
TyCO + Linear channels

Francisco Martins
Vasco T. Vasconcelos

DI–FCUL TR–01–11

December 2001

Departamento de Informática
Faculdade de Ciências da Universidade de Lisboa

Campo Grande, 1749–016 Lisboa
Portugal

Technical reports are available at http://www.di.fc.ul.pt/tech-reports. The
files are stored in PDF, with the report number as filename. Alternatively, reports
are available by post from the above address.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade de Lisboa: Repositório.UL

https://core.ac.uk/display/32330623?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

TyCO + Linear channels

Francisco Martins∗ Vasco T. Vasconcelos†

December 2001

Abstract

We present an extension to the TyCO type system that is able to
identify linear channels. We prove some technical results (e.g. type
preservation w.r.t. reduction) and present an algorithm for inferring
channels usage from process expressions. Our major contribution is
the inference of linear information in a calculus with recursive equa-
tions rather than replication.

1 Introduction

In this document we extend the type system for the TYped Concurrent
Objects (TyCO), introduced by Vasconcelos [Vas99], to incorporate
the concept of linear channel—a channel that is used just once.

In TyCO, as in π-calculus, a communication occurs when an input
and an output operation is performed on the same channel. This
means that a linear channel can only be used to perform at most a
single input and a single output. Thus, we must count the number of
inputs and outputs separately.

In addition to the monomorphic type system in [Vas99], we include
uses that specify the number of inputs and outputs allowed on every
channel. We follow [KPT99, IK00] and specify the set of uses as
{0, 1, ω}. The meaning of each element is as follows: 0 describes a
channel that is never used; 1 a channel that is used at most once, and
ω specifies a channel that may be used any number of times.

We also present a type system suitable for type reconstruction.
This type system is parametric on a call-counting function U that
computes channels usage in processes with recursive definitions.

∗Departamento de Matemática, Universidade dos Açores.
†Departamento de Informática, Faculdade de Ciências, Universidade de Lisboa.

1

One of the main motivation for this study is the inference of lin-
ear channels from process expressions. This information can be used
afterwards by a compiler, at code generation phase, to produce more
efficient code. TyCO is a concurrent language based on asynchronous
message passing, which means that a sender does not have to wait
for its message to be delivered. The implementation of this message
passing style requests queues to hold undelivered messages. If one
knows additional information about channels, such as linearity, we
could be able to generate more efficient (both less memory and time
consuming) code.

The rest of the report is organised as follows: the next section
presents the syntax of TyCO process expressions. Section three intro-
duces an extended type system, with a structural subtype relation, ex-
pressive enough to describe usage information. Section four addresses
the calculus operational semantics with uses. Here we prove subject
reduction. The fifth section discusses type reconstruction. We present
a type system suitable for type reconstruction and an algorithm for
finding principal types with uses from process expressions. In the last
section we develop a function that computes, “accurately”, the re-
sources needed to typify processes with recursive definitions. In fact,
the detection of linear channels in a calculus with recursive definitions
constitutes the main original contribution of this report.

The proofs of claimed results are kept on a separate section for the
sake of readability of the report.

2 Process expressions

Fix a denumerable set of names, a denumerable set of labels, and a de-
numerable set of process variables. We denote names, labels, and pro-
cess variables, respectively, by (possibly subscribed) letters a, b, v, x, y,
by letter l, and by letters X, Y . When referring to a possible empty
sequence of names (or process variables) v1, v2, · · · , vn, we usually ab-
breviate it by ṽ. The empty sequence is denoted by ε.

The syntax of process expressions is given by the following gram-
mar.

P,Q,R, S ::= a ! li[ṽ] | a ? {M} | P |Q | 0 | new x : ρ P | X[ṽ] |
def D in Q

M ::= l1 (x̃1) = P1, . . . , ln (x̃n) = Pn

D ::= X1 (x̃1) = P1 and . . . and Xn (x̃n) = Pn

Processes of the form a ! li[ṽ] specify messages, where a is the chan-
nel through which the communication li[ṽ] is sent, li is a label that

2

selects a method in the target object and ṽ is the actual contents of
the message. The sequence of names ṽ constitutes the arguments to
the correspondent method.

Objects are described by processes of the form a ? {M}, where a
is the location of the object and M is its collection of methods. A
method is of the form li (x̃) = Pi, where li is its label (unique within
the collection of methods), x̃ is a sequence of names that represents
the formal parameters, and Pi is the method body.

The process P |Q represents the parallel execution of P and Q.
Inaction, denoted by process 0, means a terminated process.

Scope restriction is introduced by processes of the form new x :
ρ P , suggesting x as a new channel only visible in P . We change the
syntax of scope restriction (cf. [Vas99]), indicating explicitly the type1

of x, in order to keep track of communications occurring privately to
P . However, ρ can be inferred from P and, from a practical point of
view, need not be explicitly indicated by the programmer.

Process expressions def X1 = (x̃1)P1 and . . . and Xn = (x̃n)Pn in Q
constitute a declaration. Procedures Xi (x̃i) = Pi bound process vari-
ables Xi to processes Pi parametric on x̃i. This declaration allows for
mutually recursive definitions as well as several calls to Xi.

3 The extended type system

This section introduces a type system allowing for the reasoning about
channel usage. For that, we must take special attention to the use of
resources2, when defining the inference rules for linear TyCO. In fact,
type environments must retain information of both channels type and
its usage.

3.1 Uses

In order to record the number of times that a channel has been used,
we introduce the concept of uses, that enables us to keep track of
channels usage for input and output. To maintain a separate count-
ing on the number of messages sent and received on a channel, we
attach to each channel type a pair of uses (κ1, κ2), where κ1 and κ2

specify, respectively, the number of sends and receives recorded for the
channel.

1See section 3.2 for the syntax of types.
2We use the terms name and channel interchangeable. However, resource refers also

to the capability to communicate on a channel.

3

Definition 1 (Uses). Let κ, µ range over the set of uses {0, 1, ω},
with 0 ≤ 1 ≤ ω.

The meaning of a use is as follows:

0 − it is not allowed to communicate on that channel;
1 − at most one communication—a linear channel;
ω − unbound number of communications.

We define the following operations on uses that ables us to control
channels usage across processes.

Definition 2 (Operations on uses). The sum, the product, and
the least upper bound of two uses κ1 and κ2, denoted respectively by
κ1 + κ2, κ1 × κ2 and κ1 t κ2, are defined as follows.

κ1 + κ2 0 1 ω

0 0 1 ω
1 1 ω ω
ω ω ω ω

κ1 × κ2 0 1 ω

0 0 0 0
1 0 1 ω
ω 0 ω ω

κ1 t κ2 0 1 ω

0 0 1 ω
1 1 1 ω
ω ω ω ω

Proposition 3. Sum, product and least upper bound operations are
commutative and associative.

Proof. Follows directly from definition.

Definition 4 (Suppression). The suppression of a use κ, denoted
by κ−, is defined as

κ− 0 1 ω

undef. 0 ω

3.2 Types

Types are built from a set of type variables according to the following
syntax, where t denotes an arbitrary type variable and κ1, κ2 are uses.

α, β ::= t | {l1 : ρ̃1, . . . , ln : ρ̃n} | µt.ρ

ρ, σ, τ ::= α(κ1,κ2)

There are two type constructors. In the channel type constructor,
denoted by {. . . }, li represent the method labels that can be selected
and ρ̃i are its types (i.e. the information that can flow through the
channel when some li is selected).

The recursive (channel) type constructor, µt.ρ (with ρ 6= t), repre-
sents the solution of the recursive type equation ρ = {. . . , li : ρ, . . . },
and is used to typify processes with a recursive name structure (vide

4

[VH92]). For instance, consider the process expression a ! l1[b] | b ! l2[c a]
and let ρc be the type of c. The types of the names a and b are, re-
spectively, the solutions of the recursive type equations ρa = {l1 :
ρb}(κa,µa) and ρb = {l2 : ρc ρa}(κb,µb) that can be expressed as µt.{l1 :
{ρc t}(κb,µb)}(κa,µa) and µt.{l2 : ρc {l1 : t}(κa,µa)}(κb,µb).

Uses are associated with types in the form of pairs (κ1, κ2), where
κ1 and κ2 represent, respectively, the number of inputs and outputs
allowed for the type.

3.3 Subtypes

We also consider a subtyping relation in our type system.

Definition 5 (Subtype). The binary relation � on types is defined
as the least equivalence relation closed under the following rules

κ1 ≥ µ1 ≥ 1 ρ1 � τ1 . . . ρn � τn

{l1 : ρ1, . . . , ln : ρn}(κ1,0) � {l1 : τ1, . . . , ln : τn}(µ1,0)

κ2 ≥ µ2 ≥ 1 τ1 � ρ1 . . . τn � ρn

{l1 : ρ1, . . . , ln : ρn}(0,κ2) � {l1 : τ1, . . . , ln : τn}(0,µ2)

κ1 ≥ µ1 ≥ 1 κ2 ≥ µ2 ≥ 1
τ1 � ρ1 . . . τn � ρn ρ1 � τ1 . . . ρn � τn

{l1 : ρ1, . . . , ln : ρn}(κ1,κ2) � {l1 : τ1, . . . , ln : τn}(µ1,µ2)

This means that the subtype relation � is covariant on the input
channel arguments, contra-variant on the output channel arguments
and invariant, if the channel is used both for input and output.

The idea behind channel subtyping is that we can use a channel of
type ρ to send any value of subtype σ and the received value can be
used as any super-type τ of ρ.

a-!

σ

-?

τρ� �

3.4 Type environments

Definition 6 (Type environment). A type environment Γ is a
mapping from names and process variables to types.

We write dom(Γ) for the domain of Γ. Type environments are
ranged over by uppercase Greek letters Γ,∆,Λ,Π.

5

The operations on uses introduced in definition 2 can be pointwise
extended to types and type environments as follows

Definition 7. Let ? denote a generic operation (+,×,t). Suppose
that ρ1 and ρ2 differ only in their outermost uses, that is ρ1 = α(κ1,κ2)

and ρ2 = α(κ3,κ4). Then ρ1 ? ρ2 is defined as:

α(κ1,κ2) ? α(κ3,κ4) = α(κ1?κ3,κ2?κ4).

For type environments ? is extended in the following way:

(Γ1 ? Γ2)(x) =


Γ1(x) ? Γ2(x), if x ∈ dom(Γ1) ∩ dom(Γ2)
Γ1(x), if x ∈ dom(Γ1) \ dom(Γ2)
Γ2(x), if x ∈ dom(Γ2) \ dom(Γ1)

We now introduce some operations on type environments that are
needed for the rest of the report.

Definition 8 (Operations on type environment). Let Γ be a type
environment, a a name, ρ = α(κ1,κ2) be a type, and µ a use constant.

1. Γ + a : ρ denotes the type environment ∆ where dom(∆) =
dom(Γ) ∪ {a}, ∆(x) = Γ(x) for all x 6= a, and

∆(a) =


Γ(a), if a 6∈ dom(Γ),
Γ(a) + ρ, if a ∈ dom(Γ) and + is defined,
undefined if a ∈ dom(Γ) and + is undefined.

2. When a 6∈ dom(Γ), we define Γ]a : ρ as the type environment ∆
where dom(∆) = dom(Γ)∪{a}, ∆(x) = Γ(x) for all x ∈ dom(Γ),
and ∆(a) = ρ.

3. Γ\a denotes the type environment whose domain is dom(Γ)\{a}.
4. µ× Γ denotes the type environment ∆ where dom(∆) = dom(Γ)

and ∆(x) = α(µ×κ1,µ×κ2) for all x such that Γ(x) = α(κ1,κ2).

3.5 Counting procedure calls

The def construct binds processes to process variables and allows for
calls to these processes within its scope. The number of calls to a
procedure is unrestricted, meaning that a procedure can be called any
number of times.

For a process P to be typified correctly, the input and output uses
of every (type of every) name on P must reflect, at least, its com-
munication capabilities. If a name, say a, occurs free in a procedure
X (ṽ) = P , it is not enough to consider only the usage of a within P .
In fact, the usage of a depends also from the number of times that X

6

is called within a given process. To illustrate this situation consider
the following example.

def X (v) = a ! l1[v] in X[b] |X[c].

Considering a ! li[ṽ], we may say that the usage of a is (0, 1). But X is
called twice in the scope of the definition. Then the usage of channel
a must be at least (0, ω).

We propose a function U(X, D,Q) that computes the number of
times that X is called in Q, regarding the collection of definitions D.
The call to U(X, X (v) = a ! l1[v], X[b] |X[c]), must yield ω, since X is
used twice in Q, and thus the usage of a is ω × (0, 1) = (0, ω).

As a name may have more then one type, it is plausible to expect
that there is not a unique way to compute the number of calls to X.
Trivially the constant function W (X, D,Q) = ω will do the job, since
α(ω,ω) � α(κ1,κ2), for any use κ1, κ2. But then the question is: is the
function interesting enough from a practical point of view? Certainly
not, because this information cannot help us in any kind of compiler
optimisation. We have devised a function, introduced in section 6,
that more accurately computes the number of times (0, 1, ω) that a
process variable is called in a given process.

In what follows we state the properties that a function must satisfy
in order to be a call-counting function.

Definition 9 (Call counting function). Let D
def= X1 (x̃1) = P1 and

. . . and Xn (x̃n) = Pn. A function U is a call-counting function if it
satisfies the following requirements.

1. U(X, D,Q) ≥ U(X, D,R), if Q
`→ R, for all `,

2. U(X, D,Xi[ṽ] |Q) = 1 + U(X, D, {ṽ/x̃i}Pi |Q), if X = Xi for
some i,

3. U(X, D,Xi[ṽ] |Q) = U(X, D, {ṽ/x̃i}Pi |Q), if X 6= Xi for no i.

The above assertions define the behaviour of U during process re-
duction3. The first assertion states that the number of potential calls
to a particular procedure cannot increase during reduction. Asser-
tions (2) and (3) refer specifically to reductions that occur on a call:
if it is on X—the variable that we are counting—then the number of
calls decreases by 1, because X is called in Pi the same number of
times in each equation side, plus one more time in the call to X[ṽ]
itself. Otherwise (assertion 3) the number of potential calls to X is
not affected.

