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Abstract—Thêo1 is a frequency stability statistic which is
similar to the Allan variance but can provide stability estimates at
longer averaging factors and with higher confidence. However,
the calculation of Thêo1 is significantly slower than the Allan
variance, particularly for large data sets, due to a worse compu-
tational complexity. A faster algorithm for calculating the ‘all-τ ’
version of Thêo1 is developed by identifying certain repeated
sums and removing them with a recurrence relation. The new
algorithm has a reduced computational complexity, equal to that
of the Allan variance. Computation time is reduced by orders of
magnitude for many datasets. The new, faster algorithm does
introduce an error due to accumulated floating point errors
in very large datasets. The error can be compensated for by
increasing the numerical precision used at critical steps. The
new algorithm can also be used to increase the speed of ThêoBr
and ThêoH which are more sophisticated statistics derived from
Thêo1.

Index Terms—Noise, Stability analysis, Frequency control,
Software, Theo1, TheoH.

I. INTRODUCTION

WHEN characterising a frequency source, it is necessary
to determine the amount and types of noise which de-

termine the frequency stability on different timescales. There
are many statistics used for this purpose, one of which is
the ‘theoretical variance #1’ (Thêo1) [1]. Compared to the
more commonly used Allan variance, Thêo1 has increased
confidence at long averaging times, and can be used to estimate
stability up to 50% longer averaging times. Thêo1 is also better
able to identify which type of ‘power-law’ noise is present [2],
[3]. These properties have allowed Thêo1 to be used for long-
running experiments where datasets cannot easily be extended
[4]. However, Thêo1 is slow to compute for large datasets,
as its computational complexity is O(N3) for a dataset of
N measurements. Similar statistics with O(N3) complexity
have been reduced to O(N2) complexity by the use of an
appropriate algorithm [5].

For a series of N time deviation points xi, each separated
by an interval τ0, Thêo1 can be defined [1] as

Thêo1(τ = 1.5kτ0, N) =
Tk

3(N − 2k)(kτ0)2
(1)

where 0 < k ≤ (N − 1)/2, the averaging time is τ and

Tk =

N−2k−1∑
i=0

k−1∑
δ=0

1

(k − δ)
[(xi − xi−δ+k) + (xi+2k − xi+δ+k)]2 (2)
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A naive implementation of this definition of Thêo1 will have
a complexity of O(N3) because there are ≈ N/2 values of
k for which to calculate Tk, each taking O(N2) operations
due to the nested sum in (2). This can make computation
prohibitively expensive for extremely large datasets or in
applications requiring low latency, such as measuring the
dynamic stability of an oscillator with a high data rate [6].

In some cases it is not necessary to calculate Thêo1 for
every value of k, sometimes called an ‘all-τ ’ calculation, and
it may be sufficient to only use k equal to powers of two.
However, the more sophisticated statistics ThêoBr and ThêoH
[7], which attempt to correct for bias in Thêo1 require the
calculation of Thêo1 for all k as a first step. There is a
technique called ‘fast TheoBr’ [8] which increases the speed of
this calculation by averaging points within the initial dataset to
reduce its size. However, for a fixed amount of averaging, the
speed increase is only a constant factor and does not change
the O(N3) complexity.

II. ALGORITHM

One way to produce a faster algorithm for Thêo1 is to
find a recurrence relation between parts of the outer sum,
which allows calculation of one term from the next without
performing the full inner sum. This is made difficult by the
term 1/(k − δ) which forces a different coefficient before
each terms as δ is incremented in the inner sum. However,
the definition of Tk can be rearranged to move this awkward
term outside the inner sum by swapping the order of the sums
and using the substitution v = k − δ, so that

Tk =

k∑
v=1

1

v
Ak,v (3)

where Ak,v is defined by

Ak,v =

N−2k−1∑
i=0

(xi − xi+v + xi+2k − xi+2k−v)
2 (4)

=

N−2k−1∑
i=0

(x2i + x2i+v + x2i+2k + x2i+2k−v

+ 2xixi+2k + 2xi+vxi+2k−v

− 2xixi+v − 2xixi+2k−v

− 2xi+vxi+2k − 2xi+2kxi+2k−v) .

