

Preliminary Definition of CORTEX
System Architecture

C. Brudna, V. Cahill, A. Casimiro, R. Cunningham,

J. Kaiser, R. Meier and P. Veríssimo

 DI-FCUL TR–03–17

July 2003

Departamento de Informática
Faculdade de Ciências da Universidade de Lisboa

Campo Grande, 1700 Lisboa
Portugal

Technical reports are available at http://www.di.fc.ul.pt/tech-reports. The files are
stored in PDF, with the report number as filename. Alternatively, reports are
available by post from the above address.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade de Lisboa: Repositório.UL

https://core.ac.uk/display/32330629?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Project IST-2000-26031

CO-operating Real-time senTient objects:

architecture and EXperimental evaluation

Preliminary Definition of CORTEX System

Architecture

CORTEX Deliverable D4

Version 2.0

April 4, 2002

Revisions

Rev. Date Comment
1.0 22/02/2002 Draft document for internal review
1.1 06/03/2002 Added introduction - still draft document
2.0 04/04/2002 Final document

Editor

António Casimiro, University of Lisboa

Contributors

Cristiano Brudna, University of Ulm
Vinny Cahill, Trinity College Dublin
António Casimiro, University of Lisboa
Raymond Cunningham, Trinity College Dublin
Jörg Kaiser, University of Ulm
René Meier, Trinity College Dublin
Paulo Veŕıssimo, University of Lisboa

Address

Faculdade de Ciências da Universidade de Lisboa
Bloco C5, Campo Grande
1749-016 Lisboa
Portugal

2

Contents

1 Introduction 5

2 CAN Level 7

2.1 Introduction . 7

2.1.1 General Architecture . 7

2.1.2 Achieving predictability of message transfer 9

2.1.3 Achieving order of messages 10

2.2 Preliminary definition of the network infrastructure 11

2.2.1 The CAN-Bus infrastructure and protocols 11

2.2.1.1 Dynamic configuration protocol for the assignment
of short CAN node IDs 13

2.2.1.2 Dynamic binding protocol for the assignment of
event channel short IDs 13

2.2.2 The TCP/IP infrastructure and protocols 14

2.2.2.1 The dynamic binding protocol 14

2.2.2.2 The gateway . 15

2.2.2.3 The Application Programming Interface (API) . . . 16

2.2.2.4 Target Environment 16

3 Wireless Level 17

3.1 Introduction . 17

3.2 Wireless Networks . 17

3.3 Related Work . 18

3.3.1 Contention based approaches 18

3.3.1.1 Scheduled based approach 19

3.4 MAC protocol for Ad Hoc networks 21

3.4.1 Protocol Introduction . 21

3.4.2 Protocol Basics . 22

3.4.3 Atomic Agreement . 23

3.4.4 Communication Between Cells 25

3.4.5 Slot Allocation . 25

3.4.5.1 Non-empty Cell / Mobile host powers on 26

3.4.5.2 Empty Cell / Mobile host powers on 26

3.4.5.3 Non-empty Cell / Mobile host enters cell 28

3.4.5.4 Empty Cell / Mobile host enters cell 29

3.4.6 Slot Deallocation . 29

3.4.7 Protocol Extensions . 30

3.5 Acknowledgements . 31

4 TCB Architecture and Protocols 32

4.1 Introduction . 32

4.2 The Timely Computing Base Model 32

3

4.3 TCB Services . 33

4.4 Programming Interface . 34

A CAN Messages 37

A.1 Format for normal Operation . 37

A.2 Message-Ids for the Dynamic Configuration Protocol 37

A.3 Message Ids for the Dynamic Binding Protocol 38

B Application Programming Interface (API) 39

B.1 Linux API . 39

B.2 RTLinux/C167 API . 40

4

1 Introduction

The objective of this work package is to define the system architecture of CORTEX,
focusing on the components that are necessary to implement the communication
abstractions developed in WP2. From an architectural point of view it is possible
to consider two logical scopes, with different implications in terms of the problems
to be dealt. In one hand there is a local scope, over which it makes sense to address
issues such as the CORTEX node topology, the definition of local modules to support
the required functionality, the problem of interfacing ”application” objects, and the
provision of runtime support. One the other hand, there is a global scope, where the
WAN-of-CAN structure envisaged in CORTEX is of fundamental importance, and
where there is room to address issues like wireless operation, and interconnection
and composition of CORTEX nodes.

In terms of the global scope, the basic infrastructure envisaged is composed of
a global network (WAN) that comprises substructures subsumed by the abstraction
of a Controller Area Network (CAN). This WAN-of-CAN structure is fundamental
to CORTEX for various reasons:

• it provides a good and natural abstraction of possible communication infras-
tructures to be deployed in real settings (as identified in the application sce-
narios of WP1-D1);

• it allows for a separation of concerns when dealing with Quality of Service
(QoS) issues, being possible to address stronger QoS requirements in the con-
text of the CAN abstraction, weaker QoS requirements in the context of WANs,
and being the mapping between different QoS levels addressed in the context
of gateway components, logically defined in the middle of these levels;

• it provides an hierarchical structure which may be fundamental to achieve
scalability.

In terms of the local scope, an important issue is the definition of the internal
architecture of a CORTEX node. However, at this initial stage of the project this
architecture should be generic enough to encompass all the possible functional differ-
ences relative to entities considered in the WAN-of-CAN structure (e.g., gateways,
CORTEX objects). Hence, the approach in this early stage has been to identify the
several building blocks that may be needed and the possible relations among them.
These generic building blocks address several important aspects, such as interfaces,
the services supporting interaction and cooperation, and other services related with
the provision of non-functional requirements (like services providing context aware-
ness or providing time and timeliness information). In this preliminary stage of the
project some of these basic building blocks have already been identified, resulting
from on-going work in all work packages. Figure 1 illustrates what may possibly be
the fundamental structure of a CORTEX node, which obviously will be refined and
updated during the project lifetime, and presented in forthcoming deliverables.

The present deliverable provides some preliminary results that serve both the
above directions of work: the definition of a WAN-of-CAN structure and compo-
nents, and the definition of a internal structure of CORTEX nodes.

Section 2 defines a preliminary prototype of a WAN-of-CAN structure based
on CAN-bus for the CAN level and on a TCP/IP network for the WAN level. In

5

Figure 1: Preliminary architecture of a CORTEX node.

particular, it provides preliminary protocol definitions to support the communication
abstractions defined in WP2, and addresses some important aspects related with
predictability of message transfer and ordering of messages.

Section 3 focusses on wireless infrastructures as a key technology to implement
many of the properties of applications foreseen in CORTEX. The aspects of pre-
dictable and reliable behavior, which are particularly relevant in the CORTEX
project, are dealt special attention in this section, with the description of a new
medium access protocol that specifically takes them into account.

Finally, Section 4 describes the Timely Computing Base, which can be seen as
a special architectural component serving the whole system and providing crucial
time related services. These services can be used, for instance, to define protocols
or middleware components that implement some of the abstractions defined in WP2
(deliverable WP2-D3 presents a paper where the services of the TCB are used to
develop an adaptive QoS mechanism).

6

2 CAN Level

2.1 Introduction

2.1.1 General Architecture

The WAN-of-CAN structure is the central architectural model in CORTEX. This
section defines the general architecture and gives a preliminary specification of a two-
level WAN-of CAN infrastructure. At this stage, emphasis is put on the definition
of a predictable protocol for CANs and the basic functions of a gateway.

The general architecture is to connect islands of tight control which need a pre-
dictable communication facility by a WAN with less stringent requirements. We
currently focus on a two level protocol hierarchy, a CAN-Bus (Controller Area Net-
work [13]) and a TCP/IP network, which may include wireless links. Figure 2 depicts
the general structure.

: Network Node

TCP/IP
network

GW
CAN

. . . .

GW

GW
CAN

CAN TCP/IP
network

GW
CAN

. . . .

GW

GW
CAN

CAN : GW: Gateway

Figure 2: Structure of the WAN-of-CANs

The intentions of this preliminary protocol definition are to provide a sufficient
level of detail for a prototype to be developed in the next stage of CORTEX. The
purpose of this early prototype will be:

• To provide a first infrastructure for the publisher/subscriber protocol defined
in WP2.

• To study the temporal behavior of a gateway.

• To study the conditions of message dissemination in networks with different
characteristics.

• To provide a communication facility for mobile entities.

The approach therefore is to map the general publisher/subscriber model de-
scribed in WP2-D3 on specific networks and define the protocols accordingly. This
mapping can not be done independent of the technology used in the network layer.
Although CORTEX will define appropriate abstract network layers in a later phase
of the project, at the moment we choose available lower level technology to start
with.

7

• A CAN-Bus1 for the local sensor/actuator network because of its widespread
use and its decentralized protocol.

• A TCP/IP network for the WAN because of its generality.

The system may be composed from largely differing hardware, i.e. the local
nodes may be everything from an 8-Bit microcontroller included in a simple smart
sensor to a high-end workstation, resulting in a heterogeneous environment. Hence,
heterogeneity occurs on two levels: the node level and the network level. To support
interoperability in this environment, we exploit the publisher/subscriber concept de-
fined in WP2-D1 in many ways. Firstly to hide heterogeneity of nodes, all these
nodes have the minimal requirement to support the publisher/subscriber protocol
by providing an event channel handler (ECH) which can be realized very efficiently
in terms of processing requirements and memory footprint. For the small micro-
controllers in the prototype system, we have implemented the ECH and a simple
real-time executive. As it is further described in [5] the implementation for the
workstations is based on Linux for non-real-time communication, particularly for
the communication via TCP/IP and RT-Linux for the predictable CAN communi-
cation.

Heterogeneity on the network level is masked by the gateways (GW). Hetero-
geneity here not only addresses the problem of protocol conversion, but also raises
the need to handle different timing and reliability characteristics. The gateways
thus are crucial components in this architecture in many respects to provide inter-
operability across the networks. In this early prototype architecture the focus is to
substantiate the benefits of the publisher/subscriber concept in such a collection of
heterogeneous networks and therefore, on the functions of routing messages across
the individual network boundaries and to act as a filter for CANs.

In the WAN-of-CAN structure, the networks may rely on completely different
addressing and routing concepts. The gateway not only serves as a simple store and
forward component but has to adapt two systems which rely on different models of
communication. E.g. the CAN-Bus uses a broadcast mechanism. Hence, rather than
a scheme which is based on specifying the destination of a message in an address,
the content of a message is characterized by a message identifier. All nodes in the
system receive the messages and are able to decide on the basis of the identifier
to deliver or discard it. In the TCP/IP network, messages are routed by address
and point-to-point connections are opened and maintained between communicating
nodes. Therefore the gateway has to map one model to the other rather than
just performing address forwarding or conversion. Additionally, a gateway has the
function of a filter. Filtering is a central function if CORTEX and the gateway
is a well suited architectural component which can perform this task. Because we
choose the model of connected islands of tight control, the gateway shields the local
network from external traffic. Only those messages will cross the gateway which
explicitly either are imported or exported by the local cluster.

