
On the Effects of Diversity on Intrusion
Tolerance

Alysson Neves Bessani
Rafael Obelheiro

Paulo Sousa
Ilir Gashi

DI–FCUL TR–08–30

December 2008

Departamento de Informática
Faculdade de Ciências da Universidade de Lisboa

Campo Grande, 1749–016 Lisboa
Portugal

Technical reports are available at http://www.di.fc.ul.pt/tech-reports. The files
are stored in PDF, with the report number as filename. Alternatively, reports are available by
post from the above address.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade de Lisboa: Repositório.UL

https://core.ac.uk/display/32330628?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

On the Effects of Diversity on Intrusion Tolerance

Alysson Neves Bessani1 Rafael Obelheiro2 Paulo Sousa1 Ilir Gashi3
1LaSIGE, University of Lisbon, Portugal

2Universidade do Estado de Santa Catarina, Brazil
3Centre for Software Reliability, City University London, United Kingdom

Abstract

The security gains of intrusion-tolerant systems are di-
rectly dependent on the assumption that system components
fail independently of one another. The coverage of this as-
sumption in a real-world deployment depends on how di-
versity is employed, using, for example, diverse off-the-shelf
components. In this paper we detail a study we have done
with vulnerability data, reported in the period 1999 to 2007,
which we extracted from the NIST National Vulnerability
Database. We provide empirical analysis of the data col-
lected as well as exploratory analyses of the potential gains
in security from employing diverse operating systems. The
modelling approaches presented are of practical significance
to system designers wishing to employ diversity with off-the-
shelf components since often the vulnerability reports are the
only direct security evidence available to them.

Keywords: Diversity, Intrusion Tolerance, Byzantine Fault
Tolerance, Security.

1 Introduction

Intrusion-tolerant systems, which are systems that are able
to keep functioning correctly even if some of their parts are
compromised, usually rely on Byzantine fault-tolerant proto-
cols to coordinate system components. Such protocols guar-
antee correct behavior in spite of arbitrary faults provided
that a minority (usually less than one third) of components
are faulty [18]. To respect this condition, system components
need to fail independently of each other (at least to a certain
extent). However, when security is considered, the possibil-
ity of simultaneous attacks against several components can-
not be dismissed. If multiple components exhibit the same
vulnerabilities, they can be compromised by a single attack,
which defeats the whole purpose of building a replication-
based intrusion-tolerant system in the first place. To avoid
this, diversity can be employed: each component uses dif-
ferent software to perform the same functions, with the ex-
pectation that the differences will reduce the occurrence of
common vulnerabilities.

Nearly all software systems built today rely on off-the-
shelf (OTS) components, such as operating systems and
database management systems. This is mostly due to the
sheer complexity of such components, coupled with bene-
fits such as the perceived lower costs from their use (some
of the components may be open-source and/or freely avail-
able), faster deployment and the multitude of available op-
tions. Most OTS software, however, have not been designed
with security as their top priority, which means that they all
have their share of security flaws that can be exploited. At
times, supposedly secure systems are compromised not due
to vulnerabilities in application software but in a more sur-
reptitious manner, by compromising a critical component in
their software infrastructure. On the other hand, given the
ready availability of OTS software, leveraging OTS compo-
nents to implement diversity is less complex and more cost-
effective than actually developing variants of software. One
of the prime examples is the operating system: realistically,
people will deploy an OTS operating system rather than build
their own. Given the variety of operating systems available
and the critical role played by the OS in any system, diversity
at the OS level can be a reasonable way of providing good se-
curity against common vulnerabilities at little extra cost. The
question we address in this paper is how to measure the com-
monality of vulnerabilities in OTS software, which can then
be used to evaluate the benefits provided by a diversified sys-
tem deployment.

We have collected vulnerability data from the National
Vulnerability Database (NVD) [14] reported in the period
1999 to 2007 for 7 different operating systems. We focus
our study on operating systems for several reasons: they of-
fer a good opportunity for diversity, many intrusions exploit
OS vulnerabilities, and the number of OS-related vulnerabil-
ity reports in the NVD is sufficiently large to give meaningful
results. Each vulnerability report in the NVD database con-
tains (amongst other things) information about which operat-
ing systems the vulnerability affects. We collected this data
and checked how many vulnerabilities affect more than one
operating system. We found this number to be relatively low
for most pairs of operating systems in our study. These re-
sults seem to suggest that security gains may be achieved if

1

diverse operating systems are employed in replicated systems.
However they are not definitive evidence. The main problem
is that the available reports concern vulnerabilities and not
how many intrusions or exploits occurred for each vulnera-
bility; this makes their use in security evaluation more diffi-
cult. Complete intrusions and exploit rates would be much
more useful as statistical evidence, but they are not widely
available. To most practitioners the only direct security evi-
dence available for these products often are the vulnerability
reports.

It is the lack of detailed intrusion and exploit data and the
lack of known approaches that can utilize existing vulnera-
bility reports of OTS components in security evaluation that
has motivated the research detailed in this paper. One of the
present authors has also looked at a similar problem with the
lack of failure data for reliability predictions [6]. The ques-
tion we attempt to answer is “how can we incorporate existing
evidence for off-the-shelf software to evaluate the similarity
of these software when it comes to their security properties?”
To this end we have studied two approaches which utilize vul-
nerability reports for obtaining measures of the security ben-
efits of using diverse software, and applied these approaches
to popular operating systems. The two approaches are:

1. A “proportions” approach where the observed reliability
of a single software is scaled by a factor to derive the
expected gains in security from running alongside it an-
other diverse software. This is based on the approach
first reported in [6].

