force exerted by the 

surrounding bodies and particles during motion, let alone impact, would seem quite 

sufficient to dislodge large numbers of them. Accordingly, over a given temporal interval 

it may be impossible to posit a determinate volume for any moving Cartesian body. Yet, 
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solid bodies that persistently shed minute particles as they travel and collide will 

experience a decrease in their quantity of motion with their corresponding reduction in 

volume, once again presenting great difficulties for any attempt to apply the Cartesian 

law to the collisions of macroscopic bodies over any temporal span. 

Evidence may exist, furthermore, to support the contention that the lack of a 

material binding force influenced Descartes' view of impact. In the illustrations of 

colliding bodies that accompany the letter to Clerselier, dated 17 February 1645, it is 

potentially significant that the cubes in one of Descartes' pictures possess equally sized 

rectangular surfaces on their sides of collision: i.e., the collision or contact surfaces of the 

two cubes are congruent (see the figure below).18 Provided the Cartesian denial of 

binding forces, this congruence may amount to a logical or practical consideration, for 

there would seem no means of preventing larger cubes from breaking apart (on contact 

with smaller cubes) without equal contact surfaces.19 For example, if the collision surface 

of a cube C extends beyond that of a second cube B, many particles on the periphery of 

C's surface will not encounter any opposing B particles upon impact, and thus continue 

their motion past the contact surface (resulting in C's disintegration). That the prospects 

for such incidents may have troubled Descartes is also disclosed in his letter to Clerselier. 

In picturing the collision of two unequally sized bodies, he merely increases the length of 

one of the cubes while preserving the congruence of their contact surfaces. If this 

interpretation of Descartes' illustrations is correct, then we can add a further stipulation to 

the ideal condition for perfect solidity; namely, that two bodies manifest identical impact 

surfaces. 
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Descartes' depiction of two unequally sized bodies in his letter to Clerselier (this is a 
slightly simplified version of the original). Note that both B and C are situated so as to 
collide upon sides possessing congruent surfaces.  
   

This construal of the Clerselier illustrations faces problems, nonetheless. With 

respect to these same collisions (among objects of different size), a second drawing 

included in the Clerselier letter does not display identical contact surfaces, nor do any of 

illustrations contained in the Principles (see, Pr II 45-52). In addition, it is not clear just 

how congruent contact surfaces can prevent the disintegration of colliding Cartesian 

bodies. As previously discussed, if relatively resting particles are prone to separate when 

confronted by an external material agent, then the forces exerted by the numerous plenum 

particles would seem quite sufficient to disperse a Cartesian body even when it is not 

impacting. In essence, congruent contact surfaces will not compensate for the lack of a 

material binding force. 

2.2. Rigidity. In order to further examine the application of Descartes' 

conservation law to the impact of plenum bodies, it will be necessary to explore the 

Cartesian concept of "rigidity," a notion that essentially constitutes a theory of elasticity. 

Towards the end of Part IV (on terrestrial phenomena), he states: 
 
Glass is rigid: that is to say, it can be somewhat bent by external force without 
breaking but afterwards springs back violently and reassumes its former figure, like 
a bow. . . . And the property of springing back in this way generally exists in all 
hard bodies whose particles are joined together by immediate contact rather than by 
the entwining of tiny branches. For, since they have innumerable pores through 
which some matter is constantly being moved . . . , and since the shapes of these 
pores are suited to offering free passage to this matter . . . , such bodies cannot be 
bent without the shapes of these pores being somewhat altered. As a result, the 
particles of matter accustomed to passing through these pores find there paths less 
convenient than usual and push vigorously against the walls of these pores in order 
to restore them to their former figure. (Pr IV 132) 

On Descartes' estimation, a "rigid" body is capable of returning to its original 

configuration after impact due to the action of matter, presumably first element, 

contained within its pores. These primary elements of matter recover the body's initial 

shape by pressing against the walls of the pores during the contraction of impact. 
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Cartesian rigidity, the analogue of elasticity, thus stands in sharp contrast to the Cartesian 

definition of solidity: the former concept invokes pores or channels within the structure 

of material bodies, while the latter notion requires fully condensed bodies completely 

devoid of such conduits. To verify this material classification, one needs only to recall 

Descartes' synopsis of the completely solid secondary elements: "these globules, in 

proportion to their size, are as solid as any body can be, because we understand that they 

contain no pores filled with other . . . matter" (Pr III 123). Without pores, Cartesian 

bodies are thus incapable of changing and regaining their bodily shape under impact. 

