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Abstract

The overall malaria burden in the Americas has decreased dramatically over the past two

decades, but residual transmission pockets persist across the Amazon Basin, where Plas-

modium vivax is the predominant infecting species. Current elimination efforts require a bet-

ter quantitative understanding of malaria transmission dynamics for planning, monitoring,

and evaluating interventions at the community level. This can be achieved with mathemati-

cal models that properly account for risk heterogeneity in communities approaching elimina-

tion, where few individuals disproportionately contribute to overall malaria prevalence,

morbidity, and onwards transmission. Here we analyse demographic information combined

with routinely collected malaria morbidity data from the town of Mâncio Lima, the main urban

transmission hotspot of Brazil. We estimate the proportion of high-risk subjects in the host

population by fitting compartmental susceptible-infected-susceptible (SIS) transmission

models simultaneously to age-stratified vivax malaria incidence densities and the frequency

distribution of P. vivax malaria attacks experienced by each individual over 12 months. Sim-

ulations with the best-fitting SIS model indicate that 20% of the hosts contribute 86% of the

overall vivax malaria burden. Despite the low overall force of infection typically found in the

Amazon, about one order of magnitude lower than that in rural Africa, high-risk individuals

gradually develop clinical immunity following repeated infections and eventually constitute a

substantial infectious reservoir comprised of asymptomatic parasite carriers that is over-

looked by routine surveillance but likely fuels onwards malaria transmission. High-risk indi-

viduals therefore represent a priority target for more intensive and effective interventions

that may not be readily delivered to the entire community.
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Author summary

Malaria transmission models that disregard risk heterogeneity at the community level,

classifying individuals as uniformly susceptible or infected, may not properly recapitulate

the epidemiology of malaria in real-life settings. Here we fit a compartmental susceptible-

infected-susceptible model to malaria morbidity data from Mâncio Lima, the main urban

transmission hotspot of Brazil, and estimate that 20% of the urban residents contribute

86% of the overall vivax malaria burden in the town. Despite the low average force of

infection, one order of magnitude lower that in rural Africa, high-risk individuals experi-

ence enough repeated infections to develop clinical immunity and constitute an asymp-

tomatic reservoir that fuels onwards malaria transmission. Therefore, these high-risk

subjects account for the paradoxical finding of clinical immunity and frequent asymptom-

atic parasite carriage in low-endemicity Amazonian communities. We argue that mathe-

matical models accounting for risk heterogeneity are crucial to plan and evaluate malaria

control and elimination interventions targeted to high-risk groups in communities,

municipalities, and regions.

Introduction

Heterogeneity in the risk of infection with several pathogens has been repeatedly documented

in human populations, with 20% of the hosts typically harbouring 80% of the pathogen burden

in the community [1]. For example, residents in the same village in rural Africa may greatly

differ in their malaria risk, leading to over-dispersed frequency distributions of malaria attacks

per person over time, with few subjects in the community experiencing frequent infection and

disease [2].

One source of malaria risk heterogeneity is the varying hosts’ exposure to the pathogen,

which can be measured as the number of infectious mosquito bites per host per unit of time,

termed the entomological inoculation rate (EIR). About 20% of the children are estimated to

receive 80% of all infectious mosquito bites in rural African settings, suggesting that malaria

parasites may also conform to the “20/80 rule” [3]. Significant malaria risk heterogeneity has

also been described in towns and cities in Africa [4–6]. For example, EIRs across the city of

Brazzaville were estimated in the early 1980s to range between <1 every three years and >100

per year [7]. Not surprisingly, community-wide EIR measurements are affected by a range of

environmental factors (e.g., proximity of houses to water bodies that serve as larval habitats for

vectors), behavioural characteristics of individuals (e.g., occupational exposure to mosquitoes

and patterns of bednet use), and individual differences in attractiveness to mosquitoes [e.g., 8].

Variation in overall malaria risk may also result from differences in individual susceptibility to

infection and subsequent disease given exposure, due to innate resistance and acquired immu-

nity developing after repeated infections [9].

A quantitative understanding of malaria transmission dynamics is required for planning,

monitoring, and evaluating interventions aimed at its elimination [10]. However, classical sus-

ceptible-infected-susceptible (SIS) malaria models often disregard, totally or partially, risk het-

erogeneity at the community level and classify hosts as more uniformly susceptible or

infectious than they actually are. Models that take insufficient account of real-world heteroge-

neities may not properly recapitulate the transmission dynamics of malaria in endemic set-

tings, in addition to not providing insights into the impact of targeting control interventions

to high-risk groups [1, 10]. SIS models of infectious diseases may incorporate risk heterogene-

ity among hosts as, for example, a continuous distribution of hosts’ susceptibility to infection,
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which can be determined empirically from the proportions of hosts that are experimentally

infected at different pathogen challenge doses [11–13]. Alternatively, models may assume that

the population of susceptible individuals is divided into a finite number of susceptibility classes

or frailty groups [13–17].

