
Asynchronous Byzantine
Consensus with 2f+1 Processes

(extended version)

Miguel Correia, Giuliana Santos Veronese,
Lau Cheuk Lung

DI–FCUL TR–09–17

November 2009

Departamento de Informática
Faculdade de Ciências da Universidade de Lisboa

Campo Grande, 1749–016 Lisboa
Portugal

Technical reports are available at http://www.di.fc.ul.pt/tech-reports. The files
are stored in PDF, with the report number as filename. Alternatively, reports are
available by post from the above address.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade de Lisboa: Repositório.UL

https://core.ac.uk/display/32330625?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Asynchronous Byzantine Consensus with 2f+1 Processes
(extended version)∗

Miguel Correia
Universidade de Lisboa
Faculdade de Ciências

Lisboa, Portugal
mpc@di.fc.ul.pt

Giuliana S. Veronese
Universidade de Lisboa
Faculdade de Ciências

Lisboa, Portugal
giuliana@lasige.di.fc.ul.pt

Lau Cheuk Lung
Dep. Informática Estatíst., CT
Univ. Federal Santa Catarina

Florianopolis, Brazil
lau.lung@inf.ufsc.br

ABSTRACT
Byzantine consensus in asynchronous message-passing sys-
tems has been shown to require at least 3f + 1 processes
to be solvable in several system models (e.g., with failure
detectors, partial synchrony or randomization). Recently
a couple of solutions to implement Byzantine fault-tolerant
state machine replication using only 2f + 1 replicas have
appeared. This reduction from 3f + 1 to 2f + 1 is possible
with a hybrid system model, i.e., by extending the system
model with trusted/trustworthy components that constrain
the power of faulty processes to have certain behaviors. De-
spite these important results, the problem of solving Byzan-
tine consensus with only 2f + 1 processes is still far from
being well understood. In this paper we present a method-
ology to transform crash consensus algorithms into Byzan-
tine consensus algorithms with different characteristics, with
the assistance of a reliable broadcast primitive that requires
trusted/trustworthy components to be implemented. We ex-
emplify the methodology with two algorithms, one that uses
failure detectors and one that is randomized. We also define
a new flavor of consensus and use it to solve atomic broad-
cast, showing the practical interest of the transformations.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design—
Distributed Systems

General Terms
Algorithms, Performance

Keywords
Distributed algorithms, Consensus, Byzantine fault toler-

∗This work was partially supported by the EC through Al-
ban scholarship E05D057126BR, and by the FCT through
the Multiannual and the CMU-Portugal Programmes, the
project PTDC/EIA-EIA/100581/2008 (REGENESYS) and
the project PTDC/EIA-EIA/100894/2008 (DIVERSE).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’10 March 22-26, 2010, Sierre, Switzerland.
Copyright 2010 ACM 978-1-60558-638-0/10/03 ...$10.00.

ance

1. INTRODUCTION
Consensus is an important distributed computing prob-

lem, both in theoretical and practical terms. The problem
consists in making a set of processes to agree on one of the
values that each one of them proposes. From a theoretical
point of view, consensus has been used to show important
impossibility and possibility results, the most well-known
of which is probably the Fischer-Lynch-Paterson (FLP) im-
possibility of solving consensus deterministically in an asyn-
chronous system if one process can fail [14]. From a practical
point of view, the problem has been shown to be equivalent
to several distributing computing problems [18, 9], so an
implementation of a consensus algorithm can be used as a
building block of distributed systems [17].

Distributed algorithms depend strongly on the system mo-
del considered. A realistic model for many of the current
large-scale, open distributed systems is the asynchronous
Byzantine message-passing system model. The time model
is asynchronous in the sense that no bounds are assumed for
the communication and processing times. The fault model
is Byzantine, meaning that some of the processes can fail
arbitrarily, even maliciously. The impossibility of solving
consensus deterministically in this system model comes triv-
ially from the FLP impossibility result, but the problem is
solvable in several variations of this basic system model.

Consensus in the asynchronous Byzantine message-passing
model has been shown to require n ≥ 3f+1 processes, where
f is the maximum number of faulty processes, to be solv-
able in several variations of the basic system model, e.g.,
with failure detectors [10, 1]1, partial synchrony [13] or ran-
domization [3]. Reducing the ratio n/f is important the-
oretically, but also in practice as reducing the number of
processes/processors has an impact on the cost of a real sys-
tem.

Recently a few solutions to implement Byzantine fault-to-
lerant state machine replication (that requires solving con-
sensus) using only n ≥ 2f + 1 replicas have appeared [8, 5].
This reduction from 3f +1 to 2f +1 is possible with a hybrid
system model, i.e., by extending the asynchronous Byzantine
system model with components that can not fail in a Byzan-

1Baldoni et al. present a sophisticated algorithm that as-
sumes f ≤ min(b(n − 1)/2c, C), where C is the maximum
number of faulty processes allowed by the certification algo-
rithm [1]. However, as they point out, “known certification
techniques assume n − C = d 2n+1

3
e.” This means that in

practice their algorithm also requires n ≥ 3f + 1.

tine way. These trusted/trustworthy components constrain
the power of the adversary in the sense that the services
they provide can not be corrupted and become faulty. We
call these components simply wormholes using Verissimo’s
nomenclature [29]. Systems with wormholes are no longer
homogeneous but hybrid: most of the system is still asyn-
chronous Byzantine but the wormhole is trusted/trustworthy
by construction.

State machine replication consists in replicating a service
in a set of n servers, f of which may be faulty [27]. Correia
et al. use a wormhole called trusted timely computing base
(TTCB) to help define an order for the execution of the
clients’ requests with only 2f + 1 servers [8]. The TTCB
defines an order for a client’s request when f + 1 servers
show it that they have the request. More recently, Chun et
al. used an attested append-only memory (A2M) abstraction
(or wormhole) with the same purpose [5]. A2M forces the
servers to commit to a monotonically increasing sequence of
operations.

