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Chapter 1 Introduction

This deliverable builds on the work reported in MAFTIA deliverable D1 [Cachin et al.
2000a]. It contains a refinement of the MAFTIA conceptual model and a discussion of the
MAFTIA architecture. It also introduces the work done in WP6 on verification and
assessment of security properties, which is reported on in more detail in MAFTIA deliverable
D4 [Adelsbach & Pfitzmann 2001].

Chapter 2 is taken largely from [Laprie et al. 1995] and presents core dependability concepts.
Chapter 3 refines these in the context of malicious faults, and examines the distinction
between intrusions, attacks, and vulnerabilities. There is also a discussion of how the
traditional methods of building dependable systems, namely fault prevention, fault tolerance,
fault removal, and fault forecasting, can be re-interpreted in a security context.

Chapter 4 introduces the topic of intrusion tolerance and shows how intrusion-detection
systems relate to the traditional dependability notions of error detection and fault diagnosis. It
goes on to present a framework for building intrusion-tolerant systems. The idea is that
components in the overall system may be internally or externally monitored for erroneous
behaviour. Some components may be intrusion-tolerant in that they can autonomously recover
from detected errors. Detected errors are reported to a security administration component of
the system that is responsible for diagnosis and managing intrusions at the system-wide level.

Chapter 5 provides an overview of the MAFTIA architecture. It includes a discussion of the
models and assumptions on which this architecture is based, together with an explanation of
the various layers of the MAFTIA middleware and run-time support mechanism. There is also
a description of the various intrusion-tolerance strategies that can be used to build intrusion-
tolerant services. The chapter is intended to summarise some of the key ideas underpinning
the MAFTIA architecture, and thus serves as an introduction to some of the other
deliverables, which go into more technical detail about these topics.

Chapter 6 introduces the work done on verification and assessment of secure systems. This is
discussed in much more detail in MAFTIA deliverable D4 [Adelsbach & Pfitzmann 2001],
but again the idea is to provide an introduction or executive summary of the work. In terms of
the basic dependability concepts discussed in Chapter 3, the purpose of verification and
assessment is vulnerability removal.

Chapter 7 concludes the deliverable with a discussion of what has been achieved and
directions for future work, and an appendix contains a glossary of the terms used in the
deliverable.
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Chapter 2 Core dependability concepts

The purpose of this chapter is to recall some core dependability concepts, extracted mostly
literatim from [Laprie et al. 1995, chapter 1]1. We then extend and refine these definitions in
the context of security and intrusion-tolerance/detection. Readers familiar with the core
dependability concepts may proceed directly to Chapter 3.

2.1 Basic definitions
Dependability is that property of a computer system such that reliance can justifiably be
placed on the service it delivers. The service delivered by a system is its behaviour as
perceived by its user(s); a user is another system (human or physical) interacting with the
system considered.

According to the application(s) of the system, different facets of dependability may be
highlighted. This is tantamount to stating that dependability can be viewed according to
different but complementary properties that allow its attributes to be defined:

•  readiness for usage leads to availability;

•  service continuity leads to reliability;

•  non-occurrence of catastrophic consequences for the environment leads to safety;

•  non-occurrence of unauthorised disclosure of information leads to confidentiality;

•  non-occurrence of inadequate information alterations leads to integrity;

•  ability to conduct repairs and introduce evolutions leads to maintainability.

Security is generally considered as the combination of confidentiality, integrity and
availability [ITSEC], in particular relative to the authorised actions.

A failure of the system occurs when the delivered service deviates from implementing the
system function, that is, from what the system is intended for. An error is that part of the
system state that may lead to a failure: an error affecting the service is an indication of a
failure occurring or which has occurred. The adjudged or hypothesised cause of an error is a
fault.

Development of a dependable system requires the combined use of a set of methods that can
be listed as follows:

•  fault prevention: how to prevent the occurrence or introduction of faults;

•  fault tolerance: how to provide a service implementing the system function despite
faults;

•  fault removal: how to reduce the presence (number, severity) of faults;

•  fault forecasting: how to estimate the presence, creation and consequences of
faults.

The notions that have been introduced can be listed under three main headings (as shown in
Figure 1):

•  impairments to dependability: faults, errors, failures; these are undesirable — but
not unexpected — circumstances, causes or results of un-dependability (that can be

                                                       
1 The concepts as presented here are roughly equivalent to those presented in [Laprie 1995].
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simply derived from the definition of dependability: trust can no longer, or will no
longer, be put in the service delivered);

•  the means for dependability: fault prevention, fault tolerance, fault removal, fault
forecasting; these are the methods and techniques giving the system the ability to
deliver a service conforming to the accomplishment of its function, and to place
trust in this ability;

•  attributes of dependability: availability, reliability, safety, confidentiality,
integrity, maintainability: these enable a) expression of the properties expected
from the system, and b) assessment of the quality of the service delivered, as
resulting from the impairments and the means used to avoid them.

DEPENDABILITY

ATTRIBUTES

AVAILABILITY 

RELIABILITY

SAFETY

CONFIDENTIALITY

INTEGRITY

MAINTAINABILITY

FAULT PREVENTION

FAULT TOLERANCE

FAULT REMOVAL

FAULT FORECASTING

MEANS

IMPAIRMENTS

FAULTS

ERRORS

FAILURES

Figure 1 — The dependability tree

2.2 On the function, behaviour and structure of a system
So far, a system has — implicitly — been considered as a whole, emphasis being placed on
behaviour as perceived from the outside. A definition according to this “black box” vision is:
a system is an entity having interacted or interfered, interacting or interfering, or likely to
interact or interfere, with other entities, that is, other systems. The latter make up or will make
up the environment of the system considered.2 A system user is a part of the environment
that interacts with the system: a user provides inputs to the system and/or receives outputs
from it. In other words, what distinguishes a user from the other parts of the environment is
the fact that he uses the service delivered by the system.

As already pointed out in Section 2.1, the function of a system is what it is intended for. The
behaviour of a system is what it does. What enables it to do what it does is its structure.
[Ziegler 1976]Adopting the spirit of [Lee & Anderson 1990], a definition of a system from a
structural point of view (“white box” or “glass box”) is the following: a system is a set of

                                                       
2 a) Giving recursive definitions allows the relativity of the notion of system to be underlined

according to the point of view considered: a system will not be looked at in the same way by a
designer, its users and the maintenance teams.

b) Use of the past, present and future is intended to show that the system environment will change,
particularly during the various phases of the life cycle. For example, the definition is broad
enough to cover both the “programming environment” using during the development of the
system, and the “physical environment” to which the system is subjected during its operational
life.
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components interconnected in order to interact; a component is another system, etc.
Decomposition ends when a system is considered atomic: in other words, no subsequent
decomposition is envisaged either by nature or because it is (currently) devoid of interest. The
term “component” must be understood in its broad sense: layers of a system as well as intra-
layer components; in addition, a component being itself a system encompasses the
relationships between the components that make it up. A more conventional definition of the
structure of a system is what the system is. This definition remains appropriate as long as
dependability impairments are not considered and, therefore, the structure is considered
frozen. However, as dependability impairments can be structural changes, or can cause or
result from structural changes, a structure can have states.3 Hence a definition of the notion of
state: a state is a condition of being relative to a set of circumstances; this definition applies
to the behaviour of a system as well as to its structure.4

Owing to its definition (the behaviour perceived by a user), the service delivered by a system
is clearly an abstraction of the latter’s behaviour. It is worth pointing out that this abstraction
directly depends on the application for which the system is used. One example of this is the
role played by time of this abstraction: time granularities of a system and of its users are
usually different and vary according to the application concerned. In addition, the notion of
service is not, of course, limited to outputs only but includes all interactions of interest to the
user; for example, sensor scans are clearly part of the service expected from a monitoring
system.

So far, we have used the singular for function and service. Usually, a system implements
more than one function and delivers more than one service. Thus, function and service can be
considered as composed of function elements and service elements. For clarity, we will use
the plural — functions, services — when it is necessary or useful to make a distinction
between several elements of function or service.

Given the preceding definition for the structure of a system, the notions of function and
service naturally apply to components. This is particularly relevant in the design process when
pre-existing hardware or software components are incorporated into a system: the designer is
more interested in the function of the component or service it delivers, than its detailed
(internal) behaviour.

The specification of the system, that is, an agreed 
5 description of the function or service

expected from the system, plays a pivotal role in dependability. Generally, the function or
service is described or specified first in terms of what should be implemented or delivered
according to the primary purpose of the system (for example, to carry out transactions, order
or monitor a process, pilot a plane or guide a missile, etc.). With respect to security or safety
systems, this description is usually completed by a statement of what should not occur (for
example hazardous states that could cause a catastrophe or the disclosure of sensitive
information). This latter description leads to the identification of additional functions the

                                                       
3 One can therefore say that a structure also features a behaviour, particularly, relative to

dependability impairments, even if the pace of changes considered relative to, on the one hand, the
user's requests and, on the other the dependability impairments, are — as should be noted —
radically different.

4 This definition is designed to lay the stress on a notion of state that depends directly on the
phenomena and circumstances considered; for example: states relative to the information processing
activities, states relative to the occurrence of failure, etc.

5 An agreement is usually struck between two persons or groups of persons, physical or moral: the
system vendor (in its broad sense: designer, manufacturer, seller, etc.) and its human users. The
agreement may be explicit, e.g., when defining a new system to be built from scratch, or implicit,
e.g., when purchasing an existing system with its specification and the user’s manual, or when
employing off-the-shelf systems.
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system should implement to reduce the possibilities of what should not occur (e.g.,
identification of a user and verification of his rights).

In addition, the specification of these diverse functions can be:

•  expressed according to various points of view or degrees of detail: specification of
the needs, design specification, implementation specification, etc.,

•  decomposed in accordance with the absence or presence of a failure; the first case
relates to what is usually referred to as the nominal mode of operation and the
second may deal with the so-called degraded mode of operation, if the remaining
resources are no longer adequate for the nominal mode to be provided.

As a result, there exist several specifications, not one only, and a system can fail relative to
one of them while still satisfying the others.

The expression of the functions of a system is an activity that is naturally initiated in the very
early stages of a system development. However, generally, it is not limited to this phase of a
system lifetime. In fact, experience has shown that the process of specifying the system
functions has to be pursued throughout the system’s lifetime as it is difficult to identify what
is expected of it.

2.3 Human-made faults

Faults and their sources are highly diverse. Five main points of view can be considered to
classify them. These are the phenomenological cause, nature, phase of creation or occurrence,
situation relative to the system boundaries, and persistence [Laprie et al. 1995, chapter 1] (see
Figure 2).

PHYSICAL FAULTS

HUMAN-MADE FAULTS

PHENOMENOLOGICAL
CAUSE

ACCIDENTAL FAULTS

INTENTIONAL, NON-MALICIOUS FAULTS

INTENTIONALLY MALICIOUS FAULTS

 NATURE

FAULTS
DEVELOPMENT FAULTS

OPERATIONAL FAULTS

PHASE OF CREATION 
OR OCCURENCE

INTERNAL FAULTS

EXTERNAL FAULTS
SYSTEM BOUNDARIES

PERMANENT FAULTS

TEMPORARY FAULTS
PERSISTENCE

Figure 2 — Classes of elementary faults

Of particular interest to MAFTIA, are human-made faults, which correspond to four classes
of combined faults:

•  design faults, which are development faults, accidental or intentional with no
malicious intent;

•  interaction faults, which are external faults, accidental or intentional with no
malicious intent;
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•  malicious6 logic, which consists of malicious internal faults;

•  intrusions, which are malicious, externally-induced, operational faults.

Some comments upon these classes of human made faults:

1 Intentional design faults with no malicious intent usually result from tradeoffs during
the development, made with a concern for maintaining a suitable level of system
performance or for facilitating system use, or even for economic reasons; these faults
can be sources of security impairments in the form of hidden channels. Intentional
interaction faults with no malicious intent can result from an operator attempting to
address an unexpected event or deliberately acting in breach of procedures without
realising the detrimental effects of his action. Generally, intentional faults performed
without malicious intent are only identified as such after they have caused an
unacceptable behaviour of the system, hence a failure.

2  Interaction faults are defined above as a class of human-made external faults that
includes both accidental faults and intentional faults without malicious intent. These
sub-classes should not be confused with the two error classes commonly considered
for operators [Norman 1983]: intention errors (i.e., errors in the formulation of the
interaction objective) and execution errors (i.e., errors in implementing these
intentions).

3 Malicious logic covers development faults such as Trojan horses, trapdoors, logic or
timing bombs, and operational faults (for the system considered) such as viruses and
worms [Landwehr et al. 1994]. These faults include:

•  a logic bomb is part of a program that remains dormant in the host system till a
certain time or an event occurs, or certain conditions are met, triggering severe
consequences for the host system;

•  a zombie is a malicious program that can be triggered by an attacker in order to
mount a coordinated attack;

•  a Trojan horse is a program performing an illegitimate action while giving the
impression of being legitimate; e.g., the illegitimate action can be the disclosure or
modification of information (attack against confidentiality or integrity) or the
triggering of a logic bomb;

•  a trapdoor is a means of circumventing access control mechanisms; it is a flaw in
the security system due to an accidental or intentional design fault (Trojan horse in
particular);

•  a virus is a program segment that replicates itself and joins another program
(system or application) when it is executed, thereby turning into a Trojan horse; a
virus can carry a logic bomb;

•  a worm is an independent program that replicates itself and propagates without the
users being aware of it; a worm can also carry a logic bomb.

2.4 Fault tolerance
Fault tolerance [Avizienis 1967] is carried out by error processing and by fault treatment
[Anderson & Lee 1981]. Error processing is aimed at removing errors from the
computational state, if possible before failure occurrence; fault treatment is aimed at
preventing faults from being activated — again.

                                                       
6 Note that we use the term “malicious” in its standard dictionary sense of “desiring to harm others or

to see others suffer” and not in the sense of “worst possible behaviour” that is sometimes used with
respect to arbitrary faults.
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Error processing can be carried out via three primitives:

•  error detection, which enables an erroneous state to be identified as such;

•  damage assessment, which aims to evaluate the extent of the damage7 caused by
the detected error, or by errors propagated before detection;

•  error recovery, where an error-free state is substituted for the erroneous state; this
substitution may take on three forms:

-  backward recovery, where transformation of the erroneous state consists of
bringing the system back to a state already occupied prior to error occurrence;
this involves the establishment of recovery points, which are points in time
during the execution of a process for which the then current state may
subsequently need to be restored;

-  forward recovery, where transformation of the erroneous state consists of
finding a new state, from which the system can operate (frequently in a
degraded mode);

-  compensation, where the erroneous state contains enough redundancy to
enable its transformation into an error-free state.

When backward recovery or forward recovery are utilised, error detection must precede error
recovery. These techniques are not antagonistic: a backward recovery may first be attempted;
if the error persists, forward recovery may then be undertaken. In the latter case, the damage
assessment must take place before undertaking recovery; damage assessment is not — in
theory — necessary in the case of a backward recovery provided the mechanisms for
implementing error recovery have not been affected [Anderson & Lee 1981].

The addition of error-detection mechanisms to the component’s functional processing
capabilities leads to the notion of self-checking component, for the hardware [Carter &
Schneider 1968, Wakerly 1978, Nicolaïdis et al. 1989] or software [Yau & Cheung 1975,
Laprie et al. 1990]. One of the main advantages of self-checking components is the possibility
of clearly defining error confinement domains [Siewiorek & Johnson 1982]. When error
compensation is carried out in a system made up of self-checking components partitioned into
given classes of task execution, error recovery reduces to a switchover from a failed
component to a non-failed one within the same class. On the other hand, error compensation
may be applied systematically, even in the absence of errors, thereby providing fault
masking (e.g., through a majority vote). Error detection is not, then, strictly speaking, needed
to perform recovery. However, to avoid an undetected decrease in the redundancy available
during a component failure, practical implementations of masking usually include an error-
detection facility, which may in this case be initiated after recovery.

The operational time overhead (in terms of execution) needed for error processing may vary
considerably according to the technique used:

•  in the case of error recovery based on backward recovery or forward recovery, the
time overhead is more important when an error occurs than when it does not. In the
case of backward recovery, the time overhead consists in establishing recovery
points and, therefore, in laying the groundwork for error processing;

                                                       
7 “Damage” refers here to error propagation within the system, i.e., before a failure has occurred (if

failure has already occurred, recovery, and thus damage assessment, would no longer be
worthwhile). In traditional fault-tolerance, damage assessment refers, for example, to finding out
how many checkpoints to roll back to when doing backward recovery, or to finding out how many
processes (might) have been affected by an error that has just been detected. With respect to
malicious faults, damage assessment might be, for example, judging which files an intruder has
modified so that they can be appropriately restored before someone needs to use them.
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•  in error compensation, the time overhead remains unchanged or almost the same
whether or not there exists an error.8

In addition, error compensation is much faster than with a backward recovery and forward
recovery owing to the much more important structural redundancy. This remark

•  carries a certain weight in practice because it often conditions the choice of a fault-
tolerance strategy relative to the time granularity of the system user;

•  introduces a relationship between operational time overhead and structural
redundancy. More generally, a redundant system always provides redundant
behaviour, incurring at least some operational time overhead. The time overhead
may be small enough not to be perceived by the user, which means only that the
service is not redundant. An extreme form of time overhead is “time redundancy”
(redundant behaviour obtained by repetition), which needs to be at least initiated by
a structural redundancy, even in a limited form. Typically, the greater the structural
redundancy, the lower the time overhead.

The first step in fault treatment is fault diagnosis, which consists of determining the causes of
errors in terms of localisation and nature. Then, the steps needed to fulfil the main objective
of fault treatment are carried out to prevent faults from being reactivated, hence fault
isolation. To do so, the components deemed faulty are removed from the subsequent
execution process9. If the system is no longer able to provide the same service as before, a
reconfiguration may be envisaged by modifying the system structure so that fault-free
components provide an adequate, although degraded, service. Reconfiguration may mean
scrapping a number of tasks, or reallocating some of them to the remaining devices.

If it is thought that the fault has vanished after error processing or if its probability of
recurrence is low enough, isolation becomes unnecessary. As long as fault isolation has not
been undertaken, a fault is considered soft; undertaking isolation means that the fault is hard,
or solid. At first sight, the notions of soft fault and hard fault may seem synonymous with that
of temporary fault and permanent fault. Indeed, temporary faults can be tolerated without the
need for fault treatment since error recovery should theoretically directly suppress the effects
of a temporary fault, which will vanish unless a permanent fault is created by the propagation
process. In fact the notions of soft fault and hard fault are useful, for the following reasons:

•  distinguishing between a permanent fault and a temporary one is not easy and
highly complex since a temporary fault vanishes after a certain amount of time,
generally, before diagnosis is carried out and distinct classes of faults can give rise
to similar errors; thus, the notion of soft or hard fault carries implicitly the
subjectivity associated with these difficulties, including the fact that a fault can be
considered soft following unsuccessful diagnosis;

•  distinguishing between soft and hard faults makes it possible to take into
consideration subtleties in the action modes of certain transient faults; for example,
can a dormant fault due to the action of alpha particles, or of heavy ions in space,
on memory elements (in the broad sense of the word, including flip-flops) be
regarded a temporary fault? This fault is definitely a soft fault however.

The foregoing considerations apply to physical faults as well as design faults: the fault classes
that can be tolerated in practice depend on the fault assumptions made in the design process,
which are conditioned by the independence of redundancies relative to the fault creation and
activation processes. An example is provided by considering tolerance of physical faults and
tolerance of design faults. A (widely-used) method to attain fault tolerance is to perform

                                                       
8 In all cases, the time to update the system state tables increases the time overhead.
9 Usually, removed faulty components can be repaired and re-inserted into the system; such curative

maintenance can be considered as an ultimate form of fault-tolerance.
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multiple computations through multiple channels. When tolerance of physical faults is
foreseen, the channels may be identical, based on the assumption that hardware components
fail independently. However, such an approach is not suitable for the tolerance of design
faults. To tolerate design faults, the multiple channels have to provide identical services
through separate designs and implementations [Elmendorf 1972, Randell 1975, Avizienis
1978], i.e., through design diversity. Design diversity is intended to tolerate permanent
design faults. On the other hand, a backward recovery based error processing usually enables
temporary design faults to be tolerated [Gray 1986].

