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Abstract—In this work, the problem of resilient nonlinear
control for cyber-physical systems over attacked networks is
studied. The motivation for this research comes from growing
applications that demand the secure control of cyber-physical
systems in industry 4.0. The nonlinear physical system considered
can be attacked by changing the temporal characteristics of
the network, causing fixed time or time-varying delays and
changing the orders of received packets. The systems under
attack can be destabilized if the controller is not designed to
be robust with an adversarial attack. In order to cope with
nonlinearity of the physical system, a Nonlinear Generalized
Minimum Variance (NGMV) controller and a modified Kalman
estimator are derived. A worst-case controller is presented for
fixed-time delay. In the situations of time-varying delays and
out-of-order transmissions, an opportunistic estimator and a
resilient controller are designed through an on-line algorithm
in the sense that it is calculated by using the information
in the received packets immediately. The ability of use the
received information immediately leads to the improvement of
the controller’s performance. Simulation results are provided to
show the applicability and performance of control law developed.

Index Terms—cyber-physical systems, delayed and out-of-
order packets, nonlinear generalized minimum variance con-
troller, worst-case estimation

I. INTRODUCTION

A Cyber-Physical System (CPS) is a system which tightly
integrates the computation, communication and physical con-
trol of plants [1]. The combination of physical system dy-
namics, software dynamics, and communications poses many
challenges. The traditional control problem involves designing
a robust and stable control law that provides best performance.
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The requirements change markedly when the total system
including communications and networking are considered.

Security and resilience are critical issues of modern control
systems that are subject to exogenous disturbances and open to
random adversarial attacks or events. This realization leads to
the emergence of new security challenges for control systems
[2], [3], [4] that are different from traditional security prob-
lems. A Q-learning based optimal controller has been proposed
which absorbs the cyber system states into the physical system
model to derive a controller that can accommodate attacks
using a zero sum game problem formulation [5]. A novel
optimal control solution of the problem is presented below that
accounts for the possible attacks and events, using a relatively
simple control solution.

A typical security threat might involve the signal transmis-
sion, in a wireless networked control system, through delayed
and out-of-order sensor communications [6]. Such delays
and out-of-order transmission might be caused by network
congestion, malicious relay nodes or poor connectivity in
the network, intentionally delaying messages [7], [8]. This
attack is called packet scheduling attacks in [9], when applied
in the communication channel between the multiple sensors
and the controller. In this work to prevent an adversary from
changing the information of the packets, it was assumed that
cryptographic algorithms could be used by all the network
nodes to encrypt, decrypt and authenticate packets.

In classic control design the effects of delayed and missing
measurements of data, has been considered from many aspects
[10], [11]. There has been a number of papers on the effects
of time delays, and data loss, on control systems after the
introduction of NCS [12], [13], [14], [15], [16]. However, these
approaches are not effective for CPSs with packet scheduling
attacks for two reasons:

1) A fixed delay cannot be adaptable when there is actually
no time delay in the real communication;

2) These methods may lose a lot of data when the sensors
are sending out-of-order data.

Other work investigates the state estimation problem under
out-of-order measurements [17], [18], [19] but the control of
a physical system is not considered. Most of the effort for
protecting CPSs has been on the reliability [20], but there is a
growing concern for security under the malicious cyber-attacks
[21], [22], [23], [24], [9].

It has been shown in [21] that the dynamic performance of
frequency control in a power system is adversely affected by
the communication delays. A stabilizing controller for smart
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Fig. 1. A closed-loop single controller of cyber-physical systems with attacks
on the network. A delay m affects sensor measurement and a delay k affects
the control input

grid systems under severe fault or malfunction of protection
devices was described in [22]. An adaptive framework for
the control design of CPS in the presence of simultaneous
adversarial sensor and actuator attacks was developed in
[23]. It has been shown in [24] that process resilience to
cyber-physical attacks can be improved through process-aware
security analysis. A robust output feedback Linear-Quadratic-
Gaussian (LQG) controller which is resilient to the packet
scheduling attacks in networked control systems was presented
in [9]. The LQG framework has been applied broadly for
the security control of CPSs or networks, for example [25],
[26], [27], [28], [29]. The assumption was that the control
system is linear. However even approximately linear systems
are very rare in the real physical world [30]. Resilient
“nonlinear” control methodologies are therefore proposed in
the following.

In order to deal with out-of-order communication and time-
varying delays, an over-designed controller can be designed
where all the packets are stored in a buffer and the controller
will use the correct order after a fixed time delay. Obviously,
this fixed time delay approach cannot provide a best perfor-
mance of the controller. However, a controller can be designed
using a worst-case control framework, as in [9] which assumed
a linear system description.