The incidence of malaria in the Americas has decreased dramatically over the past two

decades, but residual transmission pockets persist across the Amazon and challenge current

elimination efforts. Residual malaria refers to the transmission that persists despite achieving

high coverage of effective control measures such as use of insecticide-treated bednets and

indoor residual spraying [18]. Plasmodium vivax, the predominant human malaria parasite in

the region, is found in nearly 76% of cases in this continent [19]. Here, we fit compartmental

SIS models that incorporate risk heterogeneity to malaria surveillance data, aiming to explore

the transmission dynamics of P. vivax in the main urban malaria hotspot of the Amazon Basin

of Brazil.

Results

A homogeneous-risk model does not satisfactorily recapitulate the

epidemiology of Plasmodium vivax malaria

We first fitted empirical data by using a compartmental SIS model that considers the entire

host population as being homogeneously at risk (p1 = 1 and x1 = 1; parameters are described in

Materials and Methods section) of clinical vivax malaria (Fig 1C). The simultaneous fitting to

empirical profiles of incidence by age and number of annual episodes per person (parameter

estimation process is fully described in S1 File) is optimal when the age-dependent force of

infection (Eq 1) takes parameter values λ0 = 0.7452, c = 0.8787 and k = 0.0282 (Fig 1D) and the

partial immunity factor (Eq 2) decays at constant rate α = 0.1162 per infection experienced

(Fig 1E). The homogeneous-risk model output recapitulates how malaria incidence density

varies with age (Fig 1A; see also [20]) but does not satisfactorily fit the number of episodes per

person over the one-year follow-up (Fig 1B).

A 20% fraction of high-risk individuals accounts for 86% of the

community-wide malaria burden

We next consider two susceptibility classes (high-risk [HR] and low-risk [LR] groups) to

account for risk heterogeneity in the host population. We optimised model fitting (S1 File) for

different proportions of individuals in the HR and LR groups, with the best fit corresponding

to a model with 20% of the host population allocated to the HR group (Table 1).

The best-fitting solution obtained with the heterogeneous model is presented in Fig 2. Fig

2A compares empirical age-specific malaria incidence data to the model output, which com-

bines incidence densities in the LR and HR groups. Overall, the HR group is estimated to con-

tribute 86.0% of the overall vivax malaria burden in the community, roughly as expected from

the “20/80 rule” [1]. High-risk individuals become infected earlier and acquire partial immu-

nity faster than their low-risk counterparts, resulting in markedly different, subgroup-specific

age-incidence patterns. In the HR group, the incidence of clinical malaria sharply increases

with age among children and adolescents, but declines thereafter; in contrast, malaria inci-

dence density increases slowly in the LR group and reaches a plateau in the fourth decade of

life. Fig 2B shows that the model properly fits the empirical frequency distribution of cases per

person accumulated over one year of follow-up.

Fig 2C, 2D and 2E show, respectively, the risk distribution, the age-dependent force of

infection and the partial immunity factor. The risk distribution has variance v = 3.3247 [95%
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credible interval: 3.1057–3.3845], with 80% (p1 = 0.8) of the population having low risk x1 =

0.0883 [95% CI: 0.0801–0.1189]) (LR group) and 20% (p2 = 0.2) high risk x2 = 4.6467 [95% CI:

4.5246–4.6794]) (HR group). Note that P. vivax malaria risk is approximately 26-fold higher in

individuals in the S0,2 compartment, which comprises malaria-naïve high-risk subjects, com-

pared to their counterparts in the S0,1 compartment, which comprises malaria-naïve low-risk

subjects. However, this difference changes with age as individuals in each group become

infected and acquire partial immunity. The model fits the data optimally when the age-depen-

dent force of infection (Eq 1) takes parameter values λ0 = 0.6197 [95% CI: 0.3680–0.7174],

Fig 1. Model with homogeneous risk. (A) Age-specific malaria incidence data (red circles) and the best fitting model output (blue line). (B)

Frequency distribution of the number of cases per person, empirical data (red bars) and model output (blue bars). (C) Homogeneous risk

distribution. (D) Age-dependent force of infection (Eq 1) with parameters λ0 = 0.7452, c = 0.8787 and k = 0.0282. (E) Partial immunity factor (Eq 2)

with parameter α = 0.1162.

https://doi.org/10.1371/journal.pcbi.1007377.g001

Table 1. Model fitting for different risk distributions.

HR-LR (in %) Log-likelihood

0–100 118.4802

10–90 133.2681

15–85 141.4236

20–80 142.6645

25–75 140.6231

30–70 137.4449

https://doi.org/10.1371/journal.pcbi.1007377.t001
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c = 0.8720 [95% CI: 0.6638–0.9642] and k = 0.0493 [95% CI: 0.0392–0.1173], and the partial

immunity factor (Eq 2) decays at rate α = 0.0285 per infection [95% CI: 0.0162–0.0330].