(5)

Some of the expanded terms in (5) have similar forms, and
can be expressed in terms of new summations C(n), defined
as
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C
(1)
j =

j∑
i=0

x2i (6)

C
(2)
j =

N−j−1∑
i=0

xixi+j (7)

C
(3)
k,j =

N−k−1∑
i=k

xi−jxi+j (8)

C
(4)
k,j =

N−2k−1∑
i=0

xixi+j + xi+2kxi+2k−j . (9)

It can then be shown by substitution that

Ak,v = C
(1)
N−2k−1 + (C

(1)
N−2k−1+v − C

(1)
v−1)

+ (C
(1)
N−1 − C

(1)
2k−1) + (C

(1)
N−v−1 − C

(1)
2k−v−1)

+ 2(C
(2)
2k + C

(3)
k,k−v − C

(4)
k,v − C

(4)
k,2k−v) .

(10)

The calculation of Tk from the C(n) can be completed in
O(N2), so if the C(n) could all be calculated in O(N2) then
this would reduce the overall complexity of Thêo1 to O(N2).
For C(1,2) the definition is already ≤ O(N2), but it can also
be achieved for C(3,4) by using a recurrence relation between
consecutive terms to avoid the full sum in (8) and (9):

C
(3)
k,j =C

(3)
k−1,j − xk−1−jxk−1+j

− xN−k−jxN−k+j

, j < k

(11)

C
(4)
k,j =C

(4)
k−1,j − x2k−2−jx2k−2

− x2k−1−jx2k−1 − xN−2kxN−2k+j

− xN−2k+1xN−2k+1−j

, j < 2k − 1

(12)

This allows almost all values of C(3,4) to be calculated in a
recursive manner, the remaining values are

C
(3)
k,k =C

(2)
2k (13)

C
(4)
k,2k−1 =2C

(2)
2k−1 − x0x2k−1 − xN−2kxN−1 (14)

C
(4)
k,2k =2C

(2)
2k (15)

and so C(3,4) can be calculated in the required O(N2).
Because the recurrence relations are for an incremented k
value, the technique can only be used when calculating Tk
for all values of k.

In order to calculate Tk it is sufficient to calculate

C
(1)
j , 0 ≤ j ≤ N (16)

C
(2)
j , j = 2k, 2k − 1 (17)

C
(3)
k,j , 0 ≤ j ≤ k (18)

C
(4)
k,j , 0 ≤ j ≤ 2k (19)

so only these values need to be held in memory. The recursion
relations (11) and (12) can then be used to update C(3,4)

k,j to
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Fig. 1. The time taken by different methods of calculating Thêo1. Orange
circles show the naive method. Green ’x’ marks show the new algorithm using
a standard double precision floating point datatype. Purple ‘+’ marks show
the new algorithm using the int-128 datatype.

C
(3,4)
k+1,j in place, allowing calculation of Tk+1. The memory

requirement is only O(N). Specifically, it requires memory for
4N double precision values: N values for each of the input
array x and C(1,4), and N/2 values for each of C(3) and the
output array. The naive algorithm requires storage of 3N/2
values so this is a significant increase but is still only 32 MB
for a dataset with N = 106.

In order to calculate Thêo1, the algorithm can proceed as
follows:

1) Calculate C(1) using (6).
2) For each value of k from 0 to b(N − 1)/2c :

a) Calculate required values of C(2) using (7).
b) Add new values to C(3,4) using (13) to (15).
c) Update C(3,4) using (11) and (12).
d) Calculate Ak,v from the C(n) using (10).
e) Calculate Tk from Ak,v using (3).

An example implementation of the algorithm in C++ can
be found in appendix A.