2. A “vulnerability similarity” approach where a single
measure is obtained for pairs of replicas based on data
about vulnerabilities in the software used by the repli-
cas. The lower the score obtained for a pair, the less
similar the software packages that make up the pair are
in terms of their common vulnerabilities.

We illustrate the use of the two approaches with the data col-
lected from NVD.

The rest of the paper is organized as follows: section 2
provides a description of the empirical study with the data
from the national vulnerability database; section 3 shows the
details of the two approaches used to derive estimates of the
security benefits from using diverse operating systems: both
approaches use the data from the NVD study as evidence
in calculating the estimates; section 4 provides a discussion
of the approaches, the results obtained and the assumptions
made; section 5 reviews related work on modelling diversity
and empirical studies with faults and vulnerabilities and fi-
nally section 6 provides conclusions and provisions for fur-
ther work.

2 Description of the data used for the study

In order to get initial estimates of the potential benefits of
diversity we have analyzed data from the National Vulnera-

bility Database (NVD) [14]. NVD is a US-government spon-
sored database of reported, confirmed and analyzed vulner-
abilities. NVD aggregates vulnerability reports from several
important security companies, forums, advisory groups and
organizations, being thus one of the most reliable and com-
plete vulnerability databases on the web. All data is made
available on the web as XML files containing all reported
vulnerabilities on a given period, called data feeds. As of
November 2008, it contained more than 33,300 vulnerabili-
ties encompassing the period from 1999 to 2008.

Each NVD data feed contains a list of reported vulnerabil-
ities sorted by its date of publication on a given period. For
each vulnerability, called entry in NVD, we have several in-
teresting data:

• An unique name for the entry, in the format CVE-YEAR-
NUMBER;

• The list of products (with version numbers) affected by
the vulnerability;

• The date of the vulnerability publication;
• The CVSS score of the vulnerability (0–10) and the as-

sociated sub-scores (base, exploit and impact) [13]. This
score defines how important is this vulnerability;

• The severity of the score (low, medium or high), as as-
sessed by NVD analysts;

• The type of the vulnerability (access, input, design, ex-
ception, race, etc.);

• The security attribute(s) that is(are) lost when this vul-
nerability is exploited on a system (avail, int, conf and
sec prot);

• From where this vulnerability can be exploited (local,
local network, network, user init).

Despite the large amount of information about each vul-
nerability available on NVD, for the purposes of this paper,
we are interested only in the name, publication date and list
of affected products of each vulnerability. In our study we
have collected vulnerabilities reported for the kernels of 7
operating systems. More than 2000 vulnerabilities, reported
between 1999 and 2007, were collected for these operating
systems.

Table 1 shows the raw data collected from NVD: vulns(A)
shows the total number of vulnerabilities collected for a given
OS A, vulns(B) counts vulnerabilities for a given OS B,
whereas vulns(AB) is the count of vulnerabilities that affect
both systems A and B (and hence is a subset of counts A and
B).

Further analysis of this data will be presented in the next
section.

3 Exploratory analyses of the benefits of diver-
sity

In this section we will describe two approaches to analyze
the potential gains in security from using diverse software,

2

OS Pairs (A-B) vulns(A) vulns(B) vulns(AB)
FreeBSD - Linux 229 437 11
FreeBSD - MacOS 405 9
FreeBSD - NetBSD 121 39
FreeBSD - OpenBSD 131 45
FreeBSD - Solaris 411 18
FreeBSD - Windows2k 347 3
Linux - MacOS 437 405 0
Linux - NetBSD 121 7
Linux - OpenBSD 131 4
Linux - Solaris 411 5
Linux - Windows2k 347 3
MacOS - NetBSD 405 121 5
MacOS - OpenBSD 131 6
MacOS - Solaris 411 4
MacOS - Windows2k 347 0
NetBSD - OpenBSD 121 131 33
NetBSD - Solaris 411 16
NetBSD - Windows2k 347 2
OpenBSD - Solaris 131 411 11
OpenBSD - Windows2k 347 2
Solaris - Windows2k 411 347 3

Table 1. Operating Systems’ reported vulnera-
bilities between 1999 and 2007.

and show how these approaches can be applied using vulner-
ability data on operating systems. Both of the approaches
attempt to get away from the need to quantify usage time and
attack rates on a system, and derive measures based on the
vulnerability counts alone using data from the NVD. This is
because data on attack as well as exploit rates for a given vul-
nerability are difficult to obtain. We discuss these issues fur-
ther in the next subsection before we describe the approaches
used to analyze the data and obtain estimates on benefits of
diversity.

3.1 Estimating Intrusions

According to the Attack-Vulnerability-Intrusion-error-
failure (AVI) model [16], which is the security extension of
the classical dependability fault-error-failure model [4], a se-
curity failure lies at the end of a causal chain of an attack
exploiting a dormant vulnerability which leads to an intru-
sion in the system, which in turn may cause an error in the
system state and finally a failure of the system to deliver its
service according to its specification and/or security policy.
Let P(AV ,r) be the probability of an attack AV that exploits
some vulnerability V on replica r and P(V,r) be the probabil-
ity of this replica being vulnerable to V . Considering the AVI
model, and for mathematical convenience excluding the time
dimension of usage time from the equation, we may then de-
fine the probability of an intrusion on a system replica r with
the following equation:

P(I,r) = P(AV ,r)P(V,r) (1)

Unfortunately, it is not possible to obtain this probability
directly from the data available in the NVD. The probabil-
ity of an attack AV on r (P(AV ,r)) cannot be readily esti-
mated from publicly available data; even the best informa-
tion sources available, such as security incident reports from
CERT [7] and attack data collected from honeypots [9], are
very limited in scope, and the attack profile observed against
systems running on one network cannot be easily translated
to another system running on a different network.