This paper
Despite these important results, the problem of solving asyn-
chronous Byzantine consensus with only 2f + 1 processes is
still far from being well understood. There are several rea-
sons for this: the related works that we cited solve consensus
but have the solution for this problem submerged in the com-
plications of a larger problem (state machine replication);
they are based on special-purpose components (TTCB, A2M)
that researchers are not familiarized with.

The main objective of this paper is to contribute to a
better understanding of the problem of consensus with only
2f +1 processes. To reach this objective, the paper presents
a methodology to transform asynchronous consensus algo-
rithms that tolerate crash faults and require 2f +1 processes,
into similar algorithms that tolerate Byzantine faults also
with 2f +1 processes. The paper demonstrates the method-
ology with two previously existing crash fault-tolerant con-
sensus algorithms: an algorithm by Mostefaoui and Raynal
that uses failure detectors to circumvent FLP [23] and a
probabilistic algorithm by Ben-Or that uses randomization
with the same purpose [2]. The methodology to do this
modification, which is not necessarily generic, consists in
enhancing the algorithm with a set of mechanisms that con-
strain the power of faulty processes, allowing the algorithm
to reach consensus even if there is an adversary that tries to
break the algorithm’s properties.

The idea of modifying crash into Byzantine fault-tolerant
algorithms, or improving the fault tolerance, was previously
explored by Neiger and Toueg [24], and Coan [6]. The for-
mer present two transformations for synchronous systems:
one from crash to omission faults and another from omis-
sion faults to Byzantine faults. Coan presents a compiler
for asynchronous algorithms that transforms crash fault-
tolerant algorithms into Byzantine fault-tolerant algorithms,
just like our methodology, but considers only the case of ap-
proximate agreement and does not provide Byzantine fault-
tolerant algorithms for 2f + 1 processes, which is the main
purpose of the present paper.

Like previous works, to solve asynchronous Byzantine con-
sensus with 2f + 1 processes we need trusted / trustworthy
components, or wormholes, that provide certain incorrupt-
ible services. However, we use the abstraction provided by
the wormhole to obtain a communication primitive com-

monly used in distributed computing: reliable broadcast.
This primitive ensures that all processes (i) deliver the same
messages and (ii) deliver all messages sent by correct (i.e.,
non-faulty) processes. More precisely, we present a reliable
broadcast algorithm that imposes no bounds on the number
of faulty processes, unlike previous existing algorithms that
require n ≥ 3f +1 [3]. A fortiori, this algorithm also satisfies
its properties with n ≥ 2f + 1 processes.

Using a 2f +1 reliable broadcast to solve 2f +1 Byzantine
consensus is interesting for two reasons. First, it tackles the
difficulty of understanding how a wormhole assists in solving
a distributed computing problem, by using it to solve a well-
known problem, reliable broadcast. Second, it is important
to understand that it is possible to solve 2f + 1 Byzantine
consensus by relying only on a 2f +1 reliable broadcast and
no other “unusual” component (e.g., no other component
that needs a wormhole to be implemented).

The transformation methodology also requires a mute-
ness failure detector, which detects if a process apparently
stopped following the algorithm [11]. The consensus algo-
rithms presented are indulgent [16], in the sense that they
not violate their safety properties no matter the behavior of
the failure detector, which is only needed to ensure termi-
nation.

The consensus flavor we consider with the methodology
satisfies a weak validity property. Therefore, we introduce a
new flavor of consensus, endorsement consensus, and use it
to solve atomic broadcast with only 2f + 1 processes, thus
showing that our consensus algorithms are useful to solve a
distributed computing problem with practical interest.

Contributions
The contributions of the paper are mainly the following:

• from a theoretical point of view, it shows that a 2f +1
reliable broadcast primitive is enough to solve 2f + 1
asynchronous Byzantine consensus, with the assistance
of a muteness failure detector;

• from a practical point of view, it presents a method-
ology to transform asynchronous crash consensus al-
gorithms into asynchronous Byzantine consensus algo-
rithms with different characteristics keeping the num-
ber of processes as n ≥ 2f + 1; this reduces the num-
ber of processes needed to tolerate the same number of
faulty ones that is n = 3f + 1 in asynchronous Byzan-
tine systems; the paper also presents two 2f + 1 asyn-
chronous Byzantine consensus algorithms.

2. PRELIMINARIES

2.1 Asynchronous Byzantine System Model
The system is composed by a set of n processes Π =
{p1, p2, ...pn}. A process is said to be correct if it follows its
algorithm, otherwise it is said to be faulty. Faulty processes
can deviate from the algorithm arbitrarily, i.e., we assume
the existence of Byzantine faults [21]. However, no more
than f = bn−1

2
c can be faulty (in the tight case n = 2f +1).

Processes communicate by message-passing. Every pair
of processes is linked by an authenticated reliable channel,
which does not allow the creation, modification or dropping
of messages. In a malicious environment this involves ei-
ther physically secure communication channels or the use

of cryptographic mechanisms, which requires the additional
assumption of a computationally bounded adversary.

The system is asynchronous, which means that there are
no bounds on the processing times or communication delays.
However, we assume the existence of failure detector mod-
ules in each of the processes. Failure detectors (FDs) give
hints about faulty processes. The original FDs were used to
suspect that processes crashed [4]. In this paper we consider
muteness failure detectors, which suspect that a process is
mute, either because it crashed or is Byzantine and stopped
sending messages according to the algorithm [11]. Unlike
crash FDs, muteness FDs depend on the algorithm, A.

We consider a class of muteness FDs that is inspired in
Chandra and Toueg’s eventually perfect FD, which we call
eventually perfect muteness FD, ♦MPA. Failure detectors
of this class satisfy the following properties:

• Mute strong A-completeness. Eventually every process
that is mute to any correct process p is permanently
suspected by p.

• Eventual strong A-accuracy. There is a time after
which correct processes are not suspected by any cor-
rect process.

This FD is stronger than FDs used in previous Byzan-
tine consensus algorithms [11, 1], but the two properties are
satisfied in partition-free partially synchronous systems [13].
Doudou et al. provide an implementation ID of the muteness
failure detector ♦MA that they introduce [11]. Although
that FD satisfies only eventual weak A-accuracy, it is sim-
ple to show that ID is also an implementation of ♦MPA in
the same system model.