3See section 4.2 for the reduction relation.

7

Proposition 10. The constant function W , defined as W (X, D,Q) =
ω, is a call counting function.

Proof. Trivial from ω ≥ ω and ω = 1 + ω.

3.6 Typing rules

We now are in position to present the typing rules for linear TyCO.
Notice that we pay special attention to type environments used to

typify processes, and construct them in such a way that they contain
both typing information on what channels transport (the number and
types of the names that the channel transports) and channels usage
(the number of times that the channel may be used for input and for
output).

A judgement is an expression of the form Γ ` P and means, not
only that P is correctly typed under Γ, but also that the resources are
used according to the uses specified by the types.

Msg a : {l1 : ρ̃1, . . . , ln : ρ̃n}(0,1) + ṽ : ρ̃i ` a ! li[ṽ]

Rule Msg expresses the fact that a must be a channel with, at
least, output capabilities. We add ṽ : ρ̃i to the type environment to
take into account the usage of ṽ by the receiver.

Obj
Γ ` M : α

Γ + a : α(1,0) ` a ? {M}

Following the same approach, a must at least have input capabili-
ties.

Res
Γ] x : ρ ` P

Γ ` new x : ρ P

The restriction rule specifies that the corresponding binding vari-
able moves from the type environment to the new operator.

Par
Γ1 ` P Γ2 ` Q

Γ1 + Γ2 ` P |Q

The Par rule establishes that the usage of channels in the process
P |Q is the sum of the two environments Γ1 and Γ2 that typify P and
Q, respectively. This means that the resources consumed by P |Q
are those consumed by P together with those consumed by Q. As an
example, suppose that P

def= a ? {l1 (x) = a ! l1[x]} and Q
def= a ! l1[v].

Then a is used both for input and for output (once) in P and used
again in Q, that is, a is no longer a linear channel in P |Q.

8

App X : ρ1 . . . ρn] v1 : ρ1 + . . . + vn : ρn ` X [ṽ]

The name sequence ṽ constitutes the arguments of X. Therefore,
the sum v1 : ρ1+. . .+vn : ρn enables us to keep track of the usage of vi

in the process bound to X. Notice that vi are not necessary distinct.

Nil ∅ ` 0

The inaction process needs no resources to be typified.

Def

Γ1]Xi : ρ̃i] x̃1 : ρ̃1 ` P1 · · · Γn]Xi : ρ̃i] x̃n : ρ̃n ` Pn

∆]Xi : ρ̃i ` Q∑
i U(Xi, D, Q)× Γi + ∆ ` def X1 = (x̃1) P1 . . . in Q

The product of each Γi by U(Xi, D, Q)—the number of times that
Xi is called in def D in Q—accounts for the fact that some of the Xi

can be called zero or more times; each time Xi is called we need the
resources specified by Γi to be available.

Meth
Γ] x̃1 : ρ̃1 ` P1 . . . Γ] x̃n : ρ̃n ` Pn

Γ ` l1 (x̃1) = P1, . . . , ln (x̃n) = Pn : {l1 : ρ̃1, . . . , ln : ρ̃n}

In order to typify a collection of methods we do not add or multiply
the resulting environment, since just one of the methods is active
at a given time. Thus, we use as the result environment the most
consuming resources of each method (because Γ is shared).

Sub
Γ] x : ρ′ ` P ρ � ρ′

Γ] x : ρ ` P

Weak1
Γ ` P

Γ + x : ρ ` P
Weak2

Γ ` P

Γ]X : ρ̃ ` P

These rules Sub, Weak1 and Weak2 are the usual rules for sub-
sumption and weakening.

3.7 Examples

We illustrate the typing rules with some examples.

Example 11. The process a ! l1[] is typified with the type environment
{a : {l1 : ε}(0,1)}, where ε denote the empty type sequence. This means
that name a has a channel type with the capability of performing one
output and no input at all. Types are not uniquely determined, for
instance, other type possibilities for name a include {l1 : ε}(1,1) and
{l1 : ε}(ω,1).

9

Example 12. In the process a ? {l1 () = x ! l[], l2 (y) = x ! l[]}, name
a has type {l1 : ε, l2 : {}(0,0)}(1,0), meaning that it has only input
capabilities, and that y has no communication capability at all. On the
other hand, x has type {l : ε}(0,1), despite the fact that it appears twice
in output position. This is so because x is used in distinct methods
and we compute its least upper bound usage. Other type possibilities
for name a include {l1 : ε, l2 : {}(0,0)}(ω,ω) and {l1 : ε, l2 : {}(1,ω)}(1,1).

Example 13. Consider the following process expression

a ? {l1 (x) = x ! l[]} | a ! l1[y] | y ? {l = () 0}.

Name x has type {l : ε}(0,1), because it is used for output and the
method with label l carries nothing. Hence, name a has type {l1 :
{l : ε}(1,0)}(1,1), because it is both used at an input and an output
position. The type of y can be a little bit tricky, since it is used
for output (implicitly) on a ! li[y] and used for input (explicitly) on
y ? {l () = 0}. So, y has type {l : ε}(1,1).

Example 14. Consider the process def D in Q where

D
def= X1 (x) = a ! l1[x] and X2 (y) = X3[] |X1[y] and

X3 () = X4[] and X4 () = X3[] and X5 (x) = a ! l1[x]

Q
def= X2[b] | a ? {l1 (z) = z ! l2[]}

Name a has type {l1 : {l2 : ε}(0,1)}(1,1), since it is used for input in
Q, for output in the call to X2, and transports name b. Name b has
type {l2 : ε}(0,1) because it is used as an argument to the method
labelled l1 locate at a. Notice however that, despite the fact that X3

and X4 are defined recursively, X1 is only called once from X2 (X1

is not reachable from X3 or X4). Nevertheless, W (Xi, D, Q) = ω, for
1 ≤ i ≤ 5.

Example 15. In the following def process a and b are free names and
X2 is defined recursively

def X1 (x) = a ! l1[x] and X2 () = X2[] |X1[y] in X2[].

Notice that x has an undetermined usage, since it is not possible to
compute its use within the object located at a. Thus, y has also an
undetermined usage. For the sake of this example we set their uses
pair to (0, 0). Later, we explain how to deal with undetermined usages
(through use variables). Name a has type {l1 : t(0,0)}(0,ω) because X2

is reachable from the body of the def (and is recursive) and X1 is also
reachable from X2. Hence, we have to compute ω × {l1 : t(0,0)}(0,1).

10

4 Reduction semantics (with uses)

The operational semantics of the calculus is presented following Mil-
ner [MPW92]. We first define a congruence relation between processes
that simplifies the reduction relation introduced thereafter.

Free and bound names of P , denoted by fn(P) and bn(P), respec-
tively, are defined in the usual way; that is, bound names are intro-
duced by two process constructions: (1) procedures—X (x̃) = P—the
sequence of names x̃ are bound in P ; (2) restrictions—new x : ρ P—
name x is also bound in P . Every name occurring in a process that is
not bound is free. For process variables we say that X is free, if it is
not in the scope of a def process. Otherwise X is bound. The sets of
free and bound process variables are denoted, respectively, by fv(P)
and bv(P).

Notice that on a declaration, say X(ṽ) = P , the free names of
P are not necessary in ṽ. Name a in X(v) = a ! li[v] illustrates this
situation.

Both for names and process variables, we follow the variable con-
vention (as in lambda calculus), and α-convert the bound names (vari-
ables) of a process in such a way that every bound name (variable)
is different from the other free and bound names (variables) of the
process. The exact definition of α-conversion, ≡α, is in the appendix
(definition 45).

4.1 Structural congruence

The structural congruence relation is the least congruence on process
expressions closed under the following rules:

1. P ≡ Q, if P is α-convertible to Q,

2. P |Q ≡ Q |P, (P |Q) |R ≡ P | (Q |R), P | 0 ≡ P ,

3. new x : ρ 0 ≡ 0,
new x : ρ new y : σ P ≡ new y : σ new x : ρ P , if x 6= y or (when
x = y) σ � ρ,
(new x : ρ P) |Q ≡ new x : ρ (P |Q), if x /∈ fn(Q),

4. def D in 0 ≡ 0,
def D in new x : ρ Q ≡ new x : ρ def D in Q, if x /∈ fn(D),
(def D in Q) |R ≡ def D in (Q |R), if {Xi} ∩ fv(R) = ∅ and
D

def= X1 (x̃1) = P1 and . . . and Xn (x̃n) = Pn.

5. M1 ≡ M2, if M2 is a reordering of methods defined in M1.
D1 ≡ D2, if D2 is a reordering of processes defined in D1.

11

Notice, in the second clause of the fourth rule, that the scope of
a new can be extended to embrace a def process, provided that x is
not free in any abstraction of D. We must set this condition since, for
each procedure Xi (ṽi) = Pi, the free names of Pi may not all belong
to the name sequences ṽi.

Also notice, in third clause of the fourth rule, that a process can
be included or not in the scope of a def, if no Xi is in fv(R).

Another comment, perhaps more subtle, is the side condition on
new rule when restricted names commute (clause 2, rule 3). In fact,
if the restricted name is the same for both new processes, then the
occurrences of the restricted name in P are bound to the inner new,
and when we commute the name restrictions we have to guarantee
that the type of the “new” restricted name offers, at least, the same
capabilities as the previous one, i.e., it must be its subtype (for details
see the proof of lemma 16 in appendix A).

The intuitive meaning of structural congruence on processes is that
whenever P is part of a process and P ≡ Q, then we can replace P
by Q without affecting the behaviour of the process. Thus, it seems
natural that the typing environment of P must be the same as Q. The
following result makes this statement precise.

Lemma 16. If Γ ` P and P ≡ Q, then Γ ` Q.

Proof. See appendix A.

4.2 Reduction relation

We now present the one step reduction relation with uses. Each reduc-
tion is labelled either with a free channel x, or with the special symbol
ε denoting a communication on a bound channel or a process instanti-
ation. We use ` to range both over free names and ε. The expression
{ṽ/x̃}P denotes the simultaneous substitution of free occurrences (in
P) of pairwise distinct names xi for vi.

Com a ! li[ṽ] | a ? {l1 (x̃1) = P1, . . . , ln (x̃n) = Pn}
a→ {ṽ/x̃i}Pi

This is the basic communication rule between a message and an
object. The resulting process is the method body Pi, selected by the
label li, with its parameters x̃i replaced by the arguments ṽ.

Par
P

`→ R

P |Q `→ R |Q

12

The Par rule allows a reduction to occur inside a parallel compo-
sition of processes.

Res1
P

x→ R

new x : α(κ1,κ2)P
ε→ new x : α(κ−1 ,κ−2)R

Res2

P
`→ R ` 6= x

new x : ρ P
`→ new x : ρ R

We distinguish two cases for reduction inside a restriction: (1)
Res1 represents a reduction that occurs on the restricted name4. In
this case we label the reduction with ε (communication over a bound
channel) and indicate explicitly, in the type of x, that it was used in
the reduction; (2) Res2 denotes a reduction occurs on a name other
than x.

Def
P

`→ Q

def D in P
`→ def D in Q

Call def D and X (x̃) = P in X[ṽ] |Q ε→
def D and X (x̃) = P in {ṽ/x̃}P |Q,
where D

def= X1 (x̃1) = P1 and . . . and Xn (x̃n) = Pn

The two rules above define the behaviour of a def process. The
Def rule specifies that a communication can occur inside a def pro-
cess. Call rule describes the replacement of a process variable by
its definition, performing the necessary substitution. Notice, however,
that this procedure call does not consume any channel resources, hence
the transition is labelled by ε.

Str
P ≡ R R

`→ S S ≡ Q

P
`→ Q

This last rule incorporates structural congruence into reduction.
Intuitively the reduction relation with uses just introduced, allows

the control of communications over channels in the following way: if a
process P is typified by some environment, say Γ, and P can reduce by
` to become Q, then the environment resulting from Γ by suppressing
the capabilities consumed in the reduction typify Q. More precisely,
if Γ ` P and P

`→ Q, then Γ−` ` Q. This result (subject reduction—
theorem 19) constitutes the goal of the current section.

The effect of consuming resources in a reduction is made precise
by the following definition:

4Recall the definition of suppression (definition 4, page 4).

13

Definition 17. The type environment Γ−` is obtained from Γ as fol-
lows.

Γ−`(a) =


Γ(a), if a 6= `,

α(κ−1 ,κ−2), if Γ(a) = α(κ1,κ2) and κ−1 , κ−2 defined,
undefined, otherwise.

Notice that a 6= ` implies that a 6= ε, since ε never belongs to
dom(Γ).

Proposition 18. If Γ−` ` P , then Γ ` P .

Proof. The case when ` 6∈ dom(Γ) is trivial, since Γ−` = Γ. On
the other hand, if ` ∈ dom(Γ), we know that Γ−` ` P and that
Γ(`) � Γ−`(`). Applying Sub rule

Sub
Γ−a ` P Γ(`) � Γ−`(`)

Γ ` P

concludes the proof.

The following result asserts that the types of free names remain
invariant during reduction. In the present case, where types have uses
pairs associated, the result goes further and specifies the variation on
the uses of the name where the reduction took place.

Theorem 19 (Subject reduction). If Γ ` P and P
`→ Q, then Γ−`

is defined and Γ−` ` Q.

Proof. See appendix A.

The usual subject reduction result can be obtained as a conse-
quence of the previous theorem.

Corollary 20. If Γ ` P and P
`→ Q, then Γ ` Q.