An important aspect of co-ordinating the activities of multiple components is ensuring that the
propagation of errors has no effect on fault-free components. This is particularly important
when a given component must transmit a piece of information to other components. Typical
examples of information obtained from a single source are local sensor data, the value of a
local clock, the local perception of the state of the other components, etc. As a result, fault-
free components must agree on how to use consistently the information obtained and,
therefore, protect against possibly inconsistent failures (e.g., Byzantine agreement [Pease et
al. 1980], atomic broadcast [Cristian et al. 1985], clock synchronisation [Lamport & Melliar-
Smith 1985, Kopetz & Ochsenreiter 1987] or membership protocols [Cristian 1988]). It
should be noted, however, that the unavoidable presence of structural redundancies in any
fault-tolerant system requires a resource distribution at one level or another, leading to the
persistence of the consensus problem. Geographically localised fault-tolerant systems may
employ solutions to the agreement problem that would be deemed too costly in a “classical”
distributed system of components communicating by messages (e.g. inter-stages [Lala 1986],
multiple stages for interactive consistency [Frison & Wensley 1982]).

The knowledge of certain properties of the system may allow the required redundancy to be
limited. Classical examples are given by regularities of a structural nature: error detecting and
correcting codes [Peterson & Weldon 1972], robust data structures [Taylor et al. 1980],
multiprocessors and networks [Pradhan 1986, Rennels 1986], algorithm-based fault tolerance
[Huang & Abraham 1982]. The faults that can be tolerated are then dependent upon the
properties considered since these properties are directly involved in the fault assumptions
made during the design.

Warning users about the failure of a component is extremely important. This can be taken into
consideration within the framework of exceptions [Melliar-Smith & Randell 1977, Cristian
1980, Anderson & Lee 1981]. Exception handling facilities provided in some languages may
constitute a convenient way for implementing error recovery, especially forward recovery10.

Fault tolerance is (also) a recursive concept; the mechanisms designed to tolerate faults must
be protected against the faults likely to affect them. Examples are given by the replication of
voters, self-checking controllers [Carter & Schneider 1968], through the notion of “stable”
memory [Lampson 1981] in recovery data and programs.

Fault tolerance is not limited to accidental faults. Protection against intrusions has long relied
on cryptography (e.g., see [Denning 1982] for an early overview). In particular, encryption
can be viewed as a form of tolerance in that ciphered information can be inspected by an
intruder without compromising its confidentiality, and authentication codes and digital
signatures provide integrity against the same class of intruders. Secret sharing can be seen as
error masking for confidentiality, too [Shamir 1979, Simmons 1991], and there are now many
more types of cryptographic primitives and protocols (see, e.g., [Schneier 1996] for an
informal overview). Certain error-detection mechanisms are designed for accidental as well as
intentional faults (e.g., memory access protection techniques), and approaches have been put

                                                       
10 The term “exception”, due to its origin of coping with exceptional situations — not only errors —

should be used carefully in the framework of fault tolerance: it could appear as contradicting the
view that fault tolerance is a natural attribute of computing systems, taken into consideration from
the very initial design phases, and not an “exceptional” attribute.
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forward to tolerate both intrusions and physical faults [Fray et al. 1986, Rabin 1989], and to
tolerate malicious logic faults [Joseph & Avizienis 1988]. The MAFTIA project aims to
follow this very approach, by building on this and other earlier work and extending it to the
case of large distributed systems.
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Chapter 3 Refinement of core concepts with respect to
malicious faults

In this chapter we interpret the core dependability concepts with respect to malicious faults
and generalise towards security in general. These generalisations constitute our contribution
towards a unified terminology for the security domain and are intended to complement
existing work such as the glossary initiated by the NSA (National Security Agency) [NSA
1998].

3.1 Security attributes
Dependability is defined in Section 2.1 as “that property of a computer system such that
reliance can justifiably be placed on the service it delivers”. According to the application
requirements, the service may be requested to exhibit certain functional or non-functional
properties, such as, for instance, accuracy of the computation results, respect of real-time
deadlines, or other “quality-of-service” characteristics.

Many security properties can be defined in terms of the confidentiality, integrity and
availability of the information or the service itself, or of some meta-information11 related to
the information or service. Examples of such meta-information are:

•  time of a service delivery, or of creation, modification or destruction of an item of
information;

•  identity of the person who has realised an operation: creator of an item of
information, author of a document, sender or receiver of an item of information,
etc.;

•  location or address of an item of information, a communication entity, a device,
etc.;

•  existence of an item of information or of the service;

•  existence of an information transfer, or a communication channel, or of a message,
etc.;

•  occurrence of an operation;

•  sensitivity level of an item of information or meta-information;

•  certainty or plausibility level of an item of information or meta-information;

•  etc.

For example, accountability [CEN 13608-1, ISO 7498-2, Trouessin 2000] corresponds to the
availability and integrity of a set of meta-information about the existence of an operation, the
identity of the person who has realised the operation, the time of the operation, etc. Anonymity
is the confidentiality of the identity of the person, for instance, who realised (or did not
realise) an operation. Traffic analysis is an attack against the confidentiality of
communication meta-information, to gain knowledge of the existence of a channel, of the
existence of a message, of the identities, locations or addresses of the message sender and
receiver, of the time of a communication, etc.

Privacy is confidentiality with respect to personal data, which can be either “information”
(such as the content of a registration database), or “meta-information” such as the identity of a

                                                       
11 Of course, at some level (e.g., at the operating system level), meta-information might be embodied

as “real” information.
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user who has performed a particular operation, or sent a particular message, or received the
message, etc.

Authenticity is the property of being “genuine”. For a message, authenticity is equivalent to
integrity of both the message content (information integrity) and of the message origin, and
possibly of other meta-information such as time of emission, classification level, etc. (meta-
information integrity). In the same manner, a document is authentic if its content has not been
altered (information integrity) and optionally if the declared author is the real author and not a
plagiarist, if the publication date is correct, etc. (meta-information integrity). In the same way,
an alleged user is authentic if the declared identity is the real identity of that person.
Authentication is the process that gives confidence in authenticity.

Non-repudiation corresponds to the availability and integrity of some meta-information, such
as creator identity (and possibly time of creation) for non-repudiation of origin, or such as
reception and receiver identity for non-repudiation of reception.

It is conjectured that all security properties can be expressed by the availability, integrity and
confidentiality properties applied to information and meta-information.

3.2 Security policy
Meaningful discussion of security-related topics often requires reference to a security policy.
Unfortunately, there are many different senses of the term applied to many different levels of
abstraction.

At the highest level, the (high-level) security policy describes the system, the properties it
should have, and who (at least in title) is responsible for what; it includes the security portion
of the specification of the system’s function.

Systems are recursively composed of subsystems; a system’s specification recursively
determines the specifications of its subsystems.

Eventually, through recursive refinement, specialisation, and implementation, the system’s
behaviour is determined. This process includes the creation of guidelines, processes, site
descriptions, practices, specifications, mechanisms, implementations and configurations.

At the lowest level, we can view the system as a (very large) finite state machine (Figure 3) in
which the black state is disallowed by the security policy (i.e., the failure-state). The pale
states designate normal states, whereas the hashed states represent error states that may lead
the system to the failure-state.

Figure 3 — Low level security policy

At this level, the security policy is the collection of rules according to which the system’s
security state should evolve. It is usual to separate security policies from functional properties,
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in which case the security state can be viewed as a (very large) matrix of subject privileges on
object operations. The security policy rules specify the legitimate evolutions of this state.

For our purposes, then, we will define a security policy as:

1) the security properties that are to be fulfilled by the system (high-level view);

2) the rules according to which the system security state may evolve (low-level views).

The properties specified by the security policy are defined in terms of the security attributes
(cf. Section 3.1) that are required for the services delivered to the various stakeholders of the
system. A security failure occurs when a property of the intended12 security policy is
violated. Such a failure may occur in two ways:

•  the security policy is inconsistent, for which three cases can be distinguished:

- the specified security properties are antagonistic

- the specified rules are contradictory

-  the rules and properties are mutually inconsistent, including the case of
rules being incomplete

•  the rules are violated (e.g., due to an intrusion or other fault) so the transitions
between states are different to those of the state machine inferred from the rules.

In between the high and low-level views, one can view the system with different levels of
abstraction. For our purposes, it is important to think of the security policy as being the
recursively structured complete collection of these views. Doing so corresponds naturally
with the recursive structure of dependability practices and provides a framework in which to
discuss security as a whole.

3.3 Fault model
In this section, we progressively define a fault model that is appropriate for reasoning about
prevention and tolerance mechanisms aimed at ensuring system security. We first revisit the
notions of fault, error and failure introduced in Section 2.1, and then elaborate on potential
causes of security failures.

3.3.1 Causal chain of impairments
In Section 2.1, the notions of fault, error and failure were defined in terms of a causal chain:

•  fault: adjudged or hypothesised cause of an error;

•  error: that part of the system state that may lead to failure;

•  failure: delivered service deviates from implementing the system function;

i.e., an error is the manifestation of a fault on the system state (where “state” is taken in a
broad behavioural sense) and a failure is the manifestation of an error on the service delivered
to the system user.

From an intrusion-detection/tolerance viewpoint, the need for three types of causally-related
impairments can be justified by the following remarks:

•  It is necessary to distinguish the internal detectable impairment (error) from the
causing impairment (fault) since there may be multiple causes (e.g., intentionally
malicious faults vs. accidental faults, cf. Figure 2, page 6) that could give rise to the
same detectable impairment.

                                                       
12 We add the adjective “intended” to cater for the case where the security policy is incorrectly

specified.
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•  It is necessary to distinguish the internal detectable impairment (error) from the
external impairment (i.e., failure in the service delivered to a user) that intrusion-
tolerance techniques aim to prevent. The alternative viewpoint, in which any
detectable impairment is deemed to make the system “insecure” in some sense,
would make intrusion-tolerance an unattainable objective.

Due to the recursive definition of systems in terms of components, a failure at a given level of
decomposition may naturally be interpreted as a fault at the next upper level of
decomposition, thus leading to a hierarchical causal chain, as illustrated in Figure 4, where the
dotted lines represent a “system boundary”, at the considered level of decomposition or
abstraction.

(internal)
fault error failure

fault error failure

fault error failure

Figure 4 — Hierarchical causal chain of impairments

Ideally, the MAFTIA fault model should enable such a hierarchical interpretation.

3.3.2 Intrusion, attack and vulnerability
An intrusion was defined in Section 2.3 to be a malicious, externally-induced, operational
fault. Etymologically, the word “intrusion” comes from the Latin intrudere (to thrust in) but
current usage covers both senses of “illegal penetration” and “unwelcome act”. Even a
malicious interaction fault perpetrated by an insider can thus be classed as an intrusion since
the intent is to carry out an operation on some resource that is unwanted by the owner of that
resource.

A possible alternative to “intrusion” would be the word “attack”. However, it would seem that
both terms are necessary, but for different concepts. A system can be attacked (either from the
outside or the inside) without any degree of success. In this case, the attack exists, but the
protective “shield” around the system or resource targeted by the attack is sufficiently
efficacious to prevent intrusion. An attack is thus an intrusion attempt and an intrusion results
from an attack that has been (at least partially) successful.

In fact, there are two underlying causes of any intrusion (Figure 5):

1. A malicious act or attack that attempts to exploit a weakness in the system,
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2. At least one weakness, flaw or vulnerability, which is an accidental fault, or a malicious
or non-malicious intentional fault, in the requirements, the specification, the design or the
configuration of the system, or in the way it is used.

vulnerability

intrusion error failure

attack

hacker

hacker,
designer

or operator

Figure 5 — Intrusion as a composite fault

This is a similar situation to that of externally-induced physical faults: a heavy ion
approaching the system from outside is like an attack. The aim of shielding is to prevent the
heavy ion from penetrating the system. If the shielding is insufficient, a fault will occur (e.g.,
a latch-up). Mechanisms can be implemented inside the system to tolerate such externally-
induced faults. Since we are essentially concerned with techniques aimed at providing
security guarantees in spite of imperfect “shielding” of the considered system, we will later
refer to such techniques as intrusion-tolerance techniques, which aim to tolerate the fact that
vulnerabilities have been successfully exploited by an attacker (who is, ipso facto, an
intruder).

Typical examples of intrusions interpreted in terms of vulnerabilities and attacks are:

1. An outsider penetrating a system by guessing a user password: the vulnerability lies in the
configuration of the system, with a poor choice of password (too short, or susceptible to a
dictionary attack).

2 .  An insider abusing his authority (i.e., a misfeasance): the vulnerability lies in the
specification or the design of the (socio-technical) system (violation of the principle of
least privilege, inadequate vetting of key personnel).

3. An outsider using “social engineering”, e.g., bribery, to cause an insider to carry out a
misfeasance on his behalf: the vulnerability is the presence of a bribable insider, which in
turn is due to inadequate design of the (socio-technical) system (inadequate vetting of key
personnel).

4. A denial-of-service attack by request overload (e.g., the February 2000 DDoS13 attacks of
Web sites): the vulnerability lies partly in the very requirements of the system since it is
contradictory to require a system to be completely open to all well-intended users and
closed to malicious users. This particular type of attack also exploits design or
configuration faults in the many Internet-connected hosts that were penetrated to insert
the zombie daemons required to mount a coordinated distributed attack [Garber 2000]. A
third vulnerability, which prevents effective countermeasures from being launched,
resides in a design fault on the part of Internet service providers not implementing
ingress/egress filtering (which would enable the originating IP source address to be
traced).

Let us now return to the notion of a hierarchical causal chain of impairments as represented
by Figure 4, page 16. A security failure at one level of decomposition of the system may be
interpreted as an intrusion at the next upper level. For example, the failure of an
authentication and authorisation mechanism to prevent system penetration by a malicious user

                                                       
13 DDoS: Distributed Denial of Service.
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is clearly an intrusion as seen from the containing system (Figure 6). The containing system
might now detect and recover from any resulting errors (e.g., abnormal behaviour), and
thereby prevent a security failure at its level. If it is unsuccessful in this, then the next upper
containing system may view the lower-level security failure as an intrusion, and so on.
Another example is a buffer overflow in a program: at the second level, the operating system
may or may not prevent its own failure (depending on what rights the failed program has), and
at the third level, a distributed system may or may not be able to tolerate the failure of an
entire node.

human
mistake

error failure

error failure

intrusion error failure
human
malice

error failure

vulnerability

attack

intrusion error failure

administration system

social system

authentication
& authorisation

system

“exploits”

“causes”

“is interpreted as”

Relations

Figure 6 — Attack, vulnerability and intrusion in a
hierarchical causal chain

Moreover, depending on the adopted viewpoint at a given level, the intrusion may also be

viewed as either an attack or a vulnerability[DP28]. Indeed, the intrusion may result in a
new vulnerability (the hacker exploits his successful attack to place a trapdoor or a zombie) or
manifest itself as a further attack (the hacker directly exploits his successful attack in order to
proceed towards his final goal).

Figure 6 also traces back the causal chain through the failures of two other “systems”:

•  The vulnerability in the authentication system is due to the failure of the
administration system to prevent the administrator from creating the vulnerability.

•  The attack that exploited the vulnerability in the authentication system is due to the
failure of the social system to deter the attacker from attacking.

From the above, it is therefore clear that, according to the adopted viewpoint, at least three
fault types must be taken into account when reasoning about possible causes of errors liable to
lead to a security failure:

attack – a malicious interaction fault aiming to intentionally violate one or more
security properties; an intrusion attempt.
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vulnerability - an accidental fault, or a malicious or non-malicious intentional fault, in
the requirements, the specification, the design or the configuration of the system,
or in the way it is used, that could be exploited to create an intrusion.

intrusion – a malicious, externally-induced fault resulting from an attack that has been
successful in exploiting a vulnerability.

Vulnerabilities are the primordial faults existing inside the components, essentially design or
configuration faults (e.g., coding faults allowing program stack overflow, files with root
setuid in UNIX, naïve passwords, unprotected TCP/IP ports). Attacks are malicious
interaction faults that attempt to activate one or more of those vulnerabilities (e.g., port scans,
email viruses, malicious Java applets or ActiveX controls). An attack that successfully
activates a vulnerability causes an intrusion. This further step towards failure is normally
characterised by an erroneous state in the system that may take several forms (e.g., an
unauthorised privileged account with telnet access, a system file with undue access
permissions to the hacker). Such erroneous states may be corrected or masked by intrusion
tolerance (see Chapter 4) but if nothing is done to process the errors resulting from the
intrusion, failure of one or more security properties will probably occur.

3.3.3 Theft and abuse of privilege
In the previous section, we referred to attackers as being either “outsiders” or “insiders”.
What exactly is the distinction between the two?

In common parlance, an insider is “a person within a society, organisation, etc. or a person
privy to a secret, especially when using it to gain advantage” [OMED 1992].

The first part of this definition can be interpreted in terms of the rights of the considered
person. A person has a right on a specified object within the system if and only if he is
authorised to perform a specified operation on that object — a right is thus an object-
operation pair. The set of rights of the considered person is that person’s privilege. An
outsider might thus be defined as a person who has no privilege, i.e., no rights on any object
in the system. Inversely, an insider is thus any individual who has some privilege, i.e., some
rights on objects in the system.

Consider now the case of an “open” system, such as a public web server. Such systems grant
to all users at least read access rights on certain objects within the system so, with the above
definitions, all users would be considered as insiders. The very notion of an outsider, as
defined above, is only relevant for closed systems.

An alternative distinction is thus necessary for open systems. The second part of the
dictionary definition of an insider relates both to the knowledge of the considered person and
the illegal use of this knowledge14. The distinction between outsider and insider must thus be
made in terms of the types of intrusion that can be perpetrated by the considered person:

•  theft of privilege: an unauthorised increase in privilege, i.e., a change in the
privilege of a user that is not permitted by the system’s security policy.

•  abuse of privilege: a misfeasance, i.e., an improper use of authorised operations.

These two notions are illustrated by Figure 7, which considers a subset of the universe of
object-operation pairs of the considered system, rather than the complete system, and the
current privileges of two users (a and b).

                                                       
14 The relationship between knowledge and right needs to be explored further, especially in terms of

concepts such as the need to know and the principle of least privilege.
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A: privilege 
of user a

universe of object-operation pairs

D: an object-operation
domain

B: privilege
of user b

Figure 7 — Outsider (user a) vs. insider (user b) with respect to domain D

In Figure 7, user a is currently an outsider with respect to a given domain D  of object-
operation pairs since his privilege does not intersect that domain. User a can only intrude on
domain D  by stealing a privilege beyond his current privilege. User b is an insider with
respect to domain D  but an outsider with respect to sub-domain D B− . User b can thus
perpetrate both sorts of intrusion on domain D : an abuse of privilege within D B∩  or a theft
of privilege within D B− . With respect to a given domain of object-operation pairs, we can
thus define outsider and insider as follows:

•  outsider: a human user not authorised to perform any of a set of specified
operations on a set of specified objects, i.e., a user whose (current) privilege does
not intersect the considered domain of object-operation pairs.

•  insider: a human user authorised to perform some of a set of specified operations
on a set of specified objects, i.e., a user whose (current) privilege intersects the
considered domain of object-operation pairs.

3.3.4 Intrusion containment regions
In this section, we introduce the notion of an intrusion containment region by analogy with
the notion of a fault containment region, which has proven useful as a concept when tolerating
accidental faults (see, for example, [Smith 1986]).

A fault containment region (FCR) can be defined as: a set of components that is considered to
fail (a) as an atomic unit, and (b) in a statistically independent way with respect to other such
FCRs. Then, with the following assumptions:

A1: the behaviour of a faulty FCR is unrestricted15;

A2: there are a bounded number of faulty FCRs in the considered fault-tolerant system;

                                                       
15 In practice, there is always some assumption about what a faulty FCR is not allowed to do in the

sense that it should not be able to change the structure of the considered fault-tolerant system. For
example, in Byzantine agreement, a disloyal general is only allowed to change messages (in
arbitrary ways), but is not allowed to kill his colleagues, or to create clones of himself to falsify the
majority.
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it is possible to define formal fault-tolerance properties (e.g., agreement) for the fault-free
FCRs, but faulty FCRs are disregarded since, according to assumption A1, their behaviour is
unrestricted.

When defining the correctness of a mechanism designed to tolerate intrusions, a similar
restriction to fault-free components must apply since no assumptions can be made about what
an intruder or a corrupted component can or cannot do.

