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Abstract

Traditional multimedia indexing methods are based on the principle of
hierarchical clustering of the data space where metric properties are used to
build a tree that can then be used to prune branches while processing the
queries. However, the performance of these methods will deteriorate rapidly
when the dimensionality of the data space is increased.

We describe a new hierarchical linear subspace indexing method will based
on the generic multimedia indexing (GEMINI) approach, which does not suffer
from the dimensionality problem. The hierarchical subspace approach offers
a fast searching method for large content-based multimedia databases.

The approach will be demonstrated on image indexing, in which the sub-
spaces correspond to different resolutions of the images. During content-based
image retrieval the search starts in the subspace with the lowest resolution of
the images. In this subspace the set off all possible similar images is deter-
mined. In the next subspace additional metric information corresponding to
a higher resolution is used to reduce this set. This procedure is repeated until
the similar images can be determined eliminating the false candidates.

1 Introduction

In this report we describe fast content-based methods for searching large image
database. In content-based image retrieval technique, a query is posed in the form
of an example image that is matched against the stored images. Most current
Web search engines support image searches, but these searches only consider the
text surrounding images [3]. In traditional images databases matching is based on
textual descriptions and tags that annotate the images.

Content-based image retrieval methods use features, which describe important
properties of the images. The most used features are: color, texture, shape, position
and spatial coordinates and layout [6],[9],[8]. These features are mapped into points
in a high-dimensional feature space, and the search is based on points that are close
to a given query point in this space.

In our approach, we combine the color information and its spatial distribution
by simple image matching. We scale the digital images to a fixed size and map
them into a 3-band RGB (Red, Green, Blue) representation where each color is
represented by 8 bits. With this transformation we are able to represent the images
as vectors and to compute the Euclidian distance between them. Two images �x and
�y are similar if their distance is smaller or equal to ε, d(�x, �y) ≤ ε. The result of a
query computed by this method is a set of images that have similar spatial color
characteristics as the query image.
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However, the size of the result set is previously unknown; it depends on ε and
may reach the size of the entire database or no image at all. Worse yet, most
multimedia indexing methods become worse with huge dimensionality eventually
reducing to sequential scanning, which is not acceptable for large databases.

Traditional indexing methods are based on the principle of hierarchical clustering
of the data space, in which metric properties are used to build a tree that then can
be used to prune branches while processing the queries. They operate efficiently
when the number of the dimensions is small. Tree-based methods become worse with
huge dimensionality, eventually reducing the computing costs to sequential scanning
[1]. These negative effects are also named as the “curse of dimensionality.” Most
problems arise from the fact that the volume of a sphere with constant radius size
grows exponentially with increasing dimension. A nearest-neighbor query in a high
dimensional space corresponds to a hyper-sphere with a huge radius which is mostly
larger than the extension of the data space in most dimensions [1].

Based on the generic multimedia indexing approach and lower bounding methods
[5], [4], we developed a hierarchical subspace indexing method which does not suffer
from the dimensionality problem. In our image indexing method, the subspaces
correspond to different resolutions of the images. The search starts in the subspace
with the lowest resolution of the images in which the set off all possible similar
images is determined. In this subspace the set off all possible similar images is
determined. In the next subspace additional information corresponding to a higher
resolution is used to reduce this set. This procedure is repeated until the similar
images can be determined eliminating the false candidates.

2 Spatial access methods

2.1 Tree-based spatial access methods

The basic idea of metric indexes is to derive metrics from item properties to build
a tree that then can be used to prune branches in processing queries. Those trees
resemble in their design decision trees and B-trees [2]. B-trees may have a variable
number of keys and children. In B-trees the nodes hold ordered ranges of numbers
representing sets of keys. A key in a non leaf node has a left and a right child
pointer (branch). The left pointer is the root of a sub tree which contains nodes
with keys less than or equal to it. It is the right child pointer of the proceeding key.
The right pointer is the a sub tree containing all keys greater than any keys in that
node, and it is the left child pointer of the following key (see Figure 1).
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Figure 1: In B-trees, the keys are ranges of numbers, they are stored in non-
decreasing order in a node. The left pointer of a key is the root of a sub tree
which contains nodes with keys less than or equal to it, the right pointer is the a
sub tree containing all keys greater than any keys in that node.