2.2 Reliable Broadcast
The basic system model of the previous section is extended

with a reliable broadcast primitive. The reliable broadcast
problem consists essentially in making all correct processes
deliver the same messages [3]. Furthermore, if the process
that broadcasts the message is correct, then all correct pro-
cesses deliver the message, and no two messages with the
same identifier are delivered by any correct process. For-
mally, a reliable broadcast algorithm can be defined in terms
of the following properties [18] (we consider that the sender
also delivers the messages it broadcasts):

• RB1 Validity. If a correct process broadcasts a mes-
sage m, then some correct process eventually delivers
m.

• RB2 Agreement. If a correct process delivers a message
m, then all correct processes eventually deliver m.

• RB3 Integrity. For any identifier id and sender p, every
correct process q delivers at most one message m with
identifier id from sender p, and if p is correct then m
was previously broadcast by p.

Bracha presented a reliable broadcast algorithm that needs
n ≥ 3f +1 processes [3]. A proof that 3f +1 is the minimum
number of processes was provided by Toueg [28].

Wormhole
Consider that there is a set of trusted/trustworthy worm-
holes Υ = {w1, w2, ...wn} and that process pj has access

exclusively to wormhole wj . Each wormhole wj has a public-
private key pair (Kuj , Krj). The private key Krj is known
only by wj and is used to produce digital signatures. Every
correct process knows the correct public key Kuj of every
wormhole wj . The wormholes provide a single service that
can be abstracted as a function that is called by the processes
(for wormhole wj): σ ← signj (id ,msg) . The function takes
as parameters a message identifier id and a message msg.
It returns either the signature σ ∈ S of (id, msg) or ⊥ /∈ S,
where S is the set of possible signatures. The signature is
returned if id > id′, where id′ is the identifier given as pa-
rameter in the previous call to the function; otherwise ⊥ is
returned.

This service is simple but it precludes a faulty process
from obtaining two different messages with the same identi-
fier correctly signed. Algorithm 1 uses this service to solve
Byzantine fault-tolerant reliable broadcast with any num-
ber of faulty processes. The wormhole can be implemented
inside a secure coprocessor, a smartcard or another hard-
ware board. Further discussion on the implementation of
wormholes can be found in papers on the topic, e.g., [8, 5].

The algorithm
The proposed reliable broadcast algorithm is similar to the
classical crash fault-tolerant reliable broadcast algorithm [18].
In relation to Bracha’s algorithm, it has one less communi-
cation step due to the use of the wormhole and requires no
bounds on the number of faulty processes. The algorithm
is requested to broadcast a message by calling reliable
broadcast(id, msg) (first line) and a message is delivered
when deliver(j, id, msg) is called by the algorithm (lines
3, 6). Basically the sender sends the message to all pro-
cesses and all processes send an echo message also to all
processes. The wormhole is used to prevent a faulty sender
from sending two different messages with the same identifier
as explained above. Function verify(id, msg, σ, Kuj) verifies
if the signature σ was obtained with message (id, msg) and
key Krj (line 4).

A proof of correctness of the algorithm is provided in the
appendix.

3. METHODOLOGY AND CONSENSUS
Informally, consensus is the problem of making a set of

processes to agree on a value. A process p is said to propose
a value v ∈ V for an execution of the consensus algorithm
when it calls * 2FBC Consensus(v) (with * equal to MR
or BO). The process is said to decide a value v when the
algorithm calls decide(v). There are several definitions of
Byzantine consensus in the literature. In this section we
consider the following definition, which is the most com-
mon for crash consensus [18, 23, 15]2, and is also much used
for Byzantine consensus [10, 1]. Byzantine asynchronous
multi-valued consensus is defined in terms of the following
properties:

• MVC1 Validity. If a correct process decides v, then v
was proposed by some process.

2Crash consensus is also often defined in terms of uniform
properties, which make statements about what is decided by
faulty processes. These properties are not enforceable in the
Byzantine fault model in which faulty processes can have an
arbitrary behavior.

Algorithm 1 Reliable broadcast algorithm (at process pi)

Function reliable broadcast(id, msg)

Task T1:
1: σ ← signi (id, msg)
2: ∀j 6= i : send initial(i, id, msg)σ to pj

3: deliver(i, id, msg)

Task T2: {execute only once per message broadcast}
4: when (message initial(j, id, msg)σ or echo(j, id, msg, σ) is received) and (verify(id, msg, σ, Kuj)) do
5: ∀k 6= j : send echo(j, id, msg, σ) to pk

6: deliver(j, id, msg)
7: end when

• MVC2 Agreement. No two correct processes decide
differently.

• MVC3 Termination. Every correct process eventually
decides.

This section presents the methodology to transform crash
consensus algorithms into Byzantine consensus algorithms.
The section starts by introducing the methodology with a
concrete example, the transformation of the Mostefaoui and
Raynal’s crash fault-tolerant consensus algorithm (MR Consensus
for short) [23] into a Byzantine fault-tolerant algorithm.
Then, it presents the methodology itself (Section 3.2) and
applies it to Ben-Or’s algorithm (Section 3.3).

3.1 Mostefaoui and Raynal’s Algorithm
Algorithm 2 is the modified algorithm, MR 2FBC. Like

the original algorithm, MR Consensus [23]3, it is based on
a rotating coordinator. Each round (lines 3-13), one of the
processes is selected to be the coordinator (line 4) and tries
to impose its estimate as the decision (line 5). Each round
has two phases. In the first (lines 5-7), the coordinator dis-
seminates a phase1 message with its estimate of the value
to be decided. In the second phase (lines 8-12), each pro-
cess disseminates a phase2 message with the estimate of
the coordinator or ⊥ /∈ V. If a correct process receives
n− f phase2 messages with the same value, it decides this
value and disseminates this decision using a decision mes-
sage (line 11).

Some of the modifications to MR Consensus are clear:
reliable channels are substituted by authenticated reliable
channels and message disseminations are substituted by the
reliable broadcast primitive (lines 5, 8). Notice that the iden-
tifier (id) of a message disseminated is composed by the
message type (e.g., phase1) and the round number.