An intrusion-tolerant system is aimed at guaranteeing certain security properties, despite the
fact that some components of the system might be compromised, by either corrupt system
administrators or corrupt users. Consider now that users (and administrators) of the
considered computer system access the latter by means of an “access point”, i.e., a terminal or
a workstation (Figure 8).

corruptnon-corrupt user administrator

access point intrusion
containment region

A

B

C
D

E

F

G

H

I

Figure 8 — Corrupt vs. non-corrupt access points and users

If an access point has been corrupted (e.g., by a Trojan horse that logs or modifies
confidential inputs or outputs) then it is clear that the user of that access point cannot be given
any security guarantees (case of users E and I in Figure 8).16 Also, it is of no interest to give a
security guarantee to a corrupt user, even if his access point is non-corrupt (case of user F in
Figure 8). Indeed, from the security viewpoint, a user and his corresponding access point
constitute a single “intrusion containment region”: it is of no import to the rest of the system
whether a user or his access point is corrupt.

Consequently, it is clear that security guarantees can be given only with respect to a set of
non-corrupt access point intrusion containment regions, e.g., access points A, B, C, D, G and
H in Figure 8. For non-corrupt users of non-corrupt access points, an intrusion-tolerant system

                                                       
16 The protection of an access point against intrusions should thus be under the responsibility of the

corresponding user: a reckless user cannot be given any security guarantees.
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should be able to provide guarantees about the confidentiality, integrity and availability of the
data owned (or, equivalently, the service purchased) by those users, despite the fact that there
are (a certain number of) corrupt components, administrators or users of the system. A similar
concept is introduced in [Pfitzmann & Waidner 1994], where security properties are specified
in terms of a subset of access points that together constitute the interface to the concerned
parties, i.e., those parties who mutually trust each other but distrust other parties (other users,
access points or system components).

It might be possible to generalise this notion of an intrusion containment domain beyond that
of just access points. Indeed, an intrusion containment domain may be interpreted in terms of
the set of rights that an intruder has managed to obtain, i.e., his current privilege domain (cf.
Section 3.3.3). The intruder’s current privilege domain defines the extent of control that he
has over the system. The intruder may maliciously misuse any object-operation pair within
that privilege domain, so it would be wise to consider the whole domain as corrupt, if of
course one were able to dynamically infer what constitutes that domain at a given instant.

A specific case may be the “uses” relation within operating systems, which would lead to a
general directed graph of dependencies between components, generalising the equivalence
relation leading to FCRs. For example, all servers using an operating system with a security
kernel fail if the kernel fails, but not vice versa, and a user program fails if a server that it uses
fails, but not vice versa. While cryptographic and distributed-system measures often work
with a model of intrusion containment regions, a general directed graph may be more suited to
modelling typical “intrusion-detection” measures.

3.4 Security methods
Equating attack, vulnerability and intrusion with fault, and applying the definitions given in
Section 2.1 we can obtain a priori twelve methods for ensuring or assessing security (Table
1). However, not all of these twelve methods are distinguishable or indeed meaningful.

We in fact obtain seven meaningful methods, which are presented in the following
subsections.

Table 1 — Classification of security methods

Attack Vulnerability Intrusion

Prevention: how to prevent the
occurrence or
introduction of… deterrence, laws,

social pressure,
secret service…

semi-formal and formal
specification, rigorous

design and
management…

firewalls,
authentication,
authorisation…

+ {attack prevention,
vulnerability
prevention}

Tolerance: how to provide a
service capable of
implementing the
system function
despite…

= {vulnerability
prevention,
vulnerability

removal, intrusion
tolerance}

≡ intrusion tolerance

error detection &
recovery, fault

masking, intrusion
detection, fault

treatment

Removal: how to reduce the
presence (number,
severity) of…

not applicable
formal proof, model-
checking, inspection,

test…
not applicable

Forecasting: how to estimate the
creation and
consequences of…

intelligence
gathering, threat
assessment…

assessment of: presence
of vulnerabilities,

exploitation difficulty,
potential consequences…

= {vulnerability
forecasting, attack

forecasting}
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3.4.1 Fault prevention
In Section 2.1, fault prevention is defined as “how to prevent the occurrence or introduction of
faults”. Equating attack, vulnerability and intrusion with fault, we obtain three clearly
distinguishable sets of fault-prevention methods:

attack prevention: how to prevent the occurrence of attacks;

This includes deterrence measures such as social pressure, laws and their
enforcement.

vulnerability prevention: how to prevent the occurrence or introduction of
vulnerabilities;

This includes measures going from semi-formal and formal specification,
rigorous design and system management procedures, up to and including user
education (e.g., choice of passwords).

intrusion prevention: how to prevent the occurrence of intrusions;

This includes technical measures such as authentication, authorisation and
firewalls, as well as attack and vulnerability prevention (see above).

3.4.2 Fault tolerance
In Section 2.1, fault tolerance is defined as “how to provide a service implementing the
system function despite faults”. Equating attack, vulnerability and intrusion with fault does
not lead to clearly distinguishable sets of methods. First, since an intrusion cannot occur in the
absence of vulnerability, intrusion tolerance and vulnerability tolerance are equivalent in the
sense that tolerance of an intrusion implies tolerance of the vulnerability or vulnerabilities that
were exploited to perpetrate the intrusion. To conform to current usage, we will refer to
intrusion tolerance.

Similarly, attack tolerance does not define a separate set of methods beyond vulnerability
prevention, intrusion prevention and intrusion tolerance. Hence, we obtain one distinguishable
set of fault-tolerance methods:

intrusion tolerance: how to provide a service implementing the system function
despite intrusions;

Admitting that attack, vulnerability and intrusion prevention measures are always
imperfect, intrusion tolerance aims to ensure that the considered system provides
security guarantees in spite of partially successful attacks. Techniques for
achieving intrusion tolerance will be addressed in Chapter 4.

3.4.3 Fault removal
In Section 2.1, fault removal is defined as “how to reduce the presence (number/severity) of
faults”. Fault prevention and fault removal are sometimes grouped together under the term
“fault avoidance”. Fault removal may occur either before or after a system is put into
operation. In the latter case, it often called corrective maintenance.

Equating attack, vulnerability and intrusion with fault appears to be meaningful only for
vulnerability removal. Indeed, fault removal refers to verification methods (including testing)
aimed at finding internal faults, so it is difficult to find any significance for the notions of
intrusion removal or attack removal. Although countermeasures might be thought of as
removing an attack (or maybe the attacker!), we believe these are better classified as a form of
intrusion tolerance since, like maintenance or other fault treatment actions, they aim to
maintain or to restore the ability of the system to fulfil its function.

Hence, we obtain one distinguishable set of fault-removal methods:
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vulnerability removal: how to reduce the presence (number, severity) of
vulnerabilities;

This covers verification procedures such as formal proof, model-checking and
testing, specifically aimed at identifying flaws that could be exploited by an
attacker. Identified flaws may then be removed by correcting the code, applying
a security patch, withdrawing a given service, changing a password, etc.

3.4.4 Fault forecasting
In Section 2.1, fault forecasting is defined as “methods and techniques aimed at estimating the
present number, the future incidence, and the consequences of faults”. Equating attack,
vulnerability and intrusion with fault, we obtain two clearly distinguishable sets of fault-
forecasting methods:

attack forecasting: how to estimate the presence, creation and consequences of attacks.

This includes intelligence gathering, threat assessment and attack warning

vulnerability forecasting: how to estimate the presence, creation and consequences of
vulnerabilities.

This includes the gathering of statistics about the current state of knowledge
regarding system flaws, and the difficulties that an attacker would have to take
advantage of them.

Security risk analysis can be viewed as a combination of both attack and vulnerability
forecasting.

Finally, note that the assessment of the effectiveness of intrusion-detection mechanisms also
falls into the category of fault forecasting methods (similarly to coverage assessment in
traditional-fault tolerance). However, the “faults” whose incidence is being forecasted are the
design faults in such detection mechanisms rather than the intrusions they aim to detect.

* * *

Figure 9 illustrates the notions of fault prevention, tolerance and removal in the context of
attacks, vulnerabilities and intrusions.

Note that:

•  All procedures and mechanisms aimed at preventing or tolerating faults can be
imperfect, i.e., they may contain faults that one should aim to remove.

•  Faults in intrusion-prevention mechanisms constitute vulnerabilities that may be
exploited by an attacker.

•  Fault-tolerance techniques in general aim to prevent errors from propagating to the
service interface, which would result in a failure.

•  Intrusion-tolerance techniques in particular aim to prevent errors caused by
intrusions from leading to failure; but it should not be forgotten that errors might be
caused by faults other than intrusions.
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Figure 9 — Fault prevention, tolerance and removal

3.5 On the nature of trust
The notions of “trust” and “trustworthy” are central to many arguments about the
dependability of a system. In the security literature, the terms are often used inconsistently.
For example, Anderson [Anderson 2001] points to differing usages of the notions of “trust”:

•  U.S. National Security Agency (NSA) definition: “A trusted system or component is
one whose failure can break the security policy, while a trustworthy system or
component is one that won’t fail”.

•  U.K. military view: a trusted system element is one “whose integrity cannot be
assured by external observation of its behaviour while in operation”.

•  Other definitions which have to do with whether a particular system is approved by
an authority: “A trusted system won’t get me fired if it’s hacked on my watch”, or
even “a system we can insure”.

The MAFTIA notions of “trust” and “trustworthy” are a generalization of the NSA notions,
and are based on the normal English sense of these words, which relate strongly to the words
“depend” and “dependable” but more specifically to security issues. A component is “trusted”
if something else “trusts” it. Here, “trust” means that it is assumed by the user of the
component that some particular security specification will be adhered to, so that user does not
have to allow for failures to adhere to this specification. A “trustworthy” component is a
component that has been shown to be deserving of the trust placed in it. A trustworthy
component from a security point of view is dependable with respect to its security properties.
This can be achieved through the techniques of fault prevention, fault tolerance, fault
removal, and fault forecasting.
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More particularly, some of the intrusion-tolerance strategies adopted within MAFTIA rely
upon some hardware elements being “tamper-proof”17. For example, the implementation of
the authorisation service uses Java Cards to store private keys used to verify capabilities.
Since we assume that these are tamper-proof, we argue that they are trustworthy in the sense
that they will not reveal these keys to an unauthorised party.

                                                       
17 The coverage of the "tamper-proof" assumption may of course not be perfect. This is reflected in

the term "tamper-resistant" sometimes used to describe hardware that is intended to be tamper-
proof, but which cannot be guaranteed to be so in the current state of the art [Anderson 2001]
[Akkar et al., Weingart 2000].
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Chapter 4 Intrusion tolerance

This chapter focuses on one of the seven security methods identified in Section 3.4, namely
intrusion-tolerance, defined as “how to provide a service capable of implementing the system
function despite intrusions” and aimed at ensuring that a system provides guarantees of
security despite partially successful attacks.

Before doing so, however, Section 4.1 first discusses what is meant by intrusion detection. In
Section 4.2, we give a model for describing intrusion-detection systems. Then, in Section 4.3,
we discuss intrusion-tolerance in the light of the core dependability definitions relative to fault
tolerance given in Chapter 2. Finally, in Section 4.4, we define a general framework that
integrates the notions of intrusion-detection and intrusion-tolerance.

4.1 Intrusion detection
In Chapter 2 (Section 2.1), a fault is defined to be the adjudged or hypothesised cause of an
error, the latter being that part of the system state that may lead to a failure.

Whereas the definition of security failure is naturally derived from loss of confidentiality,
integrity or availability (as defined in the properties of the considered security policy), there is
currently no agreed definition of what might constitute an error from the security viewpoint.
However, current literature refers to “intrusion detection” which, from the dependability
concept viewpoint, might lead one to equate intrusion with “error”, rather than “fault”18. In
reality, current literature uses the term “intrusion detection” to cover a spectrum of
techniques. To paraphrase [Halme & Bauer]: “Intrusion detection may be accomplished:

•  after the fact (as in post-mortem audit analysis)

•  in near real-time (supporting SSO19 intervention or interaction with the intruder,
such as a network trace-back to point of origin), or

•  in real time (in support of automated countermeasures).”

From the dependability concept viewpoint, these three types of intrusion detection can be
interpreted respectively as:

•  off-line fault diagnosis (as part of curative maintenance);

•  error detection and on-line fault diagnosis (to an operator-assisted fault treatment
facility);

•  error detection (as a preliminary to automatic error recovery), or error detection and
on-line fault diagnosis (as a preliminary to automatic fault treatment).

Further confusion is introduced by the opposition in [Halme & Bauer] between a “manually
reviewed IDS”20 (called a passive IDS in [Debar et al. 1999]) and “Intrusion Countermeasure
Equipment (ICE)” or “autonomously acting IDS” (sic) (called an active IDS in [Debar et al.

                                                       
18 Note, however, that it is also quite common in the literature on tolerance of physical faults to find

the term “fault detection” used on one of two ways:

a) As a clumsy synonym for “error detection” (since detection of an error implies, rather indirectly
and perhaps falsely, the “detection” of its cause)

b) As the designation of a mechanism that seeks out (dormant) faults by running a test procedure to
activate them as errors that can be detected by an error detection mechanism.

19 SSO: System Security Officer.
20 IDS: Intrusion Detection System.
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1999]), which clearly go beyond just detection. The notion that an IDS might include more
than just detection, but also the actions triggered by detection, also appears in the Common
Intrusion Detection Framework (CIDF) [Porras et al.]. This framework, which we will re-visit
later in this chapter, defines the notion of “response units”, that take inputs from other CIDF
components to carry out “some kind of action … [on their behalf, including] … such things as
killing processes, resetting connections, altering file permissions, etc.”.

Here, we will prefer to make a distinction between detection per se and response, be it manual
or automatic. This concurs with the definition given in [NSA 1998], where intrusion detection
is defined as: “Pertaining to techniques which attempt to detect intrusion into a computer or
network by observation of actions, security logs, or audit data. Detection of break-ins or
attempts either manually or via software expert systems that operate on logs or other
information available on the network.” This is also in line with the charter of the Intrusion
Detection Working Group (IDWG) of the Internet Engineering Task Force (IETF) [IETF],
which speaks of “intrusion detection and response systems”.

However, to conform to the spirit of the NSA definition above, we will avoid using “intrusion
detection” in the limited sense of “error detection” but extend it to include some degree of
fault diagnosis. To this end, we adopt the following definitions:

intrusion detection: concerns the set of practices and mechanisms used towards
detecting errors that may lead to security failure, and/or diagnosing attacks.

intrusion-detection system: an implementation of the practices and mechanisms of
intrusion detection.

Our definition of intrusion detection draws attention to the fact that we are particularly
interested in detecting errors that may lead to security failure since the ultimate aim of such a
system is to provide inputs:

•  to a system administrator (an SSO) who might carry out further diagnosis and
initiate litigation and/or appropriate countermeasures to avert security failures, or

•  to an automatic countermeasure mechanism to avert security failures, i.e., to
tolerate intrusions.

However, the definition also covers a second important aim of intrusion detection, that of
gathering information about new forms of attack, for which new defences will need to be
devised.

4.2 Intrusion-detection model
We present a model of intrusion-detection systems according to function, derived as a
refinement of the Common Intrusion Detection Framework (CIDF) [Porras et al.]. When
possible, we use the language of the CIDF although some refinement has been necessary. We
additionally address issues of channels between components.

The CIDF classifies components of an intrusion-detection system into four different
categories. We recap briefly:

•  An e-box, or event generator, is a component that gathers event information.

•  An a-box, or analysis box, analyses event information toward detecting errors and
diagnosing faults. The output of an analysis box may provide information to other
analysis boxes.

•  A d-box, or database, provides persistence for the intrusion-detection system. This
facility will take on different forms depending upon use. It may be a complex
relational database or it may be a simple text file.

•  An r-box, or response box, is the portion of the system that acts upon the results of
analysis. According to [Porras et al.], automated responses may include killing
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processes, resetting connections, or activating degraded service modes. In line with
the discussion in Section 4.1, we do not consider the r-box to be part of intrusion
detection per se, but as part of the set of facilities providing error recovery, fault
isolation and system reconfiguration in a general intrusion-tolerance framework.

Figure 10 presents a refinement of the CIDF model, which explicitly identifies sub-
components of the e-box, and the fact that there can be multiple e-, a- and d-boxes.

Sensor

Event
Analyzer

Sensor

Event
Analyzer

Target

Sensor

Event
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Activity
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Event
Database
Event

Database
Event
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Figure 10 — Intrusion-detection system components

We note that the decomposition may not correspond to particular physical boundaries.
Vulnerabilities, and hence targets, exist at several different abstraction and implementation
layers so that our model must be applicable at several layers. The boundaries between
components are determined by the level of abstraction with which we view the system:
people, LANs, machines, processes, memory pages, etc.

The intention is that the several different sensors may generate information stemming from
the same root cause, passing it to a cascading array of analysis components in a topologically
arbitrary manner (Figure 11).
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Figure 11 — Cascaded intrusion-detection topology

4.2.1 Event generator
We subdivide what is termed an e-box in the language of the CIDF, into three components
(activity, target, sensor). We have found it necessary to create this subdivision for three
reasons:

•  To model an in vivo system, we need to consider activity in the system.

•  To model the real-world reality of imperfect observation, we need to separate the
target of an attack from the sensors used to detect the attack.

•  To allow several different sensor boxes for a single target.

The collection of base causes of events is taken as the activity. This includes normal user
activity, system administration, malicious activity, and spurious events (power failure, system
and network crashes, background radiation in the universe, etc.).

Target is the name of the component that we are trying to monitor. We assume that the
activity has some channel to the target.

Sensor is the component of the system collecting raw data (e.g., a sniffer or an audit log).

The role of the sensor is merely to record raw events (no specifically intrusion-detection logic
exists in this component). We note that the sensor may very well be imperfect in the sense
that it may not sense all raw events of interest. In certain settings, such as a web daemon
recording requests to a (target) script, the sensor is capable of observing all events relative to
the target, so it has the possibility of being very reliable (essentially perfect).

Experience has shown that vulnerabilities exist in all places and range through all levels from
low-level hardware to high-level social interactions and procedures. Moreover, the
exploitation of a vulnerability (i.e., the intrusion) at one level may be concealed using
vulnerabilitiesprovided by another.
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Naturally enough, different sensors focus on different views of vulnerabilities and their
exploitation. Various sensors have different deployment and computational costs and
requirements while the different views offer different advantages and possibilities. Optimal
deployment is a series of balanced tradeoffs:

•  Sensitivity: volume of information vs. analysability

•  Deployment: ease vs. completeness

•  User rights: privacy vs. visibility

Detection of a violation of the security policy defined at the application level with a network-
based sensor would be computationally infeasible. On the other hand, global deployment of
application-based sensors may prove too expensive (it is difficult to equip an application with
intrusion-detection hooks without the application source code). A network-based IDS on a
gigabit per second network link offers an expansive view but will not be able to carry out an
in-depth analysis. A host integrity check offers an in-depth but localised view.

Many applications and services that are possible conduits for intrusion offer adequate logging
and audit information, either directly or indirectly, to perform intrusion detection. Thus, while
it would be unrealistic to expect intrusion-detection logic to be included at all layers, it is still
possible to provide intrusion detection for a range of layers.

Ultimately, a complete view of the system is required and all layers of the system must be
directly or indirectly visible to the IDS. Some redundant combination of logging, specialised
micro-analyser, mid-level and high-level sensors will provide the needed observations.

4.2.2 Event analysis
The event analysis boxes successively transform, filter, normalise, and correlate data, adding
semantic relevance and reducing volume at each stage. A single event analysis box may take
its input from several different producers (both from sensor boxes and other event analysis
boxes) and may feed its output to several different consumers in a topologically arbitrary
manner (cf. Figure 11).

As with sensors, analysis boxes have differing needs and costs so that deployment is a matter
of balanced tradeoffs. A high-level reasoning engine requiring significant computational
resources per received event would be quickly overwhelmed by a network scan reported as
single events. On the other hand, a high-level reasoning engine may not be able to allot the
resources needed to perform subtle correlation.

Further constraints on the distribution and topology of analysis boxes are imposed by the
localisation of implementations. An analysis box checking the logs of a web server may be
required by practicality to be near the web server in terms of management structures while
there may also be the need for a global view of web servers for complete analysis.

These constraints are further complicated by the frequent need to combine the observations
coming from sources under different management chains.

4.2.3 Event database
The event database is to provide persistence for the IDS. This may be for use in off-line error
detection, in intrusion analysis, or as evidence justifying response. This facility has a multi-
layered structure similar to that of the entire system. At the lowest level, it may take the form
of a simple file. At the highest level, it may be a distributed relational database. We assume
that the database may be interactively queried either by the event analysis boxes or by the
response boxes that directly require its contents.