Interoperability between networks, of course, requires an unambiguous mecha-
nism for routing a message from the source to one or more destinations across multi-

1There may be a confusion between the term CAN (Controller Area Networks) used with
a general meaning, e.g. in the WAN-of-CAN abstraction and the CAN-Bus as defined in the
standard [13]. Therefore throughout the document, we use the term CAN-Bus when we refer to
the specific standard.

8

ple heterogeneous networks. The routing is derived from the subject-based address-
ing concept defined by the interaction model in WP2-D3. The publisher/subscriber
model provides a unique identifier for the type of information carried by a mes-
sage. This UID is a valid and agreed identification of a message independent of any
particular addressing mechanism. Therefore, the UID and the dynamic binding to
a specific routing mechanism is exploited to realize network wide communication
in a WAN-of-CAN architecture.The gateway thus performs the dynamic binding of
the unique message identifier to the network specific addressing mechanism when-
ever it crosses a network boundary. Caching techniques are used to improve the
performance of this mechanism.

2.1.2 Achieving predictability of message transfer

A main objective of CORTEX is to achieve the predictability of message transfer
to enable cooperation. This is particularly important for the CANs because they
are supposed to connect smart sensors and actuators which jointly have to perform
reactive control tasks. Predictability includes a temporal and a reliability aspect.
The temporal aspect comprises the mechanisms to guarantee that messages are
delivered according to an appropriate timing specification. The reliability aspect
refers to the fault-model under which the timing guarantees can be achieved. A
further requirement for cooperation in a control system is that all jointly acting
components have a consistent view on the order of messages.

It is assumed that the system has to accommodate hard real-time, soft real-
time and non-real-time message transfer simultaneously. A completely statically
preplanned system seems to be a contradiction to the anticipated need to flexibly
adapt to dynamic changes. However, there may be safety related functions in the
system which need temporal and reliability guarantees which can not be achieved
without a certain preplanning. As an example consider the stop function of a mobile
robot. Distance sensors detecting an obstacle may transmit an emergency message.
Depending on the speed of the robot, this message has to be transmitted with a
known and guaranteed latency. The envisaged protocol relies on two principles:

1. Reserving message slots for hard real-time messages, and

2. Exploiting a dynamic priority scheme to schedule soft real-time messages.

To meet the reliability requirements, time redundancy is used, i.e. every message
is sent up to n times where n is the anticipated omission degree. Therefore, the
length of the message slot has to be adjusted accordingly. Usually, the statically
assigned message slots have a severe impact on the overall bandwidth of the network.
Moreover, because emergency situation do not occur frequently, most of these slots
are just wasted in a usual TDMA scheme. In the protocol developed here, a dynamic
priority mechanism is exploited to overcome this drawback. If a message slot is not
used by a hard real-time message, it can be used by a soft real-time or a non real-
time message. The system distinguishes three classes of messages according to their
priorities:

1. All hard real-time messages have a single fixed priority which is just the
highest possible value. Two hard real-time messages always have disjoint,

9

non-overlapping message slots and therefore never compete with another hard
real-time message for network access.

2. Soft real-time messages have priorities related to their deadlines. However,
these priorities can never reach the level of a hard real-time message. There-
fore, if a hard real-time message is scheduled in the respective time slot, a
soft-real-time message can never prevent its bus access. Because priorities
of soft real-time messages are related to their deadlines they are effectively
scheduled according to an earliest deadline first scheme (EDF).

3. Non real-time messages have a range of fixed low priorities.

The reason why hard real-time messages only need a single priority is that they
are transferred in their predefined slots and this transfer is triggered by global time.
Hence, two hard real-time messages are never transferred at the same time and, as
a consequence, never have to compete with another hard real-time message on the
Bus. Soft real-time messages can be issued at any time. Because their priority is
always lower than the one for hard real-time messages, they will never get bus access
in a reserved slot. The same applies for non real-time messages.

The dynamic priority scheme outlined above can be used for CSMA networks
including the CAN-Bus, and wireless LAN (802.11) [17].

2.1.3 Achieving order of messages

Cooperative real-time actions need consensus about which action to be performed
and when to perform the action. Consider the simple example depicted in Figure 3.
Two motors spin synchronously to move a robot. The main objective is to guarantee
synchronism of the motors. For this purpose the motor controllers B, C communicate
sending actual speed and, in case of a serious local problem an alarm message.
Additionally, the speed of the motors can be adjusted externally by defining a new
set-point. Even if the command to adjust the speed to the actual set-point may
not be considered to be a hard real-time message, it is obvious that it has to be
delivered to both motor controllers at the same time and, if multiple commands are
issued, in the same order. This firstly requires that the command actually arrives
at both nodes, a problem of reliable message transfer, and secondly, that there is a
very small relative jitter for the delivery of messages at the distinct controllers.

time. Because their priority is always lower than the one for hard real-time messages, they will
never get bus access in a reserved slot. The same applies for non real-time messages.

The dynamic priority scheme outlined above can be used for CSMA networks including the
CAN-Bus , and wireless LAN (802.11) [KLJ00].

1.3 Achieving order of messages

Cooperative real-time actions need consensus about which action to be performed and when to
perform the action. Consider the simple example depicted in Fig.2. Two motors spin
synchronously to move a robot. The main objective is to guarantee synchronism of the motors.
For this purpose the motor controllers B, C communicate sending actual speed and, in case of a
serious local problem an alarm message. Additionaly, the speed of the motors can be adjusted
externally by defining a new setpoint. Even if the command to adjust the speed to the actual
setpoint may not be considered to be a hard real-time message, it is obvious that it has to be
delivered to both motor controllers at the same time and, if multiple commands are issued, in
the same order. This firstly requires that the command actually arrives at both nodes, a problem
of reliable message transfer, and secondly, that there is a very small relative jitter for the
delivery of messages at the distinct controllers.

Fig. 2 Example of a control system

If a new set point can be defined by multiple sources, or, more general, multiple messages
which influence the motor speed are possible, it also has to be guaranteed, that the order of
messages is the same for the two motor controllers. If messages have deadlines, they can be
delivered at the deadline thus fulfilling the requirement of low jitter. However, soft real-time
messages may miss their deadlines. Even in these situations, the order of messages has to be
maintained as sketched in the example.

The mechanism provided usually is referred to as atomic totally ordered broadcast. For the
CAN-Bus the following properties have to be guaranteed by the protocol:

1. All hard real-time message are delivered in deadline order in all nodes before the deadline
 expires.
2. All soft real-time message are deliverd in the order of their deadlines. In the case of equal
 deadlines, they are deliverd synchronously in all nodes according to their Message ID.

Control:
set point

A

C B

Figure 3: Example of a control system

If a new set point can be defined by multiple sources, or, more general, multiple
messages which influence the motor speed are possible, it also has to be guaranteed,

10

that the order of messages is the same for the two motor controllers. If messages
have deadlines, they can be delivered at the deadline thus fulfilling the requirement
of low jitter. However, soft real-time messages may miss their deadlines. Even
in these situations, the order of messages has to be maintained as sketched in the
example.

The mechanism provided usually is referred to as atomic totally ordered broad-
cast. For the CAN-Bus the following properties have to be guaranteed by the pro-
tocol:

1. All hard real-time message are delivered in deadline order in all nodes before
the deadline expires.

2. All soft real-time message are delivered in the order of their deadlines. In the
case of equal deadlines, they are delivered synchronously in all nodes according
to their Message ID.

3. Non real-time messages are delivered in the order of their message ID.

The protocol is based on the reliable and timely message delivery described
above. A detailed description is provided in [16].

2.2 Preliminary definition of the network infrastructure

This section describes the mapping of the components of the publisher/subscriber
protocol like publisher, subscriber and event channels to an underlying network. In
this preliminary definition, we focus on a CAN-Bus for the more tightly coupled
”islands of control” and to TCP/IP networks for WAN communication.

The main components of the communication architecture are:

• The components of the CAN-Bus infrastructure.

• The components of the TCP/IP infrastructure.

• The gateway that allows to have event channels across network boundaries.

Figure 4 sketches the components of the architecture and includes an example
for an event channel ”weather forecast”. As described in WP2-D3, there is an ECH
(Event Channel Handler) in each node that provides all the support for local objects
and a ECB (Event Channel Broker) that provides the dynamic binding of event
channels to an underlying addressing mechanism. A gateway is a special element
that integrates ECH and ECB functions.

From the point of view of an application the communication infrastructure pro-
vides the same services for objects whether they reside on TCP/IP nodes or on a
CAN node.

2.2.1 The CAN-Bus infrastructure and protocols

The communication over the CAN-Bus is supported by the local CAN-ECH and the
CAN-ECB. To support the publisher/subscriber way of communication and exploit
the dynamic priority scheme outlined above, the 29-bit CAN-Bus identifier (CAN
2.0 B [BOSCH91]) is divided into three fields for event messages:

11

3. Non real-time messages are delivered in the order of their message ID.

The protocol is based on the reliable and timely message delivery described above. A detailed
description is provided in [Kai00].

2. Preliminary definition of the network infrastructure

This section describes the mapping of the components of the publisher/subscriber protocol like
publisher, subscriber and event channels to an underlying network. In this preliminary
definition, we focus on a CAN-Bus for the more tightly coupled "islands of control" and to
TCP/IP networks for WAN communication.

Fig. 3 Components of the Architecture

The main components of the communication architecture are:
- The components of the CAN-Bus infrastructure.
- The components of the TCP/IP infrastructure.
- The gateway that allows to have event channels across network boundaries.

Fig. 2 sketches the components of the architecture and includes an example for an event
channel "weather forecast". As described in WP2-D3, there is an ECH (Event Channel
Handler) in each node that provides all the support for local objects and a ECB (Event Channel
Broker) that provides the dynamic binding of event channels to an underlying addressing
mechanism. A gateway is a special element that integrates ECH and ECB functions.

Channel 'Weather Forecast'

Subscribers: Publishers:
IP 10.0.0.1 IP 192.168.110.253

IP 10.0.2.1IP 10.0.2.1
IP 192.168.110.253

IP ECB

Channel
'Weather Forecast'

Subscribers:
IP 10.0.0.1
IP 10.0.2.1
IP 192.168.110.253

ECH

App.
11

App.
22

App.
33

Channel 'Weather Forecast'

IP Subscribers:
IP 10.0.0.1
IP 10.0.2.1
IP 192.168.110.253

CAN Event Tag:
0x007

App.
11

App.
22

ECH

App.
11

App.
22

ECH

CAN Node

CAN Node

Node 10.0.2.1

ECH

App.
11

App.
22

Node 10.0.0.1

Node 192.168.110.253 (Gateway)

'Weather Forecast' = event tag 0x07

CAN-Bus

IP-Network

Channel 'Weather Forecast'

Subscribers: Publishers:
IP 10.0.0.1 IP 192.168.110.253

IP 10.0.2.1IP 10.0.2.1
IP 192.168.110.253

IP ECB

Channel
'Weather Forecast'

Subscribers:
IP 10.0.0.1
IP 10.0.2.1
IP 192.168.110.253

ECH

App.
11

App.
22

App.
33

Channel 'Weather Forecast'

IP Subscribers:
IP 10.0.0.1
IP 10.0.2.1
IP 192.168.110.253

CAN Event Tag:
0x007

App.
11

App.
22

ECH

App.
11

App.
22

ECH

CAN Node

CAN Node

Node 10.0.2.1

ECH

App.
11

App.
22

Node 10.0.0.1

Node 192.168.110.253 (Gateway)

'Weather Forecast' = event tag 0x07

CAN-Bus

IP-Network

ECH
+ ECB

Figure 4: Components of the Architecture

• a priority field

• a field identifying the sending node. This field is necessary to ensure uniqueness
of the CAN-Bus messages. It is referred as TxNode .