The contribution of this paper may now be summarized.
To achieve a better performance for the CPS under network
packet scheduling attacks, an opportunistic design is applied
to the nonlinear physical systems by appropriate choice of
cost-function and system description. The approach uses a
control algorithm that can accommodate non-linear systems
and is relatively simple. Assuming a pre-defined operator
equation has a stable inverse, the nonlinear system can be
stabilized and optimized. The system can be represented by a
state-dependent state-space model, a linear parameter varying
model, transfer-operators, neural networks or even nonlinear
function look-up tables. An opportunistic estimator and a
resilient controller are designed using an on-line algorithm.
The estimation and control performance of the observer-based
controller is improved by implementing the online computing
algorithm which is aware of possible attacks because of the
system definition.

II. PROBLEM STATEMENT

A. Types of packet scheduling attacks

A networked CPS with a closed-loop single controller is
illustrated in Fig1. The packet scheduling attacks try to change
the temporal characteristics of the network. Therefore, sensor
measurements data is transmitted through a network which has
a delay of m > 0 in each of packets [31]. The control input
data is delayed by k > 0 during the network transmission
to the actuator. The delay is caused by the attacker’s actions
including network congestions, poor network connectivity or
a malicious relay delaying data delivery. There are three
attacker’s scenarios with different effects that are discussed
in this paper. They are: a fixed delay to the network, some
loss of the packets and out-of-order packets.

Remark 2.1: The focus here is on resilient control under
attack, not the behavior of the attacker. Therefore, the behavior
of the attacker is not modeled. The attention is only on the
effect e.g. a fixed delay, loss of the packets, or out-of-order
packets. It is also assumed the attacker’s behavior has to be
kept stealthy and relative "subtle". In other work, for example
[32], the model of the attacker is given. Based on this model,
the attacker can even identify the optimal time to launch an
attack and drive the system to an unsafe state. �

The output side scenarios are shown in Fig.2. The input side
should have the same scenarios, however for simplicity assume
the input side only has the fixed delay situation. Therefore, the
focus of this paper is on the attacker’s effect on the sensor
measurements. In what follows, the three types of packet
scheduling attacks for nonlinear systems are considered.

B. Problem Formulation

Consider the CPS shown in Fig.1, where the communication
link connecting the sensor and the controller can be attacked.
In order to restrict the capabilities of the attacker, the following
assumption will be made:

Assumption 2.1: It is assumed that the attacker is able to
generate time-varying delays. However, a packet can only be
delayed no more than τ∗ time units.

This assumption is not restrictive because the attacker has
to be kept stealthy then he will not delay a packet by a very
long time.

The physical plant is described by a nonlinear discrete-time
system

x(t+ 1) = f(x(t), u(t− k), d(t))
y(t+ 1) = g(αtx(t), v(t))

(1)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control with
m ≤ n. The disturbances d(t) and measurement noise v(t)
are independent zero-mean random vectors. It was assumed
that input side only have the fixed delay, then u(t−k) is used
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Fig. 2. An adversarial attack affecting packet delivery scenarios from sensor
to controller transmissions.

to define the fixed k time unit delay in the input side. While
the sensor measurement may have out-of-order communication
and time-varying delays defined by the parameter αt:

αt =


0 if there is no packet recieved at time t
1 if the packet is transmitted correctly

at time t
z−mt if the packet is delayed by mt time unit

(2)
where mt ∈ N is a varying time delay caused by the network
attacker.

The objective is to design an optimal controller which is
resilient to the packet scheduling attack. The behavior of
the attacker, i.e. preventing the transmission of the packet,
or changing the order of the packets, is aimed at preventing
the controller observing the exact state. The control strategy
must therefore be robust to the worst case disturbance that
is compatible with the received sequence of observations.
The general framework in [33] is followed to design such
a feedback NGMV controller where the cost function J is
defined in a minimum variance sense. The optimal NGMV
control problem can be presented as the minimization of signal
{ϕc}:

ϕc = Pce(t) + (Fcu)(t) (3)

where e(t) defines the error signal of the system (1). The
signal {ϕc} includes an error signal dynamic cost weighting
operator: Pc(z

−1), described by a linear state-space subsystem
and a nonlinear dynamic control costing operator (Fcu)(t).
Choosing the dynamic weightings is critical to the design of
the system; normally Pc is low-pass while Fc is high-pass.
We define the cost function J in terms of the signal {ϕc} as

J = E{ϕT
c (t)ϕc(t)} = E{trace{ϕT

c (t)ϕc(t)}} (4)

where E{·} denotes the expectation operator.
The resilient control design can be split into two parts:

firstly an observer which estimates the worst possible state,
using the sequence of available inputs and output signals, has
to be designed; secondly a nonlinear controller which uses
the estimated state has to be derived. From above procedure,
the worst case state estimator can be described as follows.
Whenever an out-of-order packet is available to the estimator,
it starts by reordering the sequences of previous N messages,
calculates the worst case disturbance which is compatible
with the available information, finds the corresponding worst
case state estimate. The nonlinear controller can be computed
immediately the estimated state is available. The details about
how to construct the worst case observer and the nonlinear
controller under the specified network attack are discussed in
the next two sections.