An important aspect of the event database that is not addressed in Figure 10 arises from the
need to view data with varying degrees of resolution. The use of a single database for an
entire enterprise would present serious scalability and privacy issues. The use of multiple
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databases raises the issues of how to access them and how to meaningfully collate the data
obtained from each. This aspect mirrors an identical one for event analysis.

4.2.4 Channels between intrusion-detection components
Channels between components are of course susceptible to failure. They must thus provide
integrity (resistance to message alteration and deletion), authenticity (resistance to message
insertion), and quality of service (guaranteed delivery or observable failure). Confidentiality
features may be required in settings where logging information could prove dangerously
useful to an attacker. This includes, for instance, anonymity (e.g., ensure confidentiality of the
identity of a person who has root access) and privacy (e.g., ensure confidentiality of personal
data).

The mechanisms for such provisions vary with the channels themselves: a TCB (trusted
computing base) may offer all of these for IPC (inter-process communication) whereas
network connections may need to resort to redundancy and cryptography.

There are several concerns to be addressed:

•  An attacker can interrupt the entire channel.

•  An attacker can place a smart filter on the channel that hides only the attacker’s
activities.

•  An attacker can interfere with or hijack the entire channel.

•  The channel can be eavesdropped upon.

These problems can be addressed in different ways with different costs:

•  A heartbeat event ensures that the channel is alive.

•  A cryptographic hash chain added to the event stream prevents event deletion.

•  Authentication codes prevent event insertion, and event stream hijacking.

•  Encryption can prevent the eavesdropping of events.

Such techniques apply not only to transmission but also to storage. Should the logs be stored
in a potentially vulnerable location, we can use well-known cryptographic techniques that
provide so-called “forward” secrecy [Menezes et al. 1996, Schneier 1996].

4.3 Interpretation of core fault-tolerance concepts
We now consider intrusions in the broader context of intrusion-tolerance. We re-examine the
notion of fault-tolerance as defined in the core dependability concepts (Section 2.4). Those
concepts make a distinction between: (a) error processing, aimed at preventing errors from
leading to (catastrophic) failure, and (b) fault treatment, aimed at preventing the recurrence of
errors.

4.3.1 Error processing
In the core dependability concepts, error processing covers the set of techniques aimed at
removing errors from the computational state, if possible, before the occurrence of a failure.
Section 2.4 identifies three error-processing primitives: error detection, damage assessment
and error recovery, which we examine successively in the context of intrusion-tolerance.

4.3.1.1 Error detection

Error detection is a necessary preliminary to achieving backward or forward recovery, or
compensation by switchover, but is not strictly necessary if compensation is carried out
systematically (i.e., fault masking). However, irrespective of the error recovery method
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employed (if any), error detection is necessary if subsequent fault treatment or curative
maintenance actions are to be undertaken.

By definition, error-detection techniques (and indeed, error processing techniques in general)
need to be applied to all errors irrespectively of the specific faults that caused them. In
particular, the malicious or non-malicious nature of faults is not of concern, and this for at
least two reasons:

•  Determination of whether or not the cause of error has malicious nature is not a
computational matter (it is a concern rather of psychology).

•  We would not want to suppress the notification of a potentially dangerous error
merely because the adjudged cause was not deemed malicious (thus not an
intrusion).

To detect errors that might be caused by intrusions, the relevance of malice is simply in
setting requirements. If we are able to dependably detect errors caused by malicious faults,
then we are implicitly able to dependably detect errors caused by non-malicious faults. The
converse is not true.

This does not mean however that the design of an error-detection technique is independent of
the hypothesised fault model. For example, to detect errors caused by internal physical faults,
it suffices to introduce some kind of physically redundant checker hardware (ideally, itself
self-checking). Classic examples of such redundancy are: duplication and comparison, parity
checking, watchdog timers, etc. The physical redundancy in effect provides an independent
reference as to what the behaviour of the monitored hardware should be.

The intrusion-detection community commonly identifies two categories of error-detection
techniques that differ according to the type of reference with which the observed system
behaviour is compared [Halme & Bauer] (see Figure 12)21:

•  Anomaly-detection techniques, which compare observed activity against normal
usage profiles (in [Debar et al. 1999], these are called behaviour-based methods).

•  Misuse-detection techniques, which check for known undesired activity profiles (in
[Debar et al. 1999], these are called knowledge-based methods).

Here “anomaly” is definitely being used in the traditional sense of “error”, whereas “misuse”
has an element of fault diagnosis since error patterns related to previously identified intrusions
are being searched for.

                                                       
21 [Halme & Bauer] actually also identifies “hybrid misuse/anomaly detection” and “continuous

system health monitoring”. The former is clearly not a separate form of detection and the latter can
be viewed as a form of anomaly detection, since it applies to “suspicious changes in system-wide
activity measures and system resource usage”.
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Figure 12 — Detection paradigms

The rules contained within the system’s security policy (cf. Section 3.2) provide an important
reference regarding what observed activities should be considered as erroneous from a
security viewpoint22. The rules embodied in the policy may cover both permitted activities
(i.e., a normal activity reference) and prohibited activities (i.e., an abnormal activity
reference).

Another important error-detection reference, one that is particularly pertinent to MAFTIA, is
that provided by subsystems using techniques such as secret-sharing, fragmentation-
redundancy-scattering and other trust distribution mechanisms, usually (but not necessarily)
implemented with sufficient redundancy to allow intrusion-tolerance through masking (see
Section 4.3.1.3 below). Such techniques provide mutual references of “normal” activity, and
should thus be considered as important sources of error-detection reports.

Error-detection techniques are rarely perfect. Indeed, this is particularly so when detecting
errors caused by intrusions. In traditional fault-tolerance, the degree of perfection of an error-
detection mechanism is measured in terms of error-detection coverage (the probability of an
error being detected) and latency (the time until an error is detected). In intrusion-detection
systems, the degree of imperfection is measured in terms of the rate of so-called false
negatives and false positives, defined as:

false negative - the event corresponding to the incorrect decision not to rate an activity
as being erroneous (i.e., no alarm raised due to poor coverage, due to either
insufficient asymptotic coverage or excessive latency); also called a “miss”.

false positive - the event corresponding to the incorrect decision to rate an activity as
being erroneous; also called a “false alarm”.

The corresponding favourable events are:

true negative - the event corresponding to the correct decision not to rate an activity as
being erroneous.

true positive - the event corresponding to the correct decision to rate an activity as
being erroneous.

Finally, it is important to note that often while looking for a thing one looks for evidence,
side-effects, precursors, conduits, and habitats of the thing. As such, the definition of error
detection would naturally include vulnerability-scanning and configuration-checking. In

                                                       
22 Note, however, that our definition of a security failure (cf. Section 3.2) is given in terms of the

security properties required by the security policy.
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[Avizienis et al. 2001], such built-in self-test procedures are termed pre-emptive error
detection, whereas the mechanisms considered till now are termed concurrent error detection.
In the case considered here, an error signal produced by such a background audit procedure
would be considered as an input to fault diagnosis, rather than a trigger for automatic
recovery23. Indeed, vulnerability-scanning and configuration-checking are also useful tools for
carrying out preventive maintenance.

4.3.1.2 Damage assessment

Damage assessment is an error processing primitive aimed at evaluating the extent of error
propagation before attempting recovery. In traditional fault-tolerance, damage assessment
refers, for example, to finding out how many checkpoints to roll back to when doing
backward recovery, or to finding out how many processes (might) have been affected by an
error that has just been detected. In intrusion-tolerance, damage assessment might be, for
example, judging which files an intruder has modified so that they can be appropriately
restored before someone needs to use them. Vulnerability-scanning also comes into play here,
since it may be triggered to seek out maliciously-implanted vulnerabilities.

4.3.1.3 Error recovery

The core dependability concepts of Section 2.4 distinguish three forms of error recovery:

•  Backward recovery: state transformation is carried out by bringing the system
back to a previously occupied state, for which a copy (a recovery point) has been
previously saved.

•  Forward recovery: state transformation is carried out by finding a new state from
which the system can operate.

•  Compensation: state transformation is carried out by exploiting redundancy in the
data representing the erroneous state.

In the context of error recovery for intrusion-tolerance, examples of each form of recovery
include:

•  Backward recovery:

- Operating system re-installation

- TCP/IP connection resets

- System reboots and process re-initialisation

- Software downgrades

•  Forward recovery:

- In threshold-cryptography, replacement of compromised key shares

- Putting the system into a diminished operation, presumably safe, mode

- Software upgrades (supposing that an upgrade is available on-line)

•  Compensation:

- Voting mechanisms

- Fragmentation-Redundancy-Scattering

- Sensor correlation

                                                       
23 In other situations, pr-emptive error detection may be followed by automatic recovery. Examples

include memory-scrubbing, software rejuvenation, etc. [Avizienis et al. 2001].
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In MAFTIA, the main focus is on compensation techniques for recovery, in particular those
listed above, which carry out systematic masking of intrusions, whereby error compensation
is applied even in the absence of intrusions.

4.3.2 Fault treatment
In the core dependability concepts, fault treatment covers the set of techniques aimed at
preventing faults from being re-activated. Whereas error recovery is aimed at averting
imminent failure, fault treatment aims to attack the underlying causes, whether or not error
recovery was successful, or even attempted. To take a medical analogy: whereas error
processing is concerned with ensuring emergency life support and relieving disease
symptoms, fault treatment is concerned with curing the disease, or with providing an autopsy.

Here, we assume that whereas error processing is carried out entirely automatically, fault
treatment might be, at least partly, manual, e.g., with the aid of a system security officer or
administrator.

Section 2.4 identifies three fault treatment primitives: fault diagnosis, fault isolation, and
(system) reconfiguration.

4.3.2.1 Fault diagnosis

Fault diagnosis is concerned with identifying the type and locations of faults that need to be
isolated before carrying out system reconfiguration or initiating corrective maintenance. This
includes faults that are judged to be the cause of detected errors, and faults that could cause
problems in the future.

In the case of error signals produced by pre-emptive error-detection mechanisms such as
vulnerability-scanners and configuration-checkers, diagnosis is immediate. However, for error
signals from concurrent error-detection mechanisms, it is first necessary to decide whether the
underlying cause was an intrusion or an accidental fault.

If the case of intrusions, according to the composite fault model of Section 3.3.2, fault
diagnosis can be further decomposed into:

•  Intrusion diagnosis, i.e., trying to assess the degree of success of the intruder in
terms of system corruption.

•  Vulnerability diagnosis, i.e., trying to understand the channels through which the
intrusion took place so that corrective maintenance can be carried out.

•  Attack diagnosis, i.e., finding out who or what organisation is responsible for the
attack in order that appropriate litigation or retaliation may be initiated.

It should be noted that most currently available intrusion-detection systems do not include any
fault diagnosis mechanisms. The explicit recognition of the fact that misuses and anomalies
are indeed errors that can be caused by any sort of fault is an important result of the MAFTIA
project. Indeed, a good intrusion-detection system requires such a fault diagnosis mechanism
to minimise the rate of false alarms caused by errors due to other classes of faults (e.g., design
faults in the reference for defining “misuse” or “anomalies”, accidental interaction faults such
as mistyping a password, etc.).

4.3.2.2 Fault isolation

In traditional fault-tolerance, fault isolation is needed, say, to prevent a faulty transmitter from
babbling over a shared bus or to prevent a faulty sensor from continuing to add faulty
readings to a pool of redundant measurements. That is, we want to make sure that the source
of the detected error(s) is prevented from producing further error(s).

In terms of intrusions, this might involve:
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•  Blocking traffic from an intrusion containment region that is diagnosed as corrupt,
by, for example, changing the settings of firewalls or routers

•  Removing a corrupted file from the system

or, with reference to the root vulnerability/attack causes:

•  Uninstalling software versions with newly-found vulnerabilities

•  Arresting the attacker.

4.3.2.3 System reconfiguration

The occurrence of faults and the consequent isolation of faulty components naturally leads to
a decrease in the number of available fault-free resources, so, in traditional fault-tolerant
systems, reconfiguration is sometimes envisaged to effectively re-deploy those resources. As
already stated in the core dependability concepts, this may mean abandoning some tasks or
services (thus resulting in degraded operation) or re-distributing them among the remaining
resources.

Reconfiguration of the system allows a possibly degraded service to be delivered while
corrective maintenance is carried out on faulty resources. After corrective maintenance,
further reconfiguration allows repaired or replacement resources to be re-deployed

In terms of intrusions, possible reconfiguration actions include:

•  Changing a voting threshold (say from 3-out-of-5 voting to 2-out-of-3 voting) after
two corrupt servers have been isolated, so that a further intrusion can be masked

•  Deployment of countermeasures including more probes and traps (honey-pots) to
gather further information about the intruder, and so assist in attack diagnosis.

Actions pertaining to corrective maintenance might be:

•  Removing vulnerabilities believed to have contributed to the intrusion:

- Software revision and upgrade

- Deployment of security patches

•  Attacker rehabilitation.

4.4 Integrated intrusion-detection/tolerance framework
In this section we examine the relationship between intrusion detection, as defined in Sections
4.1 and 4.2, and intrusion tolerance, as examined in Section 4.3. In particular, we will
investigate:

•  How intrusion detection helps when building an intrusion-tolerant system

•  How an intrusion-detection system can itself be made tolerant to faults, including
intrusions.

We show how the ideas derived from the core dependability concepts and those from work
done by the intrusion-detection community might fit together in a single integrated
framework.

Our integrated intrusion-detection/tolerance framework is illustrated on Figure 13.
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Figure 13 — Integrated intrusion-tolerance framework

The central part of the figure shows a generic MAFTIA component or (sub-)system. There
may be many such components within a MAFTIA system, implementing either end-user
application functionality or application support services. An administration (sub-)system
manages all such components within a single management domain. Here, we consider only
the security aspects of system administration within a single management domain. The
security-administration component in this diagram spans over all the layers of the system and,
in particular, over those comprising the application. The security-administration component is
not specific to an individual application but may provide its service to several different
applications within the considered management domain.

Components may be layered. The figure shows a component offering some service over an
application-programming interface (API) to some higher-level component, using the
service(s) offered by possible lower level components. In this case, taking inspiration from the
“idealised fault-tolerant component” of [Anderson & Lee 1981], these top and bottom
interfaces include “insecurity signals” aimed at informing the service user that the service has
been (or might have been) compromised. However, such insecurity signals may not be
provided by all generic components, at least not autonomously, since a decision to raise such
an insecurity signal may involve some system-wide analysis (by the security administration
sub-system).

According to the interpretation of the core fault-tolerance concepts in Section 4.3, we further
describe Figure 13 in terms of error processing and fault treatment.

4.4.1 Error processing
We distinguish two basic generic component types:

•  Intrusion-intolerant components
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•  Intrusion-tolerant components

Both component types are potential sources of error-detection information (in the form of
event and error reports). However, intrusion-tolerant components are also capable of acting
autonomously to implement error recovery.

Error and event reports can be analysed within a given context to confirm or deny suspected
errors (cf. Section 4.2.2). Confirmed errors may or may not trigger automatic recovery. In
either case, they are reported to the fault treatment facilities, which may carry out further
analysis toward understanding the root causes of detected errors (fault diagnosis), and then act
thereon (fault isolation and system reconfiguration).

4.4.1.1 Intrusion-intolerant components

A central theme of the integrated framework is that any application, service, or layer can be
monitored in order to detect deviation from the security policy’s description of its correct
function (error detection). This monitoring can either be done internally or externally, as
portrayed by the “internal sensor” and “external sensor” elements of Figure 13. Monitored
components also need to provide context information, which is needed both for error
detection (is the suspected error actually an error) and for fault diagnosis (towards accurate
classification of faults causing the detected errors).

Internally-monitored components

Placement of error detection and context provision facilities within a component offers
several advantages over externally positioned error-detection facilities.

The migration of data between the layers of an application often has a significant
computational overhead. By placing error-detection facilities within the components
comprising the layers, we eliminate the need to mirror the computation thereby reducing
computational expense, automatically distributing the load, and increasing the accuracy of the
view.

While it would be unrealistic to expect all developers to provide specific intrusion-detection
features in their code, the use of error-detection facilities is quite common. Many languages
provide library facilities to ensure data and process integrity (called assertions). Most code
includes some debugging features in the form of logging.

Externally-monitored components

While externally placed error detection and context provision facilities incur greater
computational costs and suffer poorer accuracy than their internal counterparts, they are often
easier to deploy.

We clarify with an example. Knowledge-based network-based intrusion-detection systems
must reconstruct the networking stacks of several different machines looking for signatures
(indications) of known attacks. The fact that they must attempt to mirror the process of
reconstructing the network stacks of many different machines has several negative
implications:

•  They have very high computational requirements.

•  They must be placed at a location where they are able to observe all traffic that
needs to be monitored; this may create networking bottlenecks.

•  They have views that may not be identical to the machines they attempt to mirror
(packets arriving out of order, dropped packets, etc.).

•  Ideally, they should be able to model different implementations of the network
stacks (that have different behaviours).
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•  If a system has to monitor encrypted traffic, it must have a set of virtual master keys
(this is potentially dangerous as it is a single point of confidentiality failure for the
network) and have the capacity to perform the necessary decryption (which is
certainly expensive).

On the other hand, network-based intrusion-detection systems are comparatively easy to
deploy and maintain.

4.4.1.2 Intrusion-tolerant components

The second important type of generic MAFTIA components consists of those that provide
internal recovery to errors caused by intrusions. Such components may implement fault-
tolerance using either error detection and (backward or forward) recovery, or intrusion-
masking (cf. Section 4.3.1.3). In MAFTIA, particular attention is being paid to the latter
variety of intrusion-tolerance, e.g., using the FRS technique, which can compensate errors due
to both accidental faults and intrusions [Fraga & Powell 1985, Rabin 1989, Deswarte et al.
1991, Fabre et al. 1994]. Possible applications of this approach include services based on
trustworthy trusted third parties such as those described in MAFTIA deliverables D26 and
D27 [Abghour et al. 2001, Cachin 2001]:

•  Certification authority and directory service

•  Fair exchange TTPs

•  Notary service

•  Authentication service

•  Authorisation service

or indeed, sub-components of an intrusion-detection service (e.g., intrusion-tolerant sensor
correlation and event analysis).

Whether masking or detection-and-recovery is used, detected errors and other relevant events
are analysed and reported to the fault treatment facilities. Intrusion-tolerant components are
thus a particular kind of internally-monitored components.

4.4.2 Fault treatment
The fault-treatment facilities include the means for diagnosing and isolating faults (including
intrusions, attacks and vulnerabilities), and for automatic or manual system reconfiguration
(cf. Section 4.3.2). Whereas it seems feasible to internally implement some degree of fault
diagnosis and isolation within the considered component (this would be necessary if the
component were to be capable of autonomously raising an insecurity signal), it is expected
that it will often be necessary to take into account a more system-wide view. Moreover, such
a system-wide view seems essential to carry out meaningful system reconfiguration. For these
reasons, Figure 13 shows the fault diagnosis and isolation mechanisms distributed across the
generic component(s) and the security administration system, whereas the system
reconfiguration mechanisms are internal to the latter, which may possibly be distributed.

From the viewpoint of intrusion-detection, the IDS (as defined in Section 4.1, i.e., excluding
the so-called response mechanisms) within this integrated framework consists of the set of
external and internal sensors, the error-detection mechanisms of any intrusion-tolerant
components, and the event analysis and fault diagnosis mechanisms that signal intruder
reports to a system security officer. These are shown in dark grey on Figure 13.

4.4.3 An illustrative example
As an example of how intrusion-detection and intrusion-tolerance fit together, Figure 14
shows a much simplified, unfolded interpretation of Figure 13.
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Figure 14 shows some typical elements of a MAFTIA system, including both intrusion-
intolerant and intrusion-tolerant components, for both application and system services
(authorisation and intrusion-detection are viewed here as system services).

In this example, the system contains a fault-tolerant web server and fault-tolerant
authorisation server, both capable of masking intrusions and signalling any detected errors.
There is also a fault-intolerant web server, monitored by an external sensor.

All error-detection sources can produce intrusion-detection (ID) error reports. For clarity, only
those due to corrupt components are shown. The ID error reports are sent through a chain of
two ID event analysers (cf. Figure 11, page 30) to an ID event database and to the system
security officer. Certain components specific to the IDS (one of the two event analysers and
the ID event database) are also fault-tolerant, and are thus capable of being themselves
sources of ID error-reports.

