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Abstract

In this report we specify the Active Quorum System replication protocol for Byzantine
fault tolerance, which uses a set of diverse algorithms for implementing different kinds of
operations based on the semantics of the application, thus being efficient independently of the
environmental conditions. The algorithms are specified and their correctness (linearizability
and wait-freedom) are proved.

1 Introduction
In this report we show the complete algorithms and correctness proofs for implementing the AQS
Byzantine fault-tolerant (BFT) protocol. The main feature of this protocol is the fact that it defines
three classes of operations: read, write and rmw (read-modify-write) and use the weakest protocols
that are necessary to implement these operations ensuring linearizability and wait-freedom even
in face of malicious behavior. From the algorithmic point of view, AQS is build over previous
works both for read/write Byzantine quorum systems [14] and BFT state machine replication [3],
integrating these two approaches in a natural way to build a simple, elegant and efficient BFT
replication protocol.

This report is organized as follows. Section 2 presents our system model and the properties that
AQS aims to satisfy. Section 3 presents the core of this report: the AQS object specification; the
three AQS protocols (read, write and rmw) and its detailed correctness proofs. Finally, in Section
4, we discuss some interesting features of the protocol.

2 Preliminaries

2.1 System Model
We assume a fully connected networked system with n = 3 f + 1 servers in which at most f can
fail in a Byzantine way [13]. An arbitrary number of clients interact with the system, and these
clients can also be subject to Byzantine faults. We assume that the servers fail independently, i.e.,
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the probability of a server being faulty is not affected by the existence of other faulty servers on
the system. This can be implemented using several kinds of diversity [4, 19].

Since we rely on a modified version of CL-BFT [3] to execute some operations, we require
a partially synchronous system to ensure liveness: there is an unknown instant after which all
communications and computations are synchronous (have unknown time bounds) [6].

To make our algorithms simpler, we assume that all communications are made through au-
thenticated reliable FIFO channels. These channels can be implemented in practice using MACs
(Message Authentication Codes) and retransmissions over a fair link1 [15]. This assumption is
equivalent to the one used by previous BFT works [3, 1, 17, 5, 12, 21]: they assumed an unreliable
authenticated channel that cannot drop the same message forever (i.e., a fair link) and make this
channel reliable by resending messages.

To ensure secure communication, we assume there is a public-key infrastructure which pro-
vides to each process the public key of any other process of the system. The pairs of private and
public keys are used to sign and verify messages (a message m correctly signed by a server s is de-
noted by mσs). Moreover, we assume the existence of a collision-resistant hash function H. Finally,
all messages contains nonces to avoid replay attacks.

2.2 Properties of AQS
Byzantine fault-tolerant (replicated) objects implemented using AQS satisfies the following prop-
erties as long as the assumptions described in the previous section hold:

• Linearizability: the system appears to be accessed sequentially, i.e., the operations are ex-
ecuted in some order which is in accordance with its sequential specification and respects
their real-time precedence [11];

• Wait-freedom: all operations requested by correct clients complete independently of the
behavior of other (correct or incorrect) clients of the system [10].

We remark that wait-freedom is ensured in respect to client failures. If more than f servers fail,
it is not guaranteed that the system satisfies any property.

3 Active Quorum Systems
The AQS model, which is used to implement AQS objects, is an hybrid replication model in which
some operations are executed using quorum-based protocols while other use agreement-based pro-
tocols. A key feature of this model is that object operations are divided in three classes that are
implemented through different protocols:

• write: the state of the object is (over)written by the argument of the operation;

• read: the state of the object is read;

• read-modify-write (rmw): the state of the object is modified according to the operation
arguments and its current state.

1A message transmitted infinitely many times is received infinitely many times.
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Write and rmw operations are collectively called update operations. The main difference be-
tween these two types of operations is that in the first, the state of the object is updated to the value
being written (independently of the previous value) while in the second the resulting state depends
on the arguments of the operation and its previous state. For example, the operation “x← 2” is
a write while the operation “x← x + 2” is a rmw (read x, update its value by adding 2 and store
this new value in x). Notice that the modification done on the state is completely arbitrary and
dependent of the semantics of the object being implemented.

Given these three classes of operations, AQS uses quorum-based protocols to implement read
and write operations efficiently. Operations of the class rmw, on the other hand, require more ex-
pensive consensus-based protocols that are less efficient in at least two aspects: (i.) they usually
require synchrony assumptions to terminate (read and write quorum protocols can be implemented
in completely asynchronous systems), and (ii.) they usually have O(n2) message complexity in-
stead of the usual O(n) exhibited by read and write quorum protocols. This means that if the
replicated object supports only operations with read and write semantics, AQS behaves like an
atomic register protocol for f -dissemination Byzantine quorum systems [16], while if the object
supports only general rmw semantics, the system operates like CL-BFT state machine replication
algorithm.

As expected, read and write quorum protocols do not fit directly with a state machine repli-
cation algorithm, so, we had to develop some techniques to combine these two approaches in a
single replication algorithm. There are two challenges that must be addressed when these two
techniques are integrated to be used together. First, there should be some mechanism that allows
quorum-based read protocols to obtain a response when state machine replication update protocols
are being executed. The main problem here is that read protocols are developed to work con-
currently with write protocols since both are basic quorum-based abstractions [7, 16], and now
we must augment these protocols to be able to operate concurrently with agreement-based update
algorithms. Second, we must extend the state machine replication protocol used in the rmw oper-
ations to be able to execute operations even in replicas with different states, e.g., when a write is
being executed concurrently with a rmw. To cope with the first challenge, we use timestamps and
some properties of quorum systems to be sure that reads concurrent with rmws do not impair the
replicated object linearizability. The second challenge is addressed though the modification of the
CL-BFT protocol to make the primary send the current state of the object and the proposed result
of the rmw operation together with the operation ordering it proposes.