Proof. From hypothesis and theorem 19, we find that Γ−` ` Q. Ap-
plying proposition 18 one concludes the proof.

5 Type reconstruction

This section addresses type reconstruction. We want to recover types
from processes without any explicit annotations from the programmer,
and we want to identify (on a systematic basis) the linear channels in
a program. This kind of information, achieved by a static analysis on
processes, is quite important at compile time, namely on queue allo-
cation. If a channel is linear, then we need only to allocate a memory

14

cell to manage the communications within this channel, because one
has the guarantee that there will not ever be more than one message
waiting to be received for that channel. Furthermore, this memory
can be deallocated after the communication takes place.

Our approach follows Igarashi and Kobayashi [IK00]: first we de-
vise a new typing system, equivalent to the previous one (see section
3.6), but suited for type reconstruction; then we present some opera-
tors to compute type restrictions, and proceed with the presentation
of an algorithm that computes a principal typing and a set of restric-
tions to uses. For the resolution of this special kind of restrictions see
[IK00].

5.1 Type constraints

We extend uses syntax to incorporate use variables. Type and use
variables play and important role in type reconstruction.

Definition 21 (Use expressions). Let u (possible subscribed) range
over an infinite set of use variables. The set of use expressions is
given by the following syntax.

κ ::= 0 | 1 | ω | u | κ1 + κ2 | κ1 · κ2 | κ1 t κ2.

0, 1, ω are called use constants.

We keep information about type and use variables as subtyping
constraints on a set C.

Definition 22 (Subtype restriction set). A subtype restriction
set C is a set of subtype expressions ρ1 � ρ2, called restriction expres-
sions. We extend � to type environments, and let Γ � ∆ denote the
subtype restriction set {Γ(x) � ∆(x) |x ∈ dom(∆)}.

The notion of type/use substitution is simpler than variable sub-
stitution, since there are no bound variables in type/use expressions.

Definition 23 (Substitution, instance). A substitution S is an
expression

{ρ1/t1, . . . , ρn/tn, κ1/u1, . . . , κm/um},

where t1, . . . , tn are distinct type variables, ρ1, . . . , ρn are types (n ≥
0), u1, . . . , um distinct use variables, and κ1, . . . , κm uses (m ≥ 0).
The domain of S, denoted dom(S), is the set {t1, . . . , tn, u1, . . . , um}.
For any type ρ define Sρ to be the type obtained by simultaneously sub-
stituting ρ1 for t1, . . . , ρn for tn and κ1 for u1, . . . , κm for um through-
out ρ. We call Sρ an instance of ρ.

15

We extend substitution S to finite sequences of types ρ̃, to type
environments Γ, to subtype restriction sets C, and also to processes P .
Moreover, if SC contains no type/use variables, we call S a ground
substitution on C.

The ground substitutions that interest us are those that turn true
all the subtype restrictions of a subtype constraint set.

Definition 24 (Solution of a constraint set). The substitution S
is a ground solution of C, if Sρ1 � Sρ2 holds for every restriction
expression ρ1 � ρ2 in C.

The next definition relates subtype constraint sets.

Definition 25. The constraint set C1 satisfies C2, denoted by C1 |= C2,
if every solution of C1 is also a solution of C2.

Sometimes we use the expression “C1 is a subtype constraint stronger
than C2”.

Proposition 26. C |= C1 and C |= C2, if, and only if, C |= C1 ∪C2.

Proof. Let S be a solution of C. Since C |= C1 and C |= C2, S satisfies
every restriction of C1 and C2, that is, S satisfies C1∪C2. Conversely,
if S satisfies C1 ∪ C2, then S satisfies C1 and satisfies C2.

5.2 Type system for reconstruction

We introduce a syntax-directed typing system that identify linear
channels. These typing rules are adequate to perform type inference
because at each step in the inference there is exactly one rule to apply,
whereas in the type system devised at section 3.6 we could apply Sub
and/or Weak at any inference step. (Nevertheless, the former type
system is best suited for proving the subject reduction theorem.)

Judgements are of the form Γ; C ` P with the intended meaning
that SΓ ` SP holds for any substitution S that is a solution of C.

MsgSD

C |= Γ � a : {l1 : ρ̃1, . . . , ln : ρ̃n}(0,1) + ṽ : ρ̃i

Γ;C ` a ! li[ṽ]

ObjSD

∆; C ′ ` M : α C |= C ′ C |= Γ � ∆ + a : α(1,0)

Γ;C ` a ? {M}

ResSD

Γ] x : σ;C ` P C |= ρ � σ

Γ;C ` new x : ρ P

16

ParSD

Γ1;C1 ` P Γ2;C2 ` Q C |= C1 ∪ C2 ∪ Γ � Γ1 + Γ2

Γ;C ` P |Q

AppSD

C |= σ̃ � ρ̃

Γ]X : ρ̃] ṽ : σ̃;C ` X[ṽ]
NilSD Γ; ∅ ` 0

DefSD

⊎
j Xj : ρ̃j] Γi] x̃i : σ̃i;Ci ` Pi, 1 ≤ i ≤ n⊎

j Xj : ρ̃j]∆; C ′ ` Q

C |= Γ �
∑

j U(Xi, D, Q)× Γj + ∆
C |=

⋃
j(Cj ∪ {σ̃j � ρ̃j}) ∪ C ′

Γ;C ` def X1 (x̃1) = P1 and . . . and Xn (x̃n) = Pn in Q

MethSD

Γi] x̃i : σ̃i;Ci ` Pi, 1 ≤ i ≤ n
C |=

⋃
j({Γ � Γj} ∪ Cj ∪ {ρ̃j � σ̃j})

Γ;C ` l1 (x̃1) = P1, . . . , ln (x̃n) = Pn : {l1 : ρ̃1, . . . , ln : ρ̃n}

Notice that there are no rules for Sub and Weak, since every
rule combines the effect of these two. If fact, the preceding rules
reflect the effect of the rules Weak and Sub applied together, and
are obtained from the rules in section 3.6 with the same name, but
without subscript.

The equivalence between the type system just presented and the
one of subsection 3.6 is made precise by the following theorem.

Theorem 27 (Equivalence of the two typing systems).

1. Suppose that Γ;C ` P . If S is a solution of C and its domain
includes all type/use variables in Γ and in P , then SΓ ` SP ;

2. If Γ ` P , then (Γ, ∅) ` P .

Proof. See appendix A.

Proposition 28. If Γ;C ` P and ∆; C ′ is an instance of Γ;C, then
∆; C ′ ` P .

As was mentioned before (see section 3) types are not uniquely
determined. The next definition relates such types.

Definition 29 (Principal typing). The pair Γ;C is a principal typ-
ing of P , if

1. Γ;C ` P , and

2. If ∆; C ′ ` P , then ∆; C ′ is an instance of Γ;C.

17

5.3 Type reconstruction algorithm

The reconstruction of principal typings proceeds in two steps: (1)
compute a set of constraints for both type and use variables; (2) resolve
these constraints. We address step one. For constraint resolution see
reference [IK00].

First, we define the operators ⊕,t, and ⊗, intended to compute
the most general pair typing.

Definition 30. Γ1 ⊕ Γ2 is a pair Γ;C defined as follows.

Γ = {x : β(rx,ux) |x ∈ dom(Γ1) ∪ dom(Γ2)},
C = C1 ∪ C2 ∪{Γ(x) � ∆1(x) + ∆2(x) |x ∈ dom(Γ1) ∩ dom(Γ2)}

∪{Γ(x) � Γ1(x) |x ∈ dom(Γ1) \ dom(Γ2)}
∪{Γ(x) � Γ2(x) |x ∈ dom(Γ2) \ dom(Γ1)},

where
∆1 = {x : α

(rx1 ,ux1)
x |x ∈ dom(Γ1) ∩ dom(Γ2)}

∆2 = {x : α
(rx2 ,ux2)
x |x ∈ dom(Γ1) ∩ dom(Γ2)}

C1 = {∆1(x) � Γ1(x) : x ∈ dom(∆1)}
C2 = {∆2(x) � Γ2(x) : x ∈ dom(∆2)},

with βx, rx, ux, αx, rx1 , rx2 , ux1 , and ux2 fresh for each x.

Operations +,t, and × are only defined for types that differ at
most in their outermost uses. Nevertheless, an operation between
types can still be defined for some common subtype of both. That
is the role that type environments ∆1 and ∆2 play in the above
definition—they offer a common subtype for names that belong to
Γ1 and Γ2. Notice that, despite the fact that αx is fresh, it is assigned
to ∆1(x) and ∆2(x), however with distinct use variables.

Definition 31. Γ1 t Γ2 is the pair Γ;C where

Γ = {x : α
(rx,ux)
x |x ∈ dom(Γ1) ∪ dom(Γ2)}

C = {Γ(x) � Γi(x) |x ∈ dom(Γi)},

with αx, rx and ux fresh for each x.

Definition 32. κ⊗ Γ is the pair ∆; C where

∆ = {x : α
(rx,ux)
x |x ∈ dom(Γ)}

C = {∆(x) � κ · Γ(x) |x ∈ dom(Γ)},

with αx, rx and ux fresh for each x.

The following proposition establishes the relation between the op-
erators ⊕,t,⊗ and the satisfaction of subtype constraints constructed
from operators +,t and ×, respectively.

18

Proposition 33.

1. If Γ;C = Γ1 ⊕ Γ2, then C |= (Γ � Γ1 + Γ2).

2. If Γ;C = Γ1 t Γ2, then C |= (Γ � Γ1 t Γ2).

3. If Γ;C = κ⊗ Γ1, then C |= (κ× Γ1).

Proof. See Igarashi and Kobayashi [IK00].

We now present a type reconstruction algorithm (LTR—Linear
Type Reconstruction) that can infer principal typings from process
expressions. For some process P the algorithm computes a pair Γ;C
where Γ is a type environment and C represents a set of restrictions
on subtyping expressions. The algorithm mimics the syntax-directed
rules, using the operators ⊕,⊗,t to explicitly determine the subtype
constraints.

In what follows, we use the untyped version of the syntax for pro-
cesses (defined in section 2). Since our purpose is to determine the
type of names from process expressions it does not make much sense
to explicitly indicate the type of the bound name in a new x : ρ P pro-
cess. In fact, we can infer ρ from P . Therefore, for type reconstruction
purposes, we write new x P instead of the usual new x : ρ P .

LTR(a ! li[ṽ]) = a : {l1 : t
(r1,u1)
1 , . . . , ln : t

(rn,un)
n }(0,1) ⊕ ṽ : t

(ri,ui)
i

LTR(a ? {l1 (x̃1) = P1, . . . , ln (x̃n) = Pn}) = Γ; C ∪ C1 ∪ . . . ∪ Cn ∪ C ′

where Γ1;C1 = LTR(P1)
...

Γn;Cn = LTR(Pn)
Π;C ′ = (Γ1 \ x̃1) t . . . t (Γn \ x̃n)
Γ;C = Π⊕ a : {l1 : Γ1(x̃1), . . . , ln : Γn(x̃n)}(1,0)

LTR(new x P) = (if x ∈ dom(Γ) then Γ \ x else Γ); C
where (Γ, C) = LTR(P)

LTR(P |Q) = Γ; C ∪ C1 ∪ C2

where Γ1;C1 = LTR(P)
Γ2;C2 = LTR(Q)
Γ;C = Γ1 ⊕ Γ2

LTR(X[ṽ]) = ({X : t
(r1,u1)
1 . . . t

(rn,un)
n , ṽ : t′(r

′,u′)}, t′(r′,u′) � t
(ri,ui)
i).

LTR(0) = (∅, ∅).

LTR(def X1 (x̃1) = P1 and . . . and Xn (x̃n) = Pn in Q) =

19

Γ;C1 ∪ · · · ∪ Cn ∪ C ′ ∪ C ′′ ∪ C ′′′

where (Γ1,C1) = LTR(P1)
...

Γn;Cn = LTR(Pn)
∆; C ′ = LTR(Q)
Π;C ′′ =

⊕
i(U(Xi, D, Q)⊗ (Γi \ x̃n))

Γ;C ′′′ = ∆⊕Π

Theorem 34 (Correctness of the algorithm).

1. If Γ;C ` P , then LTR(P) outputs the principal typing of P .

2. If LTR(P) outputs Γ;C, then Γ;C is a principal typing of P .

Proof. See appendix A.

The following example illustrates the application of the LTR algo-
rithm.

Example 35. Consider the process expression

P ≡ a ! l1[v] | a ? {l1 (x) = x ! l[y]}.

LTR(a ! l1[v] | a ? {l1 (x) = x ! l[y]}) = Γ; C ∪ C1 ∪ C2

where Γ1;C1 = LTR(a ! l1[v])
Γ2;C2 = LTR(a ? {l1 = x ! l[y]})
Γ;C = Γ1 ⊕ Γ2.

Now we compute Γ1;C1.
LTR(a ! l1[v]) = a : {l1 : t

(r1,u1)
1 }(0,1) ⊕ v : t

(r1,u1)
1 .

Then Γ1 = {a : t
(r2,u2)
2 , v : t

(r3,u3)
3 } and

C1 = {t(r2,u2)
2 � {l1 : t

(r1,u1)
1 }(0,1), t

(r3,u3)
3 � t

(r1,u1)
1 }).

To compute Γ2;C2, we let
LTR(a ? {l1 (x) = x ! l[y]}) = Π; C ′ ∪ C ′

1

where ∆; C ′
1 = LTR(x ! l[y])

Π;C ′ = (∆ \ x)⊕ a : {l : ∆(x)}(1,0)

It is easy to compute
∆ = {x : t

(r5,u5)
5 , y : t

(r6,u6)
6 }, Π = {y : t

(r7,u7)
7 , a : t

(r8,u8)
8 },

C ′
1 = {t(r5,u5)

5 � {l : t
(r4,u4)
4 }(0,1), t

(r6,u6)
6 � t

(r4,u4)
4 },

C ′ = {t(r7,u7)
7 � t

(r6,u6)
6 , t

(r8,u8)
8 � {l1 : t

(r5,u5)
5 }(1,0)}.