Another modification is that we use the message valida-
tion mechanism introduced by Bracha [3] to prevent some of
the attacks that might be done by faulty processes. In sev-
eral places the algorithm only takes into account messages
that are valid (lines 7, 9, 10, 14). Informally, a message is
said to be valid if it is justified by the messages previously
received by the process. For instance, line 14 seems to be
wrong since the process pi should require decision messages
from f +1 processes, for at least one to be sent by a correct
process, before deciding in line 15. However, the validation

3We consider two simplifications introduced by Friedman
and the same authors in [15]: the relation between f and
n is given by f = bn−1

2
c (instead of n ≥ 2f + 1); and we

consider only the case of eventually strong failure detector
♦S (they consider also strong failure detectors).

mechanism ensures that the condition in that line is true
only if the decision message might have been sent by a cor-
rect process, i.e., if pi received n− f phase2 messages with
the same estimate est (lines 9-11).

The definition of valid message is identical to Bracha’s.
Each step k of the algorithm has the following basic format:
the process disseminates a message to all other processes,
waits for a set S of messages from the other processes, and
obtains the content of the next message using a protocol
function F (k, S). A message that is delivered by the reliable
broadcast primitive (messages phase1 and phase2) or by
a reliable channel (messages decision) at step k is called
a k-message. Each process pi maintains a set of messages
V ALIDi such that:

• VALID1
i = { delivered 1-messages }

• for k > 1, mk
j ∈ VALIDk

i if there exist n − f (k-1)-

messages m1, ..., mn−f such that mk
j = F (k, {m1, ...mn−f})

The main difference from MR 2FBC to MR Consensus is
line 9. In MR Consensus, processes wait until they receive
messages from n − f processes (line 8 of Fig. 1 at [15]).
Clearly it is not possible to block waiting for more messages
as f processes can be faulty. However, there is an important
difference between the crash and the Byzantine fault models:
while in the crash fault model (thus in MR Consensus) all
of those n−f messages are sent by processes that follow the
algorithm, in the Byzantine fault model (thus in MR 2FBC)
f of those messages can be sent by faulty processes. In the
worst case, with n = 2f + 1 and f Byzantine processes,
in every round that set of n − f messages contains f + 1
messages, f of which sent by Byzantine processes4. The
behavior of these f faulty processes is constrained by the
message validation mechanism, but they can do a simple
attack that is undistinguishable from correct behavior: to
send always ⊥ as their estimate, pretending that their FD
modules suspect of the coordinator (lines 6-8).

To deal with this problem, line 9 must “know about” all
processes before continuing. More precisely, line 9 waits for
messages from n− f processes, but also either for messages
or to suspect of the rest of the processes. This ensures that
eventually pi receives messages from all correct processes,
as there is a time after which correct processes are not sus-
pected by any correct process (eventual strong A-accuracy).
This is also the reason why we need a stronger FD than
previous Byzantine consensus algorithms, that require only
eventual weak A-accuracy [11, 1]. While those algorithms

4This is not the case with 3f + 1 Byzantine consensus algo-
rithms as they wait for 2f +1 messages, a majority of which
must come from correct processes.

Algorithm 2 MR 2FBC Byzantine consensus algorithm (code for process pi)

Function MR 2FBC Consensus(vi)

Task T1:

1: ri ← 0 {round number}
2: esti ← vi {current estimate of the value to be decided}
3: while true do
4: ci ← (ri mod n) + 1; ri ← ri + 1 {ci = coordinator}

{————— phase 1: coordinator to all —————}
5: if (ci = i) then reliable broadcast phase1(ri, esti) end if
6: wait until (message phase1(ri,−) is received from pci

or pci
is suspected by pi’s FD module)

7: if (valid message phase1(ri, v) received from pci
) then auxi ← v else auxi ← ⊥ end if

{——————— phase 2: all to all ———————}
8: reliable broadcast phase2(ri, auxi)
9: wait until (valid messages phase2(ri,−) are received from at least n−f processes) and (∀j : valid message phase2(ri,−) is received from

pj or pj is suspected by pi’s FD module)
10: ∀j : if (valid message phase2(ri, v) received) then Ri[j]← v else Ri[j]← ⊥ end if
11: if (∃v 6= ⊥ : #v(Ri) ≥ n− f) then esti ← v; ∀j 6= i : send decision(ri, esti) to pj ; decide(esti) else
12: if (∃v 6= ⊥ : #v(Ri) ≥ n− 2f) then esti ← v end if end if
13: end while

Task T2:

14: when valid message decision(r, est) is received do {no need of f + 1 messages due to the validation mechanism}
15: ∀j 6= i : send decision(r, est) to pj ; decide(est)
16: end when

require only that the coordinator is eventually not suspected,
MR 2FBC requires that eventually no correct process is sus-
pected, i.e., eventual strong A-accuracy.

Recall that the protocol function F (k, S) is the function
used to obtain the next message to be sent. The function
comes trivially from the algorithm pseudo-code. The notion
of step used to define the protocol function in this case is a
phase. The formal specification of the function can be found
in the pseudo-code itself, but informally the function is the
following (for process pi in round r):

• to obtain a phase1 message: if pi is the coordinator,
the function returns pi’s estimate; otherwise, it does
not return anything (the message is not defined, the
function is not called);

• to obtain a phase2 message: if pi received a valid
phase1(ri, v) message from the coordinator in round
r then the function returns v, otherwise it returns ⊥;

• to obtain a decision message: if pi received n − f
valid phase2 messages with the same estimate v, then
return v; otherwise, it does not return anything (the
message is not defined, the function is not called).

A proof of correctness of the algorithm is provided in the
appendix.

3.2 The Methodology
The transformation of Mostefaoui and Raynal’s algorithm

into a 2f + 1 Byzantine consensus algorithm illustrates the
application of the methodology for increasing the fault toler-
ance of crash algorithms. The methodology consists in doing
the following modifications, then prove the correctness of the
resulting algorithm:

1. Communication channels: communication channels are
substituted by authenticated reliable channels. These
channels constrain the power of the adversary in the
network in the sense that these channels do not allow
the creation, modification or dropping of messages.