• a field which identifies the event channel. This event channel identifier is
dynamically assigned. It is referred as ”event tag”.

The detailed format of the event message is defined in the Appendix A. To
unambiguously identify event channels and network nodes, long unique identifiers
(UIDs) are assigned to them respectively. However, because the restricted message
length of the CAN-Bus, these UIDs are mapped to the short, temporary identifiers,
the event tag as indicated above. Further, rather than carry event tags in the data
part of the message, they are mapped to the CAN-Bus message IDs. This has two
major advantages:

1. The hardware of the CAN-Bus communication controller is exploited to filter
event messages.

2. To reserve the rare available space strictly for the payload of CAN messages.

To dynamically include nodes in the CAN-Bus and perform the assignment of
event tags, two protocols necessary:

1. The dynamic configuration protocol for the assignment of short CAN node
IDs.

2. The dynamic binding protocol for the assignment of event channel short IDs.

12

2.2.1.1 Dynamic configuration protocol for the assignment of short CAN
node IDs

This protocol allows to dynamically connect new nodes to the CAN-Bus network.
It is performed between a CAN-Bus node and the ECB. It solves the problem that
uniqueness of message-IDs has to be assured in a CAN-Bus network [13]. The short
CAN node ID TxNode of the sending node is used to guarantee this property. TxN-
ode is derived from the 64 Bit node UID during the configuration phase. Whenever
a new CAN node is dynamically connected and started up, a specific configuration
protocol between the node and the ECB is carried out. During the configuration
protocol, the node sends its 64-bit identifier in 8 consecutive messages. This is nec-
essary because these messages must not contain any data part which could lead to
inconsistencies on the physical CAN -Bus layer. Therefore, all information has to be
transmitted in 1-Byte packets encapsulated in the CAN-Bus message identifier (Re-
quest Short ID, RSI, see Appendix A). After receiving the last part, the CAN-ECB
transfers a 7-Bit short identifier referred as TxNode to the CAN node in a dedicated
message (Supply Short ID, SSI, see Appendix A). Once the CAN node has a short
node ID it can participate in the ordinary communication and start subscribing or
publishing to an event channel.

2.2.1.2 Dynamic binding protocol for the assignment of event channel
short IDs

This protocol performs the dynamic binding of an event channel UID to a short ID
in the CAN message ID. The 14-Bit field is refereed as an ”event tag”. The protocol
is carried out between the respective ECH and the ECB.

To subscribe to a channel an object uses the 64-bit event channel UID. The
object will send a request to the local ECH using the long UID (Request etag, see
Appendix A). The ECH has to proceed as follows:

1. The ECH has to register the new subscriber. For this purpose it maintains a list
which contains all local objects which have subscribed to some event channel.
This is necessary to notify a local object whenever an event published to that
channel is recognized on the network. The ECH therefore updates its internal
subscriber list with the new subscriber.

2. The ECH has to bind the event channel UID provided by the subscriber to a
network address. If this binding has been done before (for another subscriber)
the ECH just uses this information to detect a respective event message of the
network and notify the subscriber. If not, the ECH has first to request the
binding from the ECB. It submits the long UID to the ECB which returns a
14-bit short identifier short event tag (Supply etag, see Appendix A). This
is used by the ECH to recognize any message broadcasted to the CAN-Bus
related to the given channel.

To publish an event to an channel a similar procedure is used. The publisher,
publishes an event using the 64-bit UID. As in the case discussed above, the ECH
will:

13

1. Register the publisher. To do this, the ECH first checks its internal subscriber
list whether such an entry already exists, i.e. any other local object already
has subscribed to the same channel. If this is the case, the binding to an event
tag has already been done before. The ECH notifies all local subscribers and
broadcasts the event to the CAN-Bus.

2. If no entry in the local list exists, a new entry is created. The event channel
UID is inserted and the ECH will request an 14-bit event tag from the ECB.
Having preformed this binding, the event will be broadcasted to the network
using the assigned event tag.

During normal operation, i.e. if the binding is performed, the ECH will check
for each message on the broadcast medium, whether there are local subscribers and
notify and forward the event message to them.

2.2.2 The TCP/IP infrastructure and protocols

In the same way as in the CAN-Bus, the communication in the TCP/IP part of
the network is supported by the local ECH and the TCP/IP-ECB. The TCP/IP
protocol differs from the CAN protocol in the following points:

1. It is a point-to-point protocol.

2. Addresses identify the destination of a message rather than the content.

3. Nodes are identified by a unique IP-address.

Therefore the protocol will differ substantially from the CAN-Bus protocol. The
dynamic configuration protocol is not needed because each node has a IP address
to be able to communicate (see also Figure 4).

2.2.2.1 The dynamic binding protocol

Because of the point-to-point communication in the TCP/IP network, a broadcast
has to be transformed into a sequence of point-to-point messages. The API of the
publisher/subscriber protocol has to be kept independent from a specific network.
Therefore, the middleware has to maintain all the data structures which are neces-
sary to achieve this transparency. Hence, the ECH has to maintain a registry that
includes all subscribers of a local publisher. Whenever a publisher pushes an event
to the event channel, the ECH has to map this to a sequence of individual messages
to the destinations kept in its registry. The example in Figure 4 shows such lists for
the IP-nodes.

As in the CAN-Bus, the publisher uses the event UID to push a message to
an event channel. The local ECB handles this publication. Initially, the registry
maintained for each event channel is empty, i.e. there are no subscribers registered.
On the first time when a publisher pushes an event to the event channel, the ECH
has to contact the ECB to register the new publisher. The ECB also maintains
a registry where all available event channels are represented. Every entry in the
registry maintains the assignments of an event channel to the (possibly multiple)
publishers and the subscribers. The ECB first checks whether the event channel

14

to which a new publisher will send the event is already registered. If so, the ECB
forwards the list of subscribers to the ECB which requested registration. If not, the
ECB dynamically creates an entry in the registry assigned to the new event channel
UID.

During a subscription operation an object provides the desired event channel
UID and the local ECH adds the object in registry entry for that channel. After
that, the ECH sends a message to the ECB requesting the subscription to this event
channel. The ECB performs the assignment by the following steps:

1. The ECB includes the address of the requesting node in the registry entry for
that event channel. This entry contains all known publishers and subscribers
of the event channel.

2. The ECB sends the updated list of subscribers to all the publishers registered
for this event channel.

In this way the UID of an event channel is dynamically bound to a list of pub-
lishers and subscribers. During normal operation, the ECB is not involved because
the ECH can use the local registry to address all subscribers of a local event channel
directly.

2.2.2.2 The gateway

In order to allow the use both of CAN-Bus and TCP/IP networks the concept of
a gateway must be introduced to the communication architecture. The gateway’s
role is to provide means so that all applications running in every node will be able
to receive event messages published on any network. An application running in a
CAN node should be able to subscribe and receive events published on the TCP/IP
network and vice versa. This capability must be provided by the communication
architecture transparently for the application. The gateway has to support two
directions of event flow:

1. TCP/IP-to-CAN-Bus and

2. CAN-Bus-to-TCP/IP.

The gateway behaves exactly like an ECH to the CAN-Bus and the TCP/IP
network. In the direction TCP/IP-to-CAN-Bus, the gateway maintains a list of all
event channels serviced by publishers in the TCP/IP network for which there are
subscriptions from objects residing in the CAN system. The gateway hence appears
like an ordinary ECH in all registries of the respective event channels.

For event flows from CAN-Bus to the TCP/IP network, the gateway maintains
an ECH registry for each event channel serviced by a publisher on the CAN-Bus.
Thus, all publishers on the CAN-Bus appear as local publishers in an ordinary
node. Whenever an event message occurs on the CAN-Bus, the gateway behaves as
an ECH with respect to the TCP/IP network.

15

2.2.2.3 The Application Programming Interface (API)

An API composed by a set of functions and structures is provided for applications.
The abstract API for the publisher/subscriber only comprises the publish and the
subscribe method. However, because we intend to build a first prototype of the
protocol in the next stage of CORTEX, we defined a more detailed mapping of
the publisher/subscriber protocol which considers a specific system environment.
Appendix B presents details of the API.

2.2.2.4 Target Environment

The target environment is assumed to be composed by a set of heterogeneous hard-
ware platforms running different versions of the publisher/subscriber protocol as
described above.

1. TCP/IP-to-CAN-Bus and
2. CAN-Bus-to-TCP/IP.

The gateway behaves exactly like an ECH to the CAN-Bus and the TCP/IP network. In the
direction TCP/IP-to-CAN-Bus, the gateway maintains a list of all event channels serviced by
publishers in the TCP/IP network for which there are subscriptions from objects residing in the
CAN system. The gateway hence appears like an ordinary ECH in all registries of the
respective event channels.

For event flows from CAN-Bus to the TCP/IP network, the gateway maintains an ECH registry
for each event channel serviced by a publisher on the CAN-Bus. Thus, all publishers on the
CAN-Bus appear as local publishers in an ordinary node. Whenever an event message occurs
on the CAN-Bus, the gateway behaves as an ECH with respect to the TCP/IP network.

2.2.3 The Application Programming Interface (API)

An API composed by a set of functions and structures is provided for applications. The abstract
API for the publisher/subscriber only comprises the publish and the subscribe method.
However, because we intend to built a first prototype of the protocol in the next stage of
CORTEX, we defined a more detailed mapping of the publisher/subscriber protocol which
considers a specific system environment. Appendix B presents details of the API.

2.2.4 Target Environment

The target environment is assumed to be composed by a set of heterogeneous hardware
platforms running different versions of the publisher/subscriber protocol as describes above.

Fig. 4 The target environment

The intention behind this is a scenario where mobile robots or similar automotive components
which internally use wired Ethernet and/or CAN-Bus networks are interoperating using

PC

C167

PCPC

C167 C167

CAN-Bus

Ethernet

wireless
communication

autonomous system

autonomous system

autonomous system

PDA/
wearable
device

PDA/
wearable
device

PC

C167

PCPC

C167 C167

CAN-Bus

Ethernet

wireless
communication

autonomous system

autonomous system

autonomous system

PDA/
wearable
device

PDA/
wearable
device

Figure 5: The target environment

The intention behind this is a scenario where mobile robots or similar automo-
tive components which internally use wired Ethernet and/or CAN-Bus networks are
interoperating using wireless communication. Additionally, there may be wearable
devices and PDAs (Personal Digital Assistants) integrated in the scenario. At the
moment, the technology we consider consists of PC-hardware with Linux/RT-Linux,
microcontroller boards equipped with Infineon C167 controllers and Compaq iPaq
PDAs with wireless Ethernet (802.11). A view of this environment is shown on
the Figure 5. Because there are implementations planned for three different sys-
tems, the API has two slightly different forms: one for Linux/Unix and another for
RTLinux/C167.