For simplicity, the example does not distinguish event analysers aimed at confirming
suspected errors from those aimed at diagnosing faults. Nor does the figure portray any
automatic reconfiguration logic, i.e., it is assumed in this example that any reconfiguration
would be carried out under manual control of the SSO.
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Chapter 5 Architectural overview

The purpose of this chapter is to introduce the basic models and assumptions underlying the
design of the MAFTIA architecture, and then to present an overview of the architecture itself
from various perspectives. The discussion of models and assumptions is of course informed
by the previous material in Chapters 3 and 4, which explains security notions of intrusion,
attack, and vulnerability in terms of the more classical dependability concepts of faults,
failures and errors, and then outlines the basic MAFTIA approach towards building an
intrusion-tolerant architecture through the use of intrusion-detection systems and intrusion-
tolerant components. This chapter details both the functional aspects of the architecture, and
the constructs aimed at achieving intrusion tolerance. It concludes with some examples of
how the architecture will be used to build intrusion-tolerant services.

5.1 Models and assumptions

5.1.1 Failure assumptions
A crucial aspect of any fault-tolerant architecture is the fault model upon which the system
architecture is conceived, and component interactions are defined. The fault model conditions
the correctness analysis, both in the value and time domains, and dictates crucial aspects of
system configuration, such as the placement and choice of components, level of redundancy,
types of algorithms, and so forth. A system fault model is built on assumptions about the way
system components fail. Classically, these assumptions fall into essentially two kinds:
controlled failure assumptions, and arbitrary failure assumption

Controlled failure assumptions specify qualitative and quantitative bounds on component
failures. For example, the failure assumptions may specify that components only have timing
failures, and that no more than f components fail during an interval of reference.
Alternatively, they can admit value failures, but not allow components to spontaneously
generate or forge messages, nor impersonate, collude with, or send conflicting information to
other components. This approach is extremely realistic, since it represents very well how
common systems work under the presence of accidental faults, failing in a benign manner
most of the time. It can be extrapolated to malicious faults, by assuming that they are
qualitatively and quantitatively limited. However, it is traditionally difficult to model the
behaviour of a hacker, so we have a problem of coverage that does not recommend this
approach unless a solution can be found.

Arbitrary failure assumptions ideally specify no qualitative or quantitative bounds on
component failures. Obviously, this should be understood in the context of a universe of
“possible” failures of the concerned operation mode of the component. For example, the
possible failure modes of interactions between components of a distributed system might be
limited to combinations of timeliness, form, meaning, and target of those interactions (let us
call them messages), and might not encompass the arbitrary cloning of system components. In
this context, an arbitrary failure means the capability of generating a message at any time,
with whatever syntax and semantics (form and meaning), and sending it to anywhere in the
system. Practical systems based on arbitrary failure assumptions must however specify
quantitative bounds on the number of failed components, or at least equate tradeoffs between
resilience of their solutions and the number of failures eventually produced [Babaõglu 1987].
Arbitrary failure assumptions are costly to handle, in terms of performance and complexity,
and thus are not compatible with the user requirements of the vast majority of today’s on-line
applications.
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Hybrid assumptions combining both kinds of failure assumptions would be desirable. They
provide a known framework in dependable system design vis-à-vis accidental failures.
Generally, they consist of allocating different assumptions to different subsets or components
of the system, and have been used in a number of systems and protocols [Meyer & Pradhan
1987, Powell et al. 1988, Verissimo et al. 1997].

5.1.2 Composite fault model
With hybrid assumptions some parts of the system would be justifiably assumed to exhibit
fail-controlled behaviour, whilst the remainder of the system would still be allowed an
arbitrary behaviour. This would be advantageous in modular and distributed system
architectures such as MAFTIA.

However, such an approach is only feasible when the fault model is well-founded, that is, the
behaviour assumed for every single subset of the system can be modelled and/or enforced
with high coverage. As a matter of fact, a system normally fails by its weakest link, and naïve
assumptions about a component’s behaviour will be easy prey to hackers.

As we have discussed in Chapter 3, the impairments that may occur to a system, security-
wise, have to do with a wealth of causes, which range from internal faults (e.g.
vulnerabilities), to external, interaction faults (e.g., attacks), whose combination produces
faults that can directly lead to component failure (e.g., intrusion).

A first step towards our objective is the organisation of these diverse causes into a composite
fault model (cf. Figure 5, page 17), with a well-defined relationship between
attack/vulnerability/intrusion. Such a model allows us to modularise our approach to
achieving dependability, by combining different techniques and methods tackling the different
classes of faults defined. Seven such security methods were defined in Section 3.4.

5.1.3 Enforcing hybrid failure assumptions
The second step is the enforcement of hybrid failure assumptions, that is, where different
components are assumed to exhibit different faulty behaviours. A composite fault model with
hybrid failure assumptions is one where the presence and severity of vulnerabilities, attacks
and intrusions varies from component to component.

Consider a component or sub-system for which a given controlled failure assumption was
made. How can we achieve coverage of such an assumption, given the unpredictability of
attacks and the elusiveness of vulnerabilities?

The answer lies in the approach taken to the design, construction and/or configuration of the
component. Through the combined use of vulnerability prevention and removal, attack and
intrusion prevention, and ultimately the implementation of internal intrusion-tolerance
mechanisms, we must justifiably achieve confidence that the component behaves as assumed,
failing in a controlled manner, i.e., that the component can be trusted (cf. Section 3.5). The
measure of this trust is the coverage of the controlled failure assumption.

Looking at the next higher level of abstraction — the level of the system — we are now ready
to implement our intrusion-tolerance mechanisms, using a mixture of arbitrary-failure (or fail-
uncontrolled) and fail-controlled components. However, our task is made easier since the
controlled failure modes of some components vis-à-vis malicious faults restrict the system
faults the component can produce. In fact we have performed a form of fault prevention at the
system level: some kinds of system faults are simply not produced.

5.1.4 Intrusion tolerance under hybrid failure assumptions
The approach outlined in the previous sections:
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•  establishes a divide-and-conquer strategy for building modular fault-tolerant
systems, with regard to failure assumptions;

•  can be applied to achieve different behaviours in different components;

•  can be applied recursively at as many levels of abstraction as are found to be useful.

Components whose coverage has been justified, either by argumentation concerning the
techniques used in their implementation or through quantification by some attack and
vulnerability forecasting methods25 (cf. Section 3.4), can subsequently be used in the
construction of fault-tolerant protocols under hybrid failure assumptions.

Note that the soundness of our approach does not depend on our making possibly naïve
assumptions about what a hacker can or cannot do. Instead, we analyse and break the
attack/vulnerability/intrusion chain selectively, removing vulnerabilities that match attacks we
cannot prevent, preventing attacks that exploit vulnerabilities we cannot remove, and finally
tolerating any intrusions we cannot prevent with the above methods.

This approach is explored in several ways within MAFTIA. In particular, it is our rationale for
implementing small security kernels around components we need to be trusted. Such security
kernels are simple enough to be built and plausibly shown to be correct. In other words, we
consider them to be “trustworthy” in the sense discussed in Section 3.5. This allows us to
construct implementations of fault-tolerant protocols that are more efficient than protocol
implementations that have to deal with truly arbitrary assumptions, and more robust than
designs that make controlled failure assumptions without enforcing them.

There are two instances of such security kernels that we describe in more detail in the
subsequent architecture overview (see Section 5.2.4). The first is a local security kernel, based
on Java Cards, which is designed to assist the crucial steps of the execution of services and
applications. The second is a distributed security kernel (named Trusted Timely Computing
Base), based on appliance boards with private network adapters, which is designed to assist
crucial steps of the operation of middleware protocols.

We use the word “crucial” in both instances to stress the tolerance aspect: unlike classical
prevention-based approaches (e.g., Reference Monitors), the security kernel does not mediate
all accesses to resources and operations. In our approach, protocols run in an untrusted
environment, local participants only trust interactions with the (trusted) security kernels,
single components can be corrupted, and correct service provision is built on distributed fault-
tolerance mechanisms, for example through agreement and replication amongst collections of
participants in several hosts.

The local security kernel is used to certify certain operations, through public key
cryptography. It is a valuable assistant, for example, of protocols supporting the high-level
services of the middleware, such as the authorisation or transactional support services.

The distributed security kernel is used to assist group communications and group activity
protocols. It provides simple security functions (mainly secure IPC channels between itself
and any local component) and a distributed consensus function on simple facts of protocol
operation. It also provides time-related functions that will be discussed in the next sections.

5.1.5 Arbitrary failure assumptions considered necessary
Notice that the hybrid failure approach, no matter how resilient, relies on the coverage of the
fail-controlled assumptions. Definitely, there will be a significant number of operations in the
kind of applications to be served by MAFTIA, whose value and/or criticality is such that the
risk of failure due to violation of these assumptions cannot be incurred.

                                                       
25 Such quantification is currently beyond the state-of-the-art, and is not being addressed in MAFTIA.
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In consequence, an important area of research being pursued is related with arbitrary-failure
resilient building blocks, namely communication protocols of the Byzantine class, which do
not make assumptions on the existence of security kernels or other fail-controlled
components. They reason in terms of admitting any behaviour from the participants, and
allow the corruption of a parameterisable number of participants, say f, as long as there are a
total number of participants n>3f.

These protocols do not make assumptions about timeliness either, and are in essence time-
free. This has implications on the operational aspects, which will be further discussed in the
next sections.

5.1.6 Synchrony models
Research in distributed systems algorithms has traditionally been based on one of two
canonical models: fully asynchronous and fully synchronous models [Verissimo & Raynal
2000]. In this section, we discuss the limitations of both models, in order to motivate the
hybrid approach that MAFTIA is taking.

Asynchronous models are time-free, that is, they are characterised by an absolute
independence of time, and distributed systems based on such models typically have the
following characteristics:

•  Pa 1 Unbounded or unknown processing delays

•  Pa 2 Unbounded or unknown message delivery delays

•  Pa 3 Unbounded or unknown rate of drift of local clocks

•  Pa 4 Unbounded or unknown difference of local clocks26

Asynchronous models obviously resist timing attacks, i.e., attacks on the timing assumptions
of the model, which are non-existent in this case. Because of this fact, they enjoy a resilience
that is not shared by synchronous models, and which is a crucial asset in the presence of
malicious faults. However, for some time, asynchronous models were not much considered in
the literature due to a belief that there could only be inefficient solutions to many interesting
problems, such as consensus or Byzantine agreement. In addition, fully asynchronous models
preclude the deterministic solution of those problems. “False” asynchronous algorithms have
been deployed over the years, exhibiting subtle but real failures, thanks to the inappropriate
use of timeouts in a supposedly time-free model.

Work in MAFTIA takes new approaches to this problem, showing innovative efficient
solutions through probabilistic asynchronous protocols (MAFTIA deliverable D26 [Cachin
2001]). It does not matter that such solutions are only probabilistic as long as the error
probability can be made sufficiently small for the applications in view (in particular smaller
than the probability of hardware faults, etc.).

However, because of their time-free nature, asynchronous models cannot solve timed
problems. In practice, many of the emerging applications we see today, particularly on the
Internet, have interactivity or mission-criticality requirements. Timeliness is part of the
required attributes, either because of user-dictated quality-of-service requirements (e.g.,
network transaction servers, multimedia rendering, synchronised groupware, stock exchange
transaction servers), or because of safety constraints (e.g., air traffic control). In contrast to
asynchronous models (which simply have no notion of time) synchronous models allow
timeliness specifications. In this type of model, it is possible to solve all the typical hard

                                                       
26 Pa3 and Pa4 are essentially equivalent but are listed for a better comparison with the synchronous

model characteristics listed below. Since a local clock in a time-free system is nothing more than a
sequence counter, clock synchronisation is also impossible in an asynchronous system.
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problems deterministically (e.g., consensus, atomic broadcast, clock synchronisation)
[Chandra & Toueg 1996]. Synchronous models have the following characteristics:

•  Ps 1 There exists a known bound for processing delays by non-faulty processors

•  Ps 2 There exists a known bound for message delivery delays between non-faulty
processors

•  Ps 3 There exists a known bound for the rate of drift of non-faulty local clocks

•  Ps 4 There exists a known bound for the difference among non-faulty local clocks

In consequence, such models solve timed problem specifications, one precondition for at least
a subset of the applications targeted in MAFTIA, for the reasons explained above. Imagine for
example the technical difficulty of implementing real-time stock exchange transactions on the
Internet, based on real-time quotes, and with temporal order between competitive requests, to
ensure market fairness.

However, synchronous models are fragile in terms of their coverage of timeliness assumptions
such as positioning of events in the timeline or determining execution durations. It is easy to
see that synchronous models are susceptible to timing attacks, since they make strong
assumptions about things happening on time. For example, algorithms based on messages
arriving by a certain time, or on reading the actual global time from a clock, or on securing
the temporal order of messages, may fail in dangerous ways if manipulated by an adversary
[Gong 1992]. In a synchronous setting, the difficulty of implementing real-time stock
exchange transactions over the Internet in the presence of malicious faults could become
insurmountable.

Work in MAFTIA takes the timed partially synchronous approach to this problem. The
intermediate synchrony model we follow provides a solution to the problems enumerated
above, essentially for three reasons: (i) it allows timeliness specifications; (ii) it admits failure
of those specifications; (iii) it provides timing failure detection, and if desired, timing fault
tolerance.

To summarise, a time-free approach is necessary when the criticality of operations is such that
an arbitrary failure assumptions model is needed to maximize coverage and prevent timing
attacks by resorting to an asynchronous model. However, this setting does not offer timeliness
guarantees and that would be the price to pay. The hybrid approach that we are taking in
MAFTIA, which we now discuss in more detail, attempts to improve on this situation.

5.1.7 Timed approach
Let us analyse a little more how timed algorithms can be attacked. Specifying timeout values
may be very difficult when protecting against arbitrary failures that may be caused by a
malicious attacker. It is usually much easier for an intruder to attack communication with a
server than to subvert the server. Even asynchronous systems with failure detectors [Chandra
& Toueg 1996] can easily be fooled into having inconsistent and wrong failure suspicions
about honest parties. This problem arises because the failure detector is built on the
assumption that the system will be stable for long enough periods. This assumption may
obviously fail against a malicious adversary. Two possible solutions present themselves:
either the failure detector is made to work properly in a malicious fault environment, or a
solution is devised that does not require failure detectors. We will address the latter in the next
section.

As for the former, we adopt a partially synchronous model, enriched with the notion of a
timing failure detector. This is a stronger definition of detector than the crash failure detector.
However, the power of such a detector addresses our concerns about timeliness. We expect
our timed applications to be able to run in environments of uncertain synchrony, such as the
Internet. Thus, in spite of having a notion of timeliness (i.e., time bounds, deadlines, etc.),
they may not always be able to fulfil these requirements adequately. Consequently, we
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assume that components can exhibit timing failures, i.e., they can violate timeliness
properties. This would only be dangerous if we were not able to detect them, otherwise we
can devise timing-fault tolerant protocols. Thus, we require our timing failure detector to be
resilient to malicious faults: it will not make mistakes even in the presence of intruders. This
addresses the concerns expressed at the beginning of this section.

The realisation of our model is called the Trusted Timely Computing Base (TTCB): an
architectural device working as an oracle performing timing failure detection, built in a way
so as to ensure detection is timely, accurate and complete [Verissimo et al. 2000], even in the
presence of malicious faults. The TTCB must be: distributed, for detection to work correctly;
synchronous, so that timing operations are accurate; and fail-controlled, to provide well-
defined behaviour in the presence of intrusions. In the context of the discussion of Section
5.1.4, the TTCB is built as a distributed and synchronous security kernel, which provides
useful security-related functions alongside time-related functions, and is used to support the
construction and operation of fault-tolerant protocols following the timed approach. .

An interesting observation is that a partially synchronous system with a timing failure
detector encompasses the entire spectrum of partial synchrony, from fully asynchronous to
fully synchronous. In consequence, MAFTIA protocols can have an incremental degree of
asynchrony, and ultimately, time-free protocols can be built that rely on accurate timed failure
detectors in the TTCB, exclusively used to generate and control timeouts in a trusted way.
Trusted should be read both from the viewpoint of full synchrony, and of tamper-proofness: it
is impossible to have accurate timeout-based failure detectors in asynchronous systems,
and/or systems subject to the manipulation of a malicious attacker.

In a sense, a TTCB might sound similar to the very well known paradigm in security of a
Trusted Computing Base (TCB) [Abrams et al. 1995]. However, the objectives are radically
different. A TCB aims at fault prevention and ensures that the whole application state and
resources are tamper-proof. Furthermore, it is based on logical correctness and makes no
attempt to reason in terms of time. In contrast, a TTCB aims at fault tolerance: it simplifies
the task of application components, but most of the application code and state is in
unprotected space, and can be tampered with, requiring the use of redundancy so that the
whole application does not fail. In other words, a TTCB is an architectural artefact supporting
the construction and trusted execution of intrusion-tolerant protocols and applications running
under a partially synchronous model.

5.1.8 Time-free approach
The time-free approach taken in MAFTIA adopts the asynchronous model. Of course,
asynchronous protocols cannot guarantee a bound on the overall response time of an
application, but they were never meant to. In general, an asynchronous model provides a
conceptually simple and nice framework for developing and reasoning about the correctness
of an algorithm, satisfying safety under any conditions, and providing liveness under certain
conditions, which in MAFTIA asynchronous protocols are defined in a probabilistic way.
This has some advantages for the design of secure distributed systems, which is one reason
for pursuing such a model in the context of MAFTIA. In fact, sometimes it is necessary and
worthwhile to sacrifice timeliness for resilience, for example for very critical operations (key
distribution, contract signing, etc.)

In the asynchronous model, consensus is not reachable by deterministic protocols, even with
crash failures only. But there are randomised solutions that use only a constant number of
rounds to reach agreement [Bracha & Toueg 1985, Rabin 1989]. In MAFTIA, by employing
modern, efficient cryptographic techniques, this approach has been extended to a practical yet
provably secure protocol for Byzantine agreement in the cryptographic model that withstands
the maximal possible corruption [Cachin et al. 2000b]. The cryptographic model with
randomised Byzantine agreement is both practically and theoretically attractive. Randomised
agreement protocols may not terminate with non-zero probability, but this probability can be
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made negligible. In fact, a protocol using cryptography always has a residual probability of
failure, determined by the key lengths. In consequence, this is a solution that works under
arbitrary failure assumptions, that is, faults (attack, intrusions) both in the time and space
domains.

We have observed that randomised (probabilistic) protocols like Byzantine agreement make
essentially very few assumptions about the environment. One possible track in the quest for
more efficient implementations close to the boundary of arbitrary failure assumptions would
be to assume two operation modes. The optimistic asynchrony model that we are pursuing in
the MAFTIA project attempts to address this track. A fully asynchronous model is assumed as
a baseline framework, running randomised Byzantine agreement. However, whenever the
system exhibits enough synchrony, the system switches to a partially synchronous operation
mode, still malicious-fault resilient, but exhibiting better performance. The TTCB could be
used to make the algorithms and protocols aware of the current synchrony of the system, thus
enabling them to change operation mode in an accurate way.

5.1.9 Programming model
Although the main goal of MAFTIA is to provide security in the face of malicious faults, the
architecture must also provide a versatile functional support in order to be useful.
Consequently, it will support the main interaction styles used in distributed computing,
namely:

•  client-server, for service invocations

•  multipeer, for interactions amongst peers

•  dissemination, of information in push or pull form

•  transactions, for encapsulation of multiple actions

Client-server interactions can be implemented by two different mechanisms: in closed loop,
usually performed through RPC, or in open loop, usually performed through group
communication. Both approaches are easily implemented using group-based open-loop
mechanisms, such as offered by the middleware. Another style of interaction is multipeer,
conveying the notion of spontaneous, symmetric interchange of information, amongst a
collection of peer entities. Multipeer interactions are the kind of interaction one might wish
among managers of a distributed database, a group of commerce servers, a group of TTP
servers, or a group of participants running a cryptographic agreement protocol (e.g., contract
signing). Next, we have dissemination, which combines the information push and pull
approaches. Information is published by publishers, and is made available to interested
subscribers. Message subscription can be implemented using two different alternatives: the
push strategy or the pull strategy. Finally, transactions provide the capability of performing
sets of operations atomically, i.e. satisfying the well-known ACID properties.

The various styles referred to above can be combined to form more complex interaction
styles. For example, transactions may encapsulate several interactions built using the other
styles. Note also that the extensive use of open-loop client server mechanisms, multipeer
interactions, replication, and distributed transactions is yet another justification for the
emphasis of the group-orientation paradigm in the architecture of MAFTIA.