2. Broadcast communication: broadcasts are substituted
by reliable broadcasts. This mechanism constrains the
power of the adversary by preventing it from deliver-
ing different messages with the same identifiers to dif-
ferent processes. This requires the reliable broadcast
algorithm of Section 2.2.

3. Message validation: message receptions are enhanced
with message validations, i.e., when a message is re-
ceived it is only considered if it is valid as defined in
Section 3.1. The objective is to force the adversary to
conform to the algorithm.

4. Reception quorum: receptions of messages from quo-
rums of n− f processes are substituted by: reception
of messages from at least n− f processes plus the FD
suspicion of all other processes (line 9 in Algorithm
2). This requires an eventually perfect muteness FD,
♦MPA.

The process of applying the methodology is straightfor-
ward as shown in the next section.

3.3 Ben-Or’s Algorithm
The objective of this section is to show how to apply

the methodology, now that it was introduced. This section
presents a transformation of Ben-Or’s asynchronous crash-
tolerant binary randomized consensus algorithm [2]5 into an
asynchronous Byzantine binary randomized consensus algo-
rithm, BO 2FBC.

The application of the methodology consisted of picking
the original algorithm and modifying it following the list
above. Then, we simply proved that the resulting algorithm
satisfies the properties of Byzantine consensus.

The result can be found in Algorithm 3. Notice that Ben-
Or’s consensus is a binary consensus, i.e., V = {0, 1}. Notice
also that the consensus is randomized so there is a random

5Ben-Or’s paper also presents a Byzantine consensus algo-
rithm, but we are interested only in the crash consensus
algorithm.

action (line 13). The definition provided for multi-valued
consensus in Section 3 is still valid, except for the termina-
tion that becomes probabilistic with probability 1.

The BO 2FBC algorithm is straightforward and uses a
notation similar to the previous one (although we retained
some of Ben-Or’s notation also), so we skip a detailed textual
description of how it works. The original algorithm was ran-
domized so it had no failure detectors, but BO 2FBC uses
♦MPA due to the methodology of transformation (lines 4
and 10). A proof of correctness of the algorithm is provided
in the appendix.

3.4 Discussion
Although we present two transformations, we do not claim

that the methodology can be applied successfully to any
asynchronous crash-tolerant consensus algorithm. However,
the two algorithms use two common communication pat-
terns, something that suggests that the methodology can be
used in many cases. The pattern of MR Consensus is based
on a rotating coordinator that tries to impose a decision
in the first phase, which is vouched or not in the second
phase. The pattern of Ben-Or’s algorithm has essentially
two phases: in the first all processes exchange estimates,
then pick one and try to reach agreement in the second
phase. Algorithms like Chandra and Toueg’s [4], Hurfin and
Raynal’s [19] or Schiper’s [26] use the first pattern, while
algorithms like Dwork et al.’s [13] and Pedone et al.’s [25]
use the second, so the methodology seems to be usable with
all of them.

4. 2F + 1 ATOMIC BROADCAST
The previous section shows that it is possible to solve

asynchronous Byzantine consensus problems with 2f+1 pro-
cesses, using a reliable broadcast algorithm that needs 2f +1
(or less) processes and an eventually perfect muteness FD
(♦MPA). The flavor of multi-valued consensus solved in
Section 3.1 is often used to show that a certain combination
of mechanisms can be used to solve consensus [12, 10, 1],
but it is particularly weak and not very useful to solve other
distributed computing problems. This section introduces a
novel flavor of consensus that can be solved with 2f + 1
processes, and shows how it can be used to solve atomic
broadcast. Atomic broadcast is a problem with practical
interest, e.g., because it is the core of state machine replica-
tion, a generic solution to implement fault-tolerant services
[27].

The Validity property MVC1 states that the value that is
decided is one of the values proposed (Section 3). However,
it does not say if that process is correct. Suppose we want
to solve some problem that involves solving several multi-
valued consensuses: it is perfectly possible that all values
decided in those consensus are proposed by faulty processes,
turning them useless. The solution to this difficulty is to use
another flavor of consensus with a different validity prop-
erty (the other properties, MVC2/MVC3 remain the same).
There are two definitions that are much used, but that are
problematic with only 2f + 1 processes:

• Validity’ [13, 22, 20]: If all correct processes propose
the same value v, then any correct process that decides,
decides v.

• Vector validity [12]: Every correct process that de-
cides, decides on a vector V of size n such that: for

all processes pi, if pi is correct, then either V[i] is the
value proposed by pi or ⊥; and at least (f+1) elements
of V were proposed by correct processes.

The problem of consensus with Validity’ is that a process
can never know for sure if it received messages from all cor-
rect processes, so this flavor is not implementable with 2f+1
processes. The problem of consensus with Vector validity is
that with 2f + 1 processes it ensures only that the vector
decided contains f + 1 values, the majority of which can be
proposed by faulty processes (f).

The three flavors of consensus mentioned so far seem to
be problematic with 2f +1 processes, so we introduce a new
form of consensus, endorsement consensus, and present an
algorithm that solves the problem using only 2f + 1 pro-
cesses. The idea behind endorsement consensus is to con-
sider that a correct process can have a notion about which
values are adequate decisions for the consensus. More for-
mally, each process pi has a set Ei of values that it endorses,
i.e., that it considers to be adequate decisions for the con-
sensus6. The problem is defined in terms of MVC2, MVC3
and the following property:

• EC1 Validity. If a correct process decides v, then v
was endorsed by some correct process.

The problem assumes that the endorsement sets satisfy
the following properties:

• Initial endorsement. For any correct process pi, Ei

contains always at least the value proposed by pi (v0i).

• Increasing endorsement. For any correct process pi,
for any two instants of time during the execution of
the algorithm t1, t2, if t2 > t1 then Ei2 ⊇ Ei1 , where
Ei1 and Ei2 are the values of Ei at the two instants.