High-risk individuals develop immunity and constitute a clinically silent

reservoir of infection

We next incorporate to the model, compartments with individuals who are infected but

asymptomatic. The dynamics of individuals through model compartments, considering that

asymptomatic infections last an average of 90 days (i.e. γ0 = 1/90 per day), is shown in Fig 3.

Individuals in the LR group move slowly between compartments (Fig 3A, 3B and 3C), com-

pared with their HR counterparts (Fig 3D, 3E and 3F). Using the population age structure

determined by our census survey, the model predicts that, in the current population, 77.8%

and 5.4% of the individuals of the HR and LR groups, respectively, had at least one clinical

malaria attack. As a consequence, acquired immunity following repeated P. vivax malaria epi-

sodes affects almost exclusively the dynamics of HR individuals, leading to frequent asymp-

tomatic infections (Fig 3C and 3F).

Fig 2. Model with heterogeneous risk. (A) Age-stratified incidence data (red circles) and the model output (blue line) as a composition of incidence

densities in the low-risk (LR; red line) and high-risk (HR; yellow) groups. (B) Frequency distribution of the number of cases per person, empirical

data (red bars) and model output (blue bars). (C) Risk distribution with variance v = 3.3247 [95% credible interval: 3.1057–3.3845], partitioning the

population into 80% (p1 = 0.8) in the LR group (x1 = 0.0883 [95% CI: 0.0801–0.1189]) and 20% (p2 = 0.2) in the HR group (x2 = 4.6467 [95% CI:

4.5246–4.6794]). (D) Age-dependent force of infection (Eq 1) with parameters λ0 = 0.6197 [95% CI: 0.3680–0.7174], c = 0.8720 [95% CI: 0.6638–

0.9642] and k = 0.0493 [95% CI: 0.0392–0.1173]. (E) Partial immunity factor (Eq 2) with parameter α = 0.0285 [95% CI: 0.0162–0.0330].

https://doi.org/10.1371/journal.pcbi.1007377.g002
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Because the asymptomatic infection recovery rate γ0 is unknown, we assumed the average

duration of asymptomatic parasite carriage (DA) to range from 30 to 180 days (Fig 4). Model

outputs recapitulate the age-dependent increase in the prevalence of asymptomatic P. vivax
carriage that has been described in Amazonian communities (Fig 4A; e.g., [21]) and, as

expected, indicate that the community-wide prevalence of asymptomatic P. vivax infection

increases with longer parasite carriage duration (Fig 4B). Model simulations indicate that HR

individuals constitute the vast majority of asymptomatic parasite carriers (Fig 4C). Although

this maybe somewhat overrated due to the assumption that acquired immunity reduces symp-

toms without preventing infection, it highlights plausible trends warranting future empirical

studies.

The relative contribution of asymptomatic and symptomatic infections to the overall bur-

den of P. vivax infection in the community was also simulated (Fig 5). We observe that, even

with short-lived asymptomatic parasite carriage (DA = 1/γ0 = 30 days) and considering the

average duration of symptomatic infections that are diagnosed and treated as either 4, 8, or 12

days, 66–85% of subjects carrying P. vivax infection at a given time will be asymptomatic, con-

sistent with empirical estimates from across the Amazon ranging between 52% and 90% [21–

24]. We note that these empirical data can be used to estimate γ0 and DA in the target

populations.

Finally, we simulated the relative contribution of asymptomatic parasite carriers to onwards

P. vivax transmission in a wide range of plausible scenarios. To this end, we consider that

symptomatic and asymptomatic parasite carriers remain infectious for 4, 8 and 12 days and

30, 90 and 180 days, respectively, with a relative infectiousness (RI) of asymptomatic compared

to symptomatic infections of 1/2, 1/10 and 1/30 (Fig 6). Model outputs indicate that even

Fig 3. Age-profiles of repeated malaria in a heterogeneous host population comprising a high-risk (HR) and a low-risk (LR) group. (A) Susceptible individuals in

the LR group; (B) Symptomatic infected individuals in the LR group; (C) Asymptomatic individuals in the LR group; (D) Susceptible individuals in the HR group; (E)

Symptomatic infected individuals in the HR group; (F) Asymptomatic individuals in the HR group.

https://doi.org/10.1371/journal.pcbi.1007377.g003
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short-lived asymptomatic P. vivax carriage (DA = 30 days) can contribute substantially to

onwards malaria transmission in the community if the overall RI ranges between 1/2 and 1/10

(Fig 6A and 6D). Sustained asymptomatic P. vivax carriage (DA = 90 days) can account for 30–

87% of the infectious reservoir if RI ranges between 1/2 and 1/10 (Fig 6B and 6E), with a

minor further increase with DA = 180 days (Fig 6C and 6F). We further note that, for most DA

and RI value combinations, the relative contribution of symptomatic infections to the infec-

tious reservoir can be substantially reduced by providing prompt CQ-PQ treatment to reduce

the mean gametocyte clearance time (or average duration of infectiousness) from 12 to 4 days.