III. NON-LINEAR CONTROLLER DESIGN

In order to design the output feedback controller for the pro-
posed CPSs, we consider the physical system has a nonlinear
plant in a more general form than the system (1). In addition to
the nonlinear physical plant model, defined in (1), it is assumed
that the system also includes a disturbance model, a reference
model and a linear model. The disturbance and reference
signals are assumed to have linear forms. This assumption
is not very restrictive, as the models of the disturbance and
references are only approximations in most applications.

A. A general nonlinear model of physical system

A general form for the discrete-time system including
the nonlinear physical plant and the linear disturbance and
reference models, is described in Fig. 3. The plant model
includes a general non-linear model W1k, which is assumed
to be finite gain stable. The output of the nonlinear block is
assumed to feed a linear subsystem, denoted by W0k, which
can be open-loop unstable. If such a block is not present,
then it can be set equal to the identity. The disturbance and
reference models are assumed to be represented by linear
subsystems.The measurement disturbance defined as {v(t)}
can be the attack action in the network. Without loss of
generality, it is assumed that the zero-mean, white noise
signals {ξ0} and {ξd} have identity covariance matrices. It is
not necessary to specify the distribution of the noise sources,
because of the special structure of the system which leads
to a prediction equation, which is dependent on the "linear"
disturbance and reference models. The signals in Fig. 3 are
shown as follows:

• Error signal: e(t) = r(t)− y(t)
• Plant output: y(t) = d(t) + (Wu)(t)
• Reference: r(t) = Wrω(t)
• Output disturbance: d(t) = Wdξd(t)
• Observations signal:o(t) = y(t) + v(t)
• Disturbed error signal: e0(t) = r(t)− o(t)

The system has separate reference and disturbance models
associated with each set of delayed outputs. These subsystems
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Fig. 3. Nonlinear, linear, reference, error weighting and disturbance sub-
models

are therefore assumed to be in block diagonal form. State-
space matrix system models and nonlinear operator models
may be listed as follows:

• Reference model:

xr(t+ 1) = Arxr(t) +Brω(t) (5)

r(t) = Crxr(t) (6)

where xr(t) ∈ Rnr , ω(t) is the reference signal .
• Disturbance model:

xd(t+ 1) = Adxd(t) +Ddξd(t) (7)

d(t) = Cdxd(t) (8)

where xd(t) ∈ Rnd .
• Linear plant:

x0(t+ 1) = A0x0(t) + z−kB0u0(t) +D0ξ0(t)(9)

y0(t) = C0x0(t) + z−kE0u0(t) (10)

W0(z
−1) = C0(zI −A0)

−1z−kB0 + z−kE0 (11)

where x0(t) ∈ Rn0 .
• Error weighting:

xp(t+ 1) = Apxp(t) +Bpe(t) (12)

yp(t) = Cpxp(t) + Epe(t) (13)

where xp(t) ∈ Rnp and

e(t) = Crxr(t)−Cdxd(t)−C0x0(t)−z−kE0u0(t) (14)

• Nonlinear model: the total plant model can be described
as

W(t) = z−kWk(t) = z−kW0kW1k(t) (15)

z−k denotes the input delay operator caused by the
attacks of the network between controller and the actuator
shown in Fig 1 in the control paths and note that this
operator commutes with others which may be a problem
for time varying operators or LPV.

• Combined state-space model: By combining the linear
systems in this section (except (15)), the augmented state
equations for the total system are obtained as

x(t+ 1) = Ax(t) +Bu0(t− k) +Dξ(t) (16)

y(t) = Cx(t) + Eu0(t− k) (17)

yp(t) = Cϕx(t) + Eϕu0(t− k) (18)

e0(t) = Cex(t)− z−kE0u0(t)− v(t) (19)

where x(t) = [ xT
0 xT

d xT
r xT

p ]T and x(t) ∈
Rn0+nd+nr+np . Let n = n0 + nd + nr + np then
x(t) ∈ Rn. A, B, Cϕ, Eϕ and Ce are defined accordingly,
see [34] for details.

Let Ψ = (zI − A)−1 define the resolvent operator, and
the transfer operator form of the linear subsystem W0k =
E0 + CΨB = E0 − CeΨB.