16

3 Wireless Level

3.1 Introduction

The widespread deployment and use of wireless data communications is generally
recognised as being the next major advance in the information technology industry.
In the long term, wireless data networks will represent a key enabling technology in
the emergence of a new class of mission-critical computer systems as described in
[1]. From a wireless communications perspective, key properties of these applications
will be:

1. Mobility

2. Autonomy

3. Large scale

4. Time and Safety criticality

5. Geographical dispersion

In the next section, we introduce existing wireless networking technology in terms
of these key properties. In the following section we cover existing research with
particular reference to ad hoc networks and discuss how this research has yet to
address the time and safety criticality properties mentioned above. In section 3.4,
we describe a new medium access protocol for ad hoc networks that addresses these
time and safety criticality properties that will be evaluated as part of the CORTEX
project. This evaluation will also consider how this new protocol supports other key
properties such as large scale, geographical dispersion and mobility.

3.2 Wireless Networks

Wireless networking technology can be considered under two distinct headings:

1. Infrastructure networks

2. Ad Hoc networks

This breakdown into two distinct areas depends on the level of independence afforded
to the mobile hosts in the network.

In an Infrastructure network, mobile hosts can communicate with mobile hosts
inside or outside their local area by first communicating with a fixed base station.
The base stations are connected to each other by some backbone network. Base
stations route packets, which are destined for other mobile hosts, to the correct base
station that then forwards the message to the destination mobile host. Well known
examples of this type of network include existing GSM networks [21], 3G networks
[11] and the Point Coordination Function (PCF) of 802.11 [14].

Each of these infrastructure networks have a number of problems with regard to
the key properties mentioned in the introductory section. For example in terms of
scale and time criticality, both GSM and 3G networks have limited bandwidth com-
pared to existing wired networking technologies and large latency since they require

17

two mobile hosts in the same area to communicate through a fixed base station.
Also in terms of scale, the PCF of 802.11 has been shown to perform badly [27].
Finally in terms of autonomy, a mobile host in an infrastructure network is required
to be within communication range of a base station to be able to communicate with
other mobile hosts.

What differentiates an ad hoc network from and infrastructure network is that
there are no fixed base stations with which a mobile host communicates. Each host
in the network is capable of moving. Obviously, as there are no base stations, mobile
hosts are more independent and the onus is on the mobile host to discover other
mobile hosts in the network and to cooperate with these mobile hosts to enable the
delivery of messages in the network.

In terms of increasing scale and geographical dispersion, the workload on the
mobile hosts in an ad hoc network increases correspondingly. In addition, mobile
hosts in the ad hoc network need to reach consensus on the transmission of timely
and safety critical messages to prevent the well known hidden terminal problem [25]
where one mobile host corrupts the messages of another mobile host.

3.3 Related Work

In this section, we review some of the existing techniques used to control medium
access in wireless ad hoc networks. Typically, there are two main approaches used
to access the wireless medium in an ad hoc network:

1. Contention

2. Scheduled access

These two techniques will be covered with particular emphasis on their safety and
timeliness properties.

3.3.1 Contention based approaches

In these approaches, mobile hosts contend with each other for access to the wireless
medium. In MACA [18] sensing of the wireless medium before transmitting is not
done. Each mobile host transmits a “Request To Send” (RTS) control packet causing
mobile hosts that receive this packet to defer. The destination of the RTS packet
replies with a “Clear To Send” (CTS) control packet. On receiving the CTS packet,
the successful mobile host then sends its data packet.

There is a possibility of collisions of the RTS packets using MACA. If a mobile
host does not receive the CTS packet correctly then it executes a binary exponential
back-off algorithm.

MACAW [3] builds on MACA by introducing a Data-Sending (DS) packet to
indicate to mobile hosts that the RTS/CTS packet exchange was successful. In ad-
dition, MACAW changes the back-off algorithm to include the current value of the
back-off counter in the packet header field. Both 802.11 and FAMA-NTR [12] also
build on top of MACA with each mobile host using carrier sensing before transmit-
ting.

In each of these schemes, a mobile host does not have access to the wireless
medium in a timely manner. In both MACA and MACAW, RTS control packets can

18

easily be corrupted due to two or more mobile hosts transmitting at approximately
the same time. The possibility of this occurring in 802.11 is reduced (but not
eliminated) by each mobile host waiting a random number of DIFS periods and
sensing the wireless medium for other transmissions before transmitting.

In contrast to the above schemes, Sobrinho and Krishnakumar [24] use a black
burst contention period to determine whether a mobile host gains access to the
wireless medium or not. The mobile host sends a burst of energy of a known duration
which is proportional to the amount of time that the mobile host has been waiting
to access the medium. After transmitting the burst, the mobile host listens for other
mobile hosts transmitting a longer burst. If there is a longer burst, then the mobile
host defers its transmission. Otherwise the mobile host transmits its packet.

Markowski and Sethi [20] use a Contention Resolution algorithm (CRA) to sup-
port the co-existence of hard, soft and non real-time data. A mobile host transmits
its packet (of a fixed size) and then listens for feedback information from other mo-
bile hosts as to whether a collision has occurred or not. If a collision has occurred,
then the CRA is executed. The CRA at each mobile host uses a window of size n
(where n is the known number of hosts participating in the protocol) and divides
this into an active part and an inactive part. A mobile host in the active window
transmits while those in the inactive window defer. If another collision occurs, then
the hosts in the active window are split again into an active and an inactive part.
This continues until a mobile host can successfully transmit.

The main disadvantage of the Sobrinho and Krishnakumar and the
Markowski and Sethi medium access schemes is that they assume that participating
mobile hosts are all within communication range of each other. Therefore, neither
of these protocols deal with the hidden terminal problem.

3.3.1.1 Scheduled based approach

In this approach, mobile hosts negotiate a set of slots for individual mobile hosts,
to transmit in, so that these transmissions are as free of collisions as possible. Once
a mobile host has a slot allocated to it, it then has access to the medium in a
timely fashion. However, this may not prevent another mobile host from also trans-
mitting in this slot and therefore corrupting the mobile hosts transmission. These
schedule-based approaches can be broken into two categories: topology-dependent
and topology transparent scheduling.

Topology-dependent scheduling assigns time slots to mobile hosts (or links be-
tween mobile hosts) within a two-hop neighborhood. As the topology changes, the
time slots are reassigned in a distributed manner by the mobile hosts.

One approach, from Cidon and Sidi [9], uses a dedicated set of slots as a control
segment to resolve conflicts and broadcast channel reservations. The number of
dedicated slots used is proportional to the number of nodes in the network. Therefore
as the number of mobile hosts in the network increases, the number of dedicated
slots also increases.

Another topology-dependent approach, from Bao and Garcia-Luna-Aceves [19],
uses identifiers for one-hop and two-hop neighbors to decide whether or not a mobile
host (or a link between two mobile hosts) can use the current time slot. In addition
to using one-hop and two-hop neighbor information, each mobile host uses a pseudo-
random number generator (each mobile host using the same initial seed) to determine

19

which mobile hosts (or links) can be active in the current time slot.

From a timeliness point of view, whether or not a mobile host gains access to
the time slot to transmit their packet depends on the current state of the pseudo-
random number generator and the mobile hosts local two-hop topology information.
Therefore a mobile host is unable to know when it will gain access to the wireless
medium again. In addition, collisions can still occur using this approach when a
mobile host does not have complete knowledge of the local one-hop and two-hop
topology information, e.g. when network partitions begin to heal/merge.

In contrast to topology-dependent approaches, topology-transparent approaches,
proposed by Chlamtac and Farago [8], and Ju and Li [15], allocate a collection of
slots to a mobile host to use. The underlying idea of these approaches is that if a
mobile host transmits in each of its allocated time slots then any neighbor of this
mobile host will receive correctly at least one transmission from the mobile host.
This is made possible by each mobile host using a unique code that determines
which time slots a mobile host will use. However, one of the main limitations of the
above two approaches is that the maximum number of neighbors of any mobile host
is known and bounded. Another problem is that a transmitting mobile host does not
know in which slot a particular neighbor can correctly receive their transmissions.
Therefore, the mobile host must use all the slots allocated to it to ensure that at
least one message is received correctly.

Another topology transparent protocol by Amouris [2] uses the position of a
mobile host to determine in which slot that mobile host transmits in. In this work,
space is divided into virtual geographic cells called space slots in a similar way to
existing cellular networking techniques. A time slot is allocated to a space slot and
due to spatial reuse, this time slot can be reused in space slots sufficiently far away.
If there is more than one mobile host in a space slot, then the allocated time slot is
used by the mobile hosts in a round-robin fashion by each mobile host maintaining
a sorted list of the mobile hosts in the space slot.

As a mobile host moves from one space slot to another, it broadcasts a packet
to inform mobile hosts in the new space slot and those in the old space slot of its
arrival/departure. Another mobile host, in the new space slot, replies to this packet
by transmitting a packet including the sorted list of mobile hosts located in the new
space slot.

There are a number of problems with this protocol in terms of a mobile host
having predictable access to the wireless medium. Firstly, the author of the paper
does not specify how a mobile host that powers on in a space slot obtains a slot. A
similar problem arises when two mobile hosts enter an empty cell or power on in an
empty cell at the same time. These problems could easily be solved by allocating a
number of time slots to allow mobile hosts to indicate their presence in the cell.

Another problem is that the sorted list of mobile hosts is replicated by each
mobile host in the space slot (cell). Therefore, updates to this replicated data struc-
ture need to be carried out in a consistent manner, otherwise there is a possibility
of the sorted list becoming inconsistent across mobile hosts eventually resulting in
collisions in the assigned time slot. Finally, the total bandwidth is divided by the
number of space slots in a virtual (space) frame. Thus if there are a large number
of mobile hosts in a space slot and a smaller number of mobile hosts in each of the
neighboring space slots then the larger number of mobile hosts are still limited to
the one assigned slot.

20

3.4 MAC protocol for Ad Hoc networks

This section describes a new Medium Access Control (MAC) Protocol for Ad Hoc
networks, called the TBMAC (for Time-Bounded Medium Access Control) protocol,
which provides mobile hosts with predictable access to the wireless medium. This
new protocol exploits geographical information to allow mobile hosts predictable
access to the wireless medium.

3.4.1 Protocol Introduction

To provide each mobile host with predictable medium access, the TBMAC needs
(i) to reduce as much as possible the possibility of the transmissions of two or more
mobile hosts from colliding and (ii) to detect collisions when they occur and to take
some action to prevent these collisions from recurring.

To reduce as much as possible the possibility of the transmissions colliding, the
geographical area occupied by the mobile hosts is statically divided into a number of
geographical cells. The cells can have arbitrary shape and size but for simplicity, let
us assume that the cells are hexagons of equal size as illustrated in Figure 6. Each
cell is numbered and each numbered cell is allocated a distinct CDMA spreading
code (or radio frequency) to use. This allocation of codes to cells occurs statically
and is done to allow channel re-use in a similar fashion to existing cellular networking
techniques [22].