There are other interesting features of AQS when compared with other replication models.
First, AQS is not a classic state machine replication protocol [20, 3], it is a quorum protocol in
which rmw operations are ordered and executed by a primary server, as defined in the CL-BFT
protocol. The immediate consequence of this fact is that there is no need for replica determinism
as long as other replicas are able to verify the legality of the rmw result proposed by the pri-
mary2. Another consequence is that the state of a service should be partitioned on as many AQS
objects as possible. Second, AQS does not advocate any optimization for well behaved execu-
tions (failure/contention-free or synchronous): the protocols are as efficient as the semantics of
the operation allows them to be. Regarding this second point, AQS protocols do not preclude the

2In practice, this new state can be the difference between the previous and the new state or the operation to be
executed plus a set of data items (like timestamps and random numbers) that should be used for non-deterministic
operations [4].
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use of optimizations, but we do not require specific execution properties to be significantly more
efficient. In fact, the three AQS operations protocols require only two extra communication steps
(a round-trip) in non-favorable executions (e.g., presence of concurrency or faulty non-primary
servers).

Finally, a “subjective” advantage of the protocols employed by AQS is their simplicity when
compared with other efforts on the area (e.g., [5, 12]: there is no need to use complex mechanisms
to ensure safety when the optimistic assumptions do not hold and servers do not need to store
different versions of the object state to make rollbacks when needed.

3.1 AQS Object Specification
To prove the linearizability of AQS protocol we should first define what is the correctness condition
of the objects implemented by the protocol. Since we will not prove that all operations are executed
by all replicas at the same order (which directly implies linearizability) as is the case with most
state machine replication protocols, we have to define what are the ordering constraints considering
interactions between the operations that can be executed on AQS objects.

The state of an AQS object O is denoted by So = 〈v, t〉, where v is the current value of the
object and t is the timestamp associated with this value. Regarding timestamps, we assume that
each process produces timestamps from different domains. This can be easily done making each
timestamp be composed by its value concatenated with the id of the process that produced it in its
lower bits

Given an operation o performed on an object O, S(O,o) denotes the state of the object o after
operation o completes. Given S(O,o) = 〈v, t〉, we say that an operation o′ on O is subsequent to o
if S(O,o′) = 〈v′, t ′〉, with t ′ > t. We use S(O,o).t and S(O,o).v to access the timestamp and value
associated with the state S(O,o). Moreover, the base state of a rmw operation is the state on which
the rmw operation being invoked will be applied.

An AQS object O that supports atomic and non-concurrent read, write and rmw operations
should satisfy the following constraints:

1. a write w2 that executes after some write w1, writes a timestamp S(O,w2).t > S(O,w1).t;

2. a read r that executes after some write w, returns S(O,w) or the state of a subsequent opera-
tion executed before r;

3. a read r2 that executes after some read r1, reads the state read by r1 or the state of a subse-
quent operation executed before r2;

4. a rmw m2 that executes after some rmw m1, uses S(O,m1) or the state of a subsequent
operation as its base state and produces a timestamp S(O,m2).t > S(O,m1).t;

5. a read r that executes after some rmw m, returns S(O,m) or the state of a subsequent opera-
tion executed before r;

6. a rmw m that executes after some read r, will use the state read by r or the state of a subse-
quent operation executed before m as its base state;

7. a write w that executes after some rmw m, produces a timestamp S(O,w).t > S(O,m).t;
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8. a rmw m that executes after some write w, uses S(O,w) or the state written by a subsequent
operation executed before m as its base state and produces a timestamp S(O,m).t > S(O,w).t;

The first three conditions are the ones usually employed to prove atomicity of read/write reg-
isters implemented over quorum systems [14, 18]. The fourth, fifth and sixth conditions are the
ones that would be proved for a SMR system which employs the optimization to avoid ordering
read-only requests [3]. The last two are specific to AQS objects and define the relationship between
writes and rmws.

3.2 Protocols
In this section we present the AQS protocols. In order to simplify the presentation, this description
considers a single replicated object. To support multiple objects it is necessary to associate object
identifiers to each variable and message handled in the protocols.

The protocols on this section use the function succ(t,c) to calculate the timestamp that will
succeed t produced by client c. This function corresponds to the increment of t by one unit and the
appending of c id on the lowest order bits of this value.

Before we delve into the protocols, we first present the information that comprises the server
state and describe the certificates used in the protocols.

3.2.1 Server State

Each server s stores its copy of the state of the object 〈vs, ts〉 plus an update certificate Cs associated
with this state (see Section 3.2.2). Additionally, for each client c that can write on the object, each
server s stores the value and timestamp of the last write it prepared on prepareds[c] or optimizeds[c]
(if an optimized write was executed, see Section 3.2.3). Finally, each server also stores, for each
client c, the type of the next message it is expecting from this client in pendings[c].

3.2.2 Certificates

The AQS protocols use the concept of certificate [2, 3, 14] to make clients and servers justify their
actions to other clients and servers. More specifically, our protocols use two types of certificates.