It is the absence of attack and intrusion data that has mo-
tivated us to define and adapt the two methods we outline in
the following sections. We have tried to answer the ques-
tion “how can we incorporate existing evidence for operating
systems to evaluate the possible gains in security that can be
achieved through the use of diversity”. We try to answer this
question utilizing the most reliable publicly available security
evidence that we could find about the operating systems: the
vulnerability data, such as that available in NVD.

3.2 Proportions approach

3.2.1 Description of the proportions approach

Bishop and colleagues [6] describe an approach which at-
tempts to get away from the need to quantify actual usage
time between failures. The model is used to get initial esti-
mates of the potential gains in reliability from switching from
a software A to a diverse system AB which runs two diverse
redundant software A and B using fault counts alone. In what
follows we give a brief description of this model and its un-
derlying assumptions and how it can be applied in a security
context by using vulnerability counts as evidence. The “pro-
portions” approach, defined in [6] to model the reliability of
a 1-out-of-2 system1, uses:

• The counts of faults which are available from the fault
logs of each product. These are the dependability equiv-
alent of the vulnerability counts for security which we
have collected from the NVD. From these counts we can
then calculate the proportion of vulnerabilities in prod-
uct A that are also found to exist in product B, βAB,
from the ratio of common to non-common vulnerabili-
ties in the vulnerability history of A. Similarly we can
also calculate βBA for product B vulnerabilities that are
also found to exist in A. Since we have looked at a joint
vulnerability database, namely NVD, rather than indi-
vidual OS vulnerability databases then the AB and BA
counts in our study are the same. However the βAB and
βBA can still be different depending on the total number
of vulnerabilities for each OS.

1A system in which the system works correctly as long as one of the two
diverse redundant components that make up the system continues to provide
the correct service.

3

• The pfd (probability of failure on demand) of the prod-
ucts A and/or B; the equivalent in our study would be
the probability of an intrusion on a system, which we
already mentioned that it is difficult to obtain from the
publicity available data, but estimates of these may ex-
ist for a particular system deployment based on actual
intrusions in operation for that system.

This approach has the following underlying assumptions:

• Common vulnerabilities are drawn from the same intru-
sion rate distribution as non common vulnerabilities, i.e.
a constant proportion of vulnerabilities in each intrusion
rate band are common to A and B.

• The intrusion rate distributions for A and B are the same.

Given these assumptions (see the discussion in [6] for the
validity of these assumptions), we can estimate the expected
common mode intrusion rate as:

E(λAB) = βABE(λA)or (2)

E(λBA) = βBAE(λB) (3)

Where E(λAB) and E(λBA) both represent common mode
intrusion rate estimates that should be, in principle, equiva-
lent. In what follows we will describe in more detail how
these two expressions were obtained in [6], replacing the term
fault with vulnerability where necessary.

3.2.2 The underlying theory of the proportions ap-
proach

In [6] it was stated that the fault density, h(φ), represents the
number of faults within a given failure rate interval that re-
main in an OS. If we use the same expression for vulnerabil-
ity density then the OS vulnerability count and intrusion rate
are given by:

N =
∫

∞

0
h(φ)dφ and λ =

∫
∞

0
h(φ)φ dφ ,

respectively.
We assume the vulnerability density functions of the A, B

and AB fault classes are:

h(φ)A = NA p(φ)
h(φ)B = NA p(φ)

h(φ)AB = NAB p(φ)

where:

• NA is the total number of vulnerabilities in Product A;
• NB is the total number of vulnerabilities in Product B;
• NAB are vulnerabilities common to Products A and B;

• p(φ) is the probability distribution2 of intrusion rate φ

for a vulnerability in the product (assumed to be the
same for A, B and AB vulnerabilities).

Note that NA and NB here are the total number of vulnerabili-
ties in each product.

Under these assumptions, the expected number of those
vulnerabilities nA,τA observed in product A during usage until
time τA is:

E(nA,τA) = NA

(
1−

∫
∞

0
p(φ)e−φτA dφ

)
(4)

The expected value of the number of vulnerabilities nAB,τA

observed in product A during usage until time τA that are also
common to product B is:

E(nAB,τA) = NAB

(
1−

∫
∞

0
p(φ)e−φτA dφ

)
(5)

It can be seen that the assumption of a common intrusion rate
distribution means that the bracketed term (the probability a
vulnerability is found after time τA) is identical for E(nA) and
E(nAB) and will cancel out if we take the ratios. So knowl-
edge of the actual usage time τA and the intrusion rate distri-
bution p(λ) is not required.

So we can estimate βAB from the vulnerability sequence
observed in product A up to τA, where some vulnerabilities
in the sequence are labeled as being common to B (from a
knowledge of the B product vulnerabilities). Given the ob-
served values, nA,τA and nAB,τA :

βAB = NAB/NA ≈ nAB,τA/nA,τA (6)

Similarly, we can also estimate βBA from the vulnerability se-
quence observed in product B up to τB

βBA = NAB/NB ≈ nAB,τB/nB,τB (7)

These β values need not necessarily be identical as one prod-
uct could contain more vulnerabilities than another.

3.2.3 Empirical derivations of β

Table 2 shows empirical derivations of β for the OS pairs
in our study. The table also contains 90% upper confidence
bounds on the estimates. The confidence bound is computed
using

Pr(β < p|n,x) =
x

∑
r=0

C(n,r)pr(1− p)n−r (8)

where x is the number of common vulnerabilities in a se-
quence of n vulnerabilities.