The root node of the tree serves as an entry point for query processing. The
information is stored in the leaves and in the keys. The leaves are called data pages
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and the nodes of the tree are called directory pages. During the search operation
to a given point the correct child is chosen by a linear search of the key values in
the node. A key value greater than or equal to the desired value is searched. If
present the child pointer to the immediate left of that value is followed, otherwise
the rightmost child pointer is followed.

In metric indexes the keys in the trees represent regions which are subsets in
the data space [1]. The d dimensional data space is recursively split by d − 1
dimensional hyper-planes until the number of data items in a partition is below
a certain threshold. Data is represented by vectors that are stored in data pages
such that spatially adjacent vectors are stored in the same page. Each data vector
is stored in exactly one data page and there is no object duplication within data
pages. The directory nodes are organized hierarchically, each directory node points
to a set of sub trees. Assigned to each directory node is a key represented by the
page region, which is a subset of the data space. Each key has an associated child,
which is the root of a sub tree containing all nodes with regions that are contained
in the key region of the proceeding key. However, unlike in the B-trees, where
the keys are numbers which define intervals which do not overlap, key regions may
overlap because the space has dimension greater one. In these spaces the points are
not ordered. Ordering of points requires a one to one mapping into a line (injective
mapping). This means that regions of pages in different branches of the tree may
overlap, which leads to high computing costs. Because of that, special heuristics
are often used to avoid or to minimize the overlapping. Trees mainly differ by
the definition of the region and the resulting search and building algorithms. The
metric indexes tree can be used to prune branches in processing the queries because
of the lower bounding property. The distance of a query point to each key region
is greater than the distance to the key regions of its children.

In R-trees, the key regions are minimum bounding rectangles (MBR) [1]. MBR
is a multidimensional interval of the data space which is a minimal axis-parallel
rectangle enclosing the complete point set with at least one data point. In the tree
hierarchy the key MBR of a parent node contain the MBR keys of its children, that
are allowed to overlap (see Figure 2). In a range query, search covers all points in the
space whose Euclidian distance to the query point is smaller or equal to ε. A MBR
which includes the sphere with the radius ε around the query point is determined.
Then the R-tree is descended recursively excluding all the branches whose MBR do
not intersect with the query MBR. Because the regions may overlap at each level,
the descend may include several branches.

In nearest neighbor search algorithms the upper bound on every surface is deter-
mined and among those the minimum is taken, because only the nearer surface can
contain the minimum. The region description of an MBR comprises a lower and an
upper bound. Among each pair of opposite edges of an MBR, only the edges closer
to the query point are considered for each dimension. Given the MBR definition,
the lower bound is defined by the nearest corner that contain those edges and the
upper bound by the farthest corner which contain one of this edges.

In SS-Tree, the page regions are spheres [1]. The average value of all points
(centroid) is used as the center for the sphere and the minimum radius is chosen
such that all objects are included in the sphere. Spheres do not allow an easy
overlap-free split. In the tree hierarchy the key spheres of a parent node contain
the keys spheres of its children, which are allowed to overlap. In a range query the
search is performed on all points in the space whose Euclidian distance to the query
point is smaller or equal to ε.

The description of regions by spheres allows a very fast determination of a lower
and an upper bound, which is the distance of the query point to the centroid minus
the radius for the lower bound, and plus the radius for the upper bound value.
According to Böhm SS-trees outperform the R-trees [1].
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Figure 2: In R-trees, key regions are minimum bounding rectangles. The children
of the root (doted big rectangle) are represented by the region keys indicated by
the numbers 1, 2, and 3 (dashed rectangles). The key region 1 has the children
indicated by the numbers 4, 5, 6, which themselves have key regions representing
the data (indicated by the black dots) and so on. The fan-out of the tree is three.

There are many more tree structures, like the SR-trees, which can be regarded
as the combination of the R-tree and the SS-tree, or R∗-trees, X-trees, TV-trees or
kd-tress, which use different heuristics to minimize or to avoid the overlap of the
key regions.

No extensive and objective comparison between the different tree index struc-
tures has been published. For example Faloutsos claims: “ ..that R-trees based
methods seem to be most robust for higher dimensions” [4]. Hoverer empirical com-
parison depends strongly on the data and all these tree index structures suffer from
the problems which result from the “curse of dimensionality” [1] as explained in the
next section.