An update certificate for v and t (produced by client c) is a set of n− f correctly signed mes-
sages of the form 〈PREPARED, t,H(v)〉σs from different servers, which proves that the client com-
mits to write v with the timestamp t. Alternatively, a set of n− f correctly signed messages of
the form 〈TS,H(v), t ′〉σs (t = succ(t ′,c)) from different servers can be used as an update certificate
for v and t, which we call fast update certificate. Finally, an update certificate for the pair v and
t resulting from a rmw operation on the object can be the set of COMMIT messages produced in
the last phase of the corresponding execution of the CL-BFT protocol [3]. A certificate is said to
be valid if it satisfies one of these three definitions. when a certificate C is valid for the pair 〈v, t〉,
we say that C justifies the association of v with t. It is important to mention that all messages on
the same certificate should have the same nonce to avoid replay attacks.

A completeness certificate for client c and write operation with timestamp t is a set of n− f
correctly signed messages of the form 〈ACK, t〉σs proving that client c completed this operation.
This certificate is used to bound to two the number of incomplete writes a malicious client can
execute, as described in [14].
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3.2.3 Write

To execute a write(v) operation, a client c with a completeness certificate Cc executes the following
protocol with AQS servers:

1. The client sends a message 〈GET-TS,H(v),Cc〉 to all servers and waits for valid replies
〈〈TS,H(v), ts〉σs,Cs〉 from n− f different servers. A server s only replies 〈〈TS, ts,H(v)〉σs,Cs〉
to a GET-TS message if pendings[c] = /0, there is no RMW request from this client being
processed (received but reply not sent) and Cc is a valid completeness certificate showing
that tc is the timestamp of the last write3 by client c (stored in optimizeds[c] or prepareds[c]).
After replaying, the server sets pendings[c] = PREPAREW and optimizeds[c] = succ(ts,c).

2. A TS reply is valid iff Cs is a certificate that proves that the object timestamp is ts, i.e., the
maximum timestamp found in the update certificate Cs is the successor of ts. The client waits
for n− f valid replies from different servers and verifies if the write will be optimized or not:

Optimized write. If all accessed servers replied TS messages with the same timestamp t,
these replies define a fast update certificate Cv and the client can proceed to step 3;

Normal write. If there are different timestamps among the valid replies received by the
client, it chooses the one with greater value tmax, justified by Cmax, and sends a mes-
sage 〈PREPAREW,H(v),succ(tmax,c),Cmax〉 to all servers. When a server s receives
this message, it verifies if pendings[c] = PREPAREW, succ(tmax,c) > prepareds[c] and
if the proposed timestamp is the successor of tmax for c, which should be validated by
Cmax. If any of the these conditions are not satisfied, the message is discarded, other-
wise a reply 〈PREPARED,succ(tmax,c),H(v)〉σs is sent to the client. After replaying,
the server sets pendings[c] = WRITE and prepareds[c] = succ(tmax,c). The client col-
lects valid PREPARED replies from n− f servers and uses them as an update certificate
Cv for the next step.

3. The client defines tv as succ(t,c), being t the timestamp read from n− f servers in step
1 (if an optimized write is being executed), or as the timestamp prepared in step 2 and
sends 〈WRITE, tv,v,Cv〉 to all servers. A server s accepts this message only if pendings[c] ∈
{PREPAREW,WRITE} and Cv is an update certificate for v and tv. If tv > ts, the server
changes ts, vs and Cs to tv, v and Cv, respectively, otherwise the write is ignored. In any case,
if a message is accepted, s updates pendings[c] = /0 and sends a message 〈ACK, tv〉σs to c.
The client collects n− f valid ACK replies to form the completeness certificate Cc to be used
on the next write.

Figure 1 illustrates the message pattern of the write protocol. The second phase is presented in
a gray area representing that it is not mandatory for all executions.

The first two phases of the protocol have two main purposes: reading the current timestamp
of the object and building an update certificate for a timestamp-value pair. The second phase of
the protocol is only needed if different servers reply different timestamps in the protocol’s first
phase. This can happen if there are concurrent updates being executed or if some server is faulty
and replies an old timestamp. This certificate makes the state of the object self-verifying and allow
us to use the minimal number of servers (3 f +1) even with faulty clients [16].

3If this is the first write by c the certificate can be empty.

6



s
1

2
s

3
s

4
s

c GET_TS WRITETS PREPARE PREPARED ACK−WRITE

/* If contention detected */

Figure 1: The AQS’ write protocol.

3.2.4 Read

In the read operation, besides obtaining the current state of the object, the client must ensure that
all subsequent reads that happen before some update is executed will read this same value observed
by it. This is done by writing back the read value in the servers that report to have an old value for
the object.

To execute a read(), a client c has to execute the following protocol with the servers:

1. The client sends a 〈READ〉 operation to all servers and waits for 〈READ-REPLY, ts,vs,Cs〉
replies from n− f different servers with with pairs 〈ts,vs〉 justified by Cs. When a server
receives the READ message, it sends the READ-REPLY message to the client informing its
current timestamp, value and update certificate.

2. After receiving n− f READ-REPLY messages from different servers, two situations can
arise:

• if all messages have the same 〈v, t〉 pair, the client returns v as the operation result and
finishes the protocol;

• otherwise, the tuple 〈v, t,C〉 with the highest t value is written back to the system: the
client sends a message 〈WRITE-BACK, t,v,C〉 to all servers that not reported 〈v, t,C〉.
When a server receives a writeback, it updates its object state (if its current ts is less
than the one being written) and sends an (unsigned) ACK-WB message to the client.
Let noutdated < n be the number of servers that not reported 〈v, t,C〉. The client waits for
ACK-WB messages from noutdated− f different servers to finish the operation returning
v.