Note that in (15) the linear system W0k is represented
by a general state-space model described in (9)-(11), but the
nonlinear system is not necessarily assumed to be available in
a known equation form. An operator W1k is therefore used to
describe the "black-box" nonlinear system. According to [33],
W1k can be a very general nonlinear operator, which could
involve state-dependent state-space models, transfer operators,
neural networks or even nonlinear function look-up tables.
Also, it should be noted that the the error signal and noise e0
is a function of x(t) and v(t). These both include uncertain
signals/parameters that can be treated as being due to the
action of the attacker.

B. NGMV control
Consider the equation (3) again, the control signal costing

is defined to have the following form:

(Fcu)(t) = z−k(Fcku)(t) (20)

It is assumed that the control weighting operator Fck is full
rank and invertible. In the set of channels with delay k steps,
the control signal affects the outputs ϕc(t) at least k steps
later. The expression for ϕc(t) after a k -step delay can be
expressed using (3) as

ϕc(t+ k) = Pce(t+ k) + (Fcku)(t)

= Cϕx(t+ k) + Eϕu0(t) + (Fcku)(t)
(21)

where u0 = (W1ku)(t), so that:

ϕc(t+ k) = Cϕx(t+ k) + Eϕ(W1ku)(t) + (Fcku)(t) (22)

Assumption 3.1: It will be assumed that the nonlinear sub-
system W1k is stable, any unstable models in the plant are
only appeared in the linear subsystem W0k.

Theorem 3.1: Under the assumption 3.1, the optimal con-
trol input signal u (shown in Fig. 4), when the cost function
J in equation (4) is minimized in a variance sense, can be
obtained as:

u(t) = −(Fck + (CϕT0(k, z
−1)B + Eϕ)W1k)

−1CϕA
kx̂(t|t)

(23)
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Proof: The variance J = {ϕT
c (t)ϕc(t)} in equation (4) can

be presented in terms of the prediction ϕ̂c(t + k|t) with the
prediction error ϕ̃c(t+ k|t). From the orthogonality principle:

J = E{ϕ̂c
T
(t+k|t)ϕ̂c(t+k|t)}+E{ϕ̃c

T
(t+k|t)ϕ̃c(t+k|t)}

(24)
The prediction error ϕ̃c(t + k|t) has no relation with the
control signals, so the minimization of the cost J is to set
the prediction ϕ̂c(t+ k|t) = 0. Considering equation (22), the
optimal control signal is obtained by solving the following
equation:

ϕ̂c(t+ k|t) = Cϕx̂(t+ k|t) + Eϕ(W1ku)(t) + (Fcku)(t)

= 0
(25)

where x̂(t+ k|t) is k-steps ahead of the state estimates of the
combined system in (16). It has the following forms:

x̂(t+ k|t) = Akx̂(t|t) + T0(k, z
−1)Bu0(t) (26)

where
T0(k, z

−1) = (I −Akz−k)Ψ (27)

Hence, the equation (25) is written as follows:

Cϕ(A
kx̂(t|t)+T0(k, z

−1)Bu0(t))+(EϕW1k+Fck)u(t) = 0
(28)

In Fig.3, it is clear that the input in (28) u0 = (W1ku)(t) then
the optimal u(t) can be expressed as in (23) �

Another expression of T0(k, z
−1) is as follows:

T0(k, z
−1) = z−1(I + z−1A+ z−2A2 + ...+ z−(k−1)Ak−1)

(29)
In order to simplify notation, T0 is used to define T0(k, z

−1).

C. Modified Kalman filter state estimation equations

In Theorem 3.1, the state estimation of x̂(t|t) can be
obtained via a modified Kalman filter. Before introducing the
Kalman filtering equations for the system, a parameter can be
introduced, according to whether the packet is received or not.
The parameter αt is simplified to the packet loss parameter
γt ∈ {0, 1} , where

γt =

{
1 if there is a packet received at time t
0 otherwise

Although the optimal control problem includes the non-
linear input subsystem, the state estimator is linear. The

Kalman filter acts on the plant observations, which include
the effects of both noise and control signal inputs. The effect
of control action can be removed easily. This enables the
predicted value of state due to stochastic inputs to be obtained
and then the effect of the known control inputs can be
recovered by adding an appropriate term. To demonstrate these
results consider the standard Kalman system and estimator
structure, but modified to take account of the special explicit
delay structure of the system.
Plant model:

x(t+ 1) = Ax(t) + z−kBu0(t) +Dξ(t) (30)

o(t) = Cx(t) + z−kE0u0(t) (31)

Error signal:

e0(t) = r(t)− y(t)− v(t) = r(t)− Cx(t)− z−kE0u0(t)− v(t)