2.1.1 Curse of dimensionality

The metric indexes trees operate efficiently when the number of dimensions is small.
The growth of the number of dimensions has negative implications for the perfor-
mance of multidimensional index trees; these negative effects are also named as
the “curse of dimensionality.” Most problems arise from the fact that the volume
of a sphere or a minimum bounding rectangles with the constant radius or edge
size grows exponentially with increasing dimension. For example, the volume of
high dimensional cube approaches its surface with the growing dimension [1]. In
high-dimensional spaces a partition is performed only in few dimensions touch-
ing the boundary of the data space in most dimensions. The probability that the
key regions may overlap grows with the grow of the dimensions which means that
most regions of pages in different branches of the tree overlap. A nearest-neighbor
query in a high dimensional space corresponds to a hyper-sphere with a huge radius
which is mostly larger than the extension of the data space in most dimensions [1].
Because of these problems tree indexing methods explode exponentially with the
dimensionality eventually reducing the search time to sequential scanning.
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A solution to this problem is to map the objects into points in low dimensional
space so that tree spatial access methods can be used [4].

3 Subspace sequence method

3.1 Generic multimedia indexing approaches

The idea behind the generic multimedia indexing (GEMINI) [5],[4] approaches is
to find a feature extraction function that maps the high dimensional objects into a
low dimensional space. In this low dimensional space, a so-called ‘quick-and-dirty’
test can discard the non-qualifying objects. It is supposed that objects that are
very dissimilar in the feature space are also very dissimilar in the original space (see
Figure 3).

feature space

epsilon

epsilon

Figure 3: Feature extraction function which maps the high dimensional objects into
a low dimensional space. The distance of similar objects should be smaller or equal
to ε. This tolerance is represented by a sphere with the radius ε in the feature space.

Ideally the feature map should preserve the distances exactly, but this is only
possible if the dimension of both spaces are equal. However, if the distances in
the feature space are always smaller or equal then the distances in the original
space, a bound can be determined which is valid in both spaces. The distance of
similar objects is smaller or equal to ε in original space and consequently it is as
well smaller or equal ε in the feature space. No object in the feature space will be
missed (false dismissals) in the feature space. However, there will be some objects
that are not similar in the original space (false hints/alarms). That means that we
are guaranteed to have selected all the objects we wanted plus some additional false
hits in the feature space. In a second pass on this selected set has to be separate
out the false hits by comparison in the original space. The size of the collection in
the feature space depends on ε and the proportion between both spaces and may
reach the size of the entire database, if the feature space is not carefully chosen.
The lemma which guarantees that no objects will be missed in the feature space
is called the lower bounding lemma and is expressed mathematically as follows; let
O1 and O2 be two objects; F (), the mapping of objects into f dimensional space
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should satisfy the following formula for all objects, where d is a distance function
in the original space and dfeature in the feature subspace:

dfeature(F (O1), F (O2)) ≤ d(O1, O2). (1)

In the first step in the GEMINI approach the distance function has to be defined.
The second step consists in finding the feature extraction function F () that satisfies
the bounding lemma has to be determined. Such a function has to capture most
of the characteristics of the objects into a low dimensional feature space. In most
cases the used distance functions in the original space and in the feature space
are equal. Given the Parseval’s theorem which states that the Discrete Fourier
Transform (DFT) preserve Euclidian distances between signals, the DTF which
keeps the first coefficients of the transform is an example for a feature function
F () [5], [4]. Accordingly one can use any orthonormal transform because they all
preserve the distance between the original and the transformed space. One can also
use data dependent transforms as feature functions F (), such as Karhunen Loeve
transform. However, they have to be recalculated as soon as new data arrives [5].
Once the data are mapped into the low dimensional feature space, tree spatial access
methods can be used.

During the search a range query is performed. All points whose distance to the
query point is smaller or equal to ε in the feature space are searched. In the second
step false hits are filtered from the set of selected objects by comparison in the
original space.