Figure 2 presents the message pattern of AQS’ read protocol. Notice that write-backs are
employed in a fault-free read execution only if they are concurrent with a write or a rmw. If there
is no contending update, the read finishes in two communication steps.

3.2.5 Read-Modify-Write

The rmw protocol is build upon the CL-BFT state machine replication protocol [3]. More specifi-
cally, AQS rmw extends this protocol taking advantage of two of its features: (i.) the existence of a
primary and the capability to elect a new one in case it is faulty and (ii.) the ordering of operations,
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c READ READ−REPLY WRITE−BACK ACK−WB

/* If contention detected */

Figure 2: The AQS’ read protocol.

required for correct execution of rmw operations. Before presenting the AQS protocol in detail, let
us briefly recall how CL-BFT works.

The protocol begins with a client sending a signed request m to all servers. One of the servers,
the primary, is responsible for establishing the sequence number of of the messages sent by clients.
The primary then sends a PRE-PREPARE message to other servers (the backups) giving a sequence
number i to m. A server accepts a PRE-PREPARE message if the proposal of the primary is
good: the signature of m is valid and no other PRE-PREPARE message was accepted for sequence
number i. When a server accepts a PRE-PREPARE message, it sends a PREPARE message with
m and i to all servers. When a server receives 2 f PREPARE messages from other servers with
the same m and i, it marks m as prepared and sends a COMMIT message with m and i to all
servers. When a server receives 2 f COMMIT messages from other servers with the same m and i, it
commits m, i.e., it accepts that message m is the i-th message to be delivered. While the PREPARE
phase of the protocol ensures that there cannot be two prepared messages for the same sequence
number i (which is sufficient to order messages when the primary is correct), the COMMIT phase
ensures that a message committed with sequence number i will have this sequence number even if
the primary is faulty.

When the primary is detected to be faulty, a view change protocol is started to freeze the exe-
cution and elect a new primary. When a new primary is elected, it collects the protocol state from
2 f + 1 servers (including itself). The protocol state comprises information about accepted, pre-
pared and committed messages. This information is signed and allows the new primary to verify if
some message was already committed with some sequence number. Then, the new primary con-
tinues to order messages. For a complete description of CL-BFT protocol and its many subtleties,
we refer the reader to [3].

In order to execute a rmw operation op on the system, a client c has to send a message
〈RMW,op〉σc to the servers and wait for n− f reply messages 〈RMW-REPLY,r〉 from different
servers with the same result r.

Upon receiving the RMW message from a client c, each correct server s verifies if the client
still has pending operations to be executed, i.e., pendings[c] ∈ {PREPAREW,WRIT E} or there is
some RMW for this client still being processed (request received but reply not sent). If this is the
case, the message is discarded, otherwise the RMW operation starts.

After that, each backup server s sends a message 〈STATE,H(op), ts,vs,Cs〉σs to the current
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primary of the CL-BFT protocol. After receiving the RMW message, the primary waits for n− f
STATE messages from different servers (including itself), in which the Cs justifies the pair 〈vs, ts〉,
and stores them on a Cl set. The primary then chooses the STATE message with greater timestamp
from Cl , stores its value and timestamp on base state = 〈vmax, tmax〉 and begins the execution of the
CL-BFT protocol with the following modifications:

1. Before ordering the rmw request, the primary l executes op on the value vmax and gener-
ates the updated state vl (vmax from base state) and the reply rl for op. The execution info
〈base state,Cl,vl,rl〉 for the request op is then appended on the PRE-PREPARE message
sent by the primary.

2. Each server s only accepts a PRE-PREPARE message for op with sequence number i and
execution info 〈base state,Cl,vl,rl〉 from a primary l in the first step of the CL-BFT protocol
if:

(a) the usual conditions required for preparing m with sequence number i in CL-BFT are
meet [3];

(b) base state = 〈vmax, tmax〉 is validated by Cl , i.e., the state in which the primary applied
the rmw operation is the most recent state observed (the one with greatest timestamp)
on the first step of the rmw protocol;

(c) the outcome of op proposed by l is valid, i.e., vl and rl are possible resulting state and
reply, respectively, after executing op on vmax.

If the PRE-PREPARE message is not accepted, a new view is started to change the primary.

3. COMMIT messages must be signed in order to be used to build update certificates.

4. After committing operation op, server s generates tl = succ(tmax, l) (tmax from the base state
and l is the primary that defined the sequence number for this operation4) and, if tl > ts, the
server defines ts as tl , vs as vl and Cs as the set of n− f signed COMMIT messages just
received. After that, s returns 〈RMW-REPLY,r〉 to c.

5. When a new primary is elected (to substitute some previous primary that was unable to
order some operation op), each server s sends a message 〈STATE,H(op), ts,vs,Cs〉σs with its
current object state to the new primary (this message can be sent together with the VIEW-
CHANGE message of CL-BFT [3]). The new primary then can process op to update its
current state choosing from the received states the valid one with greater ts.

Notice that the first phase of the RMW protocol (in which the servers send their current state
to the primary) plus modification 5 described above are implicit reads executed by the primary in
order to get the most recent state to apply the rmw operation.