Fig 4. Prevalence of asymptomatic Plasmodium vivax infection according to the average duration of parasite carriage. (A) Age-stratified prevalence of

asymptomatic infection considering an average duration of asymptomatic parasite carriage DA of 30, 90 and 180 days. (B) Variation in the community-wide

prevalence of asymptomatic infection according to the average duration of asymptomatic parasite carriage. (C) Age-stratified prevalence of asymptomatic

infection in the low-risk (LR) and high-risk (HR) groups considering an average duration of asymptomatic parasite carriage DA of 30 days (upper panel), 90

days (middle panel) or 180 days (lower panel).

https://doi.org/10.1371/journal.pcbi.1007377.g004

Fig 5. Simulated proportions of community-wide Plasmodium vivax infections that are symptomatic or asymptomatic. We consider the average duration of

symptomatic infections that are diagnosed and treated as either 4, 8, or 12 days; the duration of asymptomatic parasite carriage that remains undetected and

untreated (DA) is considered to be 30 days (panel A), 90 days (panel B), or 180 days (panel C).

https://doi.org/10.1371/journal.pcbi.1007377.g005
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Discussion

Measuring how malaria infection risk varies among individuals is challenging. Product of

exposure to infectious mosquitoes and susceptibility to infection given exposure, each individ-

ual’s risk is determined by numerous interacting factors. Despites notorious efforts being

invested in characterising specific determinants, such as individual mobility to and from hot-

spots [25], parasite genetics [26] and human genetics [27], a complete catalogue of risk factors

and respective measures is not on the horizon. Smith [28] suggested that individual-level varia-

tion in susceptibility to malaria given exposure can be inferred by modelling malaria incidence

as a function of EIR measured in the same population. Similarly, matched EIR and parasite

prevalence data have been used to quantify heterogeneity in malaria susceptibility by assuming

a gamma distribution of relative infection rates in the host population [5]. However, the wide-

spread use of these approaches is limited by the restricted availability of reliable EIR measure-

ments, which are notoriously difficult to obtain, from across endemic communities. Malaria

transmission models that consider heterogeneity have instead assumed either a small number

of measured risk factors or unmeasured ranges of individual risk variation incorporated as

either discrete frailty groups or a continuous variable (e.g., [29]).

Here, we show that a compartmental SIS model with heterogeneous risk notoriously out-

performs its mean-field approximation in recapitulating the transmission dynamics of P. vivax
in the main malaria hotspot of Brazil. We provide an empirical basis to estimate risk

Fig 6. Relative contribution to the Plasmodium vivax infectious reservoir of individuals with symptomatic and asymptomatic infections. Model outputs

consider different average durations of asymptomatic parasite carriage DA (DA = 30 days in panels A, D and G; 90 days in panels B, E and H; and 180 days in

panels C, F and I) and different relative infectiousness (RI) of asymptomatic compared to symptomatic infections (RI = 1/2 in panels A, B and C; 1/10 in panels D,

E and F; and 1/30 in panels G, H and I. For every combination of DA and RI, we simulated the average duration of infectiousness of symptomatic infections as

either 4, 8 or 12 days.

https://doi.org/10.1371/journal.pcbi.1007377.g006
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heterogeneity in host populations by simultaneously fitting SIS models to two sets of surveil-

lance data—namely, age-related malaria incidence and frequency distribution of malaria cases

per person—derived from the same population-based cohort. The best-fitting heterogeneous-

risk model considers that the HR group comprises 20% of the host population and contributes

86% of the vivax malaria burden in the community. We suggest that this approach can be used

to fit empirical data from across a range of malaria-endemic settings to test whether other host

populations conform to this 20/80 pattern.

The estimated force of infection in the main residual malaria hotspot of Brazil is one order

of magnitude lower than that estimated for P. falciparum in children from across rural Africa

(e.g., [20, 30]). As a consequence, our study population appears to acquire partial immunity to

malaria rather slowly. Indeed, the model predicts that as much as 25 past clinical malaria

attacks, on average, are required in order to reduce by half the risk of a clinical malaria attack.

In holoendemic settings, children are typically continuously infected during the transmission

season, with frequent superinfection and overlapping clinical malaria episodes during their

first years of life. For example, children aged 1–5 years in Papua New Guinea were estimated

to experience an average of 2.5 episodes of clinical vivax malaria per year in 2006–2007, before

intensified, large-scale control interventions were implemented nationwide [31]. Similarly, in

Mali an average of 2.4 episodes of clinical falciparum malaria per child aged 3–59 months per

year have been estimated to occur, despite the distribution of long-lasting insecticide-treat bed

nets at baseline [32]. Both estimates give an average of 25 malaria attacks by the age of 10–11

years. Indeed, in such areas, malaria remains common throughout most of childhood, and a

significant decrease in risk of infection is seen in adolescence and early adulthood. In our

study site, although partial immunity develops earlier in the HR group, with a decline in

malaria incidence after the second decade of life (Fig 2A), HR individuals across all age groups

still constitute the main contributors to the overall clinical malaria burden.