= Cex(t)− z−kE0u0(t)− v(t)
(32)

Predictor-corrector form estimator:

x̂(t+ 1|t) = Ax̂(t|t) + z−kBu0(t) (Predictor) (33)

x̂(t+ 1|t+ 1) = x(t+ 1|t) + γtKf (e0(t+1)− ê0(t+ 1|t))
(Corrector)

(34)

Note that ê0 = Cex(t+ 1|t)− z−kE0u0(t+ 1)

x̂(t+ 1|t+ 1) = x̂(t+ 1|t) + γtKf (e0(t+ 1)

− Cex̂(t+ 1|t) + z−kE0u0(t+ 1))
(35)

x̂(t+ 1|t+ 1) = (A− γtKfCeA)x̂(t|t) + z−kBu0(t)

+ γtKf (e0(t+ 1)− Cez
−kBu0(t) + z−kE0u0(t+ 1))

(36)

Let z−1x̂(t+ 1|t+ 1) = x̂(t|t) then x̂(t|t) is as follows:

x̂(t|t) = (I − z−1(A− γtKfCeA))
−1(z−k−1Bu0(t)

+ γtKf (e0(t) + z−kE0u0(t)− Cez
−k−1Bu0(t))

(37)

The k steps ahead prediction due to the stochastic inputs can be
written as: Akx(t|t) and the total predicted output, assuming
u0 is known k steps ahead, is given as:

x̂(t+ k|t) = Akx̂(t|t) +Ak−1Bu0(t− k) +Ak−2Bu0(t− k + 1)

+ ...+ABu0(t− 2) +Bu0(t− 1)
(38)

It can be seen that equations (38) and (26) are the same with
the function T0 defined in (27).

D. Stability

In order to analyze the stability of the proposed controller,
a different expression of (23) is given firstly.

u(t) = −F−1
ck (CϕA

kx̂(t|t) + (CϕT0B + Eϕ)× (W1ku)(t))
(39)

According to γt = 0 or 1, x̂(t|t) has different expressions.
(1)γt = 0

In this case, if the contribution of the control signal is not



considered, then the Kalman filter output, when the effect of
control action is removed, has the form:

x̂dr(t|t) = x̂(t|t)− (zI −A)−1Bu0(t− k) (40)

Recalling Ψ = (zI −A)−1, we have the predicted output:

x̂(t+ k|t) = Akx̂dr(t|t) + ΨBu0(t) (41)

and the prediction of ϕc

ϕ̂c(t+ k|t) = Cϕ(A
kx̂dr(t|t) + ΨBu0(t)) + ((EϕW1k+

Fck)u)(t)

= CϕA
kx̂dr(t|t) + (Eϕ + CϕΨB)W1ku(t) + Fcku(t)

(42)

Note that PcW0k = Eϕ + CϕΨB

ϕ̂c(t+ k|t) = CϕA
kx̂dr(t|t) + (PcWk + Fck)u(t) (43)

Let ϕ̂c(t+ k|t) = 0, the optimal control has the form:

u(t) = −(PcWk + Fck)
−1CϕA

kx̂dr(t|t) (44)

If the observations are null for a period the response of x̂dr(t|t)
will be due to initial condition response from the point at
which the measurements are lost.

(2)γt = 1

x̂(t|t) =(I − z−1(A−KfCeA))
−1(z−k−1Bu0(t)

+Kf (e0(t) + z−kE0u0(t)− Cez
−k−1Bu0(t)))

(45)

According to (39), the control signal can be written as:

u(t) = −F−1
ck (CϕA

k(I − z−1(A−KfCeA))−1

(z−k−1Bu0(t) +Kf (e0(t) + z−kE0u0(t)−
Cez

−k−1Bu0(t))) + (CϕT0B + Eϕ)× (W1ku)(t))
(46)

Recall T0 = (I − Akz−k)Ψ,W0k = E0 − CeΨB, CϕΨB +
Eϕ = −PcW0k and x(t) = z−kΨBu0 + ΨDξ(t), the above
equation can be written as:

u(t) = −F−1
ck (CϕA

k(I − z−1(A−KfCeA))−1Kf

(r(t)− CΨDξ(t)− v(t)))− PcW0ku0(t)
(47)

In order to analyze the stability, it is assumed that the
exogenous inputs, except the reference signal r(t), are null.
Then the optimal control signal can be written as:

u(t) = (PcWk −Fck)
−1(CϕA

k(I − z−1(A

−KfCeA))
−1Kfr(t)

(48)

According to [34], the series connections of two finite gain
M2 stable systems is also M2 stable. It can be seen that in
either case (44) or (48) the condition of system stability is
that the operator (PcWk − Fck)

−1 is finite gain M2 stable.
This can be achieved by choosing the weightings that ensure
the existence of the stable non-linear operator inverse. It is
therefore an assumption that the weightings are chosen to
satisfy this requirement which in linear system terms is to
assume the operator (PcWk −Fck) is minimum-phase.