4This must be preserved across views.
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Optimization. One optimization that we can make in this protocol is to exploit the “expected”
common case in which there is no write concurrent with the rmw operation. In this case, the first
phase of the protocol, in which the primary collect STATE messages from other servers does not
need to happen. Instead, when the primary receive the RMW message from the client, it can send
the PRE-PREPARE message using its current state 〈vl, tl〉 as the operation base state and the update
certificate of its state as Cl . Other server s will accept the proposed current state if it is valid and
its timestamp tl ≥ ts and will continue to execute the CL-BFT protocol as usual. If the message
is not accepted by some server it will send a STATE message to the primary that, after collecting
n− f of these messages, resumes the execution using the obtained most recent state. Moreover,
s will send a message 〈UPDATE-PRIMARY〉 to other servers. When a server receives f + 1 of
these messages it send a STATE message to the primary (if it did not sent it yet) and waits for a
new PRE-PREPARE.

This optimization makes the protocol execute in one step less in the optimistic case (5 commu-
nication steps - the same number of steps of CL-BFT) and one step more when this is not the case
(7 communication steps), when compared with the version without the optimization (6 communi-
cation steps). Moreover, it avoids costly STATE messages and the use of a large Cl when write
contention does not exists. Figure 3 illustrates a fault-free execution of the rmw protocol with the
proposed optimization.

s

s

s

1

2

3

4

c

s

RMW

COMMIT

REPLY−RMW

STATE

PRE−PREPARE
seq. num + state + result

PRE−PREPARE
seq. num + state + result

/* If contention detected */

PREPARE

Figure 3: The optimized AQS’ rmw protocol.

3.3 Correctness
In this section we present the correctness proof of the AQS protocols, i.e., we prove that they
satisfy safety (linearizability) and liveness (wait-freedom).

The proofs presented in this section make use of the following terminology:

• when an operation o reads (resp. writes) a value v with timestamp t, justified by an update
certificate C, we say that o reads (resp. writes) 〈v, t,C〉, denoted by o(v, t,C).

• a rmw operation uses 〈v, t,C〉 as its base state when the primary l executes the rmw operation
on v and defines the timestamp for the new value as succ(t,s).

• we say that an operation o2 directly follows an operation o1 if and only if o1 completes before
o2 starts and no other update operation starts or completes before o2 completes.
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3.3.1 Informal Correctness Proof

To prove that the system satisfies linearizability we must show that all clients see the same sequence
of operations in the system and this sequence satisfies the constraints defined in Section 3.1. This
implies in showing two main properties of the protocols:

• (l-i.) let u1 be an update operation that writes the pair 〈v1, t1〉 and u2 be the update operation
that writes the pair 〈v2, t2〉. If there are no writes or rmws between u1 and u2, all reads (resp.
rmws) that take effect after u1 takes effect and before u2 takes effect return (resp. use as its
base state) 〈v1, t1〉;

• (l-ii.) if some read r1 returns 〈v1, t1〉, then all reads that take effect after r1 take effect and
before any update takes effect will return 〈v1, t1〉.

Condition (l-i.) holds because there is always at least one correct server in the quorum inter-
section between reads and updates (two sets of n− f servers intersect in at least f + 1 servers),
and it suffices for reading self-verifying data [16]. Condition (l-ii.) holds because after a read that
results in 〈v, t〉, there is always a set of n− 2 f correct servers that have 〈v, t〉 and at least one of
these servers will be on every possible quorum of the system. This happens due to a read finishing
only if the same value v appears on n− f servers or a write-back is used to disseminate this value
to a quorum with this size.

To prove wait-freedom we must show that the three protocols always terminate as long as
the requesting client is correct, at most f servers are faulty and, for rmw operations, the partial
synchrony assumption holds. The CL-BFT always terminates in our system model, and the mod-
ifications introduced do not change that, so rmw operations always terminate. The write protocol
always terminate because at most n− f servers responses are wait in every one of its phases. The
same holds for the read protocol.

3.3.2 Safety - Linearizability

In this section, we formally prove the linearizability of the objects implemented by AQS. Since
rmws and writes take effect exactly in the same way (when f + 1 correct servers store the new
value, timestamp and certificate of the object), Lemmas 1-2 consider updates that put the object on
a state 〈v, t,C〉.

Lemma 1 If a write w(v′, t ′,C′) by c directly follows an update u(v, t,C), then t ′ = succ(t,c).

Proof: After u completes, at least f + 1 correct servers will have 〈v, t,C〉. The first step of w will
read the justified timestamp stored on n− f = 2 f +1 servers, which intersect in at least one correct
server with the f + 1 servers that processed u. This server will reply 〈T S, ..., t〉σ on the first step
of the write and thus the timestamp for the write will be t ′ = succ(t,c), which can be certified by
2 f + 1 TS messages with t received on the first step of the write or the set of 2 f + 1 PREPARED
messages that will be sent in response to a justified PREPAREW message sent for t. Therefore, c
will be able to write 〈v′, t ′,C′〉 on the system. �

Lemma 2 If a rmw m(v′, t ′,C′) directly follows an update u(v, t,C), then m uses 〈v, t,C〉 as its base
state.
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Proof: After u completes, at least f + 1 correct servers will have 〈v, t,C〉. When m is started, all
servers will send a STATE message to l, that waits for n− f = 2 f + 1 messages from different
servers, which contains at least one correct server that processed u and will return 〈v, t,C〉. Know-
ing that the base state of m will be defined by the primary l, we have to consider two cases:

1. if l is correct, it will choose the greatest justifiable timestamp received on STATE messages,
which will be 〈v, t,C〉 and use it as the base state for m;

2. if l is faulty, it can do one of four things:

(a) select one of the received tuples, but not the one with the greatest timestamp. l will
try to send this base state together with Cl in the PRE-PREPARE message to the other
servers. However, the Cl set must contain n− f = 2 f + 1 STATE messages bounded
to the rmw operation op from the different servers, and the base state proposed by the
primary should on the one associated the greatest timestamp among these messages.
Since at least f +1 correct processes have 〈v, t,C〉 as their state, it is impossible for the
primary to build Cl without at least one STATE message containing 〈v, t,C〉. Conse-
quently, the base state proposed by the primary will not be accepted by correct servers
since it does not contain the greatest timestamp reported in Cl or Cl is not valid.