III. ACCURACY

Whilst the new algorithm for Thêo1 is faster than the
naive approach, it has more opportunities for floating point
errors to accumulate. Equation (10) shows that terms of
similar magnitude are subtracted from each other, allowing
catastrophic cancellation to occur and leading to a loss of
precision. The size of each term in (10) is ≤

∑
x2 and

the size of the total is ∼ Tk, so the fractional error might
be expected to scale as ∼ 〈x2〉/Tk. Thêo1 is insensitive to
any offset or linear change in x, so these components can
be removed in order to reduce 〈x2〉 without ill-effect. This
prevents a significant drop in precision that could be caused
by a constant frequency or phase offset This change alone
is sufficient to prevent appreciable errors in most practical
situations. However, in some cases with large datasets and
where the long-term clock stability is dominated by frequency
drift the errors could grow large enough to be significant.
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Fig. 2. The maximum fractional error introduced by different methods of
calculating Thêo1, measured against the naive method. Green ‘x’ marks (blue
diamonds) indicate the standard double precision method with (without) any
linear component removed. Purple ‘+’ marks used the int-128 datatype for
increased accuracy. Results depend strongly on the type of noise simulated,
for this test white frequency noise with a linear frequency drift was used.

In order to fully mitigate the floating point error it is
necessary to use additional bits of precision. Whilst 128-bit
floating point types are available in some environments, they
are not generally supported in hardware and are therefore very
slow to use. In contrast, many 64-bit CPUs have hardware
support for multiplying two 64-bit integers into a 128-bit
integer. By re-scaling the data and converting it to a 64-bit
integer representation, this CPU instruction can be used to
calculate Thêo1 quickly without floating point errors. Terms
∝ x are stored as 64-bit integers, but terms ∝ x2 are stored
as 128-bit integers. In C or C++ the GCC int128 datatype
may be used with multiplications implemented as

i n t 6 4 t x1 , x2 ;
i n t 1 2 8 r e s u l t = ( i n t 1 2 8 ) x1 * x2 ;

The use of a larger data types does cause a speed reduction
of approximately 70%, possibly due to additional memory
overhead. The conversion between datatypes is O(N) and
takes negligible time in most cases.

The speed and fractional floating point error for the different
methods are shown in Figs. 1 and 2 respectively. The fractional
error was measured by comparing the value of Thêo1 as
calculated with the new algorithm to that calculated with the
naive algorithm. Due to the slow speed of the naive algorithm,
only points spaced at powers of two were compared, and the
maximum of these errors was taken. Fig. 2 should be taken
as indicative only as the details vary significantly depending
on the noise type of the simulated data, although the ‘int-128’
method had negligible error in all cases tested. To exaggerate
the errors seen, a white frequency noise with added linear
frequency drift was simulated. The linear drift was chosen
such that the frequency stability at the longest and shortest
averaging factors was approximately equal. A linear frequency
drift is particularly difficult for the simpler error reduction
method (removing any linear component to x) to deal with,

as the dominant x component is quadratic. Despite this, 1 to
2 orders of magnitude improvement was seen.

IV. CONCLUSION

Manipulating the definition of Thêo1 has led to an algorithm
that calculates the ‘all-τ ’ version with a reduced computational
complexity of O(N2). Although the new algorithm initially
lead to loss of precision, this is reduced by removing any
linear component in the dataset. In the cases where the error
is still significant, it is made negligible by using an int-128
datatype, at the cost of a ≈ 70% slowdown.

This algorithm makes the speed of Thêo1 (and ThêoBr
or ThêoH) calculations similar to other time-domain stability
statistics such as the Allan variance. The new algorithm can
more easily be used in low-latency applications such as char-
acterising oscillators using a high sample rate, and commercial
testing of oscillators and other sensors. It also makes the
use of dynamic Thêo statistics easier, with opportunities for
calculating statistics over multiple timescales simultaneously.
Further work could incorporate this algorithm into a dynamic
Thêo algorithm and be used to identify changes to clock
stability in real-time.

All data and code supporting this publication are openly
available from the University of Strathclyde Knowledge-
Base at https://doi.org/10.15129/4403d30e-4257-4a4a-817f-
f459e7465011.