3.2 Lower bounding approach

Based on the analysis of GEMINI approach the subspace method will be devel-
oped. Let DB be a database of s multimedia objects �x(i) represented by vectors of
dimension m in which the index i is an explicit key identifying each object,

{�x(i) ∈ DB|i ∈ {1..s}}.
The set DB can be ordered relatively to a given multimedia object �y using a

distance function d. This is done by a monotone increasing sequence corresponding
to the increasing distance of �y to �x(i) with an explicit key which identifies each
object indicated by the index i,

d[y]n := {d(x(i), y) | ∀n ∈ {1..s} : d[y]n ≤ d[y]n+1}
if �y ∈ DB, then d[y]1 := 0. The set of similar multimedia objects in correspon-

dence to �y, DB[y]ε is the subset of DB, DB[y]ε ⊆ DB with the size σ = |DB[y]ε|,
σ ≤ s:

DB[y]ε := {x(i) ∈ DB | d[y]n = d(x(i), y) ≤ ε}.
Now lets map all the multimedia objects of the DB with F (), the mapping which

satisfies the lower bounding lema into f dimensional space,

{F (�x)(i) ∈ F (DB)|i ∈ {1..s}}.
The set F (DB) can be ordered in a relation to a given multimedia object F (�y)

and a distance function dfeature.
This is done by a monotone increasing sequence corresponding to the increasing

distance of F (�y) to F (�x(i)) with an explicit key which identifies each object indicated
by the index i,

d[F (y)])n := {dfeature(F (x(i)), F (y)) | ∀n ∈ {1..s} : d[F (y)]n ≤ d[F (y)]n+1}
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The set of similar multimedia objects in correspondence to F (�y), F (DB[y])ε

is the subset of F (DB), F (DB[y])ε ⊆ F (DB) with the size F (σ) = |F (DB[y])ε|,
σ ≤ F (σ) ≤ s:

F (DB[y])ε := {F (x)(i)n ∈ F (DB) | d[F (y)]n = dfeature(F (x)(i), F (y)) ≤ ε}.

An ε exists only if min∗(d[y]n) < d[F (y)]s and is chosen from the interval
[min∗(d[y]n), d[F (y)]s] where

min∗(d[y]n) =
{

d[y]1 if d[y]1 �= 0
d[y]2 if d[y]1 = 0.

To determine DB[y]ε by linear search, we need s · m computing steps, if we
suppose that computation of distance between two m-dimensional vectors requires
m computing steps. To determine DB[y]ε when F (DB[y])ε is present, we need
F (σ) ·m steps; the false hints are separated from the selected objects by comparison
in the original space. If no metric tree is used to index the feature space the savings
using result from the size of F (DB[y])ε in proportion to the dimensions of both
spaces f

m . The computing time of DB[y]ε is saved compared to linear matching in
the original space if:

s · m ≥ F (σ) · m + s · f (2)

⌊
s · (1 − f

m
)
⌋
≥ F (σ). (3)

In the next section we expand the analysis into the subspace method.

3.3 Linear subspace sequence method

Let V be a m-dimensional vector space and F () a linear mapping that obeys the
lower bound lemma from the vector space into a f -dimensional subspace U . Con-
trary to GEMINI approach where the feature space needs not to be a subspace,
we can map the computed metric distance between objects in the f -dimensional
subspace U into the m-dimensional space V which contains the subspace U . In this
case the lower bounding lemma is extended; let O1 and O2 be two objects; F (),
the mapping of objects into f dimensional subspace U should satisfy the following
formula for all objects, where d is a distance function in the space V and dU in the
subspace U :

dU (F (O1), F (O2)) ≤ d(F (O1), F (O2)) ≤ d(O1, O2). (4)

We can define a sequence of subspaces V = U0, U1, U2, . . . , Un in which each
subspace is a subspace of another space

U0 ⊃ U1 ⊃ U2 ⊃ . . . ⊃ Un

and
dim(U0) > dim(U1) > dim(U2) . . . > dim(Un).

Let Fa,b() be the mapping from subspace Ua to subspace Ub that obeys the lower
bounding lemma. An example of a sequence of subspaces is the sequence of real
vector subspaces

Rm ⊃ Rm−1 ⊃ Rm−2 ⊃ . . . ⊃ R1
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formed by the mapping from one subspace to another which always set the last
coordinate (�= 0) to 0, in this case the used distance functions in the original space
and in the subspace are equal.

All s multimedia objects of DB are in space V = U0, which is represented by
V (DB) = U0(DB). The DB mapped by F0,1() from space U0 to its subspace U1 is
indicated by U1(DB).