(b) l creates a new value that was not reported by other servers in STATE messages. In
this case the primary will not be able to assemble a valid Cl , and thus its PROPOSE
message will not be accepted.

(c) l sends PRE-PREPARE messages with different base states to the other servers. Some
of these messages are justifiable by Cl while some not. In this case, the CL-BFT pro-
tocol will detect that the primary is proposing the same sequence number to different
messages.

(d) the primary does not propose anything at all.

In any of these four cases the malicious primary will be suspected and another primary will
be elected. This will happen until we have a correct primary that will get a justifiable base
state following the view change (as described in modification 5 of Section 3.2.5).

�

Lemma 3 If a read r(vr, tr,Cr) directly follows an update u(v, t,C), then vr = v, tr = t and Cr = C.

Proof: After u completes, at least f +1 correct servers will have 〈v, t,C〉. If some client executes a
read r, it will send a READ message to all servers and will receive at least n− f = 2 f +1 READ-
REPLY messages from different servers. Among these servers there is at least one correct server
that processed u and replied 〈v, t,C〉, which corresponds to the last update executed on the system.
Consequently, it will be the result of the read operation. �

Lemma 4 If a read r2(v2, t2,C2) starts after a read r1(v1, t1,C1) completes and no update opera-
tion starts before the start of r1 and the completion of r2, then v2 = v1, t2 = t1 and C2 = C1.
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Proof: If r1 completes, there will be at least n− f = 2 f +1 servers reporting to have 〈v, t,C〉 as its
current value. When a client starts r2, it will send a READ message to all servers and will receive at
least n− f = 2 f +1 READ-REPLY from different servers. The intersection between two quorums
of n− f servers accessed on r1 and r2 must have at least (2 f +1)+ (2 f +1)−n = f +1 servers,
being at least one correct. This server will return 〈v, t,C〉 (read on r1), which contains the greatest
timestamp on the system, and thus will be chosen as the result of r2. �

Lemma 5 If a rmw m starts after a read r(v, t,C) completes and no update operation starts before
the start of r and the completion of m, then m uses 〈v, t,C〉 as its base value.

Proof: If r completes, there will be at least n− f = 2 f +1 servers reporting to have 〈v, t,C〉 as its
current value. It means that at least f +1 correct servers will have this value, and no other update
will take effect before m completes. This situation is equivalent to the one stated on Lemma 2, and
the proof is exactly the same. �

The next two lemmas prove that no different states can be associated with the same timestamp
on correct servers.

Lemma 6 If optimized writes are not executed, it is impossible to build two valid update certifi-
cates for writing different object values with the same timestamp.

Proof: Let w1 be the write being executed with 〈v1, t1,C1〉. Let w2 be the write being executed
with 〈v2, t2,C2〉. Since both C1 and C2 are valid certificates, they contain 2 f + 1 server messages.
This means that at least one correct server s prepared both writes for the same timestamp. Without
loss of generality, assume s approves w1 before w2. We have to show that if the two certificates are
valid it is impossible to have t1 = t2.

We first have to consider the case in which the same client c tries to execute w1 and w2. If w1
was approved before w2, s stored 〈v1, t1〉 on prepareds[c], and thus it will never sign a message for
an update certificate that is not greater than prepareds[c].t = t1. Which means that w2 will only be
approved if t2 > t1.

Now, we have to consider the case in which c1 executes u1 while w2 executes w2. In this case it
is impossible to have two timestamps with the same value simply because the timestamps produced
by a client must contain its id of on the timestamp lower bits. For any timestamp, s will only accept
a PREPAREW or WRITE message if the timestamp is produced by the message sender, otherwise
it is discarded. Which means that w2 will only be approved if t2 6= t1. �

Lemma 7 If optimized writes are not executed, for any two correct servers s1 and s2, it is impos-
sible to update the state of the object to 〈v1, t1〉 on s1 and 〈v2, t2〉 on s2, with v1 6= v2 and t1 = t2.

Proof: Let C1 and C2 be the two update certificates used to update the state of s1 and s2, re-
spectively. If C1 or C2 are not valid certificates, their update will not be accepted by s1 or s2,
respectively. Now, assume that it is indeed possible to have two incomplete operations u1 and u2
leding to the updates on s1 and s2, respectively. We will prove that it is impossible analyzing three
cases:

• u1 and u2 are writes. Lemma 6 states that it is impossible to build update certificates for the
same timestamp and different values. In consequence, at least one of the servers will not
accept the update because the certificate is invalid.
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• u1 and u2 are rmws. Two rmws will never have the same timestamp with different values
because CL-BFT ensures that all rmws will be executed one after another on correct servers.
Moreover modification 4 ensures that all these executions will have different timestamps
with the primary id on its lower bits.

• u1 is a write and u2 is a rmw (the same proof hold for the symmetric case). In this case, the
timestamps simply cannot have the same value because the “writer” of a rmw is one of the
servers (the primary), and thus t2 will have the primary id on its lower bits. t1, by the other
hand, is produced by a client, with its id on the timestamp lower bits.