Which means that Γ2 = Π and C2 = C ′ + C ′
1.

20

Hence, the algorithm output
Γ = Γ1 + Π = {a : t

(r10,u10)
10 , y : t

(r11,u11)
11 , v : t

(r12,u12)
12 },

C ={t(r9,u9)
9 � t

(r2,u2)
2 , t

(r′9,u′9)
9 � t

(r8,u8)
8 }∪

{t(r10,u10)
10 � t

(r9,u9)
9 + t

′(r′9,u′9)
9 , t

(r11,u11)
11 � t

(r7,u7)
7 }∪

{t(r12,u12)
12 � t

(r3,u3)
3 } ∪ C1 ∪ C2.

Resolving the subtype constraint set C, we get

a : {l1 : {l : t
(0,0)
11 }(0,1)}(1,1), v : {t(0,0)

11 }(0,1),

x : {t(0,0)
11 }(0,1), y : t

(0,0)
11 .

6 The usage of a process variable

We now present an algorithm to compute the number of times that a
process variable is called in a def process.

Notice that the algorithm has to deal with recursive calls to proce-
dures (possibly defined using mutually recursive equations) and with
free names that may occur in each definition body.

Our approach is to interpret procedure calls as a graph that models
the dependencies between each process variable. The number of times
(0, 1, ω) that a certain variable X is called in a given process P is then
given by the number of paths starting on every Y ∈ fv(P) and ending
in X. We formalise these concepts in what follows.

Definition 36 (Follows or is reachable). Let Y be a process vari-
able and P be a process def X1 (x̃1) = P1 and . . . and Xn (x̃n) =
Pn in Q. We say that Y follows directly from Xi, denoted by Xi →1 Y ,
if Pi ≡ new x1 : ρ1 . . . new xn : ρn def D1 in . . . def Dm in Y [ṽ] |R,
for some process R and n ≥ 0, m ≥ 0.

The relation → is the reflexive-transitive closure of →1. When
X → Y we say that Y follows from or is reachable from X.

The algorithm to determine if two nodes are connected in a direct-
graph is well-known from graph theory and can be found easily in
graph theory literature (for instance [AHU74]). Next we describe the
construction of the graph of call dependencies.

Definition 37 (Call dependency graph). The graph of call depen-
dencies of a definition D ≡ X1 = (x̃1) P1 and · · · and Xn = (x̃n) Pn,
denoted by, D(D) is a direct-graph constructed as follows:

1. Insert a node for each process variable in D (bound or free).

2. Insert an edge from Xi to each Y , if Xi →1 Y holds.

21

The recursive function, U , computes the number of times that a
process variable Xi is called in P ≡ def D in Q ≡ def X1 (x̃1) =
P1 and . . . and Xn (x̃n) = Pn in Q.

U(Xi, D, Q) def= U ′(Xi, D, Q, ∅).
The auxiliary function U ′ maintains a set of process variables V to

track those already visited. This is necessary to avoid infinite recursion
as U ′ descends the process tree structure.

We assume, without lost of generality, that all bound process vari-
ables Xj are different form X ′

j .

1. U ′(Xi, D, 0, V) = 0

2. U ′(Xi, D, a ! li[ṽ], V) = 0

3. U ′(Xi, D, P |Q,V) = U ′(Xi, D, P, V) + U ′(Xi, D, Q, V)

4. U ′(Xi, D, a ? {l1 (x̃1) = P1, . . . , ln (x̃n) = Pn}, V) =⊔
j U ′(Xi, D, Pj , V)

5. U ′(Xi, D, new x : ρ P, V) = U ′(Xi, D, P, V)

6. U ′(Xi, D, Y [ṽ], V) = 1, if Y 6∈ bv(D) and Xi = Y
U ′(Xi, D, Y [ṽ], V) = 0, if Y 6∈ bv(D) and Xi 6= Y or

Y ∈ bv(D), Y ∈ V , and Y 6→ Xi

U ′(Xi, D, Y [ṽ], V) = ω, if Yj ∈ bv(D), Y ∈ V , and Y → Xi

U ′(Xi, D, Yj [ṽ], V) = 1 + U ′(Xi, D, Pj , V ∪ {Yj})),
if Yj ∈ bv(D), Yj 6∈ V , and Xi = Yj

U ′(Xi, D, Yj [ṽ], V) = U ′(Xi, D, Pj , V ∪ {Yj})),
if Yj ∈ bv(D), Yj 6∈ V , and Xi 6= Yj

7. U ′(Xi, D, def D′ in Q′, V) = U ′(Xi, D
′, Q′, V)+∑

j{U ′(Xj , D
′, Q′, V)× U ′(Xi, D, Pj , V)}

where D is X1 (x̃1) = P1 and . . . and Xn (x̃n) = Pn and D′ is
X ′

1 (x̃1) = P ′
1 and . . . and X ′

n (x̃n) = P ′
n.

The function U ′ counts the number of times that Xi is called in
def D in Q, by analysing the number of calls to Xi in Q. If Q is an
atomic process (i.e. inaction or message process) the count is trivial.
Otherwise U ′ must descend the process structure and analyse each
subprocess of Q. The cases that worth mention are:

1. In case 4, we compute the least upper bound use of Xi (not the
sum, as might be expected). This is so because only one method
is selected in reduction. Thus, is it enough to consider the least
upper bound use of Xi in all procedure definitions.

2. First and second clauses of case 6 assert that we cannot descend
the process structure of a procedure that is not defined in the
def process that we are analysing.

22

The reachability tests performed at clauses 2 and 3 of rule 6 are
necessary when a variable was already visited (Y ∈ V). This
means that there is a cycle starting in Y , since Y is the first
process variable that belongs to V . Thus, if Xi is part of that
cycle its use is obviously ω, otherwise is 0.

3. Case 7 describes the number of calls to Xi from a nested def
process. We must consider two cases: when Xi is called directly
from def D′ in Q′, that is, a call to Xi is explicitly mentioned
in the nested def. That is what U ′(Xi, D

′, Q′, V) counts. But,
Xi can also be called indirectly by some Xj as well. Then, we
have to count the usage of each Xj in the inner def process and,
after that, find if Xi is called from that particular Xj . Thus, the
total number of calls to Xi is the product of the calls to Xj in
the inner def by the calls to Xi in the process bound to Xj .

Our last result states that U defined as above is a call counting
function.

Theorem 38. Function U is a call-counting function.

Proof. See appendix A.

To illustrate U consider the example 14 on page 10. The result of
U(Xi, D, Q) for 1 ≤ i ≤ 5 is, respectively, 1, 1, ω, ω, and 0. These
results are more accurate than ω = W (Xi, D, Q), for 1 ≤ i ≤ 5.

7 Conclusions

In this report we have shown how to extend TyCO type system [Vas99]
to incorporate linear channels. We follow Pierce, Sangiorgi, Kobayashi,
Turner, and Igarashi [PS96, KPT99, IK00], and specify a type system
that distinguishes input, output, and input/output channels, counting
the number of times that channels are used in one way or another. We
enunciated the properties that a function must satisfy in order to be
a call-counting function and have devised a function U that computes
accurately such channel usage. This opens the possibility of compiler
optimisations suggesting that linear channels need not be implemented
using queues, and that the channels memory may be deallocated after
communication occurs.

We also devised an algorithm (adapted from [IK00]) to perform
type reconstruction which means that, from a practical point of view,
programmers need not give any kind of information related to channels
usage. All usage information is recovered from process expressions by
type inference.

23

It remains for further study the impact of possible optimisations in
the TyCO compiler and the applicability of source code transformation
techniques to optimise programs, knowing information about channels
usage.

References

[AHU74] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman.
The Design and Analysis of Computer Algorithms. Series
in Computer Science and Information Processing. Addison-
Wesley, 1974.

[IK00] Atsushi Igarashi and Naoki Kobayashi. Type reconstruc-
tion for linear pi-calculus with i/o subtyping. Information
and Computation, 161:1–44, 2000.

[KPT99] Naoki Kobayashi, Benjamin C. Pierce, and David N.
Turner. Linearity and the pi-calculus. ACM Transactions
on Programming Languages and Systems, 21(5):914–947,
1999.

[MPW92] R. Milner, J. Parrow, and D. Walker. A calculus of mobile
processes, part i and ii. Information and Computation,
100(1):1–77, 1992.

[PS96] Benjamin C. Pierce and Davide Sangiorgi. Typing and
subtyping for mobile processes. Journal of Mathematical
Structures in Computer Science, 6(5):409–454, 1996.

[Vas99] Vasco T. Vasconcelos. Processes, functions, datatypes.
Theory and Practice of Object Systems, 5(2):97–110, 1999.

[VH92] Vasco T. Vasconcelos and Kohei Honda. Principal typing-
schemes in a polyadic π-calculus. CS 92–004, Keio Univer-
sity, November 1992.

24

A Proofs

This section presents proofs for the theorems stated in the report; it
includes other definitions and results needed by such proofs.

On the proofs that follow, we use (implicitly) the variable conven-
tion whenever necessary and take all the names in P to be different
from each other (by α-convert bound names).

A.1 Proofs for section 4

Essentially subject-reduction. In this section we redefine the meaning
for the symbol �.

Definition 39. Γ′ � Γ, if ∀x ∈ dom(Γ), then x ∈ dom(Γ′) and
Γ′(x) � Γ(x).

The next lemma states that, if there is a Γ, such that Γ ` P , then
there exists ∆ where ∆ ` P and Γ � ∆.

Lemma 40. Suppose that Γ ` P .

1. If P ≡ a ! li[ṽ], then there exists ρ = {l1 : ρ̃1, · · · , ln : ρ̃n}(0,1) and
τ̃ such that Γ � a : ρ + ṽ : τ̃ .

2. If P ≡ a ? {M}, then there exists ∆ such that ∆ ` M : α and
Γ � ∆ + a : α(1,0).

3. If P ≡ P1 |P2, then there exists Γ1 and Γ2 such that Γ1 ` P1,
Γ2 ` P2 and Γ � Γ1 + Γ2.

4. If P ≡ new x : ρ R, then Γ] x : ρ ` R.

5. If P ≡ X[ṽ], then there exists τ̃ such that Γ � ṽ : τ̃ .

6. If P ≡ def D in Q, then there exists ∆ such that ∆ ` P and
Γ � ∆.

7. If P ≡ 0, then there exists ∆ such that ∆ ` 0 and Γ � ∆.

Proof.

1. If P ≡ a ! li[ṽ] and Γ ` P , then

Γ(a) = α
(κ1,κ2)
1 = {l1 : ρ̃1, · · · , ln : ρ̃n}(κ1,κ2) and Γ(ṽ) = τ̃ .

Since Γ ` P , then τ must be a subtype of ρi and therefore,
α

(0,1)
1 � α

(0,1)
2 = {l1 : ρ̃1, · · · , li : τ̃ , · · · , ln : ρ̃n}(0,1). Hence,

Sub

Msg
a : α

(0,1)
2 + ṽ : τ̃ ` P α

(0,1)
1 � α

(0,1)
2

a : α
(0,1)
1 + ṽ : τ̃ ` P

,

25

and thus,

Sub
a : α

(0,1)
1 + ṽ : τ̃ ` P α

(κ1,κ2)
1 � α

(0,1)
1

a : α
(κ1,κ2)
1 + ṽ : τ̃ ` P

.

For all names x ∈ dom(Γ), such that x 6= a and x 6= vi one can
apply Weak (for names and process variables), and conclude
that Γ ` P , with Γ � a : α

(0,1)
2 + ṽ : τ̃ .

2. if P ≡ a ? {l1 (x̃1) = P1, . . . , ln (x̃n) = Pn} and Γ ` P , then

Obj

Meth
∆] x̃1 : ρ̃1 ` P1 · · ·∆] x̃n : ρ̃n ` Pn

∆ ` l1 (x̃1) = P1, . . . , ln (x̃n) = Pn : {l1 : ρ̃1, · · · , ln : ρ̃n}
∆ + a : {l1 : τ̃1, · · · , ln : τ̃n}(1,0) ` a ? {l1 (x̃1) = P1, . . . , ln (x̃n) = Pn}

Since Γ ` P , Γ(a) � {l1 : τ̃1, · · · , ln : τ̃n}(0,1),

Sub
∆ + a : {l1 : τ̃1, · · · , ln : τ̃n}(0,1) Γ(a) � {l1 : τ̃1, · · · , ln : τ̃n}(0,1)

∆ + a : Γ(a) ` a ? {l1 (x̃1) = P1, . . . , ln (x̃n) = Pn}
.

For each x ∈ dom(Γ) such that x /∈ dom(∆) we apply the Weak
rule. Finally one gets Γ � ∆ + a : {l1 : τ̃1, · · · , ln : τ̃n}(1,0).

3. If P ≡ P1 |P2 and Γ ` P1 |P2, then, by Par rule, there exists
∆1 and ∆2, such that

Par
∆1 ` P1 ∆2 ` P2

Γ ` P1 |P2
,Γ = ∆1 + ∆2.

By induction hypothesis, if ∆i ` Pi, then there exists Γi such
that

Γ1 ` P1 and ∆1 � Γ1

and Γ2 ` P2 and ∆2 � Γ2
.

Then, from Par we have

Par
∆1 � Γ1 ` P1 ∆2 � Γ2 ` P2

Γ = ∆1 + ∆2 � Γ1 + Γ2 ` P1 |P2

and hence there exists Γ1 and Γ2 such that Γ � Γ1 + Γ2.

4. This case follows straightforwardly from the application of the
Res rule. Nevertheless, one could show that, since Γ ` new x :
ρ P , there exists ∆ ` new x : ρ P and Γ � ∆. For that, one only
need to consider that

Res
Γ] x : ρ ` P

Γ ` new x : ρ P

then, by hypothesis, there exists ∆] x : ρ such that

∆] x : ρ ` P and Γ · x : ρ � ∆] x : ρ.