6

1

2

3

4

5

0

2

4

3

5

4

0

6

3

1

2

6

1

5

0

Figure 6: Possible Cell configuration

The motivation behind dividing the area of coverage into a collection of cells is
to reduce the possibility of the hidden terminal problem [25]. In order to achieve
this, the width of a cell is related to the transmission range of the wireless tech-
nology being used. By relating these, the probability of one mobile host hearing
the transmission of another mobile host in the cell is increased thus reducing the
possibility of the second mobile host in the cell beginning a transmission while the
first mobile host’s transmission is in progress.

The division into cells does not completely solve (i) and (ii) above. Collisions
can still occur as two hosts could transmit simultaneously thus corrupting each
other’s packets at a receiving mobile host. When collisions do occur, we have not
yet presented any mechanism to detect these collisions and to then prevent them
from recurring (see section 3.4.1).

To further reduce the possibility of collisions, access to the medium within a cell
is divided into two time periods:

21

1. Contention Free Period (CFP)

2. Contention Period (CP)

The division into a CFP and a CP is similar to the Point Coordination Function in
the 802.11 standard [14] with the exception that the TBMAC CFP does not rely
on one particular mobile host to act as an access point. Instead of using an access
point, the TBMAC allows distributed agreement to be reached by the mobile hosts
in a cell. Further details on how this agreement is achieved can be found in section
3.4.1

Both the CFP and the CP are divided into slots and each period lasts a well-
known period of time. Once a mobile host has been allocated a slot in the CFP, it
has predictable access to the wireless medium. The mobile host can then transmit
data in its slot until it leaves the cell or fails. When a slot in the CFP is allocated
to one mobile host in the cell, a mobile host sends a Null message in its slot even if
it does not have a message to send.

Mobile hosts, that do not have CFP slots allocated to them, contend with each
other to request CFP slots to be allocated to them in the CP. The CP is used by
mobile hosts that have arrived into the cell or that have recently powered on in the
cell. The steps required for a mobile host to be allocated a slot are covered in section
3.4.5.

Dividing access to the medium into two well-known time periods requires the
clocks of all the mobile hosts in the network to be synchronised. Again equipping
each mobile host with a GPS receiver would satisfy this clock synchronisation re-
quirement. If GPS does not provide sufficient synchronisation precision, then a clock
synchronisation protocol could be executed to synchronize the clocks of mobile hosts
[23]. Periodically, in each cell at approximately the same time (based on the clock
synchronisation precision), the CFP begins followed by the CP.

The rest of this section describes how the TBMAC protocol operates and is
broken into the following parts:

1. Protocol Basics

2. Atomic Agreement

3. Communication Between Cells

4. Slot Allocation

5. Slot Deallocation

6. Protocol extensions

3.4.2 Protocol Basics

When a mobile host enters a cell and requires a slot in the CFP to be allocated to it,
the mobile host first needs to learn whether there are other mobile hosts already in
the cell with CFP slots allocated to them and what CFP slots have been allocated.
For the moment, let’s ignore the case where there are no mobile hosts in the cell
with CFP slots allocated to them. This case will be covered in detail in section
3.4.5.

22

The newly arrived mobile host listens for one full CFP to pass before requesting
a slot in the following CP. As part of each CFP slot message header (see Figure 7),
there is an Allocated Slot Bitmap field. The Allocated Slot Bitmap field indicates
the number of slots allocated in the cell. By receiving at least one message in the
CFP correctly, the listening mobile host obtains the number of slots allocated and
the position of these allocated slots in the CFP.

In addition to the Allocated Slot Bitmap field, a CFP message header also con-
tains the Current Slot field which holds the value of the current slot being occupied
and the type of the message being transmitted. In addition to these fields, the
header contains an Extensions field (see section 3.4.7) and an Additional Info field.
The Additional Info field is used for extra information depending on the type of the
message being transmitted.

The Message Type field is used to indicate the type of message being transmitted.
The different possible types of messages are:

1. Data

2. Acknowledgment

3. Null

4. Rebroadcast

5. Slot Allocation Request

6. Slot Deallocation Request

7. Inter-cell Communication Request

The need for the first two message types is relatively obvious. The Null message
type was introduced in section 3.1. The remaining four message types are control
messages.

How these control messages are used will be covered in the next sections. Briefly,
the Rebroadcast message is used to achieve atomic agreement (see section 3.4.3),
the Slot Allocation and Deallocation Request messages are used by mobile hosts
to allocate and deallocate CFP slots (section 3.4.5 and 3.4.6). Finally, an Inter-cell
Communication Request message is used when a mobile host wishes to communicate
across its current cell boundary with a neighboring cell.

Bitmap
Allocated Slot

Address
Destination
Address

Source
Type

Message

Extensions
Protocol A

Number

Current Slot

Figure 7: Frame Format Header

3.4.3 Atomic Agreement

To perform various actions within a cell, mobile hosts need to reach agreement with
the other mobile hosts within the cell. In the PCF of 802.11, this agreement is

23

enforced by the Access Point that coordinates access to the wireless medium by
polling mobile hosts for data to send. In the Ad Hoc environment that we are
considering, we cannot assume there is an Access Point present in the area covered
by the geographical cell.

One option would be to elect an Access Point from the mobile hosts present in
the cell. This option has a number of problems. The mobile hosts have to reach a
distributed agreement on which mobile host is to become the access point. Mobile
hosts would also have to monitor the access point for failure and to reach agreement
that the failure has occurred. This option has simply moved the problem of reaching
distributed agreement to distributed leadership election and failure detection.

The second option would be to provide a total ordering protocol between the
mobile hosts within a cell. Messages sent by a number of mobile hosts using a
total ordering protocol are delivered by each mobile host in the same order [4].
Therefore, two messages, allocating slots for example, are seen in the same order by
every mobile host in the cell. This is our preferred option as it distributes the task
of slot allocation to the mobile hosts within a cell that have CFP slots allocated to
them (note that we are ignoring the problem of reaching agreement between two or
more mobile hosts that do not have slots allocated to them until section 3.4.5).

The approach we use to provide a total ordering protocol within a cell is to
use the Synchronous Atomic Broadcast protocol from Flaviu Cristian [10]. Typical
uses of the synchronous atomic broadcast protocol within a cell are to allocate and
de-allocate slots in the CFP and for requests to communicate across cell boundaries.

To explain how the Synchronous Atomic Broadcast protocol works, consider a
mobile host with a CFP slot that wishes another CFP slot to be allocated to it. Be-
fore the mobile host sends a Slot Allocation Request message using the Synchronous
Atomic Broadcast protocol, it inserts a sequence number and a timestamp into the
Additional info field of the message header. The mobile host then broadcasts the
message a number of times using its existing CFP slot(s).

Since a mobile host with a CFP slot has predictable access to the medium,
other mobile hosts in the cell will hear this transmission. When another mobile
host with a CFP slot receives this message, if the mobile host has not processed the
message before, based on the sequence number, then it stores the message and then
rebroadcasts the message until the delivery time of the message arrives.

The delivery time of the message is equal to the original timestamp of the
message plus the delay to delivery, ∆, which is a parameter of the Synchronous
Atomic Broadcast protocol. For example, the ∆ for the TBMAC protocol would
typically be 2 * (CFPs + CPs). When the delivery time of the message arrives, all
the mobile hosts in the cell then update their information consistently and allocate
the mobile host a new slot.

The reason for sending a message a number of times (and other mobile hosts
rebroadcasting the message) is to increase the probability of all the mobile hosts in
the cell receiving this message.

On first reading of the above description, it would appear that if a mobile host
wishes to reach agreement with the other mobile hosts in a cell then it needs to
retransmit the same message a number of times in it’s slot. However, since the
information specific to a Synchronous Atomic Broadcast is relatively small, this
information could easily be piggybacked on new data packets being transmitted.

24

3.4.4 Communication Between Cells

To allow inter-cell communication, a number of slots of the CFP are preallocated
specifically for this task.

inter−cell communication
Slots allocated for

intra−cell communication
Slots allocated for

0 1 11 12
.

Figure 8: Slots for inter-cell communication

Since the area occupied by the mobile hosts has been divided up into geograph-
ical cells and each cell has been allocated a particular radio channel to use. There
is an obvious problem of how a mobile host communicates with other mobile hosts
in neighboring cells. A simple solution to this problem is to statically allocate two
CFP slots of a particular cell for communication with mobile hosts in a neighboring
cell.

One slot is used for communication across the cell boundary in one direction
using the destination cells radio channel and the other slot is used for communication
in the other direction. Referring to Figure 6 and Figure 8, the CFP of a cell would
have 14 (or some multiple of 14 to allow more than one mobile host to communicate
across cells during the CFP) of its slots pre-allocated for inter-cell communication.

When a mobile host wishes to communicate across cells, it atomically broadcasts
a “Communication Between Cells” Request message to the other mobile hosts in the
cell. Within this message, the sending mobile host includes the inter-cell slot (or
slots) that it wishes to use. After the delivery of this message arrives, the mobile
host sends its message in the inter-cell slot allocated to it.

3.4.5 Slot Allocation

There are two possible reasons why a mobile host in a cell may not have a CFP slot
allocated to it. The mobile host could could have switched on after an idle period
or the mobile host could be entering the cell from another cell. In each of these
scenarios, there are two different possibilities. Firstly, there can be other mobile
hosts already in the cell that have been previously allocated slots or there can be
no mobile hosts in the cell. In total, we need to consider four possibilities:

1. Non-empty Cell / Mobile host powers on

2. Empty Cell / Mobile host powers on

3. Non-empty Cell / Mobile host enters cell

4. Empty Cell / Mobile host enters cell

25

3.4.5.1 Non-empty Cell / Mobile host powers on

Firstly consider a mobile host that powers on after an idle period in a cell with other
mobile hosts that have slots in the CFP already allocated to them. When a mobile
host powers on for the first time, it waits for one full CFP to pass before continuing.
By listening to one full CFP, the mobile host can build up a picture of the mobile
hosts already allocated slots in the cell. A mobile host only needs to receive one
message correctly in the CFP to know the number of slots that have been allocated.
The newly powered on mobile host then requests a slot to be allocated to it. It
requests this slot by sending a message in the CP.

Recall from the Introduction that the CP, like the CFP, is divided into a number
of slots of equal duration. A simple approach would be for a mobile host to request
a slot by choosing a random slot in the CP and broadcasting to every mobile host
requesting a slot to be allocated to it. Mobile hosts with slots allocated, that
correctly receive this request, then atomically broadcast this request during the
next 2 CFPs. After the delivery of this atomic broadcast message, the mobile host
can then access its allocated slot in the following CFP.