2We use λ for the intrusion rate of an entire program (i.e. Product A,
Product B or 1-out-of-2 AB intrusion rate), and we use φ for the intrusion
rate of a randomly chosen vulnerability.

4

OS pair βAB 90% βBA 90%
bound bound

FreeBSD - Linux 0.048 0.072 0.025 0.038
FreeBSD - MacOS 0.039 0.061 0.022 0.035
FreeBSD - NetBSD 0.170 0.206 0.322 0.383
FreeBSD - OpenBSD 0.197 0.234 0.344 0.402
FreeBSD - Solaris 0.079 0.107 0.044 0.060
FreeBSD - Windows2k 0.013 0.029 0.009 0.019
Linux - MacOS 0.000 0.005 0.000 0.006
Linux - NetBSD 0.012 0.023 0.041 0.075
Linux - OpenBSD 0.009 0.018 0.031 0.060
Linux - Solaris 0.010 0.020 0.010 0.019
Linux - Windows2k 0.000 0.006 0.000 0.007
MacOS - NetBSD 0.012 0.023 0.041 0.075
MacOS - OpenBSD 0.015 0.026 0.046 0.079
MacOS - Solaris 0.010 0.020 0.010 0.019
MacOS - Windows2k 0.000 0.006 0.000 0.007
NetBSD - OpenBSD 0.273 0.331 0.252 0.307
NetBSD - Solaris 0.132 0.181 0.039 0.054
NetBSD - Windows2k 0.017 0.043 0.006 0.015
OpenBSD - Solaris 0.084 0.124 0.027 0.040
OpenBSD - Windows2k 0.015 0.040 0.006 0.015
Solaris - Windows2k 0.007 0.016 0.009 0.019

Table 2. Estimates of β for each OS pair
The β values vary considerably for the different OS pairs.

This is because of the genuine difference between the operat-
ing systems in our study: different flavours of BSD operating
systems have larger β values since these operating systems
started from the same common base, hence it would be ex-
pected that they have larger common vulnerabilities. Win2k
is different from the other OSs and hence has lower β values
for most pairs. From equations (6) and (7), it can be seen
that the βAB, βBA values need not be identical as they depend
on the number of residual vulnerabilities, NA and NB, which
can vary with the quality of the security development process.
However many of the βAB, βBA values for the OS product pairs
seem to be similar given the inherent sampling errors.

Taking the data set as a whole, the results suggest that for
most diverse OS product pairs, β values of 0.1 (and possibly
lower) are possible. This means that using a 1-out-of-2 OS
configuration reduces the common intrusion rate 10 fold or
more compared with a single OS product.

3.3 VSS approach

The second approach we outline in this paper tries to ob-
tain a single vulnerability similarity score (VSS) for the dif-
ferent operating system pairs used in our study. This approach
also uses the vulnerability counts alone to derive the mea-
sures. It does this by combining the β values obtained in the
previous section. The lower the VSS score obtained for a pair
the better candidates the operating systems that make up the
pair would be to be used in a diverse configuration, as they
would be expected to have a lower number of similar vulner-
abilities. Hence, with the model in section 3.2 one can cal-

culate which operating system B would have the least num-
ber of vulnerabilities in common with an operating system A
which is already being run in a system deployment (and for
which detailed intrusion and attack rates may be available).
The model to be outlined in this section is useful in cases
where the decision on which operating system to use in a new
system deployment has not been made yet and the system
designer is interested in getting a single similarity measure
of the different operating systems based on the vulnerability
counts, so that they can decide which pair of OSs to choose.

3.3.1 Model and assumptions

We consider an intrusion-tolerant (or Byzantine fault-
tolerant) system Π = {r0,r1, ...,rn−1} with n replicas. The
replicas of the system can be classified according to a set
of diversity axes [15], including location, operating system,
hardware, etc. For the purpose of this paper we are only in-
terested in the software-related axes, i.e., application (or the
service being replicated), middleware (mainly a replication
library) and operating system.

This way, each replica i can be seen as a set of software
packages ri = {s0,s1, ...,sk−1} with k software packages that
can have vulnerabilities. The set of vulnerabilities of a soft-
ware package s j is denoted by vuln(sj).

The VSS methodology is based on the following assump-
tions:

• The number of reported vulnerabilities is an approxima-
tion of the number of vulnerabilities of a given software
system. This assumption holds for systems that have
not been released too recently, since reliability models
shows that the number of vulnerabilities of a given sys-
tem tends to stabilize after some time [2].

• The number of common vulnerabilities that appear on
different software systems is an approximation of how
similar the two systems are in terms of fault dependence
(i.e., how often an attack that compromises one system
can compromise the other).

3.3.2 Vulnerability Similarity Score

As we already discussed in section 3.1, it is not feasible to cal-
culate the probability of an intrusion on a given replica with-
out making many strong assumptions about the system (even
assuming that attacks will eventually happen, i.e., P(I,r) ≈
P(V,r)). However, given two replicas ri and r j of a system,
it is possible to calculate what is the probability that a vul-
nerability affecting ri also affects r j by looking at the soft-
ware packages used by the replicas and their reported vulner-
abilities on NVD. This probability is given by the number of
common vulnerabilities in ri and r j divided by the number of
vulnerabilities in r j. This reflects the proportion of common
vulnerabilities with respect to vulnerabilities affecting only
r j, and is expressed by the following equation:

5

P((V,ri)|(V,r j)) =
#

⋃
s∈ri∩r j

vuln(s)

#
⋃

s∈r j
vuln(s)

(9)

Notice that in general P((V,ri)|(V,r j)) 6= P((V,r j)|(V,ri)),
since the amount of reported vulnerabilities for a given replica
(the denominator in Eq. (9)) can be different. Also, if we con-
sider a single software package per replica, P((V,ri)|(V,r j))
is equivalent (conceptually and numerically) to βr jri .