A subspace Uk can be mapped from different spaces by different functions

{Uk : Fl,k()|Ul → Uk, l < k}

in contrast to the universal GEMINI approach, in which the mapped DB is only
depended on the function F (). We use a notation which depends on the subspace
Uk and on the mapped function:

{Uk(�x)(i) ∈ Uk(DB)|i ∈ {1..s}}

d[Uk(y)]n := {d(Uk(x(i)), Uk(y)) | ∀n ∈ {1..s} : d[Uk(y)]n ≤ d[Uk(y)]n+1} (5)

Uk(DB[y])ε := {Uk(x)(i)n ∈ Uk(DB) | d[Uk(y)]n = d(Uk(x)(i), Uk(y)) ≤ ε}, (6)

with the size Uk(σ) = |Uk(DB[y]ε)|, U0(σ) < Uk(σ) < s and,

U0(σ) < U1(σ) < U2(σ) < . . . < U(n)(σ) < s

An ε exists only if min∗(d[U0(y)]n) < d[Un(y)]s and is chosen from the interval
[min∗(d[U0(y)]n), d[Un(y)]s] where

min∗(d[U0(y)]n) =
{

d[U0(y)]1 if d[U0(y)]1 �= 0
d[U0(y)]2 if d[U0(y)]1 = 0.

The computing time of U0(DB[y])ε is saved compared to linear matching in the
original space if:

s · m ≥ U1(σ) · m + s · dim(U1)

⌊
s · (1 − dim(U1)

m
)
⌋
≥ U1(σ).

When we apply the same procedure recursively,

s · dim(U1) ≥ U2(σ) · dim(U1) + s · dim(U2)

⌊
s · (1 − dim(U2)

dim(U1)
)
⌋
≥ U2(σ)

it follows:

s · m ≥ U1(σ) · m + s · dim(U1) ≥ U1(σ) · m + U2(σ) · dim(U1) + s · dim(U2).

Because the computing time of a subspace sequence is saved compared to com-
putation using only the subspace U2 and the resulting U2(σ), it should also be:

U2(σ) · m + s · dim(U2) ≥ U1(σ) · m + U2(σ) · dim(U1) + s · dim(U2)
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U2(σ) · m ≥ U1(σ) · m + U2(σ) · dim(U1),

which is true when ⌊
U2(σ) · (1 − dim(U1)

m
)
⌋
≥ U1(σ).

Generic for k ∈ [1, . . . , (n − 1)]
⌊
U(k+1)(σ) · (1 − dim(Uk)

dim(U(k−1))
)
⌋
≥ Uk(σ), (7)

and for k = n

⌊
s · (1 − dim(Un)

dim(U(n−1))
)
⌋
≥ Un(σ) (8)

and the computing costs are

U1(σ) · m + U2(σ) · dim(U1) + . . . + s · dim(Un) =

U1(σ) · dim(U0) + U2(σ) · dim(U1) + . . . + s · dim(Un) =

=
n∑

i=1

Ui(σ) · dim(U(i−1) + s · dim(Un). (9)

In the next section we introduce a linear mapping F () that meets all required
properties.

3.4 Orthogonal projection

Let be V = Rm a vector space and let be U a f -dimensional subspace obtained by
a projection, and an Euclidian distance function d = l2. An orthogonal projection
P into U is a mapping P : Rm → U , it orders every vector �x ∈ Rm a vector
P (�x) with a shortest distance to �x ∈ Rm. Let be (w(1), w(2), . . . , w(m)) be the
orthonormalbasis of Rm, and (w(1), w(2), . . . , w(f)) the orthonormalbsis of U . Then,
�x can be represented by an unique decomposition

�x =
f∑

i=1

< �x,w(i) > ·w(i) +
m∑

i=f+1

< �x,w(i) > ·w(i)

and the orthogonal projection of �x onto U can be written by

P (�x) =
f∑

i=1

< �x,w(i) > ·w(i)

O(�x)⊥ =
m∑

i=f+1

< �x,w(i) > ·w(i)

An orthogonal basis can be decomposed for example by the classical method
named ‘Gram-Schmidt orthogonalization’ process. According to the Pythagorean
theorem, ||�x||2 = ||P (�x)||2 + ||O(�x)⊥||2; consequently, ||�x|| ≥ ||P (�x)||, from which
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the lower bound lemma follows. A projection is always a linear transformation and
can be represented by a projection matrix ℘ with the dimension m×m with ℘ = ℘2.
Any vector �u ∈ U is fixed by the projection matrix �u = ℘ · �u, it is the eigenvector
of ℘ with eigenvalue 1.