• Eventual endorsement. For any pair of correct pro-
cesses pi and pj , eventually v0i ∈ Ej .

This last property means that all proposals of correct pro-
cesses are eventually endorsed by all correct processes. No-
tice that this is not something that is guaranteed by an al-
gorithm that solves the problem, but something that has to
be satisfied for the algorithm to solve the problem, i.e., an
assumption. This is precisely what happens with the atomic
broadcast algorithm that we see next.

An algorithm that solves this flavor of consensus is Algo-
rithm 2 with a single modification, substituting line 7 by:

7: if (valid phase1(ri, v) received from pci and v ∈ Ei)
then auxi ← v else auxi ← ⊥ end if

We call this algorithm MR 2FBEC. The idea is that cor-
rect processes pi only disseminate a message phase2 if the
estimate of the coordinator (v) is in Ei, besides the mes-
sage being valid as already in Algorithm 2. A proof of
correctness of the algorithm is provided in the appendix.

Byzantine atomic broadcast can be defined similarly to reli-
able broadcast (properties RB1-3 above) plus an additional
order property:

6The problem is related to the Byzantine generals with al-
ternative plans problem, in which processes have sets of good
values and bad values [7].

Algorithm 3 BO 2FBC Byzantine consensus algorithm (code for process pi)

Function BO 2FBC Consensus(vi)

1: esti ← vi {current estimate of the value to be decided}
2: step 0: ri ← 1 {round number}
3: step 1: reliable broadcast phase1(ri, esti)
4: step 2: wait until (valid messages phase1(ri,−) are received from at least n − f processes) and (∀j : valid message phase1(ri,−) is

received from pj or pj is suspected by pi’s FD module)
5: if (more than n/2 messages have the same value v) then
6: reliable broadcast phase2(ri, v, decision)
7: else
8: reliable broadcast phase2(ri,⊥)
9: end if

10: step 3: wait until (valid messages phase2(ri,−) are received from at least n − f processes) and (∀j : valid message phase2(ri,−) is
received from pj or pj is suspected by pi’s FD module)

11: if (there is one decision message phase2(ri, v, decision)) then esti ← v
12: else if (there are n− f decision messages phase2(ri, v, decision)) then decide(v)
13: else esti ← 1 or 0 each with probability 1/2
14: step 4: ri ← ri + 1; go to step 1

• AB4 Total order: If two correct processes deliver two
messages M1 and M2 then both processes deliver the
two messages in the same order.

This problem has been shown to be equivalent to consen-
sus in several system models [18, 9]. A transformation from
consensus into Byzantine atomic broadcast with only 2f +1
processes, which we designate by HT 2FBAB, is provided
by a combination of:

1. the transformation of consensus and reliable broadcast
into atomic broadcast presented in [18];

2. algorithm MR 2FBEC, which substitutes the consen-
sus used in the transformation;

3. in every process pi, the set Ei ≡ R delivered .

The transformation provided in [18] (Section 7.2.2) is for
crash faults. The idea is the following. When the algorithm
is requested to do atomic broadcast of a message, it does
reliable broadcast of that message. When a process receives
such a message, it inserts it in the R delivered set. When
there are messages in that set that have still not been or-
dered, each process proposes the set of those messages to a
consensus. Consensuses are done in an ordered fashion and
messages within a consensus can be trivially ordered (e.g.,
in lexicographical order), so this provides a total order of
messages.

In Hadzilacos and Toueg’s transformation the consensus
always decides a value proposed by a process that is not
Byzantine, because there are no malicious processes in the
crash system model. In our case we have to deal with that
case, which is where the endorsement consensus comes in: it
only lets values endorsed by correct processes to be decided
by the consensus, thus ordered by the atomic broadcast al-
gorithm. More precisely, given a set Si of messages pending
to be ordered, proposed by some process pi, this set is only
decided if at least once correct process endorses this set, i.e.,
if it receives these messages from the reliable broadcast al-
gorithm (remember that Ei ≡ R delivered). We skip the
proof of correctness of HT 2FBAB.

5. FINAL REMARKS
The paper shows that it is possible to implement 2f + 1

asynchronous Byzantine consensus algorithms using a reli-
able broadcast algorithm (that requires trusted/trustworthy

components to be implemented), and an eventually perfect
muteness failure detector ♦MPA. The paper also shows
that it is possible to transform 2f + 1 crash consensus al-
gorithms, both based on failure detectors and randomized,
into 2f + 1 Byzantine consensus algorithms by applying a
set of mechanisms to constrain the power of faulty processes.
The paper bridges the gap between previous state machine
replication systems that require only 2f + 1 replicas and
consensus, a distributed computing problem of known theo-
retical and practical importance.

6. REFERENCES
[1] R. Baldoni, J. Helary, M. Raynal, and L. Tanguy.

Consensus in Byzantine asynchronous systems.
Journal of Discrete Algorithms, 1(2):185–210, 2003.

[2] M. Ben-Or. Another advantage of free choice:
Completely asynchronous agreement protocols. In
Proceedings of the 2nd ACM Symposium on Principles
of Distributed Computing, pages 27–30, Aug. 1983.

[3] G. Bracha. An asynchronous b(n− 1)/3c-resilient
consensus protocol. In Proceedings of the 3rd ACM
Symposium on Principles of Distributed Computing,
pages 154–162, Aug. 1984.

[4] T. Chandra and S. Toueg. Unreliable failure detectors
for reliable distributed systems. Journal of the ACM,
43(2):225–267, Mar. 1996.

[5] B.-G. Chun, P. Maniatis, S. Shenker, and
J. Kubiatowicz. Attested append-only memory:
making adversaries stick to their word. In Proceedings
of the 21st ACM Symposium on Operating Systems
Principles, pages 189–204, October 2007.

[6] B. A. Coan. A compiler that increases the fault
tolerance of asynchronous protocols. IEEE
Transactions on Computers, 37(12):1541–1553, Dec.
1988.

[7] M. Correia, A. N. Bessani, and P. Verissimo. On
Byzantine generals with alternative plans. Journal of
Parallel and Distributed Computing, 68(9):1291–1296,
Sept. 2008.