With this approach, there is a possibility of two or more hosts powering on
within a cell at approximately the same time and choosing the same slot in the CP
in which to broadcast and thus corrupting each other’s packets. Therefore, there is a
non-deterministic aspect to the above approach. It is desirable from a predictability
point of view to reduce this non-determinism as much as possible. One way to
detect these collisions would be to increase the size of each slot in the CP to include
a MAC level acknowledgment, similar to acknowledgments of unicast data packets
in 802.11. Instead of broadcasting, a newly powered on mobile host would unicast
its request in the CP to a mobile host that has already been allocated a slot. This
latter mobile host would then immediately acknowledge the correct reception of this
unicast before the end of the slot.

Another way to further reduce the possibility of collisions would be to introduce
a random back-off mechanism before the recently powered on mobile host begins to
transmit its request to be allocated a slot. This is similar to the collision avoidance
mechanism in 802.11 with the only difference being that the back-off window is fixed
in size.

A final way to reduce the possibility of collisions would be to further subdivide
the cell as illustrated in Figure 9. Each subdivision of the cell would correspond
to one or more slots in the CP. When a mobile host powers on, it calculates which
cell and then which subdivision it is in. It then sends it’s request in the slot in
the CP corresponding to the subdivision that it is in. By increasing the number of
subdivisions, we decrease the possibility of two or more mobile hosts powering on
in the same subdivision and therefore reducing further the possibility of collisions
in the CP. The obvious disadvantage with increasing the number of subdivisions
is that the number of slots in the CP needs to be increased accordingly, therefore
reducing the network throughput and increasing the time between CFPs.

3.4.5.2 Empty Cell / Mobile host powers on

By dividing access to the medium in the CFP and the CP, the most difficult task to
solve is how to allocate the first mobile host in the cell a slot in the CFP. Once there

26

b

d
e

f

a c

Figure 9: Subdivision of a Cell

is one mobile host in the cell with a slot in the CFP then it is possible to use the
atomic broadcast protocol described in section 3.4.3 to allocate and de-allocate slots
etc. A simple approach would be for a mobile host to wait for another mobile host
to transmit in the CP. These two mobile hosts could then negotiate with each other
in the CP to agree on an allocation of slots in the CFP. The main problem with this
approach is that two mobile hosts could easily corrupt each other’s packets in the
CP and therefore be unable to reach agreement. The likelihood of this occurring
increases as the number of mobile hosts powering on, within the cell, increases and
is also exacerbated by the fact that the CP is relatively small compared to the CFP.
The possibility of reducing these collisions could be achieved by using some of the
techniques described in the previous section (see 3.4.5.1).

If there is the possibility of a large number of mobile hosts powering on at the
same time, then the above approach could result in every mobile host in the cell
being prevented from being allocated a slot in the CFP due to collisions during
transmission in the CP. A different approach would be for a mobile host to choose a
number of random slots in the CFP to transmit in. This approach is similar to the
previously described approach with the advantage that the CFP is typically much
larger than the CP and therefore the possibility of collisions is further reduced.
By allowing collisions to occur in the CFP, we are contradicting our definition of
the CFP as being free of contention. However, as we shall see in the following
paragraphs, the possibility of these collisions continuing to occur after a brief number
of CFPs is greatly reduced.

To clarify how the new approach would work, a mobile host powers on and
listens for one full CFP (CFP 1 in Figure 11) in which the mobile host does not
receive any transmission, the mobile host generates a list of slots to use during the
next CFP. The success of this approach depends on the way the list of slots are
generated. A simple algorithm for the generation of these slots would be to use a
hashing function based on the MAC address of the mobile host to generate the list
of slots to use. This hashing function could also take as a parameter the subdivision
of the cell that the mobile host is in.

If two or more mobile hosts power on at the same time and in the same cell,
then the probability of each mobile host generating the same list of slots to use in
the next CFP is very small (by virtue of the hashing function). Thus during the
next CFP (CFP 2 in Figure 11), one (or more) of the transmissions from one (or
more) of the mobile hosts will be received correctly by the other mobile hosts.

This is illustrated in Figure 10 where three mobile hosts, A, B and C, generate

27

a list of slots to use. All but one of the slots generated by A, B and C are corrupted
due to collisions. Therefore, A, B and C hear at least one transmission of the other
mobile hosts.

Figure 10: Collisions of generated slots

A naive option at this point would be for each mobile host that correctly receives
a message from another mobile host to assume that the mobile host, which has
successfully transmitted, has been allocated a slot and that the mobile hosts that
have correctly received a message should then request a slot to be allocated to them
in the next CP.

The reason that this option is naive is that may be possible for every mobile
host correctly receives at least one message during the CFP (as in Figure 10). This
would then result in every mobile host, that previously transmitted during the CFP,
requesting a slot in the following CP because no mobile host knows if its transmis-
sions have been successful or not and therefore no mobile host has been allocated a
slot. In other words, every mobile host assumes that one of the other mobile hosts
has been allocated a slot. This brings us back to where we were previously with no
mobile host allocated a slot. Each mobile host would then have to generate another
list of CFP slots and repeat the above sequence of steps.

The above deadlock problem can be solved by using the next CFP (CFP 3 in
Figure 11) to transmit acknowledgments. During CFP 2, the mobile host transmits
in the slots in its generated list and then listens for correct messages in each of the
other slots. In the following CFP (CFP 3 in Figure 11), a mobile host transmits
an Acknowledgment message, containing a Collision bitmap in the Additional Info
field, in each slot in its generated list. The Collision bitmap represents CFP 2 with
the position of messages, that were received by the mobile host correctly, being
marked in the bitmap. By using the information in the Collision Bitmap and the
Allocation Bitmap, each mobile host knows which of the messages in its various slots
from CFP 2 were received correctly or were not received correctly (probably due to
collisions). Therefore, at the beginning of CFP 4, each mobile host knows whether
it can transmit successfully or not in each of its generated slots.

Each mobile host, that did not correctly receive an acknowledgment for any of
its messages, requests a slot to be allocated to it in the next CP (CP 3 in Figure
11) according to the possible strategies described in section 3.4.5.1.

3.4.5.3 Non-empty Cell / Mobile host enters cell

28

����
����
����
����

����
����
����
����

�����
�����
�����
�����

�����
�����
�����
�����

����
����
����
����

����
����
����
����

�����
�����
�����
�����

�����
�����
�����
�����

CFP 1 CP 1 CFP 2 CP 2 CFP 3 CP 3 CFP 4 CP 4

of generated slots after

Mobile hosts
transmit in list

listening during the
previous CFP

Mobile hosts transmit
Acknowledgements with
Collision bitmaps

Mobile hosts that successfully
transmitted in previous CFP
continue to use their slots
Mobile hosts that did not
successfully transmit, request
a slot to be allocated to them

Mobile hosts

full CFP

powers on in cell
and listens for one

Figure 11: Using 4 CFPs to allocate slots in an empty Cell

A mobile host entering a cell, which has one or more mobile hosts allocated slots to
them, is similar to mobile hosts powering on as described in section 3.4.5.1. The only
difference is that the mobile host entering the cell has the possibility to communicate
its impending arrival into the cell using one or more of the slots preallocated for inter-
cell communication (see section 3.4.4). This allows mobile hosts, that are entering
a cell from the same cell, to coordinate access during the CP. Thus, the inter-cell
slot could be used by a mobile host to allocate a slot in the CFP of the cell that
the mobile host is joining. When the mobile host enters the cell, it requests a slot
in the CP but would get back an immediate acknowledgment from a mobile host
that a slot has already been allocated to the arriving mobile host. Obviously, there
is the possibility that the transmission of the arriving mobile host is not received
correctly by any mobile host in the cell that the mobile host is joining. In this case,
the arriving mobile host would revert to the steps outlined in section 3.4.5.1.

3.4.5.4 Empty Cell / Mobile host enters cell

A mobile host entering a cell, which has no CFP slots allocated to any mobile host,
is similar to mobile hosts powering on as described in section 3.4.5.2. Similarly to
section 3.4.5.3, an arriving mobile host could announce its presence using a preal-
located inter-cell slot. This would allow other mobile hosts in the cell, both mobile
hosts entering the cell and powering on, to avoid colliding with transmissions of this
arriving mobile host when each mobile host begins the sequence of steps to allocate
itself a CFP slot as described in section 3.4.5.2.

3.4.6 Slot Deallocation

In the previous section, we illustrated a variety of techniques for a mobile host to
allocate itself a slot in the CFP. In this section, we describe how slots are deallocated,
for example when a mobile host leaves the cell or fails.

The simplest way that a mobile host could deallocate one of its slots would be to
atomically broadcast a message requesting the deallocation of its slot. This would
typically happen after a mobile host has generated a list of slots to use as described
in section 3.4.5.2 and does not need to use all the slots in the list. This could also
happen if a mobile host is powering down or realises that it is leaving the cell based
on location information and dead reckoning.

It is more difficult to deallocate a slot if the mobile host has failed or has left
the cell without firstly deallocating it’s slot. In addition, we would also like to avoid
as much as possible deallocating a slot of a mobile host that does not want its slot

29

deallocated. Each mobile host, that has been allocated a slot, monitors each of the
other mobile hosts slots in the CFP for correct reception of messages. If a mobile
host does not correctly receive a number of messages from another mobile host, then
it includes in the Additional Info field of each of its messages a bitmap indicating
the positions of the messages that it has not received correctly. Each mobile host
also checks the Additional Info field of each message from the other mobile hosts
in the cell. After receiving a message from a majority of mobile hosts in the cell
indicating that messages from another mobile host have not been received, then
a mobile host atomically broadcasts a message requesting the slot (or slots) to be
deallocated. After the delivery of this atomic broadcast message, the CFP slot(s)
are deallocated by each mobile host in the cell.

3.4.7 Protocol Extensions

By fixing the number of slots in the CFP, it would appear that we are placing an
upper bound on the number of mobile hosts that can be allocated a slot in the cell
at any one time. This would mean that the TBMAC protocol is very restrictive and
has only limited use.

���������� ����������.S N S 1 S 2 S 3 S NS 1

Logical CFP 1

CP Static CFP 2 CP

Logical CFP 2

Static CFP 1

D 1 D 2D 1 D 2 D M.

Figure 12: Mapping logical slots to static slots

However, it is possible however to overcome this restriction by allowing a dy-
namic logical CFP (LCFP) to grow and shrink in the repeating static CFPs. This
is illustrated in Figure 12. Each static CFP has the same number of slots, N. The
static CFP slots are numbered from S1 to SN.

By using the Atomic Broadcast protocol, the TBMAC can allow a LCFP to be
mapped to a number of static CFPs. This is possible since each mobile host in the
cell sees the same sequence of messages and therefore can allow the logical CFP to
grow larger than N as more than N slots are allocated and to become smaller than
N when slots are deallocated.

To allow the LCFP to grow and shrink, the TBMAC needs to include a Repeat
Duration value in the Protocol extensions field in the header of each TBMAC mes-
sage. The Repeat Duration field contains the number of slots before the allocation
of slots repeats itself. Additionally, the size of the Allocated Slot Bitmap and the
Collision Bitmap in the header of each TBMAC message would also need to grow
and shrink.

As shown in figure 12, the LCFP is of size M and is mapped into two static
CFPs (note that in this case N = M - 2). The dynamic slots, D1 to D(M-2) of

30

the LCFP are mapped into S1 to SN of the first static CFP shown. The last two
dynamic slots, D(M-1) and DM, are then mapped to the following two slots of the
next CFP, S1 and S2.