Despite the low overall force of infection in the study area, the fraction of HR individuals

who experience repeated P. vivax infections and gradually develop partial immunity will eventu-

ally become asymptomatic but potentially infectious parasite carriers overlooked by routine sur-

veillance. Although the overall average incidence of clinical P. vivax malaria in Mâncio Lima,

estimated at 20.90 episodes/100 person-years at risk between October 2015 and September 2016,

is substantially lower than that observed in holoendemic settings, some HR individuals may be

nearly as exposed to malaria as the average child living in rural Africa. In fact, around one fourth

of study subjects experienced one or more episodes of clinical vivax malaria during the study

period; 29.9% of those with symptomatic P. vivax infections diagnosed during the study period

had two or more episodes (Fig 2B, red bars), indicating that a fraction of exposed subjects actually

experience repeated P. vivax episodes over one year of follow-up. Therefore, the paradoxical find-

ing of clinical immunity and frequent asymptomatic infections in Amazonian communities

exposed to low overall levels of malaria transmission [33] can be explained by the presence of a

fraction of HR subjects that experience the majority of infections in the community and acquire

clinical immunity. Statistical modelling of malaria surveillance data has identified young adult

males living in the less urbanized periphery of the town as the main HR individuals in Mâncio

Lima [34]. Importantly, these HR individuals not only contribute disproportionately to the overall

burden of clinical disease (Fig 2A), but also constitute the silent reservoir of sustained asymptom-

atic infections (Fig 4C) that are left untreated and may contribute significantly to onwards malaria

transmission in this and other low-endemicity settings [35]. Estimates of the proportions of

asymptomatic infections that are patent (consistent with RI close to 1/2) vary by one order of mag-

nitude, from 4.5% [24] to 46.7% [22], in Amazonian populations.

The importance of characterising malaria reservoirs in endemic regions has recently been

highlighted [36] and the results from this work further underscore how essential this
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information is to inform elimination programmes for properly planning control interventions.

Heterogeneous risk implies that imperfect control measures, such as leaky vaccines, if uni-

formly applied to the entire host population, are unlikely to reduce substantially the overall

malaria burden [29]. Our model simulations, however, suggest that a dramatic reduction in

the community-level burden of clinical P. vivax malaria can be achieved by selectively target-

ing HR subjects, if they can be readily identified, to more intensive and effective measures that

may not be readily delivered to the entire population.

We have limited the present analysis to P. vivax, which predominates in the areas of resid-

ual malaria transmission across the Amazon Basin. One major feature of P. vivax is that para-

sites may persist for several months in human hosts as hypnozoites, the dormant liver stages

that eventually reactivate and may cause one or more new blood-stage infections termed

relapses following a single infectious mosquito bite [37]. Radical cure of vivax malaria thus

requires the use of antimalarial drugs that target both blood and liver stages, such as PQ and

tafenoquine. Although we do not consider relapses explicitly in our compartmental models,

they are implicitly integrated into the force of infection, which combines blood-stage infec-

tions arising from infecting stages (sporozoites) inoculated during mosquito bites and relapses

arising from reactivating hypnozoites. We hypothesise that HR and LR individuals initially dif-

fer in their exposure to infectious mosquitoes or susceptibility to infection and disease once

challenged with infecting sporozoites, but over time HR individuals become also more likely

to have P. vivax relapses originating from the large hypnozoite reservoir that they have accu-

mulated in the liver following repeated infections. Importantly, new infections and relapses

entail different control measures; while the incidence of new infections can be reduced by

decreasing exposure to mosquito bites, e.g. with insecticide-treated bednets, relapses can be

prevented by improved anti-relapse treatments.

The present study has some limitations. First, we used routinely collected malaria morbidity

data for model fitting, but blood samples were not available for further confirmatory (e.g.,

molecular) diagnostic tests. Moreover, surveillance data used to fit our models do not include

sub-patent and asymptomatic malaria episodes experienced by the target population. Second,

our modelling approach does not allow for estimating the impact of improved anti-relapse

therapies on the overall P. vivax malaria burden, since we do not differentiate between blood-

stage infections arising from hypnozoites and newly inoculated sporozoites. Third, there are

no empirical data, obtained in the same population, to properly measure the relative infec-

tiousness of asymptomatic infections, either patent or not, and estimate more precisely their

potential contribution to malaria transmission in the community.

We conclude that considering risk heterogeneity in the host population is crucial for prop-

erly describing the transmission dynamics of P. vivax using compartmental SIS models and

provide a framework to test the hypothesis that a few HR subjects contribute the vast majority

of the vivax malaria burden at the community level. Moreover, HR subjects are important con-

tributors to the silent infectious reservoir that likely fuels onwards malaria transmission in

low-endemicity settings. These results can be further explored for the evidence-based planning

and deployment of control interventions towards the elimination of residual P. vivax malaria

across the Amazon Basin.