[8] M. Correia, N. F. Neves, and P. Verissimo. How to
tolerate half less one Byzantine nodes in practical
distributed systems. In Proceedings of the 23rd IEEE
Symposium on Reliable Distributed Systems, pages
174–183, Oct. 2004.

[9] M. Correia, N. F. Neves, and P. Verissimo. From
consensus to atomic broadcast: Time-free
Byzantine-resistant protocols without signatures.
Computer Journal, 41(1):82–96, Jan. 2006.

[10] A. Doudou, B. Garbinato, and R. Guerraoui.
Encapsulating failure detection: From crash-stop to
Byzantine failures. In International Conference on
Reliable Software Technologies, pages 24–50, May
2002.

[11] A. Doudou, B. Garbinato, and R. Guerraoui.
Tolerating arbitrary failures with state machine
replication. In H. B. Diab and A. Y. Zomaya, editors,
Dependable Computing Systems Paradigms,
Performance Issues, and Applications, chapter 2,
pages 27–56. Wiley, 2005.

[12] A. Doudou and A. Schiper. Muteness detectors for
consensus with Byzantine processes. Technical Report
97/30, EPFL, 1997.

[13] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in
the presence of partial synchrony. Journal of the
ACM, 35(2):288–323, Apr. 1988.

[14] M. J. Fischer, N. A. Lynch, and M. S. Paterson.
Impossibility of distributed consensus with one faulty
process. Journal of the ACM, 32(2):374–382, Apr.
1985.

[15] R. Friedman, A. Mostefaoui, and M. Raynal.
Asynchronous bounded lifetime failure detectors.
Information Processing Letters, 94(3):85–91, 2005.

[16] R. Guerraoui. Indulgent algorithms. In Proceedings of
the 19th ACM Symposium on Principles of Distributed
Computing, pages 289–298, July 2000.

[17] R. Guerraoui and A. Schiper. The generic consensus
service. IEEE Transactions on Software Engineering,
27(1):29–41, Jan. 2001.

[18] V. Hadzilacos and S. Toueg. A modular approach to
fault-tolerant broadcasts and related problems.
Technical Report TR94-1425, Cornell University,
Department of Computer Science, May 1994.

[19] M. Hurfin and M. Raynal. A simple and fast
asynchronous consensus protocol based on a weak
failure detector. Distributed Computing, 12:209–223,
1999.

[20] K. P. Kihlstrom, L. E. Moser, and P. M.
Melliar-Smith. Byzantine fault detectors for solving
consensus. The Computer Journal, 46(1):16–35, Jan.
2003.

[21] L. Lamport, R. Shostak, and M. Pease. The Byzantine
generals problem. ACM Transactions on Programming
Languages and Systems, 4(3):382–401, July 1982.

[22] D. Malkhi and M. Reiter. Unreliable intrusion
detection in distributed computations. In Proceedings
of the 10th Computer Security Foundations Workshop,
pages 116–124, June 1997.

[23] A. Mostefaoui and M. Raynal. Solving consensus using
Chandra-Toueg’s unreliable failure detectors: A
general quorum-based approach. In Proceedings of the
13th International Symposium on Distributed
Computing, pages 49–63, 1999.

[24] G. Neiger and S. Toueg. Automatically increasing the
fault-tolerance of distributed systems. In Proceedings
of the 7th Annual ACM Symposium on Principles of
Distributed Computing, pages 248–262, Aug. 1988.

[25] F. Pedone, A. Schiper, P. Urbán, and D. Cavin.
Solving agreement problems with weak ordering
oracles. In Proceedings of the 4th European Dependable
Computing Conference, pages 44–61, Oct. 2002.

[26] A. Schiper. Early consensus in an asynchronous
system with a weak failure detector. Distributed
Computing, 10:149–157, Oct. 1997.

[27] F. B. Schneider. Implementing faul-tolerant services
using the state machine approach: A tutorial. ACM
Computing Surveys, 22(4):299–319, Dec. 1990.

[28] S. Toueg. Randomized Byzantine agreements. In
Proceedings of the 3rd ACM Symposium on Principles
of Distributed Computing, pages 163–178, Aug. 1984.

[29] P. Verissimo. Travelling through wormholes: A new
look at distributed systems models. SIGACT News,
37(1):66–81, 2006.

APPENDIX
A. CORRECTNESS PROOFS

A.1 Reliable broadcast algorithm

Theorem 1. Algorithm 1 solves the reliable broadcast prob-
lem as defined by properties RB1, RB2 and RB3.

Proof (sketch): RB1 Validity. If a correct process pi broad-
casts (id, msg) then it sends a message initial(i, id, msg)σ

with a correct signature σ (line 2) that is received by all
correct processes due to the properties of the authenticated
reliable channels (line 4), and those processes deliver the
message (line 6).

RB2 Agreement. If a correct process pj delivers a message
(id, msg) (line 6) then it first sends echo(i, id, msg, σ) to all
processes (line 5). Therefore, all correct processes eventually
receive this echo message (line 4) and deliver (id, msg) (line
6).

RB3 Integrity. The definition of the wormhole service
and an inspection of the algorithm show that the property
is always satisfied. 2

Notice that the proofs do not depend on quorums (sub-
sets) of processes of certain sizes, so the algorithm tolerates
any number of faulty processes.

A.2 MR_2FBC algorithm

Lemma 1. If a correct process decides v in round r, then
no correct process decides v′ 6= v in a round r′ ≥ r.

Proof (sketch): A correct process can only decide in lines 11
or 15.

Decision in line 11: A correct process p decides v in round
r in line 11 iff it receives n− f valid messages phase2(r, v)
(lines 9-11). Any other correct process p′ falls in one of two
cases: (1) it also receives n− f of those messages, therefore
it also decides v in round r; (2) it receives less that n− f of
those messages.