IV. RESILIENT CONTROLLER DESIGN

Since the packet scheduling attacks have different types
shown in Fig 2, the worst-case control strategies are need-
ed. For whatever types of attacks, the worst-case estimation
process may take the following steps:

• store all the past received data
• use all of the available data to compute the worst-case

uncertain parameters
• estimate the worst-case system state
• upgrade the control input
• apply the control action to the system and repeat from

step one
In the three types of packet scheduling attacks, the first type
where the system is attacked under fixed delay is relative
simple. Therefore, the optimal control under fixed delay is
introduced firstly.

A. Optimal control under fixed delay

Consider a piece of sensor’s data with fixed delay mt = τ
(τ is a constant), whose timescale is defined by t ∈ [0, N ],
where N is a natural number. The time delay is fixed at mt =
τ and N − τ ≥ 1, that means from time 0 to N only up
to N − τ is transmitted to the controller, while in the next
t ∈ [N−τ+1, N ] time steps there is no information available
to the controller. For example, Fig. 2 (a) shows a transmission
under the fixed time delay, where N = 5, τ = 4, there are two
situations:

• (a) from initial time to N − τ = 1 the controller has
received information normally and the observation is
available. The control design for this period is the same
as the no time delay format.

• (b) from time N − τ +1 = 2 to N = 5 the controller has
no information received and no observation is available.
The control design for this period should follow the
estimation under the worst-case.

From above analysis, we have the following theorem that can
solve the optimal control problem under fixed delay.

Assumption 4.1: Given a piece of sensor’s data with fixed
time delay mt = τ , whose timescale is defined by t ∈ [0, N ].
In order to guarantee that there are some packets are trans-
mitted correctly, it is assumed that the fixed delay time has to
satisfy N − τ ≥ 1. Therefore the upper bound of time delay
in assumption 2.1 has satisfy τ∗ ≤ N − 1.

Theorem 4.1: Consider a nonlinear plant defined in
sectionIII-A and a fixed delay mt = τ under the assumption
4.1. If the operator (PcWk −Fck)

−1 is finite-gain stable, the
optimal controller can be designed where:

1) if t ∈ [0, N − τ ], then γt = 1 and the estimator is
closed-loop and takes the form (36);

2) if t ∈ [N − τ + 1, N ], then γt = 0 and the estimator is
open-loop and takes the form (33);

3) feedback controller (23) is for all t ∈ [0, N ].



Proof: Under the assumption 4.1, the proof is as follows.
1) from assumption 4.1, during the period t ∈ [0, N−τ ] all

the data are transmitted correctly, therefore the optimal
control problem is a normal state feedback NGMV
control problem.

2) otherwise during t ∈ [N − τ + 1, N ], there are no
transmissions arrived, the optimal control problem is an
open-loop NGMV control problem

3) under the assumption (PcWk − Fck)
−1 is finite-gain

stable, controller (23) can be either closed-loop (γt = 1)
or open-loop (γt = 0).

�
Remark 4.1: Theorem 4.1 shows that if there is a stable

solution for NGMV control, there is always an estimator
to take either the closed-loop form or the worst-case open-
loop form and the controller can be updated based on these
estimation results. For the attack under time varying delay
or out-of-order situations it is still possible to use Theorem
4.1 by picking up an artificial fixed delay τ before the time-
varying delay or out-of-order appears. This involves using the
open-loop estimation during t ∈ [N − τ + 1, N ] for whatever
information is received, or not, during t ∈ [N − τ + 1, N ]. �

However, for the time-varying delay or out-of-order cases
the forced open-loop estimation is conservative and the re-
sulting controller is over-designed. Hence, an opportunistic
estimator and a resilient controller for time-varying delay and
out-of-order packets is derived in the next section.

B. Optimal control under time-varying delay and out-of-order

packets

The packet scheduling attacks actually affect the temporal
order of the sensor data at each time instant. The delay time
mt can be time-varying. This has motivated the design of
a dynamic estimator that take into account the history of
the packet losses or mixed orders. Under the influence of
these attacks, the dynamic updated estimator and the optimal
controller should optimize the worst-case performance.