5.2 Architecture
In this section, we provide an overview of the MAFTIA architecture and discuss the various
options that it offers at the hardware, local executive and distributed software levels.
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5.2.1 Overview
The MAFTIA architecture is highly modular. This is an accepted design principle for building
distributed fault tolerance into systems. It facilitates the definition of different redundancy
strategies for different components, and the placement of the relevant replicas.

MAFTIA also aims at applications with a geographically large scale, namely services
provided to many clients coming from very far apart, whose core part may run on several,
possibly interconnected facilities of one or more organisations. Most of the research work in
MAFTIA is devoted to the design of suitable middleware protocols to ease the construction of
the core part of such services, and to the development of the services themselves and of their
interaction with clients. With regard to scalability, these protocols will, whenever appropriate,
be topology aware, a powerful construct for designing large-scale efficient protocols
[Rodrigues & Verissimo 2000].
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Figure 15 — Two-tier WAN-of-LANs

For example, at global level, there is advantage in recognising the topology of the networking
infrastructure as a logical two-tier WAN-of-LANs, as suggested in Figure 15: facilities
composed of pools of hosts (intranets) with privately managed high connectivity links, such
as LANs or MANs or ATM fabrics, are normally interconnected in the upper tier by the
publicly managed point-to-point global network (the Internet), through facility gateways,
logical devices that represent the local network members for the global network. Such
gateways not only serve as clustering points in terms of scale, but may also serve as intrusion
prevention devices, creating error containment domains (fire walling; inspecting incoming
and outgoing traffic for attack and intrusion detection; ingress and egress traffic filtering;
internal topology hiding, etc.).

As a matter of fact, such a structure offers opportunities for making different assumptions
regarding the types and levels of threat and degrees of vulnerability of the local network
versus the global network part. This does not necessarily mean considering intra-facility
networking threat-free. For example, certain port scans or pings in the global network may be
completely innocent and harmless, whereas they may mean an attack if performed inside the
facility. Likewise, an intruder working from the inside of the facility may have considerably
more power than one working from the outside. In a global information society as considered
in MAFTIA, many participants will be coming from individual access points and not from
organisations: tax payers, voters, money owners, e-commerce customers, etc. They will
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mostly be clients of MAFTIA services. Clearly, the WAN-of-LAN structure is expected to be
helpful in organising the latter, whereas clients will normally interact with the services
through simple and mostly standard interfaces.

The WAN-of-LANs view we have just presented can be recursively applied, in order to
represent very-large-scale organisations. On an intra-facility level, further hierarchies, namely
those already deriving from hierarchical organisation of sub-networks and domains, are not
precluded. On an intra-organisation (multi-facility) level, the topology depicted in Figure 15
can be re-instantiated to represent an organisation with multiple geographically dispersed
facilities interconnected by secure tunnels whose end points are internal Facility Gateways,
whose sole role is to implement the Virtual Private Network (VPN) interconnecting all
organisation facilities.

On the other hand, inside a host, we make a separation between the functionality concerned
with inter-host communication, which we call site level functions, and the functionality
concerned with distributed activity of processes, tasks, objects, etc., which we call participant
level functions (see Figure 15). Participants, which execute distributed activities, can be
senders or recipients of information, or both, in the course of the aforementioned activities.
For example, if more than one participant residing on a host is a recipient of a reliable
multicast message, the relevant group communication protocol runs at site level and only
delivers one message at that host, which is copied to all local recipients. From now on, when
specifying operations inside or among hosts in MAFTIA, we will refer to sites when taking
the communication/networking viewpoint on the system, and we will refer to participants,
when taking the activity/processing viewpoint.

5.2.2 Main architectural options
The structure of a MAFTIA host relies on a few main architectural options, some of which are
natural consequences of the discussions in Section 5.1:

•  The notion of trusted — versus untrusted — hardware. Most of MAFTIA’s
hardware is considered to be untrusted, but small parts of it are considered to be
trusted in the sense of being tamper-proof by construction (see Section 3.5). Note
that this notion does not necessarily imply proprietary hardware, but for example
COTS hardware whose architecture and interface with the rest of the system
justifies the aforementioned assumption.

•  The notion of security kernel. This is the way in which MAFTIA endorses the
notion of a fail-controlled subsystem trusted to execute a few functions correctly,
albeit immersed in an environment subjected to malicious faults. The use of trusted
hardware serves to substantiate this assumption with high coverage.

•  The notion of run-time environment, extending operating system capabilities and
hiding heterogeneity amongst host operating systems by offering a homogeneous
API and framework for protocol composition.

•  Modular and multi-layered middleware, with a neat separation between: the
multipoint network abstraction, the communication support services, and the
activity support services. Despite this modularisation, the middleware is a white
box, allowing users direct access to any service from any layer.
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AS - Authorisation Service, IDS - Intrusion Detection Service, TTP - Trusted Third Party Service
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Figure 16 — MAFTIA architecture dimensions

The MAFTIA architecture can be depicted in at least three different dimensions (see Figure
16). First, there is the host and networking hardware device and their topology, briefly
discussed earlier, which make up the physical distributed system. Second, within each node
there are the local support services provided by the operating system and the run-time
platform. These may vary from host to host in a heterogeneous system, and some services
may even not be available on some hosts or may have to be accessed via the network using
protocols providing an appropriate degree of trust. However, at a minimum, the local services
include typical operating system functionality such as the ability to run processes, send
messages across the network, access local persistent storage (if it exists), etc. Third, there is
the distributed software provided by MAFTIA: the layers of middleware, running on top of
the run-time support mechanisms provided by each host; and MAFTIA’s native services,
depicted in the picture — authorisation, intrusion detection, and trusted third party services.
Applications built to run on top of MAFTIA use the abstractions provided by the middleware
and the application services to operate securely across several hosts, and/or be accessed
securely by users running on remote nodes, even in the presence of malicious faults. The
distributed software components of the MAFTIA architecture (middleware and services) are
discussed in more detail in MAFTIA deliverables D3 [Alessandri 2001], D23 [Neves &
Veríssimo 2001], D26 [Cachin 2001], D27 [Abghour et al. 2001]. In the remainder of this
section, we discuss in a little more detail the hardware, the local support, and the middleware.

5.2.3 Hardware
We assume that the hardware in individual MAFTIA hosts is untrusted in general. However
(see Figure 16) some hosts may have pieces of hardware that are trusted in the sense of being
regarded as tamper-proof (see Section 3.5), i.e. we assume that intruders do not have direct
access to the inside of the component.

Most of a host’s operations run on untrusted hardware, e.g., the usual machinery of a PC or
workstation, connected through the normal networking infrastructure to the Internet, which
we call the payload channel.

Some hosts, for example, servers, will have trusted hardware components. Currently, we
consider two incarnations of such hardware, both readily available as COTS components. One
is a Java Card reader, connected to the machine's hardware, and interfaced by the operating
system. The Java Card executes software functions to which an attacker does not have access
and also stores keys.
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The other type of trusted hardware is an appliance board with processor. A common
accessory in the PC family, it has its own resources and is interfaced by the operating system.
However, an attacker does not have access to the interior of the board. The board has a
network adapter to a private network, which we call a control channel (to differentiate it from
the payload channel). An attacker does not have access to the data circulating in the control
channel.

5.2.4 Local support
The local support dimension of the architecture (see Figure 16) consists essentially of the
operating system augmented with appropriate extensions. We have adopted Java as a
platform-independent and object-oriented programming environment, and thus our
middleware, service and application software modules are constructed to run on the Java
Virtual Machine (JVM) run-time environment. The MAFTIA run-time support also includes
the APPIA protocol kernel [Miranda et al. 2001], which supports the construction of
middleware protocols from the composition of micro-protocols.

The run-time support thus includes abstractions of typical local platform services such as
process execution, inter-process communication, access to local persistent storage, and
protocol management. These are enhanced with specialised functions provided by the security
kernels — the Java Card based module, and the Trusted Timely Computing Base (TTCB).

A security kernel is trusted from the viewpoints of correctness of its operation, and of
intrusion prevention: the kernel provides correct functions in a fault free situation, and cannot
be intruded upon. It must follow a few construction principles that guarantee this behaviour in
the face of faults:

•  Interposition: it must by construction be interposed between the vital resources it
protects and any attempt to interact with them (it is always invoked)

•  Shielding: it must be shielded (tamper-proof) from any contamination from the
outside (errors propagating from the rest of the system, malicious attacks)

•  Validation: it must be verifiable, in order to ensure very high coverage of its
properties.

5.2.4.1 Java Card security kernel

This security kernel is mainly used to support authorisation services, where it plays two main
roles: it checks all accesses to local objects, whether persistent or transient, and it
autonomously manages all access rights for local transient objects.

The security kernel controls all accesses to local objects by checking if each request carries an
authorisation for the access. This authorisation may have been delivered by the authorisation
server, if the access is an access to a persistent object, or by the security kernel itself, if the
access is an access to a local transient object.

The security kernel runs partly on the operating system kernel (the reader interface part) and
partly on the Java Card (the function’s logic and the data structures, e.g., keys). Software
components interact with it through the run-time support (the JVM). Trusting the security
kernel has the following meaning: it is not feasible to subvert a security kernel, but it may be
possible to interfere in its interaction with software components through the JVM. In this case
however, we consider that local host as having been compromised, but we trust that the
security kernel enforces error confinement. In distributed fault-tolerance terms, this would
mean that a successful attacker (i.e. an intruder) may become able to control accesses to local
objects but cannot be granted access to remote objects, or impersonate a fake object for
remote operations.
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5.2.4.2 Trusted timely computing base

The distributed security kernel (TTCB) is responsible for providing a basic set of trusted
services related to time and security, to middleware protocols (communication and activity
support). It aims at supporting malicious-fault tolerant protocols of any synchrony built to a
fail-controlled model, such as reliable multicast, by supplying reliable failure-detection
information. Furthermore, it helps to enforce timeliness specifications of protocols, even if the
environment only allows this to be achieved with some uncertainty.

One important characteristic of this security kernel is that it implements some degree of
distributed trust for low-level operations. That is, protocol participants essentially exchange
their messages in a world full of threats, some of them may even be malicious and cheat, but
there is an oracle that correct participants can trust, and a channel that they can use to get in
touch with each other, even for rare moments. Moreover, this oracle also acts as a checkpoint
that malicious participants have to synchronise with, and this limits their potential for
Byzantine actions (inconsistent value faults).

The other important characteristic is that the TTCB is synchronous, in the sense of having
reliable clocks and being able to execute timely functions. Furthermore, the control channel
provides timely (synchronous) inter-module communication.

A local TTCB runs partly on the operating system kernel (the appliance board interface part),
and partly on the appliance board itself. Software components interact with it through the run-
time support (the JVM). Trusting the TTCB security kernel has a meaning similar to the Java
Card security kernel: it is not feasible to subvert the TTCB, but it may be possible to interfere
in its interaction with software components through the JVM. In similar terms, whilst we let a
local host be compromised, we make sure that it does not undermine fault-tolerant operation
of the protocols amongst distributed components. In case that happens, we can further count
on the information exchanged by the local TTCBs (including the one on the compromised
host) through the control channel.

The TTCB security kernel should be built in a way that secures both the synchronism
properties mentioned earlier, and its correct behaviour vis-à-vis malicious faults, with the
desired coverage. In consequence, a local TTCB would normally be built on dedicated
hardware modules, with a dedicated network, as discussed earlier in Section 5.2.3. However,
we also consider simpler configurations not requiring dedicated trusted hardware for the
TTCB security kernel, and study their design in order to exhibit high coverage. The software-
based solution consists of a small secure real-time kernel running on the bare machine
hardware, on top of which the regular operating system runs (and all the rest of the host
software). The TTCB is built on the kernel, and as long as this construct enjoys the
interposition, shielding and validation properties, it is a security kernel. Note that the coverage
expected from this configuration cannot be worse than hardened versions of known
commercial operating systems, since it only addresses the inner kernel and not the operating
system as a whole. It may thus constitute a very attractive implementation of MAFTIA for its
cost/simplicity/resilience trade-off.

The control channel can also assume several forms exhibiting different levels of timeliness
and resilience. It may or may not be based on a physically different network from the one
supporting the payload channel. For example, virtual channels with predictable timing
characteristics coexisting with essentially asynchronous channels are feasible in some current
networks, even over the Internet [Schulzrinne et al. 1996]. Such virtual channels can be made
secure through virtual private network (VPN) techniques, which consist of building secure
cryptographic IP tunnels linking all TTCB modules together, and these techniques are now
supported by standards [Kent & Atkinson 1998]. On a timeliness side, it should be observed
that the bandwidth required of the control channel is bound to be much smaller than that of
the payload channel. In more demanding scenarios, one may resort to alternative networks
(real-time LAN, ISDN connection, GSM or UMTS Short Message Service, Low Earth Orbit
satellite communication).



Conceptual Model and Architecture

55

The TTCB is designed to act as an assistant for parts of the execution of the protocols and
applications supported by the MAFTIA middleware, and consequently it can be called from
any level of the middleware dimension of the architecture. The services provided by the
TTCB fall into two broad categories: security-related services, and time-related services. The
former include services such as trusted block consensus, unilateral TTCB authentication, and
trusted random number generation. The latter include services such as the trusted provision of
absolute time, duration measurement and timing failure detection. These services and the
properties they guarantee are described in more detail in MAFTIA deliverable D24 [Neves &
Veríssimo 2001].

5.2.5 Middleware
The distribution dimension impacts on the protocol design but not on the services provided by
each host. These are constructed on the functionality provided by the several middleware
modules, represented in Figure 17. These interactions occur through the run-time
environment. The several profiles for building protocols that were discussed earlier (e.g.,
time-free, timed, etc.) are achieved by composition of the micro-protocols necessary to
achieve the desired quality of service. The middleware hides these distinctions from the
application programmer by providing uniform APIs that are parameterised with functional
and non-functional guarantees. The preliminary design of these APIs is explained in more
detail in MAFTIA deliverable D24 [Neves & Veríssimo 2001], but this design is expected to
evolve as the middleware is developed further.

In Figure 17, the set of layers is divided into site and participant parts. The site part has access
to and depends on a physical networking infrastructure, not represented for simplicity. The
participant part offers support to local participants engaging in distributed computations. The
lowest layer is the Multipoint Network module, MN, created over the physical infrastructure.
Its main properties are the provision of multipoint addressing, basic secure channels, and
management communications. The MN layer hides the particularities of the underlying
network to which a given site is directly attached, and is as thin as the intrinsic properties of
the former allow. It also provides a run-time (JVM and APPIA) compliant interface for the
protocols to be used (e.g., IP, IPSEC, SNMP).

The Communication Support Services module, C S, implements basic cryptographic
primitives, Byzantine agreement, group communication with several reliability and ordering
guarantees, clock synchronisation, and other core services. The CS module depends on the
MN module to access the network. The Activity Support Services module, AS, implements
building blocks that assist participant activity, such as replication management (e.g., state
machine, voting), leader election, transactional management, authorisation, key management,
and so forth. It depends on the services provided by the CS module.

The block on the left of the figure implements failure detection and membership management.
These functions are performed both at site and participant level. At site level, site failure
detection is in charge of assessing the connectivity and correctness of sites, and the Multipoint
Network module depends on this information. Failure detection is not completely reliable, due
to the uncertain synchrony and susceptibility to attacks of at least parts of the network. Site
membership management, which depends on failure information, creates and modifies the
membership (registered members) and the view (currently active, or non-failed, or trusted
members) of sets of sites, which we call site-groups. The CS module depends on this
information.
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Figure 17 — Detailed architecture of the MAFTIA middleware

In the participant part, participant failure detection assesses the liveness of all local
participants, based on local information provided by sensors in the operating system support.
Participant membership management performs similar operations as site membership, on the
membership and view of participant groups. Note that several participant groups, or simply
groups, may exist in a single site. The separation of concerns between groups of participants
(performing distributed activities), and site-groups of the sites where those participants reside
(performing reliable communication on behalf of the latter) is beneficial to application
structuring. This can be further enhanced by mapping more than one group onto the same site-
group, in what are called lightweight groups [Rodrigues et al. 1996]. The Activity Support
Services depend on the participant membership information.

The protocols implementing the layers described above fulfil the topology awareness
property. As such, they may run differently depending on their position in the topology,
although this happens transparently. For example, a site-failure detection protocol instantiated
at the Facility Gateways may wish to aggregate all liveness/failure information from the sites
it oversees, and gather that same information from the corresponding remote Facility
Gateways. These considerations may obviously be extended to topology-aware attack and
intrusion detection.

5.3 Intrusion-tolerance strategies in MAFTIA
The goal of MAFTIA is to support the construction of dependable trustworthy applications,
implemented by collections of components with varying degrees of trustworthiness. This is
achieved by relying on distributed fault and intrusion-tolerance mechanisms. Given the
variety of possible MAFTIA applications, several different strategies are pursued in order to
achieve the above-mentioned goal. These strategies are applied at several levels of abstraction
of the architecture, most importantly, in the implementation of the middleware and
application services. In this section, we describe these strategies: fail-uncontrolled or
arbitrary; fail-controlled with local security kernel (Java Card); fail-controlled with distributed
and timed security kernel (TTCB).

The conventions used for the figures in the following sections are as follows: grey means
untrusted; white means trusted; the presence of a clock symbol means a synchronous
environment, a crossed out clock symbol means an asynchronous environment; a warped
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clock symbol means a partially-synchronous environment; a key means a secure environment;
dashed arrows means IPC or communication that can be interfered with, continuous arrows
denote trusted paths of communication.

5.3.1.1  Fail-uncontrolled

The fail-uncontrolled or arbitrary failure strategy is based on the no-assumptions attitude
discussed in the beginning of the chapter. When very large coverage is sought of given
mechanisms in MAFTIA, we resort to making no assumptions about time, following an
asynchronous model, and we make essentially no assumptions about the faulty behaviour of
either the components or the environment. Of course, for the system as a whole to provide
useful service, it is necessary that at least some of the components are correct.

Figure 18 — Fail-uncontrolled

Figure 18 shows the principle in simple terms. The hosts and the communication
environment are not trusted, and are fully asynchronous. For a protocol to be able to provide
correct service, it must cope with arbitrary failures of components and the environment. For
example, component Ck is malicious, but this may be because the component itself or host C
have been tampered with, or because an intruder in the communication system simulates that
behaviour.

Some protocols used by the MAFTIA middleware follow this strategy, in order to be resilient
to arbitrary failure assumptions. They are of the probabilistic Byzantine class, and require a
number of hosts n > 3f, for f faulty components. The MAFTIA middleware provides different
qualities of service in this asynchronous profile, achieved by composition of several micro-
protocols on top of basic binary Byzantine agreement, in order to achieve: reliable broadcast,
atomic broadcast; multi-valued Byzantine agreement.

5.3.1.2 Fail-controlled with local security kernel

Figure 19 exemplifies a fail-controlled strategy. It consists of assuming that, as for the fail-
uncontrolled strategy, hosts and communication environment are not trusted, and
asynchronous. However, hosts have a local security kernel (LSK), which supports protocols
they can trust for certain steps of their operation. This security kernel is implemented in a Java
Card that equips the relevant hosts. As such, for a protocol to be able to provide useful
service, it has to cope with a mixture of hybrid of arbitrary and fail-silent behaviour,
depending on whether a component is interacting with the other components or with the local
security kernel.
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Figure 19 — Fail-controlled with local security kernel

In the example, component Ck may be arbitrarily malicious, either because the component
itself or host C has been tampered with, or because an intruder in the communication system
simulates that behaviour. However, unlike the fail-uncontrolled strategy, the impact of this
behaviour on the other components (i.e., error propagation) may be limited, if the protocol
makes components perform certain checks and validations with the security kernel (for
example, signature validation), which will prevent Ck from causing certain failures in the
value domain (for example, forging). An additional proviso must be made: since the host
environment is untrusted, IPC between a component and its LSK may be interfered with,
though in a controlled way. For example, if host B is contaminated, component Cj may
behave erroneously, but protocols can be designed in a way that prevents Cj from behaving in
an arbitrary way.

This strategy is followed in the construction of the MAFTIA authorisation service.
Components run distributed fault-tolerant authorisation protocols based on capabilities that
express the access control for objects. These protocols run among the authorisation server
replicas and the hosts running a MAFTIA application.