Hence, ∆ verifies

∆ ` new x : ρ P and Γ � ∆.

26

5. By hypothesis Γ ` X[ṽ]. Then one has

∆]X : ρ̃] ṽ : σ̃ ` X[ṽ].

By App, we know that

X : ρ̃] ṽ : ρ̃ ` X[ṽ]

and, since Γ ` X[ṽ], then σ̃ � ρ̃. Hence, by Sub rule,

X : ρ̃] ṽ : σ̃ ` X[ṽ].

By successive applications of Weak, we conclude the case.

6. By hypothesis and def, there exists Λ and Γ1, · · · ,Γn such that:

Def

Γ1]X1 : ρ̃1] · · ·]Xn : ρ̃n] x̃1 : ρ̃1 ` P1
...

Γn]X1 : ρ̃1] · · ·]Xn : ρ̃n] x̃n : ρ̃n ` Pn

Λ]X1 : ρ̃1] · · ·]Xn : ρ̃n ` Q

Γ ` def X1 (x̃1) = P1 and . . . and Xn (x̃n) = Pn in Q
,

with Γ =
∑

i U(Xi, D, Q) · Γi + Λ.
By induction hypothesis, there exists ∆1, · · · ,∆n and Π such
that

∆1 ` P1 and Γ1]X1 : ρ̃1] · · ·]Xn : ρ̃n] x̃1 : ρ̃1 � ∆1
...

∆n ` Pn and Γn]X1 : ρ̃1] · · ·]Xn : ρ̃n] x̃n : ρ̃n � ∆n

and Π ` Q and Λ]X1 : ρ̃1] · · ·]Xn : ρ̃n � Π

.

Thus, applying again Def, we get

Def

Γ1]X1 : ρ̃1]; · · ·]Xn : ρ̃n] x̃1 : ρ̃1 � ∆1 ` P1
...

Γn]X1 : ρ̃1] · · ·]Xn : ρ̃n] x̃n : ρ̃n � ∆n ` Pn

Λ ·X1 : ρ̃1] · · ·]Xn : ρ̃n � Π ` Q

Γ =
∑

i U(Xi, D, Q) · Γi + Λ �
∑

i U(Xi, D, Q) ·∆i + Π
` def X1 (x̃1) = P1 and . . . and Xn (x̃n) = Pn in Q

.

Notice that the function U yields the same results for the two
type environments, since process expressions remain the same.
Hence, we’ve proved that ∆ =

∑
i U(Xi, D, Q) · ∆i + Π exists,

∆ ` P , and that Γ � ∆.

7. This one is straightforward because ∅ ` 0 and Γ � ∅ for any Γ.

27

Proposition 41. Let τ = α
(κ1,κ2)
1 and ρ = α

(µ1,µ2)
2 such that τ + ρ is

defined. Then, τ + ρ � τ and τ + ρ � ρ.

Proof. In order to τ + ρ be defined, τ and ρ must differ only on their
outermost uses (see definition 2, page 4). Therefore α1 and α2 denote
the same type. Thus, τ + ρ = α

(κ1,κ2)
1 + α

(µ1,µ2)
1 = α

(κ1+µ1,κ2+µ2)
1 �

α
(κ1,κ2)
1 , since κ1 + µ1 ≥ κ1 and κ2 + µ2 ≥ κ2 holds for every use

expression. The same argument can be followed for τ + ρ � ρ.

The following lemma is the core of the substitution lemma and let
us reason about substitutions. Typically the substitution lemma is
only concerned with name replacement and does not refer to types.
Nevertheless, as we have to keep track of names usage, we must take
special care when performing these substitutions.

As an outline of the theorem, consider that we want to replace y
for z in P . Then, the usage of z must reflect also the usage of y (since
z replaces y in P). Thus, we need to sum together the usages of y and
z in order to correctly typify P . As a consequence, we have to reason
about types also as well as to establish conditions that define when it
is possible to sum the types ρ (of y) and τ (of z). Hence, in order to
z replace y, we require that it must exists subtypes of ρ and τ where
the sum can be defined. Notice that albeit ρ + τ may not be defined,
ρ′ + τ ′ can be defined for some ρ′ � ρ and τ ′ � τ . That is what the
first and third conditions of the lemma specify.

When performing the substitution ỹ for z̃, the names of the z̃
sequence need not be all distinct. Then, we must guarantee that is also
possible to sum the identical zi because its usage must be considered
together. That is why we require the second condition.

Lemma 42. If Γ] z1 : τz1 + · · · + zn : τzn] ỹ : τ̃y ` P and if there
exists τ̃ ′z and τ̃ ′y such that

1. τ ′zi
� τzi and τ ′yi

� τyi,

2. z1 : τ̃ ′z1
+ · · ·+ zn : τ̃ ′zn

is defined,

3. τ ′zi
+ τ ′yi

is defined,

then Γ] z1 :
(
τ ′z1

+ τ ′y1

)
+ · · ·+ zn :

(
τ ′zn

+ τ ′yn

)
` {z̃/ỹ}P .

Proof. By induction on the structure of the derivation of the typing
of P . We analyse the last typing rule applied.

1. Case MSG. Then P ≡ a ! li[ṽ], and by hypothesis, Γ ` P . Thus,
from lemma 40, Γ � a : {l1 : σ̃1, · · · , ln : σ̃n}(0,1) + ṽ : σ̃i.

28

We have several cases to analyse depending on the substitutions
to perform, but all these cases are treated similarly. Hence, we
consider only the substitution of a by some x. Therefore, we
have ρ = {l1 : ρ̃1, · · · , ln : ρ̃n}(κ1,κ2) and τ = {l1 : τ̃1, · · · , ln :
τ̃n}(κ3,κ4), with ρ � {l1 : σ̃1, · · · , ln : σ̃n}(0,1), such that

Γ = ∆] a : ρ] x : τ ` a ! li[ṽ].

By hypothesis, there exists ρ′ and τ ′ such that ρ′ � ρ, τ ′ � τ ,
and τ ′ + ρ′ is defined.
We want to prove that, Γ = ∆] x : (ρ′ + τ ′) ` {x/a}P .
Since {x/a} P ≡ x ! li[ṽ], by Msg

Π = x : {l1 : σ̃1, · · · , ln : σ̃n}(0,1) + ṽ : σ̃i ` x ! li[ṽ],

and by Sub,

Sub
Π ` x ! li[ṽ] ρ′ � ρ � {l1 : σ̃1, · · · , ln : σ̃n}(0,1)

x : ρ′ + ṽ : σ̃i ` x ! li[ṽ]
.

Therefore, using proposition 41,

Sub
x : ρ′ + ṽ : σ̃i ` x ! li[ṽ] ρ′ + τ ′ � ρ′

x : ρ′ + τ ′ + ṽ : σ̃i ` x ! li[ṽ]
.

By successive applications of Sub and Weak, we conclude that

Γ = ∆] x : ρ′ + τ ′ ` x ! li[ṽ],

which proves the case.

2. Case Nil. Then P ≡ 0, and, as the inaction process does not
have names, any substitution have no effect on it. By Nil and
successive applications of Weak we can prove that any type
environment Γ typifies 0, particularly the environment in the
theorem thesis.

3. Case App. Then P ≡ X[ṽ], and by hypothesis, Γ ` P . Thus,
from lemma 40, Γ � ṽ : σ̃.
The only substitution that makes sense to analyse is when some
(or all) vi are substituted by xi. Therefore, we have ρ̃ = ρ1 · · · ρn

and τ̃ = τ1 · · · τn, with ρ̃ � σ̃, such that

Γ = ∆] ṽ : ρ̃] x̃ : τ̃ ` X[ṽ].

By hypothesis, there exists ρ̃′ and τ̃ ′ such that ρ̃′ � ρ̃, τ̃ ′ � τ̃ ,
x1 : τ ′1 + · · · + xn : τ ′n is defined, and τ ′i + ρ′i is defined (for

29

1 ≤ i ≤ n). We want to prove that, Γ = ∆] x1 : (ρ′1 + τ ′1) +
· · ·+ xn : (ρ′n + τ ′n) ` {x̃/ṽ}P .
Since {x̃/ṽ}P ≡ X[x̃], by App

Π = X : σ1 · · ·σn] x̃ : σ1 · · ·σn ` X[x̃],

and by Sub,

Sub
Π ` X[x̃] ρ̃′ � ρ̃ � σ̃

X : σ̃] x̃ : ρ̃′ ` X[x̃]
.

Therefore, using proposition 41,

Sub
X : σ̃] x̃ : ρ̃′ ` X[x̃] ρ′ + τ ′ � ρ′

X : σ̃] x̃ : (ρ̃′ + τ̃ ′) ` X[x̃]
.

By successive applications of Sub and Weak, we conclude that

Γ = ∆] x1 : (ρ′1 + τ ′1) + · · ·+ xn : (ρ′n + τ ′n) ` X[x̃],

which proves the case.

4. Case Obj. Then P ≡ a ? {l1 (x̃1) = P1, . . . , ln (x̃n) = Pn}. If
Γ ` P , then

Obj

Meth
∆] x̃1 : ρ̃1 ` P1 · · · ∆] x̃n : ρ̃n ` Pn

∆ ` l1 (x̃1) = P1, . . . , ln (x̃n) = Pn : α

∆ + α(1,0) ` a ? {l1 (x̃1) = P1, . . . , ln (x̃n) = Pn}
,

with α = {l1 : ρ̃1, · · · , ln : ρ̃n} and Γ � ∆ + a : α(1,0), by lemma
40.
We analyse next the substitution of z for a (that can or not
belong to fn(P)). The remaining cases, where the substitution
occurs inside a Pi, follows from induction hypothesis and Sub
rule.
Let

Γ] z : τz, a : {l1 : ρ̃1, · · · , ln : ρ̃n}(1,0) ` P (1)

and

τ ′z � τz

{l1 : ρ̃′1, · · · , ln : ρ̃′n}(κ′1a,κ′2a) � {l1 : ρ̃1, · · · , ln : ρ̃n}(1,0)

such that, τ ′z + {l1 : ρ̃′1, · · · , ln : ρ̃′n}(κ′1a,κ′2a) is defined.
We want to prove that Γ] z : τ ′z + ρ′a ` {z/a} P .

30

By hypothesis one know that Γ′] z : τ ′z + ρ′a ` {z/a} {l1 =
(x̃1) P1, · · · , (x̃n) Pn}. One knows that,

{z/a}(a ? {l1 = (x̃1) P1, · · · , ln = (x̃n) Pn})
= z ? {l1 = (x̃1) P1, · · · , ln = (x̃n) Pn}

and by hypothesis, using Sub twice

Γ] z : τz, a : {l1 : ρ̃1, · · · , ln : ρ̃n}(0,1) ρ′a � ρn

Γ] z : τz, a : {l1 : ρ̃′1, · · · , ln : ρ̃′n}(κ′1a,κ′2a) ` P τ ′z � τz

Γ] z : τ ′z, a : {l1 : ρ̃′1, · · · , ln : ρ̃′n}(κ′1a,κ′2a) ` P

Then, because ρ′ + τ ′z is defined and τ ′z : {l1 : ρ̃′1, · · · , ln :
ρ̃′n}(κ′1z ,κ′2z), by Obj we have that

Γ] z : τ ′z + ρ′a ` z ? {l1 = (x̃1) P1, · · · , ln = (x̃n) Pn}.

5. Case Par. Then P ≡ P1 |P2, and by hypothesis we have that,

Γ = ∆] z1 : σ1 + · · ·+ zn : σn] ỹ : π̃ ` P1 |P2,

with σ̃′ � σ̃, π̃′ � π̃, σ′i + π′i defined (for 1 ≤ i ≤ n), and
z1 : σ′1 + · · ·+ zn : σ′n defined.
Since Γ ` P1 |P2, by lemma 40, there exists Γ1 and Γ2, such that
Γ � Γ1 + Γ2. Applying induction hypothesis, we have that

Γ1 = ∆1] z1 : τ1 + · · ·+ zn : τn ` {z̃/ỹ}P1

Γ2 = ∆2] z1 : ρ1 + · · ·+ zn : ρn ` {z̃/ỹ}P2

But Γ � Γ1 + Γ2 means, not only that z1 : (τ1 + ρ1) + · · ·+ zn :
(τn + ρn) is defined, but also that σ′i � σi � τi + ρi.
Then, the following derivation holds.

Sub

Par
∆1] z̃ : τ̃ ` {z̃/ỹ}P1 ∆2] z̃ : ρ̃ ` {z̃/ỹ}P2

∆1 + ∆2] z̃ : (τ̃ + ρ̃) ` {z̃/ỹ}(P1 |P2) σ̃′� τ̃ +ρ̃

∆1 + ∆2] z1 : σ′1 + · · ·+ zn : σ′n ` {z̃/ỹ}(P1 |P2)

Therefore, using proposition 41,

Sub
∆1 + ∆2] z̃ : σ̃′ ` {z̃/ỹ}(P1 |P2) σ̃′ + π̃′ � σ̃′

∆1+∆2] z1 : (σ′1+π′1)+· · ·+zn : (σ′n+π′n) ` {z̃/ỹ}(P1 |P2)

By successive applications of Sub and Weak, we conclude the
case.

31

6. Case Res. Then P ≡ new x : ρ R, and from hypothesis one has
that

Γ = ∆] z1 : σ1 + · · ·+ zn : σn] ỹ : π̃ ` new x : ρ R,

and there exists σ̃′ and π̃′ such that σ̃′ � σ̃, π̃′ � π̃, σ′i + π′i is
defined (for 1 ≤ i ≤ n), and z1 : σ′1 + · · ·+ zn : σ′n is defined.
Hence, by lemma 40, Γ] x : ρ ` R. Applying induction hypoth-
esis followed by a Res rule we conclude the case.