APPENDIX A
EXAMPLE IMPLEMENTATION

/ *========================================
* C a l c u l a t e s Theo1 o f a g i v e n d a t a s e t .
* The d a t a s e t i s assumed t o be phase
* data , t a k e n a t u n i t t i m e i n c r e m e n t s .
* Any l i n e a r component t o t h e d a t a s e t i s
* removed as a f i r s t s t e p . Shou ld be
* c o m p i l e d w i t h −O3 − f f a s t −math .
*
* X = i n p u t d a t a s e t
* N = number o f e l e m e n t s i n X
* T = Theo1 o u t p u t
*
* Ben Lewis , U n i v e r s i t y o f S t r a t h c l y d e
*======================================* /

/ * Remove any l i n e a r p a r t o f t h e d a t a s e t * /
void r emoveLinea r ( double * X, i n t N){

double m i d p o i n t = ( ( double ) (N− 1 ) ) / 2 ;
long double sum1 = 0 ;
long double sum2 = 0 ;
f o r ( i n t i = 0 ; i < N; i ++){

sum1 += X[ i ] ;
sum2 += X[ i ] * ( i−m i d p o i n t ) ;

}
double a = sum1 /N;
double b = sum2 /N* 1 2 / ( ( double )N*N−1);



IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS AND FREQUENCY CONTROL 4

f o r ( i n t i = 0 ; i < N; i ++){
X[ i ] −= a + b *( i−m i d p o i n t ) ;

}
}

/ * The c o m p u t a t i o n a l r o u t i n e * /
void Theo1 ( double *X, double *T , i n t N){
/ / I n i t i a l i s e a r r a y s
i n t k max = (N−1 ) / 2 ;
double * C1 = new double [N ] ;
double * C3 = new double [ k max + 1 ] ;
double * C4 = new double [ k max * 2 ] ;
/ / P r e p r o c e s s by removing l i n e a r p a r t
r emoveLinea r (X,N ) ;
/ / C a l c u l a t e C1
double s =0 ;
f o r ( i n t i = 0 ; i < N; i ++){

s += (X[ i ]*X[ i ] ) ;
C1 [ i ] = s ;

}
/ / Main loop
C3 [ 0 ] = C1 [N−1];
f o r ( i n t k =1; k<=k max ; k ++){

/ / C a l c u l a t e C2 v a l u e s
double C2 2k = 0 ;
double C2 2k 1 = 0 ;
f o r ( i n t j = 0 ; j <= N−2*k−1; j ++){

C2 2k += (X[ j ]*X[ j +2*k ] ) ;
C2 2k 1 += (X[ j ]*X[ j +2*k−1 ] ) ;

}
C2 2k 1 += (X[N−2*k ]*X[N−1 ] ) ;
/ / Update C3 , C4 i n p l a c e
f o r ( i n t v =0; v < k ; v ++){

C3 [ v ] −= (X[ k−1−v ]*X[ k−1+v ] )
+ (X[N−k+v ]*X[N−k−v ] ) ;

}
f o r ( i n t v = 1 ; v<=2*k−2;v ++){

C4 [ v−1] −= (X[2* k−1−v ]*X[2* k−1])
+ (X[2* k−2−v ]*X[2* k−2])
+ (X[N−2*k ]*X[N−2*k+v ] )
+ (X[N−2*k +1]*X[N−2*k+1+v ] ) ;

}
C3 [ k ] = C2 2k ;
C4 [2* k−2] = 2* C2 2k 1 − (X[ 0 ] *X[2* k−1])

− (X[N−2*k ]*X[N−1 ] ) ;
C4 [2* k−1] = 2*C2 2k ;
/ / C a l c u l a t e un−n o r m a l i s e d T k from C1−C4
double T k = 0 ;
double A0 = C1 [N−1] − C1 [2* k−1]

+ C1 [N−2*k−1] + 2*C2 2k ;
f o r ( i n t v = 1 ; v<=k ; v ++){

double A1 = A0 − C1 [ v−1]
+ C1 [N−1−v ] − C1 [2* k−v−1]
+ C1 [N−1−2*k+v ] ;

double A2 = C3 [ k−v ] − C4 [ v−1]
− C4 [2* k−v−1];

T k += ( A1+2*A2 ) / v ;
}

/ / Apply n o r m a l i s a t i o n t o g e t Theo1
T [ k−1] = ( T k / ( 3 * ( double ) ( N−2*k )* k*k ) ) ;

}
/ / R e l e a s e memory
d e l e t e [ ] C1 ;
d e l e t e [ ] C3 ;
d e l e t e [ ] C4 ;
}
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