In all three cases, it is impossible that two correct servers accept object updates with different
values and the same timestamp. �

Notice that the two previous lemmas only work if the optimized write is not executed.
In order to prove linearizability we have to use the concept of history of a distributed compu-

tation [10]. A history H is a sequence of invocation and response events like 〈c,req(o)〉 (start of
o) and 〈c,rep(o)〉 (completion of o), representing the request of an operation o issued by a client c
and its reply, respectively. Notice that, for any operation o invoked by c, 〈c,req(o)〉 appear before
〈c,rep(o)〉 on the system history. We say that two operations o1 and o2 are sequential if the request
event of o2 appears after the reply event of o1. Alternatively, o1 and o2 are said to be concurrent if
they interleave, i.e., the request event of o2 appears before the reply event of o1.

The original definition of linearizability can be applied only on complete histories. A history
H is complete if and only if 〈c,req(o)〉 ∈H then 〈c,rep(o)〉 6∈H . Otherwise H is said to be
incomplete. For any history H , complete(H ) denotes H without its unmatched requests.

The presence of faulty clients means that some operations will never complete, and thus we
need additional theoretical tools to deal with incomplete histories. To be able to prove lineariz-
ability in the presence of Byzantine clients, we will use the notion of Byzantine linearizability, as
defined in [8]:

Definition 1 (Byzantine Linearizability) A history H comprised of events from all correct clients
satisfies Byzantine linearizability if there exists some history Ĥ such that

1. Ĥ can be extended to some history H ′ such that complete(H ′) is equivalent to some legal
sequential history S ;

2. For each response that precedes some invocation in H , the response also precedes that
invocation in S , and

3. The subsequence of Ĥ consisting of each event from every correct client is equal to H .

For this definition to be useful, one should be able to complete any history H , which means
inserting matching replies for incomplete operations or remove incomplete operations that do not
affect H . To do that preserving the original order of faulty-client invocations that affected the
history (e.g., an incomplete write from which the written value was read by other correct clients),
we need the notion of invocation criteria [8].

An invocation criteria defines the minimal conditions that must be satisfied by the operation
protocol execution for the invocation to have any chance of effecting the system. Since reads do
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not modify the object state, it is not necessary to define an invocation criteria for them and we can
concentrate on updates. The invocation criteria for AQS writes and rmws are:

• write(v): at least one correct server must process a message 〈WRITE, tv,v,Cv〉 and send an
ACK to the client;

• rmw(op): at least one correct server received the 〈RMW,op〉σc sent by the faulty client c.

Notice that all correct client invocations satisfy the operations invocation criteria. With all these
definitions we are ready to prove the linearizability of AQS objects through the next theorem.

Theorem 1 (AQS Linearizability) An object implemented using AQS is linearizable.

Proof: To prove Byzantine linearizability we need to show that any execution history in which
correct and faulty clients communicate through the AQS object is linearizable.

For any finite history Ĥ , we first need to make it complete extending incomplete update oper-
ations that meet their invocation criteria. This is done using the following rule: the matching reply
for an incomplete write or rmw is put just before the reply of the first read (resp. rmw) that returns
(resp. use it as its base state) the written value, or in the end of the history if the update does not
affected the history. For all purposes, the timestamp associated with the (artificially) completed
update operations are the ones read (resp. used as base state) on their immediately following reads
(resp. rmws) or, if the response event is included in the end of the history, a sequentially monotonic
value greater than all complete operations on this history.

After that we have an incomplete history H ′, which can be made complete by removing all
incomplete reads and updates that do not satisfy their invocation criteria (they did not affected
the history). In consequence, we generate a complete history complete(H ′) of the AQS object
that can be proved linearizable. This proof has three main steps [11]: first, we build a sequential
history S ′ with all sequential operations of complete(H ′) preserving their original order. The
second step is to order concurrent operations according to the properties of AQS and add them to
S ′, generating the sequential history S . Then we will show that S is in accordance with the
sequential specification of an AQS object (see Section 3.1).

The first step is trivial: we just need to remove concurrent operations from complete(H ′),
generating S ′.

For the second step, we first assign an unique timestamp to each operation of S ′. This is trivial
since S ′ is sequential and all operations happen on an increasing timestamp order.

To conclude the second step, we need to insert the concurrent operations removed on step one
in S ′ following their timestamp order. Recall that Lemma 7 ensures that the same timestamp
will never be on two updates accepted by a server if optimized writes are not used. However, if
optimized writes are used, there can be at most two writes with the same timestamp accepted by
different correct servers (one of them prepared optimistically [14]), so we have to order these “tie
writes”. The ordering of operations should be done in accordance with the following rules:

1. updates (writes or rmws) with different timestamps are ordered in accordance with the times-
tamps they write on the system;

2. writes with the same timestamp (as discussed before, due to the optimized write case), are
ordered following the numerical value of the hash of the value they write;
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3. reads are put just after the update that produced the timestamp and value they read;

4. reads with the same timestamp are put in any order.

If these rules are applied and concurrent operations are inserted on S ′, we will have a sequen-
tial story S with all operations of complete(H ′).

The last step is just to show that S follows the AQS object specification as described in Section
3.1: Lemma 1 proves that S satisfies #1 and #7; Lemma 2 proves it satisfies #4 and #8; Lemma
3 proves it satisfies #2 and #5; Lemma 4 proves it satisfies #3; and Lemma 5 proves it satisfies
#6. With all conditions satisfied, we can say that the sequential history S is legal. Moreover, it is
equivalent to the non-sequential history complete(H ′), which is linearizable. As a consequence,
the AQS object is linearizable. �

3.3.3 Liveness - Wait-freedom

The following theorems state that the three operations provided by AQS satisfy wait-freedom [10],
i.e., that they always terminate in our system model (partial synchrony and at most f malicious
servers) when invoked by a correct client.