The next result, a corollary of lemma 42, is used to prove subject
reduction.

Corollary 43. If Γ] ỹ : τ̃ ` P and if there exist τ̃ ′ � τ̃ such that
Γ + z1 : τ̃ ′1 + · · ·+ zn : τ̃ ′n is defined, then Γ + z1 : τ ′1 + · · ·+ zn : τ ′n `
{z̃/ỹ}P .

Proof. The prove is straightforward. Set the types of zi 6∈ dom(Γ)
to be ρi (ρi is the same as τ ′i except that their outer most use pair
is (0, 0)), and let z̃ : ρ̃. Then, the conditions of lemma 42 are met,
namely there exists τ ′ � τ (from hypothesis) and ρ′ = ρ � ρ (� is
reflexive). Moreover, Γ + z1 : τ̃ ′1 + · · ·+ zn : τ̃ ′n guaranties that τ̃i + ρ̃i

and z1 : ρ′1 + · · · + zn : ρ′n are defined. Hence, Γ + z1 : τ ′1 + · · · + zn :
τ ′n ` {z̃/ỹ}P .

The following lemma states that a process remains typified after a
name substitution on process expression and type environment. This
is the “standard” substitution lemma and only talks about names.
Nevertheless, it is a special case of lemma 42.

Lemma 44 (Substitution lemma). If Γ ` P and z /∈ fn(P), then
{z/y}Γ ` {z/y}P .

Proof. We have to consider two cases:

1. If y 6∈ dom(Γ), then it means that {y/z}Γ has no effect, neither
does {z/y}P , because y does not occur free in P (or else it would
be in Γ). Then, it is trivial that {z/y}Γ ` {z/y}P , because in
fact Γ and P are the same as {z/y}Γ and {z/y}P , respectively.

2. However, if y ∈ dom(Γ), with Γ = ∆]y : α(κ1,κ2), we can set the
type of z to be τ = α(0,0) (since z 6∈ dom(Γ)) and ρ = α(κ1,κ2)

that satisfies the conditions of lemma 42, that is, there exists
ρ′ and τ ′, namely ρ′ = ρ and τ ′ = τ , that satisfies ρ′ � ρ,
τ ′ � τ , z : τ defined (since α is defined by hypothesis) and
τ ′ + ρ′ defined. In fact, τ ′ and ρ′ differ from each other only in

32

their outermost uses and τ ′ + ρ′ = ρ′ = ρ. Then, by lemma 42,
we have that Γ = ∆] z : α(κ1,κ2) ` {z/y}P , which is the same
as {z/y}Γ ` {z/y}P .

This concludes the prove.

The following definition makes precise the meaning of α-converting
a bound name in a process.

Definition 45. Let ≡α be the least congruence relation closed for the
following rules:

1. new x : ρ P ≡α new y : ρ {y/x}P ,

2. a ? {l (x̃) = P,M} ≡α a ? {l (ỹ) = {ỹ/x̃}P,M},
3. def X (x̃) = P and D in Q ≡α def X (ỹ) = {ỹ/x̃}P and D in Q,

with y, ỹ /∈ fn(P).

The following result states that typings are preserved by α-conversion.

Lemma 46. If P ≡α Q and Γ ` P , then Γ ` Q.

Proof. By induction on the structure of the derivation of the typing
of P . We treat all the possible cases for the final step of the type
inference on P.

1. Case Msg, Nil, or App. In all these cases P is congruent to
a process that has no bound names (bn(P) = ∅). Hence, no
renaming can take place and P and Q coincide. Then, its trivial
that Γ ` Q.

2. Case Res. We have two subcases:

(a) When P ≡ new x : ρ P1 ≡α Q ≡ new y : ρ {y/x}P1, i.e., the
rename occurs on the restricted name.
But Γ ` new x : ρ P1, then

Res
Γ] x : ρ ` P1

Γ ` new x : ρ P1
.

Let y 6∈ fn(P1). Then, by lemma 44 and Res,

Res

lem 44
Γ] x : ρ ` P1

Γ] y : ρ ` {y/x}P1

Γ ` new y : ρ {y/x}P1
.

(b) When P ≡ new x : ρ P1 ≡α Q ≡ new x : ρ P ′
1, with

P1 ≡α P ′
1. Then, by Res there exists Γ]x : ρ ` P1, that by

induction hypothesis typifies also P ′
1. Finally by Res rule

Res
Γ] x : ρ ` P ′

1

Γ ` new x : ρ P ′
1

.

33

3. Case Obj. As with Res, for P ≡ a ? {l (x̃) = R,M} we have also
two subcases to analyse.

(a) When the renaming occurs on the abstraction names, that
is, P ≡α Q ≡ a ? {l (ỹ) = {ỹ/x̃}R,D}.
As Γ ` P , then

Obj

Meth
∆] x̃ : ρ̃ ` R, · · ·

∆ ` {l (x̃) = R, M} : α

∆ + a : α(1,0) ` a ? {l (x̃) = R,M}
,

where Γ = ∆ + a : α(1,0).
Let y /∈ fn(P1), then the following derivation holds

Obj

Meth

lem 44
∆] x̃ : ρ̃ ` R, · · ·

∆] ỹ : ρ̃ ` {ỹ/x̃}R
∆ ` {l (ỹ) = {ỹ/x̃}R,M} : α

∆ + a : α(1,0) ` a ? {l (ỹ) = {ỹ/x̃}R,M}
,

that is, Γ ` Q.
(b) The second case is the result of a renaming inside R.

Then P ≡α a ? {l (x̃) = S, M} and S ≡α R. From induction
hypothesis and Obj rule, we conclude that

Obj
∆ ` {l (x̃) = S, M} : α

∆ + a : α(1,0) ` a ? {l (x̃) = S, M}
.

4. Case inferred by Def. Then, P is a definition process congru-
ent to def X1 (x̃1) = P1 and . . . and Xn (x̃n) = Pn in R. This
case has three subcases handled just as above for Obj and Res.
Nevertheless we show their proof.

(a) The first subcase consider the renaming of names bound by
abstraction. Then, P ≡ Q ≡α def X1 (ỹ1) = {ỹ1/x̃1}P1 · · · .
Since Γ ` P , we have

Def

Γ1]X1 : ρ̃1] · · ·]Xn : ρ̃n] x̃1 : ρ̃1 ` P1
...

Γn]X1 : ρ̃1] · · ·]Xn : ρ̃n] x̃n : ρ̃n ` Pn

∆]X1 : ρ̃1] · · ·]Xn : ρ̃n ` R

Γ ` def X1 (x̃1) = P1 · · · in R
,

with Γ =
∑

i U(Xi, D, Q)× Γi + ∆.
Let y /∈ fn(P1), then by lemma 44

lem 44
Γ1]X1 : ρ̃1] · · ·]Xn : ρ̃n] x̃1 : ρ̃1 ` P1

Γ1]X1 : ρ̃1] · · ·]Xn : ρ̃n] ỹ1 : ρ̃1 ` {ỹ1/x̃1}P1
,

and by Def

34

Def

Γ1]X1 : ρ̃1] · · ·]Xn : ρ̃n] ỹ1 : ρ̃1 ` {ỹ1/x̃1}P1
...

Γn]X1 : ρ̃1] · · ·]Xn : ρ̃n] x̃n : ρ̃n ` Pn

∆]X1 : ρ̃1] · · ·]Xn : ρ̃n ` R

Γ ` def X1 (ỹ1) = {ỹ1/x̃1}P1 · · · in R
,

we conclude that Γ ` Q.
Notice that there is no rename of process variables and
then the instantiation schema do not change, which means
that X(Xi, D, Q) yields the same results before and after
α-conversion. This arguments applies to all the three sub-
cases.

(b) This subcase refers to the α-congruence inside P1. Then
P ≡ Q ≡α def X1 (x̃1) = S1 · · · in R and S1 ≡α P1. Since
Γ ` P , then by Def rule and induction hypothesis, we have
that

Def

Γ1]X1 : ρ̃1] · · ·]Xn : ρ̃n · x̃1 : ρ̃1 ` S1
...

Γn]X1 : ρ̃1] · · ·]Xn : ρ̃n] x̃n : ρ̃n ` Pn

∆]X1 : ρ̃1] · · ·]Xn : ρ̃n ` R

Γ ` def X1 (x̃1) = S1 · · · in R
,

that is, Γ ` Q.
(c) The last subcase consider the α-congruence inside Q. The

arguments to prove this subcase are exactly the same as the
ones used to prove the previous subcase and thus we omit
the prove.

5. Case inferred by Par. Then, P ≡ P1 |P2. By hypothesis Γ `
P1 |P2, then there exists Γ1 and Γ2 such that Γ = Γ1 + Γ2 and

Par
Γ1 ` P1 Γ2 ` P2

Γ ` P1 |P2
.

Q (≡α P) is of the form Q1 |Q1, where Q1 ≡α P1 and Q2 ≡α P2.
By induction hypothesis Γ1 ` Q1 and Γ2 ` Q2, then by Par,
Γ ` Q1 |Q2 ≡ Q.

Since no type derivation ends with the Meth rule, we conclude
the prove.

In the following lemma one proves that if two processes are congru-
ent, say P ≡ Q, then they are typified by the same type environment,
that is, if Γ ` P and P ≡ Q, then Γ must also typify Q.

Lemma 16 (Congruence preserves typings). If P ≡ Q and
Γ ` P , then Γ ` Q.

35

Proof. By induction on the structure of the derivation of the typing
of P . We analyse every case where two processes can be congruent
(see subsection 4.1, page 11). Suppose that Γ ` P , then one has the
following cases

1. Case P ≡α Q. From lemma 46.

2. Case P ≡ P1 |P2. We have the fact that Γ ` P1 |P2, then, by
the Par rule, there exists Γ1 and Γ2 such that

Γ1 ` P1, Γ2 ` P2 and Γ = Γ1 + Γ2.

By lemma 3, we know that + is commutative, which means that
Γ = Γ1 + Γ2 = Γ2 + Γ1. Thus, Γ typify P2 |P1 as follows

Par
Γ2 ` P2 Γ1 ` P1

Γ2 + Γ1 ` P2 |P1
.

3. Case P ≡ (P1 |P2) |P3. If Γ ` (P1 |P2) |P3, then there exists
Γ1,Γ2 and Γ3 such that Γ1 ` P1, Γ2 ` P2, Γ3 ` P3 and Γ =
(Γ1 + Γ2) + Γ3, obtained by the following type derivation

Par

Par
Γ1 ` P1 Γ2 ` P2

Γ1 + Γ2 ` P1 |P2 Γ3 ` P3

(Γ1 + Γ2) + Γ3 ` (P1 |P2) |P3
.

Since + is associative (lemma 3), we can write:

Γ = (Γ1 + Γ2) + Γ3 = Γ1 + (Γ2 + Γ3),

which typify P | (Q |R). Indeed,

Par
Γ1 ` P1

Par
Γ2 ` P2 Γ3 ` P3

Γ2 + Γ3 ` P2 |P3

Γ1 + (Γ2 + Γ3) ` P1 | (P2 |P3)
.

4. Case P ≡ P | 0. Since any environment ∆ typifies 0 by Nil rule,
then particularly ∅ ` 0. By hypothesis Γ ` P , then we can
conclude that

Par
Γ ` P ∅ ` 0

Γ = Γ + ∅ ` P | 0
.

5. Case P ≡ new x : ρ 0. If Γ ` new x : ρ 0, then Γ ` 0, because
every environment typifies 0 (by Nil rule).

6. Case P ≡ new x : ρ new y : σ P1. We have that the judgement
Γ] x : ρ] y : σ ` P1 hold by the following derivation

Res

Res
Γ] x : ρ] y : σ ` P1

Γ] x : ρ ` new y : σ P1

Γ ` new x : ρ new y : σ P1
.

36

But, since the side condition imposes that x 6= y or (when x = y)
σ � ρ, we also have

Res

Res
Γ] x : ρ] y : σ ` P1

Γ] y : σ ` new x : ρ P1

Γ ` new y : σ new x : ρ P1
,

that concludes the case.

7. Case P ≡ Γ ` def D in 0. Since any type environment typifies 0,
we have Γ ` 0 (by Nil).

8. Case (P ≡ def D in new x : ρ Q). As by hypothesis Γ `
def D in new x : ρ Q, then there exists Γ =

∑
i U(Xi, D, new x :

ρ Q) · Γi + ∆ such that:

Def
Γi]Xi : ρ̃i] x̃i : ρ̃i ` Pi

Res
∆] x : ρ ` Q

∆ ` new x : ρ Q

Γ ` def X1 (x̃1) = P1 · · · in new x : ρ Q
.

But, we can also have the derivation

Res

Def
Γi]Xi:ρ̃i]x̃i:ρ̃i`Pi ∆]x:ρ`Q∑

i U(Xi,D,Q)·Γi+∆]x:ρ`def X1 (x̃1)=P1 ··· in Q

Γ`new x:ρ def X1=(x̃1) P1 ··· in Q

Thus, Γ typifies the requested congruence. However, we have to
force that x must not belong to any of the Γi, that is, x /∈ fn(D)
when applying the Def rule.

9. Case P ≡ (def D in Q) |R. By hypothesis Γ ` (def D in Q) |R.
Then,

Par

Def
∆i]Xi : ρ̃i] x̃i : ρ̃i ` Pi ∆]Xi : ρ̃i ` Q

Γ1 ` def D in Q Γ2 ` R

Γ ` (def D in Q) |R
,

where Γ = Γ1 + Γ2 and Γ1 =
∑

i U(Xi, D, Q) ·∆i + ∆.
But,

Def
∆i]Xi : ρ̃i] x̃i : ρ̃i ` Pi

Par
∆]Xi : ρ̃i ` Q Γ2 ` R

∆]Xi : ρ̃i + Γ2 ` Q |R
Γ =

∑
i U(Xi, D, Q |R) ·∆i + ∆ + Γ2 ` def D in (Q |R)

.