3.5 Acknowledgements

The work described in this paper was partly supported by the Irish Higher Ed-
ucation Authority’s Programme for Research in Third Level Institutions cycle 0
(1998-2001) and by the Future and Emerging Technologies programme of the Com-
mission of the European Union under research contract IST-2000-26031 (CORTEX
- CO-operating Real-time senTient objects: architecture and EXperimental evalu-
ation). The authors are grateful to past and current colleagues at Trinity College
Dublin including Marc-Olivier Killijian as well as to Jörg Kaiser of the University
of Ulm for their valuable input.

31

4 TCB Architecture and Protocols

4.1 Introduction

This section provides an overview of the Timely Computing Base model. Its prop-
erties and engineering principles are firstly described, followed by the basic services
essential for timely and dependable computing. Lastly, we discuss the most relevant
issues related to the application programming interface.

4.2 The Timely Computing Base Model

A system with a Timely Computing Base (TCB) is divided into two well-defined
parts: a payload and a control part. The generic or payload part prefigures what is
normally ’the system’ in homogeneous architectures. It exists over a payload net-
work and is where applications run and communicate. In particular, all middleware
services dedicated to QoS provisioning, monitoring or management are constructed
in the payload part of the system. The control part is made of local TCB modules,
interconnected by some form of medium, the control network. Figure 13 illustrates
the architecture of a system with a TCB.

Host A

TCB
Payload
Network

TCB

TCB

Control System/Network

Payload
System

Host C

Host B

Figure 13: The TCB Architecture.

Concerning the payload part, the important property is that the system can have
any degree of synchronism, that is, if bounds exist for processing or communication
delays, their magnitude may be uncertain or not known. Local clocks may not exist
or may not have a bounded rate of drift towards real time. The system is assumed
to follow an omissive failure model, that is, components only do timing failures—
and of course, omission and crash, since they are subsets of timing failures— no
value failures occur.

In the control part, there is one local TCB at every node, fulfilling the following
construction principles:

Interposition - the TCB position is such that no direct access to resources vital
to timeliness can be made in default of the TCB

Shielding - the TCB construction is such that it itself is protected from faults
affecting timeliness

32

Validation - the TCB functionality is such that it allows the implementation of
verifiable mechanisms w.r.t. timeliness

TCB modules are assumed to be fail-silent, that is, they only fail by crashing.
Moreover, it is assumed that the failure of a local TCB module implies the failure
of that node. The TCB subsystem enjoys the following synchrony properties:

Ps 1 There exists a known upper bound TD1
max

on processing delays

Ps 2 There exists a known upper bound TD2
max

on the drift rate of local TCB clocks

Ps 3 There exists a known upper bound TD3
max

on the delivery delay of messages
exchanged between local TCBs

Property Ps 1 refers to the determinism in the execution time of code elements
by the TCB. Property Ps 2 refers to the existence of a local clock in each TCB
whose individual drift is bounded. This allows measuring local durations, that is,
the interval between two local events. These clocks are internal to the TCB. Property
Ps 3 completes the synchronism properties, referring to the determinism in the time
to exchange messages among TCB modules. It is assumed that inter-TCB channels
provide reliable delivery, that is, no messages addressed to correct TCBs are lost.
The set of all local TCB modules, interconnected by the control channel, constitutes
the distributed TCB. Note that the interposition, shielding and validation principles
must also be satisfied by the distributed TCB.

Given the above set of construction principles and properties, a TCB can be
turned into an oracle providing time-related services to applications or middleware
components. To accomplish this, a set of minimal services has to be defined, as well
as a payload-to-TCB interface.

4.3 TCB Services

In order to keep the TCB simple, the services defined are only those essential to
satisfy a wide range of applications with timeliness requirements: ability to measure
distributed durations with bounded accuracy; complete and accurate detection of
timing failures; ability to execute well-defined functions in bounded time. Table 1
presents an informal summary of these services.

Service TCB1 allows the deterministic execution of some function given a feasi-
ble bound T , with the possibility of specifying an execution delay, as those resulting
from timeouts. TCB2 allows the measurement of arbitrary durations with a known
bounded error. If no external time sources are available, the measurement error will
be proportional to the distance between the events, by a factor that depends on
the drift rate of local TCB clocks (TD2

max
). Finally, TCB3 and TCB4 describe

the properties that a Perfect Timing Failure Detector (pTFD) should exhibit. We
use an adaptation of the terminology of Chandra [7] for the timed versions of the
completeness and accuracy properties. Although the timing failure detector service
is constructed upon the other ones, it is essential for any useful TCB.

33

Timely Execution

TCB1 Timely Execution: Given any function f with an execution time
bounded by T and a delay D, for any execution of f triggered at real
time t the TCB will not execute f within D from t and is able to execute
f within T from t.

Duration Measurement

TCB2 Given any two events occurring in any two nodes at instants ts and
te, the TCB is able to measure the duration between those two events
with a known bounded error. The error depends on the measurement
method.

Timing Failure Detection

TCB3 Timed Strong Completeness: Any timing failure is detected by
the distributed TCB within a known interval from its occurrence.

TCB4 Timed Strong Accuracy: Any timely action finishing no later
than some know interval before its deadline is never wrongly detected
as a timing failure.

Table 1: Basic services of the TCB.

4.4 Programming Interface

Beside defining essential services to be provided by the TCB, it is very important
to provide a programming interface to allow potentially asynchronous applications
to dialogue with a synchronous component. From a practical point of view, the
interface should be simple to allow an easy use of TCB services.

A relevant aspect to understand what can be done, is that applications or middle-
ware components can only be as timely as allowed by the synchronism of the payload
system. The TCB, although being a synchronous component, does not make appli-
cations timelier, it only provides the means to detect how timely they are. However,
since it can detect timing failures, it may execute timely contingency plans, such as
timely fail-safe shutdown, which is very relevant for the implementation of fail-safe
applications. Another important aspect is that application components on top of the
TCB are autonomous entities that take advantage of TCB services by construction.
They typically use it as a pacemaker, letting it assess (explicitly or implicitly) the
correctness of past steps before proceeding to the next step. This is relevant in the
context of time-elastic applications since adaptation measures can be taken at these
intermediate points, with the help of the TCB, to maintain required QoS coverage
levels.

When defining an interface between an asynchronous and a synchronous environ-
ment, one of the most important problems is that the latency of service invocation,
as well as the latency of service replies, may not be bounded. So it is not possible
to relate (in a time line) events occurring in one side with events occurring in the
other. The interface summarized in Table 2 makes a bridge between a synchronous
environment and a potentially asynchronous one. Some examples of how to use this
interface can be found in [26].

34

Duration Measurement
timestamp ← getTimestamp ()
id ← startMeasurement (start ts)
end ts,duration ← stopMeasurement (id)

Timely Execution
end ts ← exec (start ts, wait, exec dur, f)

Timing Failure Detection
id ← startLocal (start ts, spec, handler)
end ts,duration,faulty ← endLocal(id)
id ← send (send ts, spec, handler)
id,deliv ts ← receive ()
id,dur1,faulty1 · · · durn,faultyn ← waitInfo()

Table 2: Summary of the API.

The most basic function is getTimestamp, which allows an application to get
a timestamp. With this single function an application is able to obtain an upper
bound on the time it has needed to execute a computation step. It would suffice to
request a timestamp before the execution and another after it. If this execution is
a timed action, then the knowledge of this upper bound is also sufficient do detect
a timing failure, should it occur. The startMeasurement and stopMeasurement

functions are provided to do this in a more explicit way. A duration is measured
by calling startMeasurement with a timestamp (previously obtained) that marks
the start event. An id identifies the on-going measurement. The measurement
terminates by issuing stopMeasurement, which returns the measured duration.

The timely execution of critical functions is provided through the startExec

function. This is not a general purpose function. On the contrary, it is intended to
be used only for sporadic actions with real-time requirements. When startExec is
correctly used, the TCB will execute func accordingly to the parameters start ts,
wait and exec dur. The first marks a reference point from where both the wait

delay (deferral) and the maximum execution interval exec dur should be counted.
On return, a timestamp of the termination instant is provided through end ts. It is
obvious that not all startExec requests can be executed by the TCB, in which case
an error status will be returned to the application. There must exist an admission
control layer that performs the required admission tests before accepting any request.
A more extensive discussion of this admission layer can be found in another paper [6].

The timing failure detection (TFD) service is presented to applications as a set
of five functions. Two of them concern the detection of timing failures in local timed
actions and the other three do the same for distributed timed actions. Note that
failures in local actions are only important for the process performing them, while
in the distributed case it is important to all those processes affected by the action.

To a certain extent, the startLocal and endLocal functions are similar to
those of the duration measurement service. There are two new parameters: spec

and handler. The former specifies the maximum execution duration and the later
indicates an handler that is executed by the TCB, should a timing failure occur.
As before, there is an id associated to each action under observation. With this

35

interface an application can be constructed to timely react to timing failures: in
fact, it is the TCB who executes the handler as soon as a timing failure is detected.
Note that even if the failure could be timely signaled to the application, there would
be no guarantees about the timeliness of the reaction if it was done in the payload
part of the system. When the timed execution finishes, the application has to call
endLocal in order to disable detection for this action and to receive the measured
duration (duration) and the timeliness status (faulty).

A distributed execution requires at least one message to be sent between two
processes. Thus, in addition to local delays, the TFD service has to observe the
delay of message delivery. This is done by intercepting message transmissions, in
a very simple and intuitive manner, through the provision of send and receive

functions. Note that for brevity reasons the function prototypes presented in Table
2 omit normal parameters such as addresses, message buffers, etc. The meaning of
the send function parameters is identical to the ones of the startLocal function.
We assume it is possible to multicast a message to a set of destination processes
using this send function. A distributed duration is bounded by the send ts and
by a receive event generated within the TCB of a destination node. This means
that each receiver will measure its own duration. All the observed durations for
some message can be known by means of the waitInfo function. A process issuing
this function will remain blocked until the TCB sends the information concerning
some message. Although it would be possible to explicitly wait for the information
concerning a specific message identified by id (as presented in [26]), this interface
is more versatile and is therefore adopted.

Finally, note that the distributed duration measurement service is implicitly
provided by the distributed TFD service.

36

A CAN Messages

There is a number of specific CAN-Bus message-IDs which are reserved for the
configuration and the binding protocol. Each one divides the 29-bit CAN identifier
in sub-fields and use the data field for parameters. The type of message is identified
by its event tag (etag) that is encoded in the lowest 14 bits of the CAN identifier. An
event tag between 0 and 3 indicates that the message is a reserved system message.
All application defined event messages have event tags: etag ≥ 5.