Needless to say, these comments make it abundantly clear that, contrary to the 

suggestions of some commentators, Descartes did not intend perfect solidity to mean 

perfect elasticity.   

In addition, by confidently asserting that rigidity "generally exists in all hard 

bodies," Descartes' exposition on elastic phenomena makes it clear that most physical 

bodies are not perfectly solid. One must exercise caution in interpreting this claim, 

however, since the standard explications of the terms "hard" and "rigid" somewhat 

overlap: Descartes is not claiming that all bodies, including the perfectly solid ones, are 

elastic (rigid); rather, he is merely pointing out the non-trivial fact that most seemingly 

perfect solid bodies are actually elastic. On a deeper level, one may in fact read into his 

statement a denial of the very existence of perfectly solid bodies. Descartes' observations 

thus reflect and corroborate the tacit assumption that perfect solidity is an ideal condition 

imposed on the domain of his conservation laws. Furthermore, as an historical aside, 

Descartes' analysis of rigidity belies the simplistic judgment that all Cartesian bodies are 

inelastically hard. On the contrary, his comments reveal an intuitive awareness of the 

fundamental elasticity of most, if not all, macroscopic objects; a conclusion closely akin 

to the later elastic theories of Leibniz and John Bernoulli.20 

Returning to the problem of implementing the conservation law, it is important to 

note that the utilization of Descartes' hypothesis concerning tertiary matter and the 
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agitation force, first introduced in Section 1.2, greatly assists in conserving the quantity 

of motion of colliding "rigid" bodies. As mentioned, rigid bodies possess pores or 

channels filled with elementary particles of matter, particles whose presence or absence 

occasions the phenomena of rarefaction and condensation. When these elastic bodies 

collide, consequently, it would seem that many of the small foreign particles housed in 

the objects, i.e., the primary and secondary matter, must be expelled or ejected during the 

contraction phase of the impact (when the distortion of the body during the brief instants 

after contact compresses its pores). Because of the Cartesian identification of matter and 

space, only by emitting matter can the body reduce the volume of space it occupies. 

Likewise, the primary and secondary elements of matter will somehow need to filter back 

into the object after the contortion phase of the impact to "puff" it back up to its original 

size. The exact manner by which this process takes place is decidedly unclear given 

Descartes' brief comments on the problem of elasticity--presumably, some sort of "hinge" 

mechanism on the surface of porous bodies could be invoked to meter the flow of 

particles both in and out of the channels. Nevertheless, if we adopt Descartes' correlation 

of tertiary matter and agitation force, then one aspect of "rigid" collisions is evidently 

clear: the reduction and increase in a body's overall volume during the temporal period 

spanned by an elastic collision will not vary its total quantity of motion, since all the 

particles ejected and recovered will not be third element matter. Descartes' stipulation of 

an "agitation" force, a theory that seemed somewhat unmotivated when first presented (in 

Section 1.2), thus proves invaluable in applying the conservation law to the collisions of 

the normal, non-idealized bodies that predominate in the Cartesian plenum (i.e., rigid 

bodies). 

 

Conclusions 

Finally, we should offer some concluding remarks on the success of Descartes' 

project. With the benefit of scientific hindsight, Descartes' decision to formulate his laws 
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of motion upon the groundwork of his theory of matter was rather unfortunate. His 

conservation principle, which demands a firm material theory to operate effectively, is 

severely handicapped by the quirks of his physical program; most notably, by the 

interference of the plenum and the lack of a material binding force. In short, it seems 

impossible to integrate all of the Cartesian theories surveyed in this essay into a coherent 

system of dynamics. Yet, this conclusion should not be taken to invalidate or lessen the 

value of Cartesian natural philosophy, since the very influence of Descartes' work on the 

succeeding generations of scientists is enough to dispel this simplistic notion. The ideal 

condition of "perfect solidity," the main focus of our investigation, is a case in point: 

although the solidity thesis harbors various inconsistencies, it exhibits a striking 

awareness of the diverse factors involved in the inertial motion of bodies, as well as 

offering a sophisticated attempt at integrating these disparate elements into a single 

manageable formula. Despite its history of neglect, much can be learned from studying 

the intricacies and interrelationships of Descartes' theories of solidity, rigidity, and 

agitation.21 
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