Furthermore, we can map the computed metric distance dU between objects
in the f -dimensional orthogonal subspace U into the m-dimensional space V which
contains the orthogonal subspace U by just multiplying the distance du by a constant
c =

√
m
f .

For example the orthogonal projection of points �x = (x1, x2) ∈ R2 on the
bisecting line U = {(x1, x2) ∈ R2|x1 = x2} = {(x1, x1) = R1} corresponds to the
mean value of the projected points. It can be represented by the projection matrix
with rank(℘) = 1

℘ =




1
m/f

1
m/f

1
m/f

1
m/f


 =




1
2

1
2

1
2

1
2


 ,

and the orthonormalbsis of U is x(1) = ( 1√
2
, 1√

2
). The points �a = (2, 4) is mapped

into P (�a) = 3, and �b = (7, 5) into P (�b) = 6. The distance in U is du(P (�a), P (�b)) =√|6 − 3|2, c =
√

2, so the distance in R2 is d(P (�a), P (�b)) = 3 · √2 ≤ d(�a,�b) =
√

26
(see Figure 4).

1
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Figure 4: For example the orthogonal projection of points �x = (x1, x2) ∈ R2 on
the bisecting line U = {(x1, x2) ∈ R2|x1 = x2} = {(x1, x1) = R1} corresponds to
the mean value of the projected points. �a = (2, 4) is mapped into P (�a) = 3, and
�b = (7, 5) into P (�b) = 6.

Orthogonal projection by a linear mapping Fa,b() is used to map subspace Ua

into to subspace Ub. Because it obeys the lower bounding lemma, a sequence of
subspaces can be applied for content-based image retrieval.

3.5 Metric information

Ideally the mapping function should reduce the computing costs as much as possi-
ble and preserve the distances as much as possible. For an orthogonal projection
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we suppose equality in the Equation 4 that is dependent on multiplication with
constants ck and ιk:

dUk
(Uk(O1), Uk(O2)) · c0

k = dU0(Uk(O1), Uk(O2)) = d(Uk(O1), Uk(O2)) (10)

dU0(Uk(O1), Uk(O2)) · ι0k ≈ dU0(U0(O1), U0(O2)) = d(O1, O2). (11)

A stated before, for an orthogonal projection the constant c0
k can be easily deter-

mined, it is c0
k =

√
dim(U0)
dim(Uk) . The bigger c0

k is, the more computation time is saved.

On the other side, ι0k corresponds to the metric information gain of the transition
from Uk(DB) to U0(DB). This transition depends on the multimedia objects in
the DB and on the distance between them. It can be described by the ratio of the
mean distance between the objects in U0(DB) that is mu(U0(DB)), and the mean
distance between the objects in Uk(DB) that is mu(Uk(DB)):

ι0k(DB) :=
mu(U0(DB))

mu(Uk(DB)) · c0
k

. (12)

Because a fully connected graph with s nodes has (s−1)·s
2 edges, the mean distance

mu(Uk(DB)) between all objects of mu(Uk(DB)) is

mu(Uk(DB)) := {
∑ 2 · d(Uk(x(i)), Uk(x(j)))

(s − 1) · s |∀i �= j ∈ {1..s}} (13)

The distances are preserved better by a mapping, the closer ι0k is to 1. Better
preserved distances lead to reduced computing costs. Exactly preserved distances
would correspond to ι0k = 1. The quality of the mapping function is expressed by
the combination of c0

k with ι0k,

q0
k(DB) =

1
ι0k(DB) − 1

c0
k

(14)

q0
k(DB) takes the values from the interval between 0 and 1, the closer q0

k to 1, the
better the quality of the mapping in the relation to the computing costs.

By the metric information loss of the transition from U0(DB) to Uk(DB) errors
emerge as indicated by the resulting sequence in Uk(DB) in relation to U0(DB)

d[U0
k (y)]n := {d(Uk(x(i)), Uk(y)) | ∀n ∈ {1..s} : d[U0(y)]n ≤ d[U0(y)]n+1}. (15)

The resulting error in Uk is indicted by the distance of the ordered sub-sequences
in Uk from the sequence in U0. The distance is measured from the beginning of
the ordered sub-sequence g, it is indicated by αg with g ∈ {1..s}. The ordered
subsequence g in Uk is defined as

s[U0
k (y)]Ng

:= {d(Uk(x(is(0))), Uk(y)) | ∀N ∈ {αg..γg} ⊆ {1..s}

: d[Uk(y)]N ≤ d[Uk(y)]N+1 ∧ d[U0(y)]N ≤ d[U0(y)]N+1} (16)

and the error as,

Error0
k(m) := {

m∑
n=1

|i − αg| | m ≤ s}. (17)
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landa d[landa]1

seaa d[seaa]1

Figure 5: For two color images representing land and sea the images with the
most similar color characteristic which corresponds to the most atmospheric similar
images are determined.