However, for the typing to be correct, we must enforce that no
fv(R) gets bound by def. Notice that this condition also enforces
that U(Xi, D, Q) = U(Xi, D, Q |R) for all 1 ≤ i ≤ n, since no
process variable in R is equal to a particular Xi.

This concludes the proof.

37

Proof of theorem 19 (subject reduction), page 14. By induction on the
structure of the derivation of the typing of P . We analyse the last typ-
ing rule applied.

1. Case Com. By hypothesis, one knows that

Γ ` a ! li[ṽ] | a ? {l1 (x̃1) = P1, . . . , ln (x̃n) = Pn},

with Γ(a) = α(κ1,κ2) = {l1 : σ̃1, · · · , ln : σ̃n}(κ1,κ2). Then, the
following inference holds

Par

Msg
Γ1 ` a ! li[ṽ]

Obj

Meth
∆] x̃1 : τ̃1 ` P1 · · · ∆] x̃1 : τ̃n ` Pn

∆ ` {l1 (x̃i) = P1, · · · } :{l1 : τ̃1, · · · }(1,0)

Γ2 ` a ? {l1 (x̃1) = P1, . . . , ln (x̃n) = Pn}
Γ ` a ! li[ṽ] | a ? {l1 (x̃1) = P1, . . . , ln (x̃n) = Pn}

,

with

Γ � Γ1 + Γ2,

Γ1 � a : {l1 : ρ̃1, · · · , ln : ρ̃n}(0,1) + ṽ : ρ̃i,

Γ2 � ∆ + a : {l1 : τ̃1, · · · , ln : τ̃n}(1,0),

Γ(a) = α(κ1,κ2) � Γ1(a) = α(κ11,κ12) + Γ2(a) = α(κ21,κ22).

(2)

First, we show that κ−1 and κ−2 are defined. From Γ1(a) =
α(κ11,κ12) � a : {l1 : ρ̃1, · · · , ln : ρ̃n}(0,1) + ṽ : ρ̃i, we get that
κ12 ≥ 1. Using a similar argument, we can show that κ21 ≥ 1,
because Γ2(a) = α(κ21,κ22) � ∆ + a : {l1 : τ̃1, · · · , ln : τ̃n}(1,0).
Hence, κ1 ≥ 1 and κ2 ≥ 1, and thus, Γ(a) = α(κ−1 ,κ−2) is defined.
Next, we show that Γ−` ` {ṽ/x̃i}Pi. Possible values for (κ1, κ2),
are (1, 1), (1, ω), (ω, 1), and (ω, ω). We analyse the “worse” case
(when κ1 = κ2 = 1). Let Γ(a) = α(1,1). From the type inference
of Γ ` P , we conclude that ∆(a) � τ (0,0). Since Γ � Γ1 + Γ2,
we find that (i) ρ̃i � σ̃i, because {l1 : σ̃1, · · · , ln : σ̃n}(1,1) � {l1 :
ρ̃1, · · · , ρ̃n}(0,1) (subtyping is contra-variant on output), and (ii)
σ̃i � τ̃i, because {l1 : σ̃1, · · · , ln : σ̃n}(1,1) � {l1 : τ̃1, · · · , τ̃n}(1,0)

(subtyping is covariant on input). Thus, ρ̃i � σ̃i � τ̃i and hence
ρ̃i � τ̃i.
From (2), we know that Γ1\a � ṽ : ρ̃i and that (Γ1\a)+∆]x̃i : ρ̃i

is defined. Then, by lemma 43,

(Γ1 + Γ2) \ a] a : {l1 : τ̃1, · · · , ln : τ̃n}(0,0) ` {ṽ/x̃i}Pi.

The analysis of the remaining cases is similar.

2. Case by Par. If Γ ` P |Q, then, by lemma 44, there exists Γ1

and Γ2 such that Γ � Γ1 + Γ2, with Γ1 ` P and Γ2 ` Q. We
have to consider two subcases: for ` = x and for ` = ε.

38

(a) Suppose ` = x. Thus, Γ] x : α(κ1,κ2) ` P |Q and Γ1]
x(κ3,κ4) ` P . But, by hypothesis, one knows that Γ1]
x(κ−3 ,κ−4) ` R, and then, by Par rule, Γ1] x(κ−3 ,κ−4) + Γ2 `
R |Q. We conclude that Γ] x(κ−1 ,κ−2) is defined, and that
Γ] x(κ−1 ,κ−2) � Γ1] x(κ−3 ,κ−4) + Γ2. Hence,

Γ] x(κ−1 ,κ−2) ` R |Q.

(b) When ` = ε, we have that Γ1] x(κ3,κ4) ` P , and by hy-
pothesis also typify R (because its an ε transition), then
Γ] x(κ1,κ2) ` R |Q.

3. Case Res1. Then we have P ≡ new x : α(κ1,κ2) P1. Since Γ ` P ,
then, by Res rule, Γ]x : α(κ1,κ2) P1 and by induction hypothesis,
Γ] x : α(κ−1 ,κ−2) ` R. Applying again Res rule, we get

Γ ` new x : α(κ−1 ,κ−2) R.

Notice that the use of resources is registered on the type of x
(and not on the environment), because the transition is by ε.

4. Case Res2. By Res rule, we know, since Γ ` new x : ρ P1, that
Γ] x : ρ ` P1. By induction hypothesis, Γ−`] x : ρ ` R. Thus
by Res rule, we obtain

Γ−` ` new x : ρ R, with Γ−` defined by IH.

5. Case Str. From hypothesis Γ ` P and by lemma 16, we conclude
that Γ ` R. By induction hypothesis Γ−` ` S and again by
lemma 16, Γ−` ` Q. Hence, Γ−` is defined and typifies Q.

6. Case inferred by Def. We have, from hypothesis, that Γ `
def D in Q and Q

`→ R. By Def rule, there exists Γi and
∆, such that Γi] X̃ : ρ̃] x̃i : ρ̃i ` Pi and ∆] X̃ : ρ̃ ` Q, with
Γ =

∑
i U(Xi, D, Q) · Γi + ∆. Induction hypothesis guaranties

that ∆−` is defined and ∆−`] X̃ : ρ̃ ` R. Thus, the following
derivation holds

Def
Γi]Xi : ρ̃i] x̃i : ρ̃i ` Pi ∆−`] X̃ : ρ̃ ` R

Π ` def D in R
,

where Π = U(Xi, D, R) · Γi + ∆−`. However, it remains to show
that Γ−` ` def D in R. First of all, we know that U (see definition
9) satisfies the condition U(Xi, D, Q) ≥ U(Xi, D, R), when Q

`→
R. On the other hand, as the reduction occurs in R, Π(`) =
Γ−`(`), since Π results from the summation ∆−`. Thus, Π ` P
and Γ−` � Π, then by successive applications of Weak and Res
rules (to Π), Γ−` ` P , which concludes the case.

39

7. Case Call. If Γ ` def D in Xi[ṽ] |Q, then

Def
Γi] X̃ : ρ̃] x̃i : ρ̃i ` Pi

Par

App
Xi : ρ̃i] ṽ : ρ̃i ` Xi[ṽ] p∆] X̃ : ρ̃ ` Q

∆] X̃ : ρ̃ + ṽ : τ̃ ` Xi[ṽ] |Q
Γ ` def D in Xi[ṽ] |Q

,

where, by lemma 40, Γ � U(Xi, D, Xi[ṽ] |Q) · Γi + ∆ + ṽ : τ̃ and
∆] Xi : ρ̃ + ṽ : τ̃ � ∆] Xi : ρ̃i + ṽ : ρ̃. Hence, τ � ρ and
v1 : τ1 + · · ·+ vn : τn are defined. Then, by lemma 43,

Γi] X̃ : ρ̃ + ṽ : τ̃ ` {ṽ/x̃}Pi

and hence,

Def
Γi] Xi : ρ̃i] x̃i : ρ̃i ` Pi

Par
Γi] X̃ : ρ̃ + ṽ : τ̃ ` {ṽ/x̃i}Pi ∆] X̃ : ρ̃ ` Q

Λ] X̃ : ρ̃ + ṽ : τ̃ ` {ṽ/x̃i}Pi |Q
Π ` def D in {ṽ/x̃i}Pi |Q

.

It remains to show that Γ and Π denote the same type environ-
ment. Let R and S denote, respectively, the process expressions
Xi[ṽ] |Q and {ṽ/x̃i}Pi |Q. The definitions of Γ and Π are

Γ = U(X1, D, R) · Γ1 + · · ·+ U(Xn, D, R) · Γn + ∆ + ṽ : τ̃

Π = U(X1, D, S) · Γ1 + · · ·+ U(Xn, D, S) · Γn + Γi + ∆ + ṽ : τ̃

Recall that function U satisfies definition 9. Hence, for Xj 6= Xi,
UXj (def D in R) = UXj (def D in S), and UXi(def D in R) =
1 + UXi(def D in S). But Π as an explicitly summation of Γi,
then Γ = Π.

This concludes the proof.

A.2 Proofs for section 5

In this section we prove to main results: the equivalence of the two
types systems and the correction of the LTR algorithm.

Proof of theorem 27 (equivalence of the two type systems), page 17.
Assertion one and two are proved by induction on the structure of the
derivation of the typing of P . We analyse the last typing rule applied.

Proof of assertion 1.

1. Case MsgSD. Let S be a solution of C, Γ(a) = τ = {li : τ̃i}(u1,u2)
1≤i≤n ,

and Γ(ṽ) = τ̃ ′. Then, Sτ � Sρ for ρ = {li : ρ̃i}(0,1)
1≤i≤n and

40

Sτ̃ ′ � Sρ̃i holds. Applying Msg rule once and Sub rule twice
we obtain

a : Sρ + ṽ : Sρ̃i ` a ! li[ṽ] Sτ � Sρ

a : Sτ + ṽ : Sρ̃i ` a ! li[ṽ] τ̃ ′ � ρ̃i

a : S{li : τ̃i}(u1,u2)
1≤i≤n + ṽ : Sτ̃ ′ ` a ! li[ṽ]

Successive applications of Weak conclude the case.

2. Case ParSD. Let S be a solution of C. Since C |= C1∪C2, then,
by proposition 26, S is a solution of C1 and also a solution of
C2. Applying induction hypothesis SΓ1 ` SP1 and SΓ2 ` SP2.
Hence, by Par rule, S(Γ1 + Γ2) ` S(P1 |P2). The result SΓ `
S(P1 |P2) follows by successive applications of Weak rule.

3. Case ResSD. By induction hypothesis S(Γ] x : σ) ` SP for S a
solution of C. Since Sρ � Sσ, then

New

Sub
S(Γ] x : σ) ` SP Sρ � Sσ

S(Γ] x : ρ) ` P

SΓ ` S(new x : ρ P)

4. Case ObjSD. Let S be a solution of C and α = {li : ρ̃i}1≤i≤n.
Then S is a solution of C ′, because C |= C ′, and by induction
hypothesis S∆ ` SM : Sα. From C |= Γ � ∆ + a : α(1,0),
SΓ(a) = {li : τ̃i}(κ1,κ2)

1≤i≤n � S(∆(a) + α(1,0)). The subtype relation
is covariant on input, then τ̃i � ρ̃i for (1 ≤ i ≤ n). Hence, the
following derivation holds.

Obj

Sub
S∆ ` SM : Sα τ̃i � ρ̃i

S∆ ` SM : S({li : τ̃i}1≤i≤n)

S∆ + a : S({li : τ̃i}(1,0)
1≤i≤n) ` a ? {M}

Applying Weak we conclude the case.

5. Case AppSD. Let S be a solution of C. By App and Sub rules

Sub

App
X : Sρ̃] ṽ : Sρ̃ ` X[ṽ] Sσ̃ � Sρ̃

X : Sρ̃] ṽ : Sσ̃ ` X[ṽ]

The case concludes by successive applications of Weak.

6. Case NilSD. Since ∅ ` 0, also SΓ ` 0 by successive applications
of Weak rule.

7. Case MethSD. Let S be a solution of C. Since C |=
⋃

j Cj for
1 ≤ j ≤ n, then, by induction hypothesis, S(Γi] x̃i : σ̃i) ` SPi

41

for 1 ≤ i ≤ n. But Sρ̃i � Sσ̃i (1 ≤ i ≤ n), then applying Sub
and Meth rules

Meth

Sub
S(Γi] x̃i : σ̃i) ` SPi Sρ̃i � Sσ̃i, 1 ≤ i ≤ n

S(Γi] x̃i : ρ̃i) ` SPi, 1 ≤ i ≤ n

SΓ ` S(l1 (x̃1) = P1, . . . , ln (x̃n) = Pn) : S({l1 : ρ̃i}1≤i≤n)

By successive applications of Sub and Weak we conclude the
case, since C |=

⋃
j(Γ � Γj) for 1 ≤ j ≤ n (and S is a solution

of C).

that concludes the proof of assertion 1.
Next the proof of assertion 2.

1. Case Par. Since Γ ` P , by hypothesis, there exists Γ1 and Γ2

such that Γ = Γ1 + Γ2, Γ1 ` P1, and Γ2 ` P2. By induction
hypothesis Γ1; ∅ ` P1 and Γ2; ∅ ` P2, then ∅ |= C1 ∪ C2 = ∅ and
∅ |= Γ � Γ1 + Γ2 since, by hypothesis, Γ = Γ1 + Γ2 and � is
reflexive. Hence,

ParSD

Γ1; ∅ ` P Γ2; ∅ ` Q C |= ∅ ∪ (Γ � Γ1 + Γ2)
Γ; ∅ ` P |Q

2. Case Msg. Then Γ ` a ! li[ṽ] and the following derivation holds.

Sub

Msg
a : {l1 : ρ̃1, . . . , ln : ρ̃n}(0,1) + ṽ : ρ̃i ` a ! li[ṽ] σ̃ � ρ̃i

a : {l1 : ρ̃1, . . . , ln : ρ̃n}(0,1) + ṽ : σ̃ ` a ! li[ṽ]

that by successive applications of Weak and Sub rules we achieve
that Γ ` a[ṽ] where Γ(a) = {l1 : ρ̃1, . . . , ln : ρ̃n}(κ1,κ2) (with κ2 ≥
1) and Γ(ṽ) = σ̃ (with σ̃ � ρ̃i). Thus, Γ � a : {l1 : ρ̃1, . . . , ln :
ρ̃n}(0,1) + ṽ : ρ̃i holds by hypothesis. Hence, Γ; ∅ ` a ! li[ṽ].