We are interested in having a single value that measures
how similar two replicas are in terms of vulnerabilities. So,
we define the vulnerability similarity score (VSS) of two repli-
cas ri and r j (vss(ri,r j)) as

vss(ri,r j) = P((V,ri)|(V,r j)∨ (V,r j)|(V,ri)) (10)

Considering Pi, j = P((V,ri)|(V,r j)) and Pj,i =
P((V,r j)|(V,ri)), we can calculate the VSS of replicas i
and j with the following:

vss(ri,r j) = Pi, j +Pj,i−Pi, jPj,i (11)

The vss(ri,r j) of two replicas can be interpreted as “the
probability that an adversary discovers a vulnerability of ri
and successfully exploits it on ri and r j or discovers a vulner-
ability on r j and successfully exploits it on r j and ri”.

The VSS metric takes into account only what we can cur-
rently measure, and all the few assumptions made are conser-
vative. In addition, it has several good properties that make it
an attractive measure of the similarity between different repli-
cas of an intrusion-tolerant system:

1. It is relatively simple to calculate;

2. It takes into account several software packages running
on a replica;

3. Replicas with the same software packages have VSS =
1, while completely different replicas (with no known
common vulnerabilities) have VSS = 0;

4. If the same software package (e.g., application, BFT li-
brary, JVM) runs on more than one of the evaluated
replicas, it contributes to increase the VSS proportion-
ally to the amount of vulnerabilities it has.

In the next section we apply this similarity to several oper-
ating systems to get a feeling about the level of vulnerability
dependencies that may be expected in an intrusion tolerant
system if diverse OSs are used on its replicas.

3.3.3 Using the VSS to Measure the Similarity of Diverse
BFT Systems

Scenario. Let us assume that there is a BFT/intrusion-
tolerant system in which all replicas use the same applica-
tion software (with no reported vulnerabilities), the same BFT
replication library (also with no reported vulnerabilities) and

different operating systems. Given the high costs of using
N-version programming and the difficulties in integrating di-
verse OTS application software in general, this is a rather
cost-effective solution for practical BFT systems3 [5].

VSS of operating systems. Considering the pragmatic BFT
service above, one question that we want to answer is: if we
deploy the various replicas with different operating systems,
how much more secure will the system be? One way to an-
swer this question is to calculate the VSS of each pair of op-
erating systems, using Eq. (11) with the data from Table 1.
Figure 1 depicts these values.

There are at least two interesting things that we can ob-
serve on Figure 1: (1.) the different BSD flavors are approxi-
mately 50% similar; (2.) Windows 2K has little similarity (at
most 2%) with other operating systems. (1.) can be explained
by the fact that all BSDs came originally from the same code-
base. (2.) can be explained by the fact that, contrary to the
other six OSs considered, Windows 2K is not an UNIX-like
operating system, so one should expect a somewhat different
organization of its codebase.

Now, let us consider the four most diverse operating sys-
tems for the classical case of 3 f + 1 replicas with f = 1. If
we analyze Figure 1, it is easy to see that the most interest-
ing choice would be FreeBSD, Linux, Solaris and Windows
2K. OpenBSD and MacOS could also be considered instead
of FreeBSD and Windows 2K, but we want to choose OSs as
popular as possible, and avoid non-server market OSs (like
MacOS). Considering this choice of OSs, does some vulnera-
bility affect more than one replica? By inspecting Figure 1 the
similarity between any two of these four OSs (i.e., the proba-
bility of a given attack to affect two replicas of our pragmatic
BFT system) is at most 12%.

The evolution of the number of reported vulnerabilities
and the VSS. To better evaluate the effectiveness of VSS as
an approximation of how diverse a system can be, we ana-
lyzed the cumulative VSS calculated for several OSs from the
year 1999 up to the year 2007 and verified how it compares
with the number of accumulated vulnerabilities of these OSs
on these years. Figures 2 and 3 plots the cumulative number
of vulnerabilities and VSS of the four most-diverse OSs and
the four least-diverse OSs, respectively.

These figures clearly show that, as the number of reported
vulnerabilities increase, the VSS of replicas with these operat-
ing systems decrease. This means that the VSS metric appears
to be a conservative approximation of how often a vulnerabil-
ity in one system could be exploited on another, i.e., despite
the fact that we measure VSS based on historical data, our re-
sults show that, in general, it is expected that the similarity of
pairs of replicas will decrease in the future. In this case, by

3The resources spent on producing different versions of a given applica-
tion would be put on the test and verification task of a single high quality
version that would be deployed in all replicas.

6

0 3

0,4

0,5
VSS

0

0,1

0,2

0,3

FreeBSD Linux MacOS NetBSD OpenBSD Solaris Windows 2K

Figure 1. Vulnerability similarity scores of pairs of replicas with diverse operating systems.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 1999 2000 2001 2002 2003 2004 2005 2006 2007

of

 v
ul

ne
ra

bi
lit

ie
s

Year

Free
Linux

Solaris
Windows2K

(a) Cumulative number of vulnerabilities.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1999 2000 2001 2002 2003 2004 2005 2006 2007

V
S

S

Year

Free−Linux
Free−Solaris

Free−Windows2K
Linux−Solaris

Linux−Windows2K
Solaris−Windows2K

(b) Cumulative VSS.