4 Content based image retrieval experiments

4.1 Image Database

The linear subspace sequence method and orthogonal projection will be demon-
strated on a practical example of fast searching methods for content-based image
retrieval. The given task is to determine DB[y]ε with either y ∈ DB or y /∈ DB. For
example for two color images landa, seaa /∈ DB; d[landa]1, d[seaa]1 are determined
(see Figure 5). The determined images have the most similar color characteristic as
the query images and correspond to the most atmospheric similar images. On the
other hand binary image representation is more suitable for simple form matching.
Boundaries of the objects that are matched are defined by a threshold. The oper-
ation takes a black and white image, and maps all the pixels of the image whose
values are over the threshold to one and all the others to zero. The test database
DB consists of 1000 color images of size 384 × 256 with photos of landscapes and
people, with several outliers consisting of color drawings of dinosaurs or photos of
flowers with only a view colors. The image database was used in the SIMPLIcity
project [10]. The images are mapped into a 3-band RGB (Red, Green, Blue) rep-
resentation in which each color is represented by 8 bits and scaled to the size of
240×180 by a bilinear method [7]. This transformation represents the color images
by vectors of the dimension 240 ·180 ·3 = 129600, where each pixel is represented by
three bands R, G, B and in which each component has a value between 0 and 255.
The images can be also converted into a black and white representation by comput-
ing the mean value of the three RGB-bands (R+G+B)/3 representing the color of
the pixel. In this case, the resulting vectors have the dimension 240 · 180 = 43200.

4.2 Orthogonal projection

The sequence of subspaces correspond to different resolutions of the images (see
Figure 6). To compute a different resolution of an image, it has to be tiled with
rectangle windows W which define sub-images of the window. The arithmetic mean

12



(a) (b)

(c) (d)

Figure 6: (a) Image of a bus, the size 240 × 180. (b) Image of the bus, resolution
40 × 30. (c) The image of the bus resolution 8 × 6. (d) The image of the bus,
resolution 4 × 3.

is computed using the pixels in each rectangle window, and each sub-image in a
window is replaced by this computed mean value. For black and white images, all
pixels in the window are summed and divided by their total number. For color
images, where each pixel is represented by three bands R, G, B, all components of a
band in the window are summed and divided by their total number. The arithmetic
mean value computation in a window corresponds to an orthogonal projection of
these values onto a bisecting line. Because of this, the different resolutions of an
image correspond to a sequence of subspaces that satisfy the lower bounding lemma.
Formally the linear subspace sequence is defined by the mapping function Fa,b(),
which corresponds to the rectangle windows W of size j×k in which the mean value
is computed. We define a sequence of three subspaces of the space V = U0

U0 ⊃ U1 ⊃ U2 ⊃ U3

which correspond to the functions F0,1() := {mean over W |W with size 6 × 6},
F1,2() := {mean over W |W with size 5×5}, F2,3() := {mean over W |W with size 2×
2}. The dimensions of the subspaces are

dim(U0) = 43200 > dim(U1) = 1200 > dim(U2) = 48 > dim(U3) = 12

multiplied with factor 3 for color images (see Figure 6).
The distance between objects dU0 in the space U0 can be obtained from the

distance dUk
between objects in the orthogonal subspace Uk by multiplying the

distance dUk
by a constant ck =

√
dim(U0)
dim(Uk) , with c1 = 6, c2 = 30 and c3 = 60.

The computing time of U0(DB[y])ε is saved compared to linear matching in the
original space, if according to Equation 8 following constraints are valid,

⌊
1000 · (1 − 12

48
)
⌋

= 750 ≥ U3(σ),
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and according to Equation 7,
⌊
745 · (1 − 48

1200
)
⌋

= 742 ≥ U2(σ),

⌊
735 · (1 − 1200

43200
)
⌋

= 530 ≥ U1(σ).