3. Case New. By hypothesis the following derivation holds.

New

Sub
Γ] x : σ ` P1 ρ � σ

Γ] x : ρ ` P1

Γ ` new x : ρ P1

Then, by induction hypothesis, Γ] x : σ; ∅ ` P1. Since ρ � σ
holds by hypothesis, then ∅ |= ρ � σ. Therefore,

ResSD

Γ] x : σ; ∅ ` P1 ∅ |= ρ � σ

Γ; ∅ ` new x : ρ P1

4. Case Nil. By hypothesis Γ ` 0, then by ResSD rule Γ; ∅ ` 0.

42

5. Case App. Since Γ ` X[ṽ], then there exists a type derivation
such that

Sub
X : ρ̃] ṽ : ρ̃ ` X[ṽ] σ̃ � ρ̃

X : ρ̃] ṽ : σ̃ ` X[ṽ]

and by successive applications of Weak rule, Γ ` X[ṽ]. As σ̃ � ρ̃
holds by hypothesis, then ∅ |= σ̃ � ρ̃. Therefore, Γ]X : ρ̃] ṽ :
σ̃; ∅ ` X[ṽ].

6. Case Meth. By hypothesis Γ ` P : {l1 : ρ̃1, . . . , ln : ρ̃n} for P ≡
{l1 (x̃1) = P1, . . . , ln (x̃n) = Pn}. Then the following derivations
hold.

Sub

Weak

Weak
Γi] x̃i : σ̃i ` Pi

...
Γ] x̃i : σ̃i ` Pi ρ̃i � σ̃i

Γ] x̃i : ρ̃i ` Pi

for 1 ≤ i ≤ n. So, also holds

Meth
Γ] x̃1 : ρ̃1 . . . Γ] x̃n : ρ̃n ` Pn

Γ ` {l1 (x̃1) = P1, . . . , ln (x̃n) = Pn} : {l1 : ρ̃1, . . . , ln : ρ̃n}

By induction hypothesis, Γi] x̃i : σ̃i; ∅ ` Pi for 1 ≤ i ≤ n.
As ρ̃i � σ̃i for 1 ≤ i ≤ n holds by hypothesis (is a premise in
the above type derivation), then ∅ |=

⋃
i(ρ̃i � σ̃i). On the other

hand, Γ was constructed by successive applications of Weak and
Sub rules, thus

⋃
i(Γ(x) � Γi(x) for x ∈ dom(Γi) and 1 ≤ i ≤ n.

Therefore, the following derivation holds.

MethSD

Γi] x̃i : σ̃i; ∅ ` Pi, 1 ≤ i ≤ n
∅ |=

⋃
j({Γ � Γj} ∪ ∅ ∪ {ρ̃j � σ̃j})

Γ; ∅ ` P : {l1 : ρ̃1, . . . , ln : ρ̃n}

7. Case Obj, Def. These cases are proved following similar argu-
ments as for the previous case.

8. Case Sub. Then the following derivation holds.

Sub
Γ] x : σ ` P ρ � σ

Γ] x : ρ ` P

By induction hypothesis, Γ] x : σ; ∅ ` P and as ρ � σ holds by
hypothesis, then Γ] x : ρ; ∅ ` P .

9. Case Weak. This case is similar to previous one.

that concludes the proof.

43

Proof of theorem 34 (correctness of the algorithm), page 20. For asser-
tion 1 we proceed by induction on the structure of the derivation of
the typing of P . We treat all the possible cases for the final step of
the type inference on P . We show only a few cases because the other
cases are similar.

1. Case MsgSD. Then Γ; C ` P and the following derivation holds.

MsgSD

C |= Γ � a : {l1 : ρ̃1, . . . , ln : ρ̃n}(0,1) + ṽ : ρ̃i

Γ;C ` a ! li[ṽ]

Let Γ′;C ′ = LTR(a ! li[ṽ]). Then, Γ′;C ′ = a : {l1 : ρ̃1, . . . , ln :
ρ̃n}(0,1) ⊕ ṽ : ρ̃i that, by proposition 33, satisfies C ′ |= Γ′ � a :
{l1 : ρ̃1, . . . , ln : ρ̃n}(0,1) ⊕ ṽ : ρ̃i and is a principal typing of P .
Hence, Γ;C is an instance of Γ′;C ′.

2. Case ResSD. Then P ≡ new x : ρ P1 and Γ;C ` P . We show
that Γ′;C ′ ` new x : ρ P1 where Γ′;C ′ = LTR(new x : ρ P1).
Let ∆; C ′′ = LTR(P1). Then, by induction hypothesis, ∆; C ′′ is
a principal typing of P1.
We consider two subcases whether x belongs or not to dom(∆).
If x ∈ dom(∆), then C ′′ ∪ {ρ � ∆(x)} |= ρ � ∆(x) and by
ResSD rule we have Γ′;C ′ ` new x : ρ P1 for Γ′ = ∆ \ x and
C ′ = C ′′ ∪ {ρ � ∆(x)}. The other subcase, where x 6∈ dom(Γ),
is similar.

For assertion 2 we proceed by induction on structure of P . We
show only a few cases because the other cases are similar.

1. Case P ≡ a ! li[ṽ]. Then LTR(a ! li[ṽ]) = Γ; C = a : {l1 :
ρ̃1, . . . , ln : ρ̃n}(0,1) ⊕ ṽ : ρ̃i. By proposition 33, C |= Γ � a :
{l1 : ρ̃1, . . . , ln : ρ̃n}(0,1) + ṽ : ρ̃i and by Msg rule Γ;C ` P .
Proposition 33 also guaranties that Γ; C is a principal type of P .

2. Case P ≡ P1 |P2. We show that Γ; C ` P1 |P2 where Γ;C ′ =
Γ1 ⊕ Γ2, C = C ′ ∪ C1 ∪ C2, Γ1;C1 = LTR(P1), and Γ2;C2 =
LTR(P2). By induction hypothesis, Γ1;C1 ` P1, Γ2;C2 ` P2 and
C ′ |= Γ � Γ1 + Γ2. Since C = C ′ ∪C1 ∪C2, then, by proposition
26, C |= C1 and C |= C2. Therefore by ParSD rule Γ;C ` P1 |P2.

The remaining cases are shown as the cases above.

A.3 Proofs for section 6

Essentially the proof that U is a call-counting function.
The next result is needed in the proof of lemma 48.

44

Proposition 47. Suppose that X is process variable, P a process,
and D = X1 (x̃1) = P1 and . . . and Xn (x̃n) = Pn and D′ = X ′

1 (x̃1) =
P ′

1 and . . . and X ′
n (x̃n) = P ′

n two definitions such that fv(P) ∩
FV (D′) = ∅. Then

U(X, D,P) = U(X, D′, P) +
∑

j

(U(Xj , D
′, P)× U(X, D,Pj)

Proof. The proof is by straightforward induction on the structure of
P . The interesting cases are for P ≡ Y [ṽ] and P ≡ def D′′ in P ′. The
former is proved by an exhaustive analysis to whether or not X = Y
and Y is bound (or not) to D. The later is proved by using three
times the induction hypothesis.

The following lemma states that congruence preserves the number
of calls to process variables.

Lemma 48. Given a process variable X, a definition D, and process
expressions P and Q, if P ≡ Q, then U(X, D,P) = U(X, D,Q).

Proof. We analyse every case where two processes can be congruent
(see subsection 4.1, page 11).

1. Case P ≡α Q. Since α-congruence does not affect process vari-
ables U(X, D,P) = U(X, D,Q).

2. Case P |Q ≡ Q |P . Then,

U(X, D, P |Q) = U(X, D,P) + U(X, D,Q)
= U(X, D,Q) + U(X, D,P) = U(X, D,Q |P)

since sum is commutative (proposition 3, page 4).

3. Case (P |Q) |R ≡ P | (Q |R), P | 0 ≡ P , new x : ρ 0 ≡ 0, new x :
ρ new y : σ P ≡ new y : σ new x : ρ P , and (new x : ρ P) |Q ≡
new x : ρ (P |Q). These cases are handled as the previous one,
considering that sum is also associative, that U(X, D, 0) = 0, and
that for a given process P , U(X, D, new x : ρ P) = U(X, D,P).

4. Case def D′ in 0 ≡ 0. As

U(X, D, def D′ in 0) = U(X, D′, 0)

+
∑

j

{U(Xj , D
′, 0)× U(X, D,Pj)}

= 0 = U(X, D, 0)

45

5. Case def D in new x : ρ Q ≡ new x : ρ def D in Q. In fact,

U(X,D, def D′ in new x : ρ Q) = U(X, D′, new x : ρ Q)

+
∑

j

{U(Xj , D
′, new x : ρ Q)× U(X, D,Pj)}

= U(X, D,Q) +
∑

j

{U(Xj , D
′, Q)× U(X, D,Pj)}

= U(X, D, def D in Q) = U(X, D, new x : ρ def D in Q)

6. Case (def D′ in Q) |R ≡ def D′ in (Q |R). First notice that
the fv(R) are not bound by D′ (insured by the side condition).
Therefore,

U(X,D, (def D′ in Q) |R) = U(X, D′, Q) + U(X, D,R)

+
∑

j

{U(Xj , D
′, Q)× U(X, D,Pj)}

and

U(X,D, def D′ in (Q |R)) = U(X, D′, Q) + U(X, D′, R)

+
∑

j

{(U(Xj , D
′, Q) + U(Xj , D

′, R))× U(X, D,Pj)}

But, by proposition 47, U(X, D,R) = U(X, D′, R)+
∑

j{U(Xj , D
′, Q)+

×U(X, D,Pj)}, which concludes the proof.

Proof of theorem 38 (U is a call-counting function), page 23.

Proof of assertion 1. We proceed by induction on the structure of
the reduction. We analyse the last typing rule of the derivation.

1. Case Com. Then P ≡ a ! li[ṽ] | a ? {l1 (x̃1) = P1, . . . , ln (x̃n) =
Pn}, Q ≡ {ṽ/x̃i}Pi, and P

a→ Q. The result of counting the
number of times that X is called in P regarding D is

U(X, D,P) = U(X, D, a ! li[ṽ])+
U(X, D, a ? {l1 (x̃1) = P1, . . . , ln (x̃n) = Pn})

= U(X, D,P1) t · · · t U(X, D,Pn)
≥ U(X, D,Pi) = U(X, D, {ṽ/x̃i}Pi)

by definition of t. Notice that name substitution has no effect
on process variables, hence U(X, D,Pi) = U(X, D, {ṽ/x̃i}Pi).

46

2. Case Par. Then P ≡ P1 |P2, P1
`→ P ′

1, and Q ≡ P ′
1 |P2. The ap-

plication of function U(X, D,P) yields U(X, D,P1)+U(X, D,P2).
By induction hypothesis, U(U,D,P1) ≥ U(U,D,P ′

1). Then

U(X, D,P) = U(X, D,P1) + U(X, D,P2)
≥ U(X, D,P ′

1) + U(X, D,P2) = U(X, D,Q)

3. Case Res1. Then P ≡ new x : α(κ1,κ2)P1, Q ≡ new x : α(κ−,κ−)P ′
1,

P1
x→ P ′

1, and P
ε→ Q. Hence,

U(X, D,Q) = U(X, D, new x : α(κ1,κ2)P1)
= U(X, D,P1)

that, by induction hypothesis,

≥ U(X, D,P ′
1) = U(X, D, new x : α(κ−1 ,κ−)P ′

1)

4. Case Res2. This case is analogous to Res1.

5. Case Def. Then, P ≡ def D′ in P ′ and Q ≡ def D′ in Q′ with
P ′ x→ Q′. Thus,

U(X, D,P) = U(U,D′, P ′) +
∑

j

{U(Xj , D
′, P ′)× U(X, D,Pj)}

by induction hypothesis

≥ U(X, D′, Q′) +
∑

j

{U(Xj , D
′, Q′)× U(X, D,Pj)}

= U(X, D,Q)

6. Case Call. Then P ≡ def D′ in Xi[ṽ] |R and Q ≡ defD′ in

{ṽ/x̃i}Pi |R with D
def= X1 (x̃1) = P1 and . . . and Xn (x̃n) = Pn.

Hence,

U(X, D,P) = U(U,D′, Xi[ṽ] |R)∑
j

{(U(Xj , D
′, Xi[ṽ] |R)× U(X, D,Pj)}

On the other hand,

U(X, D,Q) = U(U,D′, {ṽ/x̃i}Pi |R)∑
j

{(U(Xj , D
′, {ṽ/x̃i}Pi |R)× U(X, D,Pj)}

By definition of U , U(X, D′, Xi[ṽ] |R) ≥ U(X, D′, {ṽ/x̃i}Pi |R).

47

7. Case Str. Then, P
`→ Q, P ≡ R, S ≡ Q, and R

`→ S. Therefore,

U(X, D,P) = U(X, D,R), by lemma 48 (P ≡ R)
≥ U(X, D, S), by induction hypothesis
= U(X, D,Q), by lemma 48 (S ≡ Q)

Proof of the second and third assertions. The proof proceed by
case analysis of whether X is or not the same variable as Xi in
U(X, D,Xi[ṽ]R).

That concludes the proof.

48