The following sets needed for the algorithm to be defined:
• The original number of the current received packet

R(t) =

{
{nj

y} if there is a packet received at time t
ϕ otherwise

where nj
y is a random number in {0, 1..., N} and

{0, 1, ..., N} is the sequnces of the sensor sending out
data. If mitiple packets are recieved at the same time
insterval, R(t) is the set of all the number nj

y . The set
of orignal numbers received by the controller until time
m > 0 is defined as Rm

0 = {R(t)|t ∈ [0,m]};
• The current measurement received by the controller

ȳ(t) =

{
{y(nj

y)} if R(t) = nj
y

ϕ if R(t) = ϕ

The set of all measurements recieved by the controller by
time m is Ȳm

0 = {ȳ(t)|t ∈ [0,m]};

• The control sequence {u(0), ..., u(m − 1)} and the s-
tate estimation sequence {x̂(0), ..., x̂(m)} are defined as
Ūm−1
0 and X̄m

0 respectively.

The opportunistic resilient controller can be implemented
by following algorithm. In order to reduce the computational
effort, the following conditions are assumed.

Assumption 4.2: It is assumed that there is a time period
N − τ ≥ 1(τ > 0) that for t ∈ [0, N − τ ] all the information
is transmitted correctly eg. αt = 1. Therefore the upper bound
of time delay in assumption 2.1 has satisfy τ∗ ≤ N − 1.

Then our focus in following algorithm will be given on
the time period [N − τ + 1, N ] where the time-varying
delay and out-of-order transmissions may appear. The number
of packets received at each time interval is defined as nj

y .
Buffers Rm

0 ,Ȳm
0 and Ūm−1

0 of appropriate sizes are defined
for storing the information. In addition buffers X̄m

0 is created
to store the state-estimate x̂(t). The values of all buffers are
stored in ascending order of their transmission time. When
a measurement is unavailable to the controller at a particular
time t, then its buffer value is empty. The Algorithm 4.1 below
describes the steps for an implementation of the proposed
resilient controller.

Algorithm 4.1:
1.Initialize RN−τ+1

0 , ȲN−τ+1
0 , ŪN−τ

0 , X̄N−τ
0

based on the real system paramerters
2.for t = (N − τ) : N
3. R(t+ 1)← according to packets received at [t, t+ 1]
4. if R(t+ 1) = ϕ
5. γt+1 := 0
6. x̂(t+ 1|t+ 1)←(33)
7. ȳ(t+ 1) := ϕ
8. else
9. update Ȳt+1

0 according to ȳ(R(t+ 1))
10. i = minjR(t+ 1)
11. x̂(i− 1|i− 1) := X̄ (i− 1)
12. for l = i− 1 : t
13. u(l) := Ū(l)
14. ȳ(l) := Ȳ(l)
15. if ȳ(l) = ϕ
16. γl = 0
17. x̂(l + 1|l + 1)←(33)
18. else
19. γl = 1
20. x̂(l + 1|l + 1)←(36)
21. end if
22. update X̄ l+1

0

23. end for
24. end if
25. u(t+ 1)←(23)
26. update Ū t+1

0

27.end for

Theorem 4.2: If the assumptions in assumption 4.2 and
theorem 4.1 hold, the opportunistic estimator and the resilient
controller under the varying-time delay or out-of-order trans-



missions then can be designed by:

1) if t ∈ [0, N − τ ], then αt = 1 and the estimator is
closed-loop and takes the form (36);

2) if t ∈ [N − τ + 1, N ], then follow the algorithm 4.1;
3) feedback controller (23) is for all t ∈ [0, N ].

Proof: For t ∈ [0, N−τ ] all the measurements received and the
controller design is the same as in theorem 4.1. For t ∈ [N −
τ+1, N ], according to packet reception, the computation or re-
computation of the optimal controller is updated online using
the spirit of [35]. The controller is the same as the theorem
4.1, hence it is sufficient to prove that the estimator performed
in algorithm 4.1 generates the opportunistic state estimation
under the packet scheduling attack.

Let yi, i = 0, ..., N define the i−th output signal the sensor
sending out and ∆i is the delay time function of receiving
signal yi

∆i :

 = 0 if there is no time delay
≤ τ if there is a time delay
=∞ if the singal is missing

Define ηt(yi,∆i) as

ηt(yi,∆i) =

{
yi if t− i = ∆i

0 otherwise
(49)

For the CPS under the packet scheduling attack, at each time t
the observer records the received and their correct order. The
the output signal y(t) can be expressed as:

y(t) = {ηt(yi,∆i)}i=0,...N (50)

The algorithm lines 10-23 can be seen as on-line dynamic
multiple runs of the observer in theorem 4.1 over each
ηt(yi,∆i). Note there may be multiple packets received at
the same time interval, then the observer’s update should start
from the earliest sent out signal y(imin). Thus, the algorithm
4.1 generates the opportunistic state estimate, and the resilient
controller to the packet scheduling attack. �

V. ROTATIONAL LINK CONTROL PROBLEM

The proposed controller is applied to the control of a
rotational link shown in Fig.5. This is a common problem
in mechanisms. The example is rather artificial, since a real
CPS can be a much larger system. However, there are few
restrictions on the nonlinear plant, and the results of this work
can be extended to other larger CPSs.