Figure 2. Vulnerabilities and VSS of most diverse OSs from 1999 to 2007.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 1999 2000 2001 2002 2003 2004 2005 2006 2007

of

 v
ul

ne
ra

bi
lit

ie
s

Year

Free
Net

Open
Solaris

(a) Cumulative number of vulnerabilities.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 1999 2000 2001 2002 2003 2004 2005 2006 2007

V
S

S

Year

Free−Net
Free−Open

Free−Solaris
Net−Open

Net−Solaris
Open−Solaris

(b) Cumulative VSS.

Figure 3. Vulnerabilities and VSS of least diverse OSs from 1999 to 2007.

“conservative” we mean that the VSS used to make decisions
today will be lower in the future, so that a good decision now

will not turn out to be a bad one later on.

7

The history/observed experiment. In order to evaluate the
effectiveness of our approach, we did a simple experiment us-
ing the NVD data set. The rationale of our experiment was the
following: what if, at some point in the past, we evaluated the
NVD database using the VSS metric and based on our obser-
vations we defined a runtime environment for a seven replica
IT system. The interesting question here is, how beneficial
would have been this strategy, i.e., would it have been effec-
tive in suggesting a set of OSs with a low similarity? To an-
swer this question we divided the NVD data in three periods
and computed 2/3 as history measured to define our runtime
environment (1999–2004) and 1/3 as the VSS observed on the
three years that the system was to be used (2005–2007).

Figures 4 and 5 show the VSS of the history (Figure 4) and
observed (Figure 5) data sets. From these figures it can be
seen that most of the VSS values decreased from the history
data set to the observed data set. Only 2 pairs out of 21 possi-
ble (Windows2K/FreeBSD and Windows2K/OpenBSD) had
an increase on their VSS. This means that only for these pairs
of systems, the probability of someone finding a vulnerability
in one of them and exploiting it on the other increased. How-
ever, this increase was very modest: Windows2K/FreeBSD
goes from 2% to 3% and Windows2K/OpenBSD goes from
1% to 6%.

To complement the results presented in Figures 4 and 5,
it is worth to report also the number of common vulnerabili-
ties observed on each pair of operating systems both between
1999 and 2004 and between 2005 and 2007. Table 3 shows
these numbers.

The pair of numbers on the diagonal of the table shows
the total number of vulnerabilities of an operating system on
the two data sets (history/observed). The table shows that
the OS pairs that had an increase on their VSS values (bold
values) had in fact the same number or even less common
vulnerabilities on the observed period. However, the overall
number of vulnerabilities of the operating systems on these
pairs is much lower on the observed data set than on history
data set, so it increases the probability of some vulnerability
of these systems being common.

Effectiveness of Diversity. Our simple experiment with the
NVD data set illustrates how diversity can be used to boost the
intrusion tolerance of a BFT system. Consider a BFT repli-
cated service that need 3 f + 1 replicas to tolerate f faults,
and consider the case in which f = 1 (four replicas). If all
four replicas of this system use OpenBSD, the operating sys-
tem with less vulnerabilities reported on the observed period
(assuming that we were able to predict how many vulnera-
bilities the operating systems would present in the next three
years at the beginning of 2005), we would have observed at
least 20 vulnerabilities that, when exploited, could bring the
whole system down (20 is the number of OpenBSD vulnera-
bilities in the observed period). On the other hand, if we had
chosen to employ diverse operating systems using FreeBSD,

Linux, Solaris and Windows2K, we would have observed at
least three vulnerabilities (maximum VSS is 12% and the to-
tal number of vulnerabilities is 20) that would be able to bring
down multiple replicas, from an universe of 556 reported vul-
nerabilities (i.e., less than 0.5% of the vulnerabilities affect
more than one of these four OSs). In both cases, the number
of vulnerabilities is actually a lower bound, since there might
be vulnerabilities in the systems discussed that were not pub-
licly reported.

3.3.4 Summary of the Results

From the results presented in this section several points can
be highlighted:

1. When considering the whole universe of vulnerabili-
ties reported on NVD (from 1999–2008), one can see
that pairs of operating systems from the BSD family
(FreeBSD, NetBSD and OpenBSD) have the greatest
VSS value of 43–47%; Windows2K, on the other hand,
is very different from all other operating systems (a VSS
of only 2%);

2. Based on the reported vulnerabilities of NVD we can
recommend the following operating systems for a 3 f +1
BFT system that tolerates one fault: Windows2K, Linux,
FreeBSD and Solaris. For f > 1 our study shows that
it becomes difficult to avoid common vulnerabilities (at
least at the OS level): the addition of the other three sys-
tems to our replica set brings VSS scores up to 46%;

3. Our history/observed experiment was an attempt to
travel back in time and evaluate the effectiveness of our
approach if we had applied it at the beginning of 2005
and evaluated the results at the beginning of 2008. The
experiment shows that the approach would be success-
ful: only two out of 21 OS pairs had an increase on their
VSS, and this increase was very small (1% and 5%, in
terms of VSS absolute values).

4 Discussion

Developing adequate metrics for computer security has
long been a challenge. There is relevant work done in the area
of reliability [12], but the main approaches require a model of
the demand profile of the system. When we move to the se-
curity domain, leveraging the existing work is hard because it
is very difficult to estimate the attack profile of a system with
a reasonable degree of confidence, as pointed out in Sec. 3.1.
Both approaches introduced in this paper provide ways of es-
timating the security offered by diversified systems without
resorting to models of attacker behavior (under the assump-
tions mentioned in Sec. 3.1). This, combined with the lack
of other metrics for diversity, highlights the relevance of our
contributions, even if they are first steps that can be improved.