5.3.1.3 Fail-controlled with a TTCB

The “fail-controlled with a TTCB” strategy relies on a distributed and timed security kernel,
which serves two purposes: amplifying the degree of trustworthiness of the security kernel
support by making it distributed, and supporting timed behaviour in an intrusion resilient way.
This strategy consists of assuming, as for the preceding strategies, that the hosts and
communication environment are not trusted. However, as suggested by the warped clocks in
Figure 20, they are assumed to be partially synchronous.
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Figure 20 — Fail-controlled with a TTCB
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The distributed security kernel (DSK) is implemented by the local TTCBs interconnected by a
control network. As with the “fail-controlled with local security kernel” strategy, in order for
a protocol to be able to provide useful service, it has to cope with a hybrid of arbitrary and
fail-silent behaviour, depending on whether a component is interacting with the other
components or with the local TTCB. Consider the example of Figure 20, where again
component Ck or host C may be arbitrarily malicious. Like the “fail-controlled with local
security kernel” strategy, the impact of the faulty behaviour of these components may be
limited by enforcing certain validations with the local TTCB. However, with regard to
trustworthiness, the fact that the TTCBs are interconnected and can exchange information and
perform agreement in a secure way — through the control channel — further limits the
potential damage of malicious behaviour: the DSK ‘knows’ directly what each of the
components in different hosts ‘say’, unlike the solution with LSKs, where an LSK only
‘knows’ what a remote component ‘says’, through the local component. To achieve this, the
TTCB allows the set-up of secure channels with any local component, and offers a low-level
block consensus primitive. For example, components Ci through Cl could set up secure IPC
with the TTCB, through which they would run such a consensus as part of the execution of
some protocol.

The other relevant aspect of the TTCB strategy is time. The TTCB supports timed behaviour
in an intrusion resilient way. As discussed in Section 5.1, timed systems are fragile in that
timing assumptions can be manipulated by intruders. The TTCB supplies constructs that
enable protocols to tolerate this class of intrusions. These are obviously related to the trusted
time-related services briefly described earlier, namely absolute time, duration measurement
and timing failure detection. As suggested in Figure 20, the TTCB DSK is a fully
synchronous subsystem. It supplies its services to the payload system, which can have any
degree of synchronism, as suggested by the warped clock. The TTCB does not make the
payload system “more synchronous”, but allows it to take advantage of its possible
synchronism, in the presence of faults, both accidental and malicious. As such, the TTCB can
assist an application running on the payload system to determine useful facts about time: for
example, be sure it executed something on time; measure a duration; determine it was late
doing something, etc. Then, the payload system, despite being imperfect (it suffers timing
faults, some of which may result from attacks), can react (implement fault-tolerance
mechanisms) based on reliable information about the presence or absence of errors (provided
by the TTCB at its interface).

Depending on the type of application, it is not necessary that all sites have a local TTCB.
Consider the development of a fault-tolerant TTP (Trusted Third Party) based on a group of
replicas that collectively ensure the correct behaviour of the TTP service vis-à-vis malicious
faults. The nodes hosting these replicas have TTCBs that support the execution of the group
communication and replica management protocols under a timed model.

Several of the MAFTIA middleware protocols follow the “fail-controlled with TTCB”
strategy. These protocols are group-oriented, deterministic, and can provide timeliness
guarantees. The MAFTIA middleware provides different qualities of service in this timed
profile by composing several micro-protocols on top of basic unreliable multicast. For
example, this is the way in which reliable multicast and atomic multicast protocols are
achieved.

5.4 Examples of MAFTIA intrusion tolerant services
To illustrate the application of MAFTIA intrusion-tolerance strategies to the problem of
building intrusion tolerant trusted services, we briefly discuss four examples that are being
developed within the project, namely intrusion-detection service, trusted third party services,
authorisation service, and transaction service. More details about these services can found in
MAFTIA deliverables D24 [Neves & Veríssimo 2001], D26 [Cachin 2001] and D23
[Abghour et al. 2001].
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5.4.1 Intrusion-detection service
The goal of MAFTIA is to support the construction of dependable trustworthy applications by
distributing trust. As discussed in Chapter 4, intrusion detection is relevant at all levels of the
architecture. For example, the operating systems used by the MAFTIA platform should have
integrity checking and configuration checking enabled. Reports of attacks staged against
servers running on the platforms should be noted. Periodic auditing or review of the systems
and their administrators should be performed. The logging information generated by the
MAFTIA middleware, support structures, and so forth may also be used to support intrusion
detection. For example, repeated incorrect calculations or evidence of a dictionary attack
against cryptographic mechanisms should be noted.

Not only should the intrusion-detection service rely on information collected from every layer
of the architecture, but also the intrusion-detection service should itself be intrusion tolerant.
Sophisticated attackers are likely to target the intrusion-detection system in an attempt to
disable it or in order to disguise their subsequent attacks. The strategies described in section
5.3, middleware services such as secure channels, and the principle of error compensation can
all be used to make the intrusion-detection service intrusion tolerant.

The choice between the “fail-uncontrolled” and the “fail-controlled with a TTCB” strategies
for the design of the intrusion-detection components depends on factors such as the number of
components required and where they are placed. Some components will be able to use
specialised platforms that support TTCBs, for example, standalone network-based sensors.
Other components may have to co-exist with applications on standard platforms and will have
to adopt a fail-uncontrolled strategy.

The question of whether the intrusion-detection system should use the reliable and secure
communication channels provided by MAFTIA is answered by consideration of the failure-
modes. Naturally, one would not wish to use a communication channel to signal failure of the
communication channel itself. In addition, one would not wish to invoke a large distributed
architecture to communicate between two components within a single trust domain. In
intrusion-detection system settings where error compensation does not make sense, we can
use much simpler mechanisms and channels (as described in Section 4.2.4).

Error compensation could be used to improve the robustness of the communication channels
that the intrusion-detection components use to communicate. Error compensation relies upon
the erroneous state containing enough redundancy to enable its transformation into an error-
free state. In intrusion-detection system settings where error compensation is appropriate, we
can benefit by incorporating redundancy into the data sent through the communications
channels. Message selection algorithms can be applied to the messages received over multiple
channels. This would enable faults due to intrusion or other causes to be masked.

These architectural trade-offs in building an intrusion tolerant intrusion-detection system will
be explored further in a future deliverable from WP3.

5.4.2 Distributed trusted services
These services are based on the fail-uncontrolled strategy, and error compensation. Error
compensation is implemented by using active or “state machine” replication [Powell et al.
1988, Schneider 1990] in the Byzantine model. The general idea is to implement a server
providing the service as a deterministic state machine and replicate it. We assume a static
server group of n replicated servers, of which up to t may fail in completely arbitrary ways.
Clients send their requests to the server group, the replies are collected by the client and a
selection algorithm is applied to determine the correct reply. This allows the corruption of a
subset of the servers to be tolerated. Requests to the services are delivered by the broadcast
protocols described in [Cachin 2001] that have been designed to cope with arbitrary failures
of components and the environment. A broadcast is started when the client sends a message
containing the request to a sufficient number of servers. In general, the client must send the
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request to more than t servers or a corrupt server could simply ignore the message;
alternatively, one could postulate that one server acts as a gateway to relay the request to all
servers and leave it to the client to resend its message if it receives no answer within the
expected time.

Depending on whether it is necessary to maintain causality among client requests, a service
may use atomic broadcast directly or secure causal atomic broadcast otherwise. If the client
requests commute, reliable broadcast suffices.

Each server returns a partial answer to the client, who must wait for at least 2t+1 values
before determining the proper answer by majority vote. Since atomic broadcast guarantees
that all servers process the same sequence of requests, the client will obtain the same answer
from all honest servers. If the application returns a digital signature, the answers may contain
signature shares from which the client can recover a threshold signature.

The following are examples of the types of applications envisaged as being made intrusion
tolerant using this approach:

•  Digital Notary Service. A number of applications require a single counter to be
provided by a trusted central authority. In its most basic form, a digital notary
service receives documents, assigns a sequence number to them and certifies this by
its signature.

•  Fair Exchange TTPs. Fair Exchange protocols are useful in electronic commerce
for digital content selling, certified email or electronic contract signing. The
fairness property ensures that either both parties that wish to exchange items get the
item they are supposed to, or that neither party gets anything.

•  Certification Authority (CA). A CA is a service run by a trusted organisation that
verifies and confirms the validity of a public key. The issued certificate usually also
confirms that the real-world user defined in the certificate is in control of the
corresponding private key. The CA links the public key to a user’s identity by
signing the two together under the CA’s private signing key.

•  Authentication Service. The basic task of an authentication service is to verify the
claimed identity of a user or a process acting on behalf of a user. This service is
used when privileges are granted according to user identity (e.g., by an
authorisation service), or when the authentic identity of a user must be recorded for
accountability.

•  Authorisation Service. An authorisation service is in charge of granting or denying
rights for specified subjects to carry out specified operations on specified objects.
MAFTIA is developing a distributed trusted authorisation service for multiparty
transactions that is sketched out in the following sub-section.

MAFTIA deliverable D26 [Cachin 2001] discusses this approach to building dependable
trusted third party services in more detail.

5.4.3 Authorisation service
Most current Internet applications do not use authorisation services. Such applications are
based on the client-server model where, typically, the server distrusts clients, and grants each
client access rights according to the client’s identity. Moreover, the server must usually record
the client’s identity and as much information as possible on the transaction to support dispute
resolution. It is then easy to correlate such personal information for marketing purposes: the
client’s identity, usual IP address, postal address, credit card number, purchase habits, etc.
Such a model is thus necessarily privacy-intrusive.

Furthermore, the client-server model is not rich enough to cope with complex transactions
involving more than two participants. For example, an electronic commerce transaction
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requires usually the cooperation of a customer, a merchant, a credit card company, a bank, a
delivery company, etc. Each of these participants has different interests, and thus distrusts the
other participants.

Authorisation services have been introduced in locally distributed systems, mainly to facilitate
security management (Delta-4 [Blain & Deswarte 1990], HP Praesidium authorisation server,
ADAGE [Zurko et al. 1999]). In these cases, according to a security policy, the authorisation
service distributes authorisation tickets or capabilities, which are later presented as proofs that
an operation has to be granted by another server. The authorisation service usually uses an
authentication service and locally stored information to decide whether or not to authorize a
given operation to a given user.

Within the MAFTIA project, we are developing authorisation schemes that can grant fair
rights to each participant of a multiparty transaction, while distributing to each one only the
information strictly needed to execute its own task, i.e., a proof that the task has to be
executed and the parameters needed for this execution, without unnecessary information such
as participant identities. These schemes are based on two levels of protection:

• An authorisation server is in charge of granting or denying rights for high-level operations
involving several participants; if a high-level operation is authorized, the authorisation
server distributes capabilities for all the elementary operations that are needed to carry it
out.

• On each participating host, a security kernel is responsible for fine-grain authorisation, i.e.,
for controlling the access to all local resources and objects according to the capabilities
that accompany each request. To enforce hack-proofing of such security kernels on off-
the-shelf computers connected to the Internet, critical parts of the security kernel will be
implemented on a Java Card.

The implementation of an intrusion-tolerant authorisation service relies on applying error
compensation, and the “fail-controlled with local security kernel” strategy. Error
compensation is implemented through the combined use of active replication and
fragmentation-redundancy-scattering [Deswarte et al. 1991]. The authorisation service is
composed of replicated and diverse servers, operated by independent people, so that any
single fault or intrusion can be tolerated without degrading the service. Confidential
authorisation data is fragmented, replicated and scattered across the servers. In order to
reconstruct the data multiple servers must co-operate. This means that as long as only a
minority of the replicas are compromised there is no loss of confidentiality of authorisation
data. A “fail-controlled with local security kernel” strategy is used, based on threshold-
signature algorithms. Access to application resources is controlled by the local security
kernel. If the latter is compromised then the effect of the failure is localised due to the trusted
nature of the Java Card: since the Java Card is considered as tamper-proof, the corruption of
the local host gives no privilege to access remote objects, and a corrupt host cannot
impersonate another host (this would require cloning the Java Card).

For more details of the Authorisation Service, see MAFTIA deliverable D27 [Abghour et al.
2001] and a recent publication [Deswarte et al. 2001].

5.4.4 Transaction service
A transaction is a set of requests that have the ACID properties [Härder & Reuter 1983]:
atomicity, consistency, isolation and durability. Atomicity is the property that a transaction
must be all or nothing. Consistency is the property that a transaction takes the system from
one consistent state to another consistent state. Isolation is the property that the intermediate
effects of a transaction must not be visible to another transaction. Durability is the property
that the effects of a transaction are permanent.

Typical transaction service architectures are composed of clients, resource managers and
transaction managers. Clients interact with the transaction manager to establish transactions.



Conceptual Model and Architecture

63

Within the scope of a transaction, the clients operate on resources via resource managers. A
resource manager is a wrapper for resources that allows resources to participate in two-phase
commit [Gray 1978] and recovery protocols coordinated by a transaction manager, and
controls the access that clients have to resources. The transaction manager is primarily a
protocol engine. It implements the two-phase commit protocol and recovery protocol.

The MAFTIA transaction service supports multiparty transactions and provides atomicity in
the face of failure due to intrusions as well as crash failure. Multiparty transaction support
allows one client to begin a transaction and to invite other clients to join with it in the
transaction context. All clients within the transaction context can access transactional
resources in a cooperative manner using application-specific protocols while competing for
access to resources with clients who are not within the same transaction context. The
MAFTIA transaction service preserves atomicity in the face of failure due to intrusions as
well as hardware or software failure. It achieves this by applying error compensation and the
strategies: “fail-controlled with local security kernel” and “fail-controlled with a TTCB”.

Error compensation is implemented using active or “state machine” replication [Powell et al.
1988, Schneider 1990]. The transaction service is composed of replicated and diverse
resource manager and transaction manager servers. We rely upon the MAFTIA middleware’s
communication services to implement the replication. Therefore, in order for the transaction
service to tolerate intrusions, we need the communication services to be intrusion tolerant.

Two different strategies can be used to make the communication services intrusion tolerant.
The “fail-uncontrolled” strategy can be used to provide fault-tolerant atomic broadcast for
systems where Byzantine behaviour by users is possible and we cannot make timing
assumptions. The fault-tolerance provided by this strategy depends upon the use of time-free
probabilistic Byzantine protocols. The “fail-controlled with a TTCB” strategy can be used to
provide fault-tolerant atomic broadcast where a TTCB is present. The tamper-proof
construction of the local TTCB and the control channel prevents the host engaging in
Byzantine behaviour or being vulnerable to timing attacks.

We must also prevent unauthorised clients from interacting with the transaction service. The
“fail-controlled with security kernel” strategy provides authorisation for the users of the
transaction service. Capabilities for accessing resources are issued by the distributed
authorisation server, and checked by the local security kernel. In addition, since the security
kernel is tamper-proof, private keys that could be used by an adversary to gain access to
remote resources will not be revealed even if the host is compromised. For example,
compromising the transaction manager will not result in the adversary gaining control of the
resource managers.

The design of the Transaction Service is described in more detail in MAFTIA deliverable D24
[Neves & Veríssimo 2001].
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Chapter 6 Verification and Assessment

The purpose of verification and assessment in secure systems is two-fold: to uncover design
faults, i.e., human-made development faults, which are typically accidental; and to provide
positive evidence of the integrity of the system under scrutiny. On the one hand, verification
and assessment is a security method in itself, a part of vulnerability removal. On the other
hand, it can be seen as an assurance technique accompanying, and orthogonal to, many other
security methods, ensuring that they achieve their objectives. This second view corresponds to
the duality between functional and assurance requirements in security evaluation criteria, such
as [DIS 15408-1-3].

6.1 Special purpose of verification and assessment in MAFTIA
A discussion covering all aspects of assessment and verification for such general topics as
considered in MAFTIA would be completely beyond the scope of this document. We
therefore concentrate on aspects where new developments were needed for MAFTIA. We had
two main goals here:

1. To provide a rigorous formalisation of the basic concepts of MAFTIA, in particular as
presented in Chapters 2 and 3.

2 .  To develop new specification and verification techniques in areas where traditionally
separate sub fields of dependability meet and no appropriate techniques exist yet.

These aspects are described in Sections 6.2 and 6.4. In Section 6.3, we give a brief overview
of the general role of verification and assessment in dependability from a MAFTIA
perspective.

6.2 Formalisation of basic concepts of MAFTIA
Chapters 2 and 3 of this deliverable define the basic MAFTIA concepts in a rather precise
way, but entirely in natural language. In particular, there are general system terms like
“component” and “specification”, relative to which dependability-specific terms such as
“fault”, “error”, “failure”, and the various classes of security methods are defined. For use in
verification, all these “meta-definitions” must be cast into mathematically rigorous concepts.
They will thus gain in precision, but also lose in generality, because all mathematical notions
of system, components etc. are necessarily abstractions. For instance, all the rigorous models
we have used in MAFTIA are discrete, although the meta-definition that a maliciously faulty
component behaves “arbitrarily” could certainly also be expressed using a continuous system
model.

For the system terms, one might have hoped to reuse one of the many existing general system
models, so that one would only need new definitions for dependability-specific terms.
However, as the scope of MAFTIA includes cryptographic subsystems, this was not possible,
because we are not aware of any fully defined system model that includes all the necessary
aspects such as probabilism, resource limitations, and restricted adversarial scheduling of
events.

The current formalisation is mainly presented in MAFTIA deliverable D4 [Adelsbach &
Pfitzmann 2001], Chapter 2. In the following, we give a guide to it alongside the meta-
definitions of the earlier chapters of the present document; the terms from the meta-definitions
are in bold face.
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6.2.1 Behaviour and structure of a system
Formalisation of the basic concepts of MAFTIA begins with an equivalent of Section 2.2:
Atomic systems (entities, components) are formalised as probabilistic I/O automata27 called
machines. Their states are in general just a set, which could be implemented as the current
value of a tuple of variables. Atomic systems have several ports for interaction with their
environment. They can be composed into larger systems by linking their ports; concretely
this is done by a naming convention. This is the structural point of view. Some ports may
remain free in this composition, so that one may get a larger system that can again interact
with its environment. One can combine several machines into a larger machine; this gives the
recursive view of systems as components of other systems.

The most general definition of behaviour is made for such collections of atomic systems; it is
a probability distribution on possible runs, i.e., on sequences of states, inputs and outputs.
There is no specific definition of “the service” delivered by a system, but one could define it
as the I/O behaviour of the system combined into one machine, or even as a description of this
without states at all as in [Gray III 1992]. Similarly, the general model does not define the
notion of “service element” (although many concrete systems do offer them, e.g., as reactions
on different classes of inputs), because typically the reactions are interlinked via global parts
of the state, i.e., a service element cannot formally be defined in isolation.

The behaviour definition, by its nature, must include a model of time, a concept informally
discussed in Section 5.1.6. We have defined a synchronous and an asynchronous model, both
already including the fact that malicious components may want to deviate from timing
requirements.28

Specifications occur in several forms in the model. First, for atomic systems (components),
the desired state-transition function can be considered to be a specification in itself. Then any
deviation, even in the internal state, is considered to be not only an error but also a failure.
This is also the view that one takes if one regards components to be atomic from the
dependability point of view, i.e., with no internal fault-tolerance measures. Secondly, there
are different classes of specifications that leave more freedom, in particular for internal fault-
tolerance. We have formalised certain important classes, but as these are mainly a
formalisation of the concepts described in Section 3.1, we postpone further discussion of them
until Section 6.2.3.

6.2.2 Modelling faults
Due to the mathematical nature of a formalisation, we mainly model errors and failures, not
faults (“causes”); thus there is no formalisation of Section 2.3.

In principle, faults may cause a system to turn into an entirely different system. Verifying the
dependability of concrete systems, however, clearly presupposes failure assumptions as in
Section 5.1.1. In other words, we assume that informal fault forecasting has preceded the
formal modelling. The verification is only meaningful in practice if that forecasting was
correct.

The formalisation allows arbitrary failure assumptions by presenting a system as an arbitrary
set of possible machine collections. However, it also contains predefined specialisations to
several common failure assumptions. These include arbitrary or crash failures of individual
components, and passive or active tapping of lines. The components can be given a so-called
access structure, which describes the sets of components that are allowed to fail together.

                                                       
27 Note that our formulation of the I/O automata model is not the traditional one, e.g. DFA or NDFA,

but is computationally equivalent to Turing Machines.
28 The asynchronous model may allow the derivation of partially timed models as specializations by

introducing specific scheduler components, but this has not been done yet.