Materials and methods

Ethics statement

The study protocol was approved by the Institutional Review Board of the Institute of Biomed-

ical Sciences, University of São Paulo, Brazil (CEPH-ICB 1368/17); written informed consent

and assent were obtained for the census survey.
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Study site and population

The study site, the municipality of Mâncio Lima (07˚36’ 51"S, 72˚53’ 45"W), is situated in the

upper Juruá Valley, next to the border between Brazil and Peru. With 17,910 inhabitants (half

of them in the urban area) and 9,278 laboratory-confirmed malaria cases notified in 2017,

Mâncio Lima has currently the highest annual parasite incidence (API) in Brazil, estimated at

518.0 malaria cases per 1,000 inhabitants. Mâncio Lima is unique in Brazil in that 49% of all

local malaria infections are reportedly acquired in urban settings, compared to a country’s

average of 15% (Ministry of Health of Brazil; SIVEP-Malaria; http://portalweb04.saude.gov.br/

sivep_malaria/default.asp; accessed 04 July 2019).

The study cohort comprised 8,783 permanent residents in the town of Mâncio Lima, aged

from <1 to 80 years and distributed into 2,329 households. These individuals were systemati-

cally enumerated during a demographic census survey carried out by our field team between

November 2015 and April 2016. Dates of entry in the study cohort were the subject0s date of

birth or October 1, 2015, whatever was the most recent; this information was used to calculate

the number of person-years at risk for incidence density estimation. For the purposes of this

analysis, we assumed that no study participant left the study area before September 30, 2016,

when the latest morbidity data were collected.

Malaria morbidity data

We retrieved all records of laboratory-confirmed clinical malaria cases notified in Mâncio

Lima between October 1, 2015, to September 30, 2016. Case records were entered into the elec-

tronic malaria notification system of the Ministry of Health of Brazil (SIVEP-Malaria; http://

200.214.130.44/sivep_malaria/). Because malaria is a notifiable disease in Brazil and only pub-

lic health facilities provide laboratory diagnosis and malaria treatment, the electronic malaria

notification system is estimated to comprise 99.6% of all clinical malaria cases diagnosed coun-

trywide [38]. However, asymptomatic parasite carriage and persistently subpatent infections,

which are not detected by microscopy or commercially available, antigen-based rapid diagnos-

tic tests, may have been overlooked. We used patient’s name, gender, and age to link malaria

case records to individuals in our census survey database, given the absence of common

unique patient identifiers. Name entries were compared using the Jaro-Winkler string distance

[39] as implemented in the stringdist package of the R software [40]. Criteria for associating

malaria case records to subjects enumerated during our census survey were: (a) same gender,

(b) maximum reported age difference of 1 year, and (c) maximum Jaro-Winkler distance

between names of 0.10, with penalty factor of 0.05 (constant scaling factor for how much the

score is adjusted downwards for having common prefixes).

A minimal interval of 28 days between two consecutive malaria notifications was required to

count the second case as a new malaria episode. When different infecting species were detected

in samples obtained less than 28 days apart, the subject was considered to have a single mixed-

species infection. Overall, we found 2,057 malaria notifications in the cohort of urban residents

during the 12-month study period, with 8,770.8 person-years of follow-up. P. vivax accounted

for 1,833 cases (89.1%), P. falciparum for 193 cases (9.4%) and both species for 31 cases (1.5%).

The present analysis is limited to P. vivax infections, since this is the most abundant in our

study location. Describing the transmission dynamics of multiple Plasmodium species would

escalate model complexity and assumptions beyond the realm of the current study. We found

an average malaria vivax incidence density of 20.90 episodes/100 person-years at risk. By com-

bining demographic information and malaria morbidity data, we computed age-specific vivax

malaria incidence densities and the number of vivax malaria episodes per person recorded in

the urban cohort over 12 months. These empirical data were used to fit model outputs.
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The mathematical model

The compartmental SIS model describing the epidemiology of clinical vivax malaria is repre-

sented diagrammatically in Fig 7. Any population of susceptible individuals is heterogeneous

with regards to risk of infection. Individual risk is a continuous characteristic which we discre-

tise in two groups: low risk (LR) and high risk (HR). This is a coarse description of individual

heterogeneity that nevertheless suffices to our modelling purposes of capturing the effects of

variance in risk. Within each risk group, individuals are classified as either susceptible or

infected. Each risk group comprises a proportion pj (0<pj<1, j = 1,2 and p1+p2 = 1) of the total

population and is associated with a risk factor xj>0 (j = 1,2). Without loss of generality, we

assume that the overall average risk is equal to 1 (x1p1+x2p2 = 1) since the factors xj are modifi-

ers of individual responses to a force of infection which will be allowed to vary. This setting

configures a risk distribution with variance v = p1(x1−1)2+p2(x2−1)2.