8

FreeBSD Linux MacOS NetBSD OpenBSD Solaris Windows2K
FreeBSD 182/47 10 7 34 40 17 2
Linux 1 262/175 0 6 3 5 3
MacOS 2 0 292/113 4 6 4 0
NetBSD 5 1 1 84/37 29 14 2
OpenBSD 5 1 0 4 111/20 11 1
Solaris 1 0 0 2 0 284/127 3
Windows2K 1 0 0 0 1 0 227/120

Table 3. Number of common faults of pairs of replicas with diverse operating systems considering the
periods of 1999–2004 (“history” – top/right) and 2005–2007 (“observed” – down/left). The diagonal
shows the total number of vulnerabilities on the two periods (history/observed).

0,4

0,5

0,6
VSS

0

0,1

0,2

0,3

FreeBSD Linux MacOS NetBSD OpenBSD Solaris Windows 2K

Figure 4. Vulnerability similarity scores of pairs of replicas with diverse operating systems (1999–
2004).

0,4

0,5

0,6
VSS

0

0,1

0,2

0,3

FreeBSD Linux MacOS NetBSD OpenBSD Solaris Windows 2K

Figure 5. Vulnerability similarity scores of pairs of replicas with diverse operating systems (2005–
2007).

One of our foremost concerns with the proposed metrics
is how faithfully they represent reality. On closer inspection
both the β values and the VSS obtained reveal that these val-
ues agree with our prior expectations. For instance, all BSD
systems are derivations of a single source tree (this is even
more true of NetBSD and OpenBSD, since the latter was
forked from the former); this is reflected by high β and VSS

values for them, which would indicate that these systems are
very similar and hence the gains in added security from em-
ploying these systems in a diverse setup would be minimal.
The frequent cross-pollination between open source OSs re-
sults in greater commonality. Of the seven OSs studied, Win-
dows 2000 has the least commonality with others, not only
in terms of source code but also in terms of internal structure

9

and interface with userland; as consequence, it has lower β

and VSS values compared to the other systems. Although our
results agree with common sense expectations, they are based
on hard data, and not on anecdotal evidence. When compar-
ing systems whose origins cannot be readily traced, our meth-
ods can provide useful information about their similarities.

It is also important to understand how our results are influ-
enced by the available data. First, we have restricted our anal-
ysis to kernel vulnerabilities, but an operating system com-
prises the kernel and a set of userland tools. The problem
here is that, especially for open source OSs, it is difficult to
determine exactly which tools should be considered as part of
the OS and which should be left out. Since we were aiming
at a general analysis that could demonstrate the usefulness of
our approaches, we decided to limit ourselves to the kernel.
However, it is not only possible but quite feasible to estimate
the similarity of more complete systems for specific scenarios
where the set of tools to be used is known beforehand.

Another issue with the data is that the NVD database does
not contain all existing vulnerabilities, but only those that
have been reported. For systems with large user bases and
that have been released for some time, the NVD data should
be reasonably complete (see, e.g., [2]), and therefore the sim-
ilarity scores should be sufficiently accurate. For less pop-
ular or more recent systems, there might be larger numbers
of undiscovered vulnerabilities, and the accuracy of similar-
ity scores should suffer. However, it must be emphasized that
the NVD database is one of the most complete sources of vul-
nerability information available (in fact, we are not aware of
a better source that is freely available).

5 Related Work

Littlewood and colleagues [11] survey a number of issues
in software diversity modeling, presenting models that have
been developed for assessing the reliability of systems that
adopt diversity. The models discussed aim to provide a mea-
sure of the reliability of a system as a function of the demands
presented to the system and how these demands influence the
correctness of the behavior of the system; these parameters
are, for the most part, expressed as probability distributions.
They show that, although diversity does not provide com-
plete failure independence (since design faults are correlated
to some extent), it is an effective means of increasing over-
all system reliability. They also discuss a number of caveats
regarding software diversity modeling.

An experimental study of the benefits of adopting diver-
sity of SQL database servers is presented in [8]. The authors
analyzed bug reports for four database servers and verified
which products were affected by each bug reported (the fo-
cus of their study is on overall dependability, not specifically
on security). They found few cases of a single bug affect-
ing more than one server, and that there were no coincident
failures in more than two of the servers. Their conclusion is

that diversity of off-the-shelf database servers is an effective
means of improving system reliability.

A comparison of the robustness of four different operating
systems is presented in [10]. This study was based on fault
injection: combinations of valid and invalid parameters were
supplied to often-used systems calls, and the effects of this
on reliability (e.g., system crash, process hang/crash, wrong
error returned, etc.) were observed. The authors found out
some commonalities among the systems studied; however,
from the available data it is impossible to conclude whether
there were specific bugs that affected more than one system
(the paper only shows how many failures were observed for
each system call in several degrees of severity).

Some vulnerability discovery models, which attempt to
forecast the amount of vulnerabilities found in software, have
been proposed [3, 17, 1]. Alhazmi and Malayia [2] investigate
how well these models fit with vulnerability data from the
NVD, and conclude that the vulnerability discovery process
follows the same S-shaped curve of “traditional” software re-
liability growth models [12], which measure all defects found
in a system (not only those that affect security). While their
study cross-validates our idea of using the NVD as a source
of vulnerability data, they are more concerned in modeling
how many vulnerabilities are found in specific software over
its lifetime, and our focus is on assessing the degree of inde-
pendence between different operating systems.