In the second case, the fact that p receives n−f phase2(r, v)
messages implies that p′ receives at least n−2f phase2(r, v)
messages (the messages are reliable broadcast so there are
at most n messages from different processes). The other
messages must contain (r,⊥) to be valid (this is the only
value that is consistent with the value disseminated by the

coordinator in phase 1). Therefore, p′ sets its estimate esti

to v (line 12).
Now consider round r + 1. There are three cases, cor-

responding to p′ receiving from the coordinator a message:
(2.1) phase1(r+1, v); (2.2) phase1(r+1,⊥); or (2.3) phase1(r+
1, v′), with v′ 6= v. In case (2.1), the process p′ (and all cor-
rect processes) would broadcast a message phase2(r + 1, v)
in line 5, we would fall again in cases (1) or (2), and messages
with different values would never become valid.

Cases (2.2) and (2.3) can never happen: for p′ to consider
that message valid it would have to receive n− f messages
phase2(r,⊥), something that can not happen because there
are n − f messages phase2(r, v) and there can be no more
than n messages phase2(r, ∗) (where * can be v or ⊥) due
to the properties of the reliable broadcast primitive.

Decision in line 15: A correct process p decides in line
15 if it receives a valid decision(r, est), thus the protocol
function F requires it to have received n − f phase2(r, v)
messages. If that is the case, all correct processes received
at least n − 2f of those messages and we fall in the case of
line 11 above. 2

Lemma 2. Every correct process eventually decides.

Proof (sketch): First we have to prove that the algorithm
does not block indefinitely at some line. The only lines where
a process blocks are those where it waits for messages, i.e.,
lines 6 and 9. The properties of the failure detector guaran-
tee that the algorithm does not block at those lines.

Now let us prove that one correct process eventually de-
cides. The eventual strong A-accuracy property of the fail-
ure detector ensures that eventually there will be a round
r in which no correct process is suspected. In that case,
all correct processes receive messages from all other correct
processes in line 9 and decide in line 10.

In this latter situation all processes decide in the same
round but that is not mandatory. For instance, if FD mod-
ules in some correct processes suspect some of the other pro-
cesses, then it is possible that one of the correct processes p
decides in a round r, but not the others. In that case, no cor-
rect process decides a different value (Lemma 1). Further-
more, every other correct process p′ decides the same value
when it eventually receives the decide message sent by p
(lines 11 and 14-16). Notice that this message must be valid
as it is valid iff process p′ receives n − f valid phase2(r, v)
messages, which it must have received since these are the
messages that made p to decide (lines 9-11) and the reliable
broadcast ensures that all correct processes receive the same
phase2 messages (property RB2 Agreement). 2

Theorem 2. Algorithm 2 solves the Byzantine consensus
problem as defined by properties MVC1, MVC2 and MVC3.

Proof (sketch): Property MVC1 Validity comes from inspec-
tion of the algorithm. MVC2 Agreement is an immediate
consequence of Lemma 1. Property MVC3 Termination is
given by Lemma 2. 2

A.3 BO_2FBC algorithm

Lemma 3. If a correct process decides v in round r then
no correct process decides v′ 6= v in round r′ ≥ r.

Proof (sketch): A correct process p decides value v in round
r in line 12 if and only if it receives n − f valid decision

messages phase2(ri, v, decision). Any other correct process
p′ falls in one of two cases: (1) it also receives n−f decision
messages, therefore it also decides v in round r; (2) it receives
less that n− f of those messages.

In the second case, the fact that process p receives n− f
phase2(ri, v, decision) messages implies that p′ receives at
least n− 2f phase2(ri, v, decision) messages (the messages
are reliable broadcast so there are at most n messages from
different processes). Therefore, p′ sets its estimate to v (line
11). Now consider round r+1. There are two cases (lines 5-
9): (2.1) p′ receives more than n/2 messages with the same
value v; (2.2) the contrary.

Case 2.2 can never happen for the following reason. For
that to be possible p′ would have to receive and consider
valid at least one message with phase1(r+1, v′), with v′ 6= v.
A faulty process can send such message but the validation
mechanism at p′ does not consider it valid because it contra-
dicts the existence of n−f messages phase2(ri, v, decision).

This leaves us with case 2.1, i.e., any correct process falls
in that case and executes line 6. Therefore, any correct
process either falls in cases 1 or 2 above. Therefore, no
correct process ever decides a value v′ 6= v in round r′ ≥ r.
2

Lemma 4. Every correct process eventually decides.

Proof (sketch): An inspection of the algorithm shows that it
never blocks in any line, so we have only to prove that it does
progress and eventually terminates. The eventual strong A-
accuracy property of the failure detector states that there
is a time after which correct processes are not suspected by
any correct process. Let us consider that that time passed,
so no correct processes suspect of correct processes. This has
the practical implication of all correct processes receiving all
messages from each other in lines 4 and 10. If not before,
eventually there is a round r in which all correct processes
set est to the same value v either in line 13 or in lines 11 and
13. When that happens, in round r + 1 all correct processes
broadcast v in line 3, all receive at least n− f phase1 mes-
sages with that value (since there are at least that number
of correct processes), all broadcast phase2(r+1, v, decision)
messages, all receive each other phase2 messages in line 10,
and all decide in line 12. 2

Theorem 3. Algorithm 3 solves the Byzantine consensus
problem as defined by properties MVC1, MVC2 and MVC3.

Proof (sketch): Property MVC1 (Validity) comes from in-
spection of the algorithm (recall that V = {0, 1}). Property
MVC2 (Agreement) is a consequence of Lemma 3. Property
MVC3 (Termination) comes from Lemma 4. 2

A.4 MR_2FBEC algorithm
Theorem 4. Algorithm MR 2FBEC solves the Byzantine

endorsement consensus problem as defined by properties EC1,
MVC2 and MVC3.

Proof (sketch): Property EC1 Validity is intuitive from in-
spection of the algorithm: one correct process must endorse
the value that is decided (line 7) or it would never be de-
cided. MVC2 Agreement is an immediate consequence of
Lemma 1, which also applies to this algorithm. Property
MVC3 Termination is given by Lemma 2, taking into ac-
count that the eventual endorsement property ensures that
eventually the predicate v ∈ Ei in line 7 becomes forever
true. 2