This system can be viewed as a simplified robotic manipula-
tor with flexible joints. The controller communicates with the
system through a wireless network, therefore a cyber-physical
system is results. The motor torque should be controlled so that
the motor rotates through a specified angle, whilst stabilizing
vibration of the robot or mechanism arm. The rotational link
is a highly nonlinear system where a nonlinear controller
is required. A DC motor is used to rotate the link in the
vertical plane. The equilibrium condition is defined to be the
angle θ = π, where the arm is straight down. The objective
is to control the motor such that the link is stabilized at
some desired angles. That is, the torque T (t) is applied at

Fig. 5. Rotational Link

the rotational link so that the angular position θ follows a
desired trajectory θref . This system has one control input
u(t) = T (t) , which is the torque that accelerates the link, that
is generated by the motor [36]. The continuous-time dynamics
of the system follow as:

d

dt
=

[
θ(t)

θ̇(t)

]
=

[
θ̇(t)

mgL sin(θ(t)/J − cθ̇|θ|+ u(t))

]
(51)

Let angular position θ be taken as the first system state. The
continuous-time state-variables can then be defined as x1(t) =
θ and x2(t) = θ̇ , where x(t) = [x1(t), x2(t)]

T = [θ(t), θ̇(t)]T

The angle output y(t) = [1 0]x(t) and the approximate
discrete nonliear model can be obtained as:

x(t+ 1) =

[
1 Ts

TsmgL sin x1

Jx1
1− Tsc|x2|

]
x(t) +

[
0
Ts

]
(52)

A high sample rate is assumed with sample period Ts =
0.01. The numerical values for the parameters are m = 1, g =
9.81, L = 0.5, J = 0.25, c = 5. The cost weightings are:

Pc =
0.165− 0.155z−1 + 0.04z−2

1− 1.5z−1 + 0.5z−2
(53)

The control weighting is defined as:

Fck = −1(1 + 0.1z−1) (54)

In the simulations, simulation time T = 14 seconds. The
reference angular position is:

r(t) =

{
π 0 ≤ t ≤ 7
3
4π 7 ≤ t ≤ 14

The proposed controller is simulated with and without packet
scheduling attacks. The results are compared in Fig 6. The
black line is the system response when there is no attack. If
there are fixed delays with τ = 0.5s that happens at t = 1s and
t = 7s, an output of this over-designed estimator/controller (in
section IV-A)is shown by the green line. If we consider the
delay time and transmission orders are random, the output
of the proposed controller, defined by Algorithm 4.1 and
Theorem 4.2 is shown in the blue line. The performance has
been improved after using the proposed controller.

VI. CONCLUSIONS

A resilient controller for a cyber-physical system subject
to attacks has been presented for a rather general nonlinear
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physical plant. To treat the nonlinearity of the system, a
nonlinear generalized minimum variance controller and a
modified Kalman estimator have been derived. Three types of
packet scheduling attacks were considered namely fixed-time
delay, time-varying delay and out of-order transmissions and
these were treated differently. A worst-case controller for a
fixed-time delay has been designed. In the time-varying delay
and out-of-order transmissions situations, an opportunistic
estimator and a resilient controller have been designed. This
involved a dynamic by a dynamic algorithm 4.1, in the sense
that it is designed by using the information in the packets
just received immediately. The ability to immediately use the
information received brings an improvement in the control
performance.

The proposed controller has been evaluated in a nonlinear
rotational link system application, where a malicious node
introduced time-varying delay and out-of-order packet deliv-
ery. Simulation results demonstrate the performance of the
estimator and the robustness of the resilient controller.

In the future, the results are easy to extend to the case
where there are also attacks on the input side (between
the controller and the actuators). Clearly, as the attacks are
occurring randomly, the stochastic uncertainty that models
the unknown, and the unanticipated events, have to be taken
into consideration. These effects are included in the system
description and the optimal solution then accommodates these
special characteristics of cyber-physical systems. For the fu-
ture the Nonlinear Predictive Generalized Minimum Variance
(NPGMV) controller without black box term could be easy
to implement and solve the same problem. One can use
the prediction capability to handle attacks on the way. For
example, future disturbance knowledge can be used just like
future reference knowledge. Thus, if a future attack can be
modeled by a disturbance then the future knowledge is very
useful.
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