The following section specifies details of the message ID format. It will be
presented in three groups:

1. Format for normal operation

2. Message-Ids for the Dynamic Configuration Protocol

3. Message Ids for the Dynamic Binding Protocol

A.1 Format for normal Operation

Event Message:
This message is used to publish an event on the CAN-Bus. The 29-bit CAN identifier
is divided in 3 fields: priority, TxNode, and etag. The 8-bit priority field specify a
dynamic priority that can be assigned to the message. This field can be used by a
message scheduling scheme, for example, creating three different types of messages:
hard real-time, soft real-time, and non-real-time. The 7-bit TxNode field ensures
the uniqueness of the CAN identifier and the 14-bit etag identifies the channel to
which the event belongs. The data field is free to be used by the application in any
necessary way.

Figure 14: Event Message

A.2 Message-Ids for the Dynamic Configuration Protocol

Request Short Node ID Message (RSI)
This message is used by the ECH during the start-up phase to exchange its long
node identifier by a short node identifier. Unlike the event message, the identifier
field is divided in a way that permits to send the 64-bit long node ID in 8 steps.
The field ’CCP step’ identifies which part of the long node ID is being transmitted
and the UID carries a 8-bit fraction of it.

Figure 15: RSI Message

37

Supply Short Node ID Message (SSI)
This message is used by the CAN-ECB to send back a reply to a previous RSI, after
receiving the long node ID in 8 steps.

Figure 16: SSI Message

A.3 Message Ids for the Dynamic Binding Protocol

Request etag Message
This message is used by the ECH to request an etag (event short identifier) for a
channel. The 64-bit channel identifier is unclosed in the data field of the message.

Figure 17: Request etag Message

Request Subscribe Message
This message is sent by the ECH to inform that it wants to receive any event related
to the specified channel. Thus, any gateway connected to the bus will receive this
message and proceed the binding to the TCP/IP network.

Figure 18: Request Subscribe Message

Request Unsubscribe Message
This message is used by the ECH to cancel the subscription to a channel. Any gate-
way connected to the bus will receive this message and remove binding information
related to the specified channel.

Supply etag Message
This message is sent by the CAN-ECB as a reply for a request etag message. The
etag will be encoded into the data of the message.

38

Figure 19: Request Unsubscribe Message

Figure 20: Supply etag Message

B Application Programming Interface (API)

The API is presented for two different systems:

1. The non real-time Linux system

2. The real-time RT-Linux systems and the proprietary rt-executive for the C167
systems.

B.1 Linux API

Publish: intpublish(msg obj ∗message)
This function is used by an object to publish a message. The channel and the
message content is described in a msg obj structure.

Subscribe: intsubscribe(u int64 tchannel)
This function is used by an object to subscribe to a channel. The channel is
identified as a 64-bit number.

Unsubscribe: intunsubscribe(u int64 tchannel)
This function is used by an object to unsubscribe to a channel. The channel
is identified as a 64-bit number.

Get Message: msg obj ∗ getmsg(msg obj ∗message)
This function is used by an object to get an event message from its socket.

Message Object

typedef struct {

u_int64_t channel;

int len;

unsigned char data[8];

} msg_obj;

This structure describe an event message with a 64-bit channel identifier, the
data length and data (max. 8 bytes).

39

B.2 RTLinux/C167 API

This API is slightly different from the Unix/Linux implementation because there
are no sockets available in RTLinux or in the real-time executive available on the
C167 micro-controller. Moreover, because all tasks share the same address space
in these operating systems, the objects and the local ECH communicate each other
through direct addressing provided by an special interface. This interface is created
by the object and is defined by the following statement:

Interface

typedef struct {

ringbuffer rxr, txr;

pthread_t *application;

} rtps_interface;

The interface provides transmit (txr) and receive (rxr) ring buffers and a ref-
erence to a thread that will be awaken by the ECH whenever a new message
(of a previously subscribed channel) is available.

Publish: intrtps publish(rtps interface ∗ interface, msg obj ∗message)
This function is used by an object to publish a message. The message content
is described in a msg obj structure.

Subscribe: intrtps subscribe(rtps interface ∗ interface, u int64 tchannel)
This function is used by an object to subscribe to a channel.

Unsubscribe: intrtps unsubscribe(rtps interface ∗ interface, u int64 tchannel)
This function is used by an object to publish a message.

Get Message: msg obj ∗ rtps get msg(rtps interface ∗ interface, msg obj ∗
message)
This function returns a message from previously subscribed channels, when
available.

Message Object

typedef struct {

u_int64_t channel;

int len;

unsigned char data[8];

char opcode;

char reserved[3];

} msg_obj;

This structure describes an event message where channel identifies the channel
associated with the event, len is the data length (0 to 8), and data[8] is the
event data. There is also an opcode field that is used internally by the ECH to
specify what kind of operation must be done with the message and a reserved
field for internal use.

40

References

[1] CORTEX Technical Annex Description of Work, October 2000.

[2] Konstantinos (Gus) Amouris. “Space-Time Division Multiple Access STDMA
and Coordinated, Power-Aware MACA for Mobile Ad Hoc Networks”. In IEEE
Symposium on Ad Hoc Wireless Networks (SAWN2001), San Antonio, Texas,
2001.

[3] V. Bharghavan, A. Demers, S. Shenker, and L. Zhang. “MACAW: a media
access protocol for wireless LAN’s,”. ACM SIGCOMM’94, pages 212–225.,
1994.

[4] Kenneth P. Birman. “Building Secure and Reliable Network Applications”.
Manning Publications Co., 1996. ISBN 0137195842.

[5] C. Brudna, C. Mitidieri, C. Pereira, and J. Kaiser. Methodology and tool
support for developing distributed real-time applications. In Proceedings of the
25th Workshop on Real-Time Programming, pages 211–216, Palma de Mallorca,
Spain, May 2000.

[6] A. Casimiro, P. Martins, and P. Veŕıssimo. How to Build a Timely Computing
Base using Real-Time Linux. In Proc. of the 2000 IEEE Workshop on Factory
Communication Systems, pages 127–134, Porto, Portugal, September 2000.

[7] Tushar Chandra and Sam Toueg. Unreliable failure detectors for reliable dis-
tributed systems. Journal of the ACM, 43(2):225–267, March 1996.

[8] Imrich Chlamtac and Andras Farago. “Making transmission schedules immune
to topology changes in multi-hop packet radio networks”. IEEE/ACM Trans-
actions on Networking, 2(1):23–29, 1994.

[9] Israel Cidon and Moshe Sidi. “Distributed Assignment Algorithms for Multihop
Packet Radio Networks”. IEEE Transactions on Computers, 38(10):739–746,
October 1989.

[10] Flaviu Cristian. “synchronous atomic broadcast for redundant broadcast chan-
nels”. In “Journal of Real-time Systems”, pages 195–212. Kluwer Academic
Publishers, 1990.

[11] ETSI. “Universal Mobile Telecommunications System (UMTS);3rd Generation
mobile system Release Specification”, 1999. www.3gpp.org.

[12] J. J. Garcia-Luna-Aceves. “Floor Acquisition Multiple Access (FAMA) for
Packet-Radio Networks,”. In ACM SIGCOMM’95, pages pp. 262–273., 1995.

[13] Robert Bosch GmbH. Can specification version 2.0. Technical report, Septem-
ber 1991.

[14] IEEE. “IEEE std 802.11 - wireless lan medium access control (MAC) and
physical layer (PHY) specifications”, 1997.

[15] J.H. Ju and V.O.K. Li. “An optimal topology-transparent scheduling method
in multihop packet radio networks”. IEEE/ACM Transactions on Networking,
6(3):298–306, June 1998.

[16] J. Kaiser. Real-time communication on the can-bus for distributed applications
with decentralized control. In 4th IFAC International Symposium on Intelligent
Components and Instruments for Control Applications, SICICA 2000, Buenos
Aires, Argentina, September 2000.

41

[17] J. Kaiser, M.A. Livani, and W. Jia. Predictability of Message Transfer in
CSMA Networks. In 4th International Conference on Architectures for Parallel
Processing - ICA3PP, Hong Kong, December 2000.

[18] Phil Karn. “MACA - a new channel access method for packet radio.”. In
ARRL/CRRL Amateur Radio 9th Computer Conference, pages 134–140, On-
tario, Canada, 1990.

[19] Bao Lichun and J. J. Garcia-Luna-Aceves. “A new approach to channel access
scheduling for ad hoc networks”. In 7th Annual International Conference on
Mobile Computing and Networking, Rome, Italy, 2001.

[20] Michael J. Markowski and Adarshapal S. Sethi. “Fully Distributed Wireless
MAC Transmission of Real-Time Data”. In Fourth IEEE Real-Time Technology
and Applications Symposium, June 1998.

[21] M. Rahnema. “Overview of the GSM System and Protocol Architecture”. IEEE
Communications Magazine, 31(4):92–100, April 1993.

[22] Theodore S. Rappaport. “Wireless Communications: Principle and Practice”.
Prentice Hall, 1996.

[23] Kay Romer. “Time Synchronisation in Ad Hoc Networks”. In The ACM Sym-
posium on Mobile Ad Hoc Networking & Computing, Long Beach, California,
USA, October 2001.

[24] J. L. Sobrinho and A. S. Krishnakumar. “Real-time Traffic over the IEEE
802.11 Medium Access Control Layer”. Technical report, Bell Labs, 1996.

[25] F. Tobagi and L. Kleinrock. “Packet Switching in Radio Channels: Part ii–
The Hidden Terminal Problem in Carrier Sense Multiple Access and the Busy-
Tone Solution”. IEEE Transactions on Communications, 23(12):1417–1433,
December 1975.

[26] P. Veŕıssimo, A. Casimiro, and C. Fetzer. The Timely Computing Base: Timely
actions in the presence of uncertain timeliness. In Proceedings of the Interna-
tional Conference on Dependable Systems and Networks, pages 533–542, New
York, USA, June 2000.

[27] M. A. Visser and M. El Zarki. “Voice and Data Transmission over an 802.11
Wireless Network”. In PIMRC’95, pages 648–652, September 1995.

42

	Introduction
	CAN Level
	Introduction
	General Architecture
	Achieving predictability of message transfer
	Achieving order of messages

	Preliminary definition of the network infrastructure
	The CAN-Bus infrastructure and protocols
	Dynamic configuration protocol for the assignment of short CAN node IDs
	Dynamic binding protocol for the assignment of event channel short IDs

	The TCP/IP infrastructure and protocols
	The dynamic binding protocol
	The gateway
	The Application Programming Interface (API)
	Target Environment

	Wireless Level
	Introduction
	Wireless Networks
	Related Work
	Contention based approaches
	Scheduled based approach

	MAC protocol for Ad Hoc networks
	Protocol Introduction
	Protocol Basics
	Atomic Agreement
	Communication Between Cells
	Slot Allocation
	Non-empty Cell / Mobile host powers on
	Empty Cell / Mobile host powers on
	Non-empty Cell / Mobile host enters cell
	Empty Cell / Mobile host enters cell

	Slot Deallocation
	Protocol Extensions

	Acknowledgements

	TCB Architecture and Protocols
	Introduction
	The Timely Computing Base Model
	TCB Services
	Programming Interface

	CAN Messages
	Format for normal Operation
	Message-Ids for the Dynamic Configuration Protocol
	Message Ids for the Dynamic Binding Protocol

	Application Programming Interface (API)
	Linux API
	RTLinux/C167 API