Conceptual Model and Architecture

67

Typical access structures are threshold structures, where any t of n components may fail. In
particular, the failure model replaces all maliciously failed components by one component ‘A’
the adversary, so called because the malicious behaviour may be co-ordinated. To allow
computationally secure systems, a runtime restriction may be made on A (this is equivalent to
implementing a controlled failure assumption, cf. Section 5.1.1). In addition, there is still a
model of an arbitrary honest user ‘H’ to whom a service is guaranteed. We also have a
predefined specialisation to dynamic failures.29

6.2.3 Specifications for dependability
As mentioned in Sections 2.1 and 3.1, dependability in general just means that a system
reliably delivers a desired service. Hence there is a priori nothing specific about
specifications for dependability — anything we may want to specify we may also want to
have delivered reliably. Thus, to a large extent, dependable fulfilment of a specification is
simply defined as follows: all sets of possible machine collections that are possible under the
failure assumption (see Section 6.2.2) fulfil a normal specification in the normal sense.

Nevertheless, there are certain dependability-specific aspects of specifications that are
important, in particular security-specific ones.

The first aspect is an inclusion of confidentiality properties. There are two approaches to this:

1. One takes a “normal” specification that describes a service unambiguously (i.e., without
remaining degrees of freedom) and extends the formal notion of fulfilment to the fact that
an adversary on the real system should not learn more than an adversary on the
specification. This is also called simulation.

2. One defines specific confidentiality properties, e.g., that an adversary cannot gain any
knowledge about certain inputs via the system.

The second aspect is fulfilment in a computational sense. This becomes necessary for almost
all systems containing cryptography, because most cryptographic systems are easily breakable
given arbitrary computational resources. In cryptography this aspect is traditionally put into
the specification, but we claim that in large-scale systems the specifications should stay
“normal”, i.e., not clogged up with such details, and the imperfections should be defined as a
specific semantics.

MAFTIA work on verification and assessment has in particular extended the first approach to
including confidentiality properties, and has also for the first time clearly defined fulfilment in
a computational sense for both simulations and individual integrity properties.

The division into availability, integrity and confidentiality occurs in the general rigorous
model, but as classes of properties rather than “attributes”: integrity properties are equivalent
to safety properties in the sense of [Alpern & Schneider 1985]; availability corresponds to
liveness properties; and confidentiality corresponds to non-interference properties.
Simulatability definitions cover all three classes.30

Readers interested in seeing how authenticity and non-repudiation can be considered as
integrity properties, as claimed in Section 3.1, are referred to the example in Chapter 4 of
MAFTIA deliverable D4 [Adelsbach & Pfitzmann 2001].

                                                       
29 Including dynamic repairs should be fairly easy if repaired components restart in a fixed state and

are brought up to date within the system. If an appropriate state must be set by hand in the repair,
this is harder to model.

30 Security attributes are interesting for specific system classes with clearly defined “data items” or
messages, to which one can attach these attributes. An attempt to use such attributes consistently in
a fairly large architecture was made in SEMPER [Asokan et al. 2000].
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6 .3  Overview of specification and verification in the MAFTIA
context

So far we have surveyed how the basic concepts of MAFTIA can be formalised, and in
particular where new work was done in MAFTIA with respect to such formalisations. Now
we give a brief general overview of where verification is useful and possible in a MAFTIA
context.

6.3.1 By security methods
Seven classes of security methods were identified in Section 3.4; here we discuss how each
relates to verification and assessment work within MAFTIA:

1. Attack prevention may be somehow formalisable with economic and social models, but
we are not considering this here.

Rigorous models in our sense could, however, support attack prevention by providing
precise foundations for risk analysis. This could be achieved by not only specifying and
verifying the really intended service, but also “services” with a certain maximum gain for
an adversary that the system keeps up under certain weaker failure assumptions, and by
trying to evaluate the investment needed for an adversary to achieve these failures.

2 .  Vulnerability prevention is the process by which one attempts to avoid introducing
vulnerabilities during design. Formal, or even semi-formal, specification can help in this
process since such specifications are less ambiguous than natural language.

3. Intrusion prevention, beyond the two previous points, has aspects of integrity properties,
e.g., the authentication and authorisation systems may be proven. Under the assumption
that vulnerabilities remain, however, one cannot derive an overall verification of the
desired service from this.

4. Intrusion tolerance is the classical area where systems are proven in all the sub-fields of
dependability, e.g., fault-tolerant protocols and cryptography. In particular, fault masking
is accessible to verification, and also classical fault diagnosis techniques. When one can
define a particular class of intrusions, then the detection of that class might be verifiable.
However, since it not feasible to specify all possible types of attacks that the system may
be subjected to, such verification cannot be generalised.

5. Vulnerability removal is the process of verification and assessment as such. The model-
checking verification technique (where applicable) is particularly useful since it provides
debugging information identifying faults. Model-checking can be utilised throughout the
development cycle of MAFTIA to provide a means of fault removal from an early stage,
in addition to a positive verification of the final product.

6. Attack forecasting. Like attack prevention, this seems to be accessible to economic and
social models rather than rigorous ones in our sense.

7. Vulnerability forecasting. This is accessible to statistical or psychological models rather
than rigorous ones, in particular the forecasting of how many vulnerabilities a system will
have and how many versions of the system in the field will not have been patched.

6.3.2 By system life-cycle
Dependability assessment of an actual system can be structured by the system life cycle, as in
the assurance part of [DIS 15408-1-3], and all phases have to be considered. Verification,
however, concentrates on the design phase. That, in its turn, may go through several phases of
successively detailed designs, which all need assessment.

Specific verification work in MAFTIA concentrates on those design phases where specific
dependability measures are implemented, typically detailed design. High-level design (e.g., an
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architecture as such) is typically not detailed enough for formalisation, whereas standard
hardware or software verification techniques for atomic components can be used to verify the
implementation of the detailed design.

6.3.3 By architectural component
An important pre-condition for all component-wise verification is that one can indeed
compose systems using only their specifications. Our formalisation of the MAFTIA basic
concepts includes the proof of such a composition theorem (see MAFTIA deliverable D4
[Adelsbach & Pfitzmann 2001], Section 2.8). Concentrating now on fault tolerance in the
detailed design, the different components of a system structured according to the MAFTIA
frameworks and architecture need different verification techniques. Currently the verification
and assessment work-package within MAFTIA employs non-automated proof and automated
proof. The automated proof takes the form of model-checking, where the models and
specifications are described in the process algebra CSP ([Hoare 1985, Roscoe 1998]), and the
model-checker FDR [Formal Systems (Europe) Ltd] is used to help reason about them.

6.3.4 By degree of formality
One can distinguish “rigorous” definitions and proofs in the sense of mathematics (where one
can mix natural language and formulas quite freely), and “formal” ones in the sense of being
restricted to a specific language with specific transformation rules.31 The benefits that come
with the restrictions of a formal system are that it enables tool-support, (at least syntax checks,
and at best automatic proofs).

The definitions of basic concepts in MAFTIA are all only rigorous, because we were not
aware of a tool that could have supported the probabilities, polynomial-time restrictions etc.
However, for non-cryptographic protocols, or given suitable abstractions of cryptography
proven in a rigorous way, it might be possible to use standard tools. Hence two main issues of
the verification work in MAFTIA were to work towards such abstractions of cryptography,
and to extend the usage of one such standard tool towards larger systems, as we now describe.

6.4 Novel verification work within MAFTIA
The novel verification work being performed within MAFTIA is pursuing two strands of
research: the formalisation of basic concepts and new protocols, and the extension of
verification techniques.

6.4.1 Abstractions from cryptography
The goal of this work is to join definition and proof techniques from cryptography with those
of a wider dependability community. A first step towards this is implicit in the general
formalisation of basic concepts in a model that allows cryptographic components to be
included. The main second step is to define actual abstract specifications of important
cryptographic components. Abstract means in particular that these specifications should no
longer be probabilistic (unless the service itself is probabilistic, e.g., for a coin flipping
protocol).

We have defined abstract specifications for two initial examples: secure point-to-point
channels, in both the synchronous and the asynchronous timing model, and certified mail. We
were indeed able to provide a specification by normal I/O automata that was not hard to
translate into the formal language of CSP, used in the work presented in Section 6.4.2, and
could easily be translated into other formalisms. The example also led to certain

                                                       
31 In the previous sections, we did not make this distinction, e.g., we said “formalize” where a

“rigorous” verbal definition would have sufficed.
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methodologies, e.g., for including tolerable imperfections into a specification. These are
specific services to the adversary that are necessary if one wants the specification to be
implementable by efficient real systems. For example, such systems allow traffic analysis
(because one does not typically want to spend bandwidth to transfer dummy traffic
continually), and thus an adversary can gain some information that honest users would not
gain. We hope that the proof techniques developed can now be applied to prove further
protocols much faster, and several other verifications are under way.

6.4.2 Model-checking large protocols
Model-checking tools can only be used directly to reason about finite state systems, and
usually only those of particularly small, unrealistic, sizes. It is expected that novel techniques
for overcoming this limitation will be required for MAFTIA. However, the model-checking of
core MAFTIA concepts has so far required a large amount of careful modelling, as opposed to
novel techniques for overcoming size limitations. Our analysis of the synchronous contract
signing protocol leads us to believe that there are novel and significant optimisations that
could be made, and would be applicable to general deterministic synchronous protocols.
Future work will see these ideas integrated with the work on joining cryptography and
automated formal analysis, described in Section 6.4.1 above. To date, verifications have been
obtained for the asynchronous and synchronous contract-signing protocols. Both protocols
have posed no problem to model-check in terms of their size, and were specified in a manner
particularly suited to formal analysis. The verification process of the synchronous contract
signing protocol was successful in identifying an imprecision that could have led to a security
flaw (see Security Method 5, Section 6.3.1 above).

Future work on the verification of MAFTIA concepts and protocols will undoubtedly require
the use of more novel approaches to model-checking, such as the use of data-independent and
inductive reasoning in constructing proofs for systems of arbitrary size. Data-Independence
[Lazic 1999, Lazic & Roscoe 1999] allows us to handle systems parameterised by types,
where we might want to establish correctness independently of the size of the types. Structural
induction using CSP and FDR [Creese & Reed 1999] facilitates proofs independent of
network size, for networks constructed from identical components. Data Independent
Induction [Creese 2001] fuses the two methods together allowing us to reason about networks
of arbitrary size and of varied topologies, constructed from components that are virtually
identical, but vary in their names and knowledge of other components of the network.

The theory of data-independence is constantly expanding to accommodate processes and
programs with wider ranges of data-structures. Most recently, results that allow the inclusion
of arrays indexed over data-independent types, and storing members of the type, have been
developed. This extension will almost certainly be applicable to MAFTIA protocols since it
will allow reasoning about nodes in networks whose states can vary with respect to each other
over time. One example of this would be the ABBA protocol where nodes can be in different
rounds of the protocol at any given time. Work on this is already under way.
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Chapter 7 Conclusion

This deliverable contains four main contributions:

•  An analysis of attacks, vulnerabilities and intrusions in terms of the basic dependability
concepts of fault, error and failure, and the identification of seven security methods for
dealing with attacks, vulnerabilities and intrusions

•  A discussion of the relationship between intrusion detection and intrusion tolerance, and
the development of an integrated intrusion detection/tolerance framework for building
intrusion tolerant systems

•  An introduction to the MAFTIA architecture and a discussion of the underlying models
and fault assumptions upon which it is based, including a description of the various
strategies that are being used to build intrusion tolerant components. Three such strategies
are identified, namely “fail-uncontrolled”, “fail-controlled with TTCB”, and “fail-
controlled with local security kernel”.

•  A brief overview of some of the issues concerning the formalisation of the MAFTIA
conceptual model, and an introduction to the methods of validation and assessment that
are being used as fault removal techniques to ensure the security of the protocols that are
used to implement the MAFTIA architecture

Other deliverables provide more detail on the MAFTIA middleware (D24), intrusion-
detection systems (D3), and the work on validation and assessment (D4). The role of this
deliverable (D2) is to describe the basic concepts of dependability and intrusion tolerance that
underpin all of the MAFTIA work. These concepts will be developed further as the project
continues to refine its ideas about architecture as a result of the experience it gains from
prototyping and validating selected components of the overall MAFTIA architecture.
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Appendix - Glossary

This glossary is provided as an aid to reading this document. It should not
be considered independently of the body of the document.

For some terms, only dictionary definitions have been given. It was felt
necessary to include these terms in the glossary, but the corresponding
definitions are particularly subject to change after further scientific
discussion.

abuse of privilege - see (privilege, abuse of ~).

access control - the prevention of use of a resource by unidentified and/or unauthorised
entities in any other than an authorised manner [ECMA TR/46]; the
determination as to whether a requested access to an information item is to be
granted or denied; see also, authorisation.

accidental - unintentional.

accountability - availability and integrity of some meta-information related to an
operation (e.g., identity of the user realising the operation, time of the operation,
etc.).

alarm (intrusion-detection ~) – a report of an error that may lead to or has led to a
security failure, optionally including diagnostic information about the cause of
the error.

activity - event or a sequence of events within a given context.

anonymisation - process that gives confidence in anonymity.

anonymity - confidentiality of the identity of a person, e.g., who has realised an
operation, or has not realised an operation.

attack - malicious interaction fault aiming to intentionally violate one or more security
properties; an intrusion attempt.

auditability - availability and integrity of some meta-information related to all
operations.

authentic - of undisputed origin, genuine [OMED 1992].

authentication - process which gives confidence in authenticity.

authenticity - integrity of some information and meta-information; integrity of the
meta-information representing the link between some information and its origin
(e.g., the meta-information relating the claimed identity of a subject to the real
identity of the subject).

authorisation - the granting of access to a security object [ECMA TR/46]; the
determination as to whether a requested operation is to be granted or denied,
according to the security policy; see also, access control.

availability - dependability with respect to the readiness for usage [Laprie 1992];
measure of correct service delivery with respect to the alternation between
correct service and incorrect service [Laprie 1992].

component (system ~) - another system, which is part of the considered system [Laprie
1992].

confidentiality - dependability with respect to the non-occurrence of unauthorised
information disclosure.
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correct service - see service (correct ~).

coverage - measure of the representativity of the situations to which a system is
submitted during its validation compared to the actual situations it will be
confronted with during its operational life [Laprie 1992].

dependability - property of a computer system such that reliance can be justifiably
placed on the service it delivers [Laprie 1995].

dependence - the state of being dependent on other support [OMED 1992]; reliance,
trust, confidence [OMED 1992].

dependent - depending, conditional or subordinate [OMED 1992].

error - part of the state of a system liable to lead to failure [Laprie 1992]. manifestation
of a fault in a system [Laprie 1992].

event - a thing that happens or takes place [OMED 1992]; a change in state.

failure - event occurring when the delivered service deviates from fulfilling the system
function, i.e., from what the system is intended for [Laprie et al. 1995]; transition
from correct service to incorrect service [Laprie 1992]; see also: security failure.

failure model - a fault model defined in terms of the failures of the components of a
system.

failure (security~) - violation of a security property of the intended security policy.

false negative - the event corresponding to the incorrect decision not to rate an activity
as being erroneous; also called a “miss”.

false positive - the event corresponding to the incorrect decision to rate an activity as
being erroneous; also called a “false alarm”.

fault - adjudged or hypothesised cause of an error [Laprie 1992]; error cause which is
intended to be avoided or tolerated [Laprie 1992]; consequence for a system of
the failure of another system which has interacted or is interacting with the
considered system [Laprie 1992].

fault forecasting - see forecasting (fault ~).

fault model - set of assumptions about the faults that are taken into account during
fault prevention, tolerance, removal or forecasting.

fault prevention - see prevention (fault ~).

fault removal - see removal (fault ~).

fault tolerance - see tolerance (fault ~).

forecasting (fault ~) - methods and techniques aimed at estimating the present number,
the future incidence, and the consequences of faults[Laprie et al. 1995].

identity - representation of a person in a system.

incorrect service - see service (incorrect ~).

insider - a human user authorised to perform some of a set of specified operations on a
set of specified objects, i.e., a user whose (current) privilege intersects the
considered domain of object-operation pairs.

insider intrusion - see intrusion (insider ~).

insurance � - a measure taken to provide for a possible contingency [OMED 1992].

integrity - dependability with respect to the non-occurrence of inadequate information
alterations [Laprie et al. 1995].
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intentional - voluntary, deliberate.

intrusion – a malicious, externally-induced fault resulting from an attack that has been
successful in exploiting a vulnerability.

intrusion (insider ~) - an abuse of privilege.

intrusion (outsider ~) - a theft of privilege.

intrusion detection: concerns the set of practices and mechanisms used towards
detecting errors that may lead to security failure, and diagnosing intrusions and
attacks.

intrusion-detection system: an implementation of the practices and mechanisms of
intrusion detection.

logic bomb – malicious logic that remains dormant in the host system till a certain time
or an event occurs, or certain conditions are met, unleashing devastating
consequences for the host system.

malicious - intending or intended to do harm [OMED 1992].

malicious logic – an internal, intentionally malicious fault; malicious logic may by a
logic bomb, a zombie, a Trojan horse, a trapdoor, a virus, a worm, an illegal
sniffer, etc.

misfeasance - the illegal or improper performance of an action in itself lawful [LMED
1976]; an intrusion through the abuse of privilege.

object - information container.

outsider - a human user not authorised to perform any of a set of specified operations
on a set of specified objects, i.e., a user whose (current) privilege does not
intersect the considered domain of object-operation pairs.

outsider intrusion - see (intrusion, outsider ~).

prevention (fault ~) - methods and techniques aimed at preventing fault occurrence or
introduction [Laprie et al. 1995].

privacy - confidentiality of personal information.

privilege - set of rights of a subject.

privilege (abuse of ~) - a misfeasance, i.e., an improper use of authorised operations.

privilege (theft of ~) - an unauthorised increase in privilege, i.e., a change in the
privilege of a user that is not permitted by the system’s security policy.

removal (fault ~) - methods and techniques aimed at reducing the presence (number,
seriousness) of faults[Laprie et al. 1995].

responsibility - the state of being responsible [OMED 1992].

responsible - obliged to account; being the cause of; accountable for.

rights - a subject has a given right on a specified object if and only if he is authorised to
perform a specified operation on that object; elements of a subject’s privilege.

security - dependability with respect to the prevention of unauthorised access and/or
handling of information [Laprie 1992]; the combination of confidentiality,
integrity and availability.

security failure – see failure (security~).
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security policy - description of 1) the security properties which are to be fulfilled by a
computing system; 2) the rules according to which the system security state can
evolve.

service - system behaviour as perceived by a system user [Laprie 1992].

service (correct ~) - service that fulfils the system function [Laprie et al. 1995].

service (incorrect ~) - service that does not fulfil the system function [Laprie et al.
1995].

sniffer - a program that monitors network traffic.

state (system ~) - a condition of being with respect to a set of circumstances [Laprie
1992].

subject - active entity in a computer system — a process is a subject, a human user is
also a subject.

system - entity having interacted, interacting or able to interact with other entities
[Laprie 1992]; set of components bound together in order to interact [Laprie
1992].

system function - that for which the system is intended [Laprie et al. 1995].

system user - see user (system ~).

theft of privilege - see (privilege, theft of ~).

tolerance (fault ~) - methods and techniques aimed at providing a correct service in
spite of faults (adapted from [Laprie et al. 1995]).

trapdoor – malicious logic that provides a means of circumventing access control
mechanisms.

Trojan horse – malicious logic performing an illegitimate action while giving the
impression of being legitimate; the illegitimate action can be the disclosure or
modification of information (attack against confidentiality or integrity) or a logic
bomb.

true negative - the event corresponding to the correct decision not to rate an activity as
being erroneous.

true positive - the event corresponding to the correct decision to rate an activity as
being erroneous.

true negative – the even t corresponding to the correct decision of an intrusion-
detection system to rate an observed activity as not being malicious.

true positive - the event corresponding to an alarm correctly generated by an intrusion-
detection system.

trust - reliance on the truth of a statement etc. without examination [OMED 1992].

trusted - adjective to describe a statement etc. on which trust has been placed.

user (system ~) - another system (physical, human) interacting with the considered
system.

virus – malicious logic that replicates itself and joins another program (system or
application) when it is executed, thereby turning into a Trojan horse; a virus can
carry a logic bomb.

vulnerability - an accidental fault, or a malicious or non-malicious intentional fault, in
the requirements, the specification, the design or the configuration of the system,
or in the way it is used, that could be exploited to create an intrusion.



Conceptual Model and Architecture

77

worm – malicious logic that replicates itself and propagates without the users being
aware of it; a worm can also carry a logic bomb.

zombie  - a logic bomb that can be triggered by an attacker in order to mount a
coordinated attack.
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