We assume an age-dependent force of infection λ(a) (Eq 1), which correlates mosquito bit-

ing activity with human body mass [30, 41]. This function strictly increases with age, with min-

imum λ0(1−c) (at age zero) and upper limit λ0. The parameter k determines how steeply the

force of infection increases in early ages and c controls the value at birth.

lðaÞ ¼ l0ð1 � ce� kaÞ ð1Þ

Assuming that individuals acquire partial immunity after repeated clinical malaria attacks,

due to antibody- and cell-mediated responses [42], we introduce a factor describing the devel-

opment of partial immunity. The strictly positive decreasing function σ(i) of the number i
(i�0) of past clinical vivax malaria attacks each individual has experienced (Eq 2), with a maxi-

mum for malaria-naïve individuals (σ(0) = 1), simulates a partial immunity factor and weights

down the age-dependent force of infection λ(a) as the number of cumulative clinical malaria

episodes increases. The factor describing partial immunity is controlled by the parameter α,

which determines the rate at which immunity develops after repeated infections.

sðiÞ ¼ e� a�i ð2Þ

Assuming equilibrium with respect to time, in addition to the age-dependent force of infec-

tion, partial immunity acquisition and risk heterogeneity, malaria unfolds in age domain

according to a system of ordinary differential equations (ODEs) (system of Eq 3), with initial

Fig 7. Susceptible-infected-susceptible (SIS) compartmental model representing the dynamics of malaria over age in a

heterogeneous host population. The compartments describe the following epidemiological classes: Si,j represents susceptible

individuals from risk group j (1 = low-risk [LR]; 2 = high-risk [HR]) who have experienced i past clinical malaria attacks; Ii,j
represents symptomatic infected individuals from risk group j who are currently experiencing their ith clinical malaria attack.

Individuals experience new infections due to an age-dependent force of infection λ(a) modified by a risk factor xj, and a partial

immunity weight σ(i); all individuals recover at the same rate γ.

https://doi.org/10.1371/journal.pcbi.1007377.g007
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conditions S0,j(0) = pj, Si,j(0) = Ii,j(0) = 0, for i = 1,2,. . . and j = 1,2.

dS0;j

da
¼ � xjsð0ÞlðaÞS0;j

dI1;j

da
¼ þxjsð0ÞlðaÞS0;j � gI1;j

dS1;j

da
¼ � xjsð1ÞlðaÞS1;j þ gI1;j

dI2;j

da
¼ þxjsð1ÞlðaÞS1;j � gI2;j

..

.

dSn� 1;j

da
¼ � xjsðn� 1ÞlðaÞSn� 1;j þ gIn� 1;j

dIn;j
da
¼ þxjsðn� 1ÞlðaÞSn� 1;j � gIn;j

..

.

ð3Þ

Individuals in the LR group are initially allocated to compartment S0,1, comprising suscepti-

ble individuals who are malaria-naïve. At a rate which is determined by the age-dependent

force of infection λ(a) and the risk factor x1, LR individuals move to compartment I1,1 after

experiencing their first clinical vivax malaria attack. After recovering (with recovery rate γ),

they become susceptible again and move to the next compartment S1,1, which comprises sus-

ceptible individuals who have already experienced one past malaria attack and acquired some

degree of partial immunity. These individuals may acquire a second infection, according to the

same age-dependent force of infection and risk factor, but now weighted down by the partial

immunity σ(1). LR individuals can move forward between compartments within the LR

group. With similar dynamics, HR individuals move forward within the HR group, but with a

risk factor x2 (Fig 7). This is denominated as the heterogeneous risk model.

For comparison purposes, we built a similar compartmental model where the same average

risk is applied to the entire host population (homogeneous risk model; p1 = 1 and x1 = 1, e.g.,

[20]). We fitted the heterogeneous and the homogeneous risk models to empirical data and

compared their ability to recapitulate the epidemiology of vivax malaria in the study

population.

Mathematical model with asymptomatic infections

We refined the SIS model with compartments comprising infected but asymptomatic individ-

uals, by assuming that the proportion of asymptomatic infections depends on gradually

acquired partial immunity. This partial immunity is sometimes termed “clinical” or “anti-dis-

ease immunity” to emphasise that individuals remain susceptible to infection but become

gradually less likely to develop clinical disease once infected. We followed the same basic

assumptions of the first model: susceptible individuals from risk group j, with age a and with i
past clinical attacks (Si,j(a)) develop their ith clinical case at rate xjσ(i)λ(a). Partial immunity

developed after i past attacks (Eq 2) reduces by 1−σ(i) the probability of susceptible individuals

Si,j(a) presenting clinical symptoms once infected again. Note that in this model rates of clini-

cal malaria episodes decline explicitly due to clinical immunity, in contrast with the previous

implementation which did not specify whether these declines were due to immunity against

disease or against infection. Infected subjects thus move to the asymptomatic compartment A
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if they do not develop clinical malaria upon infection. More formally, susceptible individuals

Si,j(a) become infected but asymptomatic Ai,j(a) at rate xj(1−σ(i))λ(a). Individuals with asymp-

tomatic infections from group j, age a and who experienced i past clinical malaria attacks (Ai,

j(a)) can eventually progress to their ith new clinical attack, at rate xjσ(i)λ(a), or recover and

become susceptible again at rate γ0. The compartmental SIS model considering asymptomatic

infections is represented diagrammatically in Fig 8.