Theorem 2 (Write Wait-freedom) The write operation is wait-free.

Proof: In the three phases of the write protocol the only part that the client can block in when it
sends a message to all servers and waits for at least n− f replies from different servers that contain
valid certificates (when applicable). Since there are at least n− f correct servers on the system,
and all of them will reply a message to the client with a valid certificate (when applicable), the
algorithm does not block and every write will terminate. �

Theorem 3 (Read Wait-freedom) The read operation is wait-free.

Proof: In the two phases of the read protocol the only part that the client can block is when it sends
a message to all servers and waits for at least n− f replies from different servers (that sometimes
should contain valid certificates). Since there are at least n− f correct servers on the system and all
of them will reply a message to the client with a valid certificate (when applicable), the algorithm
does not block and every read will terminate. �

Theorem 4 (Rmw Wait-freedom) The rmw operation is wait-free.

Proof: A correct client will send an RMW message to all servers and waits for the same result on
a RMW-REPLY from n− f servers. To show that these replies will eventually be received by the
client we have first to show that the primary of CL-BFT will build a valid certificate Cl containing
n− f STATE messages from different servers.

When a server receives a RMW request it will get its state and send it to the current primary
and start a timer that will be canceled only when the rmw operation of the client is committed. We
have to consider two cases:

1. the system is synchronous enough to make this message be executed by all servers if the
primary is correct: since the primary l will wait for n− f STATE messages from different
servers with justifiable pairs v, t, and since there are n− f correct servers on the system, l
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will eventually receive these messages and choose the most recent state justified by Cl to
apply the rmw operation. We have to consider two cases:

(a) l is correct: in this case l will build a PRE-PREPARE message that will be accepted
by all correct servers. Consequently the message will be prepared, committed and
executed by all correct servers.

(b) l is faulty: in this case l can do anything and we have to show that any malicious
behavior that does not follow the protocol will be detected and a new primary would
be elected. This is exactly what was show in the case l is faulty of the proof of Lemma
2, and the same proof applies here: if the l does not follow the protocol it will be
suspected and a new primary will be elected. Since there is at most f out of n faulty
servers, eventually a correct server will be the primary, and we will resume to case 1-(a)
(above).

2. the system is not synchronous enough to make this message be executed by all servers even
if the primary is correct: in this case, for any behavior of the primary, there will be a timeout
on this view and a new primary will be elected. The modification 5 defined in Section
3.2.5 plus the mechanism employed by CL-BFT ensure that the new primary will have the
set of states and pending rmw to be used in the next view, without corrupting the rmw
ordering. Timeouts and view changes can happen an unbounded number of times, while
the system is not synchronous enough, but, given our partial synchrony assumption (Section
2.1), eventually the system become synchronous and then case 1 above can be applied for
the new primary.

�

4 Discussion
This section presents several interesting issues of the protocol.

4.1 Non-deterministic Service Replication
The AQS replication algorithm exhibits another interesting and novel property that was not ob-
served in previous BFT replication protocols: it can be used to replicate non-deterministic services.
Read and write operations do not create determinism problems (i.e., non-deterministic object state
transitions) since the first are read-only operations and the second set the resulting object state
to the value defined by the client and all replicas set the same object state. Rmw operations, on
the other hand, can lead the replicas to different states if the operation being executed triggers a
non-deterministic state transition in the service. In the AQS rmw protocol, the system state is mod-
ified by the primary and the operation sequence number and its resulting new state and reply are
transferred to other replicas. The other replicas accept this result if it corresponds to the operation
execution on the previous state or if it satisfies some validity constraints. As long as these con-
straints can be expressed in a way that it is verifiable if some state transition made by the primary
is legal, a non-deterministic service can be implemented.
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To the best of our knowledge, this is the first time that a replication algorithm exhibits this
property, being able to implement non-deterministic replicated services without requiring specific
mechanisms [4].

4.2 Load Balancing
In AQS protocols, the only application processing executed at the server side are the rmw opera-
tions executed by CL-BFT primary replica (recall that it executes the operation and disseminates
its result to other replicas that need only to verify if it is legal). If we are implementing a system
with more than one object in which updates require a significant amount of processing it is possible
to distributed this load to all replicas using different primaries for each set of objects. In this way,
with no faulty servers, the system will execute n times more operations than an usual replication
protocol when update processing costs are non-negligible.

4.3 Multi-object Operations
A multi-object operation comprises more than one single-object operations (possible on different
objects) that are initiated by the same client at the same time. Despite sending the messages
associated with all operations on the same request, there are two simple rules to deal with these
operations: (1.) if some single-object operation is a rmw, then the whole multi-object operation is
executed as a rmw; (2.) if some of the single-object operations are reads on objects that will be
used to write on on (possibly different) objects, the multi-object operation must be executed as a
rmw.

It is worth to notice that multi-object operations as defined in this section can only be done if
all involved AQS objects (1) are deployed on the same set of servers and (2) use the same primary
for processing their rmws. Condition (2) in particular makes it difficult to apply the load balancing
capabilities as described in previous section. If some of these conditions are not satisfied, multi-
object operations would only be possible if some kind of Byzantine locking [9] is used to lock the
access on the objects while the operation is being executed.
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