6 Conclusions

In this paper we have presented two approaches for es-
timating the gains in security from using diverse operating
systems. We use vulnerability counts alone to derive the esti-
mates. These approaches are based on some strong assump-
tions about the operational profile and intrusion/attack rate
distributions which may not hold in real operation. Ideally
we would like to have detailed information about intrusion
and attack counts and usage time. However detailed intru-
sion and attack data are rarely available even to the software
vendors themselves. Also due to the various non-restrictive
license agreements of the open-source products, an operat-
ing system may be downloaded from a multitude of sources
and then installed in many different instances, which makes
estimation of the usage time of an operating system very dif-
ficult. Faced with these difficult problems of data availability,
it was necessary to make these strong modeling assumptions
in order to make an initial estimate of the potential security
benefits of diversity with operating systems.

The estimates obtained from the two approaches confirm
some of our initial expectations: that operating systems from
the same code base (BSD flavors) are predicted to have higher
common vulnerabilities and hence would bring less gains
in security if used together; but Windows 2000, has very
few common vulnerabilities with other operating systems and
would benefit from running it alongside another operating

10

system in a diverse configuration. Overall in most cases,
given the assumptions made in the paper, we can expect a ten-
fold improvement in security from running diverse operating
systems in a replicated system.

Further research is needed to validate the theory presented
in this paper. This research includes:

• Methods for obtaining more accurate proxies for usage
time of the operating systems.

• Empirical investigations of the predictive performance
of the two approaches for actual operating system pairs.

• Empirical investigations of the consistency of the β and
VSS estimates in successive releases of the same product
pair.

• Applying the methods to other types of off-the-shelf
components (such as diverse web-servers and applica-
tion servers).

Acknowledgments

This work was partially supported by the EC through
project IST-2004-27513 (CRUTIAL) and NoE IST-4-
026764-NOE (RESIST), and by the FCT, through the CMU-
Portugal project and the Multiannual Funding Programme.

References

[1] O. H. Alhazmi and Y. K. Malayia. Quantitative vulnerability
assessment of systems software. In Proceedings of the Annual
Reliability and Maintainability Symposium, pages 615–620,
Jan. 2005.

[2] O. H. Alhazmi and Y. K. Malayia. Application of vulnerability
discovery models to major operating systems. IEEE Transac-
tions on Reliability, 57(1):14–22, Mar. 2008.

[3] R. J. Anderson. Security in open versus closed systems—the
dance of Boltzmann, Coase and Moore. In Conference on
Open Source Software: Economics, Law and Policy, Toulouse,
France, 2002.

[4] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Ba-
sic concepts and taxonomy of dependable and secure comput-
ing. IEEE Transactions on Dependable and Secure Comput-
ing, 1(1):11–33, Jan./Mar. 2004.

[5] A. N. Bessani, E. P. Alchieri, M. Correia, and J. S. Fraga.
DepSpace: a Byzantine fault-tolerant coordination service. In
Proceedings of the 3rd ACM SIGOPS/EuroSys European Sys-
tems Conference, Apr. 2008.

[6] P. Bishop, I. Gashi, B. Littlewood, and D. Wright. Reliabil-
ity growth modelling of a 1-out-of-2 system: Research with
diverse off-the-shelf SQL database servers. In Proc. IEEE
International Symposium on Software Reliability Engineering
(ISSRE’07), pages 49–58, Trollhåttan, Sweden, Nov. 2007.

[7] CERT/CC. http://www.cert.org/, 2008.
[8] I. Gashi, P. Popov, and L. Strigini. Fault tolerance via diver-

sity for off-the-shelf products: A study with SQL database
servers. IEEE Transactions on Dependable and Secure Com-
puting, 4(4):280–294, Oct./Dec. 2007.

[9] The Honeynet Project. http://www.honeynet.org/,
2008.

[10] P. Koopman, J. Sung, C. Dingman, D. Siewiorek, and T. Marz.
Comparing operating systems using robustness benchmarks.
In Proceedings of the 16th Symposium on Reliable Distributed
Systems (SRDS), pages 72–79, Durham, NC, USA, Oct. 1997.

[11] B. Littlewood, P. Popov, and L. Strigini. Modeling soft-
ware design diversity: A review. ACM Computing Surveys,
33(2):177–208, 2001.

[12] M. R. Lyu, editor. Handbook of Software Reliability Engineer-
ing. McGraw-Hill, 1995.

[13] P. Mell, K. Scarfone, and S. Romanosky. Common vulnera-
bility scoring system. IEEE Security & Privacy, 4(6):85–89,
Nov./Dec. 2006.

[14] National Vulnerability Database. http://nvd.nist.
gov/, 2008.

[15] R. R. Obelheiro, A. N. Bessani, L. C. Lung, and M. Cor-
reia. How practical are intrusion-tolerant distributed sys-
tems? DI/FCUL TR 06–15, Department of Informatics, Uni-
versity of Lisbon, September 2006. Available from http:
//www.di.fc.ul.pt/tech-reports/06-15.pdf.

[16] D. Powell and R. Stroud, editors. Conceptual Model and Ar-
chitecture of MAFTIA. Deliverable D21. MAFTIA Project,
Jan. 2003. http://www.laas.research.ec.org/
maftia/deliverables/D21.pdf.

[17] E. Rescorla. Is finding security holes a good idea? IEEE
Security & Privacy, 3(1):14–19, Jan./Feb. 2005.

[18] P. Verissimo, N. F. Neves, and M. P. Correia. Intrusion-tolerant
architectures: Concepts and design. In Architecting Depend-
able Systems, volume 2677 of LNCS. 2003.

11