We assume that naïve individuals from compartment S0,j(a) cannot remain asymptomatic

once infected for the first time, since they have not yet developed partial immunity. Indeed,

with acquired immunity modelled by an exponential function (Eq 2), we have for naïve indi-

viduals σ(0) = 1. Therefore, the probability of naïve individuals becoming infected but asymp-

tomatic is 0 (xj.0.λ(a)).

Introducing asymptomatic compartments (A) to the model does not change the dynamics

of symptomatic infections, which are represented by our empirical morbidity data. With the

assumptions described above, both susceptible and infected but asymptomatic individuals are

at risk of symptomatic infection; therefore, the incidence of clinical malaria and the frequency

distribution of clinical cases per person remain the same for both models. We thus apply the

same parameters estimated in the first model (parameter estimation process is fully described

in S1 File), but can now distinguish uninfected and susceptible individuals from those who are

infected but remain asymptomatic, according to the recovery rate γ0.

Asymptomatic parasite carriers, duration of infection and the infectious

reservoir

We simulated several scenarios to address the relative contribution of asymptomatic parasite

carriers to the overall burden of infection and onwards transmission in the community. First,

we assume individuals with asymptomatic infections to be 2, 10 and 30 times less infectious to

mosquitoes than individuals with symptomatic infections (relative infectiousness [RI] of 1/2,

1/10 and 1/30, respectively). Empirical RI estimates vary widely according to the average game-

tocyte density [43] and are close to 1/2 for microscopy-detected asymptomatic P. vivax infec-

tions in Ethiopia [44] but range from 1/14 to 1/29 for asymptomatic infections in Colombia

and Brazil that can be detected only by molecular methods [45, 46].

Next, we assume that, on average, symptomatic infections can be detected by laboratory

methods during 4, 8 and 12 days. Symptomatic infections are curtailed by treatment and their

Fig 8. Susceptible-infected-susceptible (SIS) compartmental model representing the dynamics of malaria in a

heterogeneous host population considering asymptomatic infections. The compartments correspond to the

following epidemiological classes: Si,j represents susceptible individuals from risk group j (1 = low-risk [LR]; 2 = high-

risk [HR]) who have experienced i clinical malaria attacks; Ii,j represents individuals with symptomatic infection from

risk group j who are currently experiencing their ith clinical malaria attack; Ai,j represents individuals with

asymptomatic infections from risk group j with i past clinical malaria attacks. Individuals experience malaria episodes

due to an age-dependent force of infection λ(a) modified by a risk factor xj, and a partial immunity weight σ(i).
Individuals from compartments I and A recover and become susceptible again at rates γ and γ0, respectively.

https://doi.org/10.1371/journal.pcbi.1007377.g008
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average length primarily depends on: (a) the duration of the patent but subclinical period that

precedes full-blown disease manifestations, which remains elusive; (b) the mean time from the

appearance of symptoms to the introduction of chloroquine (CQ)-primaquine (PQ) treatment

(2.7 days in our population [47]), and (c) the mean P. vivax clearance time following CQ-PQ

treatment (1.9 day in our population; [47]). We thus divided the proportion of individuals

within the infected (I) compartments by 7 (= 28/4), 3.5 (28/8) or 2.3 (28/12) to represent the

prevalence of symptomatic blood-stage infections that can be detected by laboratory methods

during the subject’s 28-day stay in the I compartments.

We further assume that asymptomatic blood-stage infections undetected by routine surveil-

lance and left untreated can last between 30 and 180 days. Empirical evidence is rather limited

in this area and the duration is clearly context-specific. Once detected by microscopy, asymp-

tomatic P. vivax infections in 4 years-old Papua New Guinean children lasted on average 15

days [48], but the time elapsed before blood-stage parasite detection has not been measured. If

asymptomatic P. vivax infections were first sampled at a random time point during their tra-

jectory, the time to parasite clearance after detection (15 days) is expected to equal, on average,

the time elapsed before parasite detection, giving a total duration of 30 days. Here we simulate

scenarios with asymptomatic P. vivax infections between 30 and 180 days, which corresponds

to the median duration of asymptomatic P. vivax infections in a cohort study in Vietnam [49].

Finally, we consider the duration of infectiousness to equal the total duration of blood-stage

infection in both symptomatic and asymptomatic carriers, under the assumption that virtually

all blood-stage P. vivax infections comprise mature gametocytes [22,50]. Empirical data from

Brazil show that vivax malaria patients become little infectious within 10 hours of CQ-PQ

treatment [51], but untreated asymptomatic carriers of subpatent P. vivax parasitemia may

remain infectious for up to 2 months after parasite detection [52].

Supporting information

S1 File. Parameter estimation process.
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