4.3 Mean computational costs

The compting costs of U0(σ) are depending on y and the characteristics of d[Uk(y)]n
in corresponding sequence of subspaces. To predict the mean computing costs of
U0(σ) and to indicate the validity of the constraints for a given image database the
mean sequence d[Uk(DB)]n is defined. For all s images x(i) ∈ DB the monotone
increasing sequence d[Uk(y)]n in space Uk with y = x(i) is computed and the mean
sequence is formed,

d[Uk(DB)]n :=
s∑

i=1

d[Uk(x(i))]n
s

. (18)

Note that d[Uk(DB)]n need not to be a monotone increasing sequence,

d[Uk(DB)]n ≤ d[Uk(DB)]n+1

is not always valid. A subsequence of d[Uk(DB)]n whose all elements are ≤ ε has
to be determined for Uk(DB)ε,

Uk(DB)ε := {∀n : [d[Uk(DB)]n ≤ ε} (19)

The size of the subsequence is Uk(σ) = |Uk(DB)ε)|. However, for a sufficiently
large s d[Uk(DB)]n is mostly a monotone increasing sequence, so that Uk(σ) can be
easily estimated. In Figure 7 we see the characteristics d[U0(DB)]n, d[U1(DB)]n,
d[U2(DB)]n and d[U3(DB)]n.

The maximal number of similar images U0(σ) to a given query image can be
estimated under the assumption that the mean computing costs are only saved if
750 > U3(σ) and U3(σ) > · · · > U0(σ). It follows that the maximal number of
similar images is around 134. Supposed U3(σ) = 745 then the corresponding ε is
d[U3(DB)]745 = 466.02 · 60 = 27961. According to Equation 19 all elements of
d[Uk(DB)]n have to be < 27961, which is true for d[U2(DB)]582, d[U1(DB)]261 and
d[U0(DB)]134 (see Figure ). It is also true that U2(σ) = 582, U1(σ) = 261 satisfy
the constraints which were determined according to Equation 7.

To retrieve 134 most similar images to a given query image of the image test
database the mean computation costs are according to Equation 9:

(43200 · 261 + 1200 · 582 + 48 · 745 + 12 · 1000) · 3 = 12021360 · 3

which is 3.5936 less complex than a list matching which requires 43200 · 1000 · 3
operations.

In many query requests we search for around teen most similar images. In this
case the computation cost are 15.654 less complex then a list matching. This is be-
cause the corresponding ε value for U0(σ) = 10 is 22540, all elements of d[Uk(DB)]n
have to be < 22540, which is true for d[U3(DB)]450, d[U2(DB)]236 and d[U1(DB)]57.

To retrieve 10 most similar images to a given query image of the image test
database the mean computation costs are:

(43200 · 57 + 1200 · 236 + 48 · 450 + 12 · 1000) · 3 = 2759760 · 3.
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Figure 7: Characteristics of d[U0(DB)n =line 1, d[U1(DB)]n = line 2,
d[U2(DB)]n = line 3 and d[U3(DB)]n = line 4 in the original space U0, and 745 =
line 5, below the value 745 computing time is saved.

Figure 8 indicates that the the mean computation cost are linearly dependent on
the number of the most similar images which should be retrieved to a given query
image.

It should be noted that this are estimated mean computational cost for DB,
for example for y = x(1) ∈ DB, d[U3(y)]745 = 386.26 · 60 = 23175 is and U0(σ) =
|U0(DB[y])23175|=12, U1(σ) = 104 and U2(σ) = 540, also satisfying Equation 7. It
follows that to get the 12 most similar images, U0(DB[y])23175, the computation
costs are according to Equation 9:

(43200 · 104 + 1200 · 540 + 48 · 745 + 12 · 1000) · 3 = 5188560 · 3

which is 8.326 times less then a list matching which requires 43200·1000·3 operations.

4.4 Estimation of the complexity by metric information

The determination of the mean retrieval computational costs for a large multimedia
database is not practicable. However, the computation costs of the estimation of
U0(σ), U1(σ) and U2(σ) can be reduced by d∗[U2(DB)]n ≈ ι23 · d[U3(DB)]n, and
d∗[U1(DB)]n ≈ ι12 · d∗[U2(DB)]n and d∗[U0(DB)]n ≈ ι01 · d∗[U1(DB)]n. However, it
should be noted that the estimation is based on a raw approximation, as shown in
Figure 9, where d[U0(DB)]n and d[Uk(DB)]n · ιab , k ∈ {1, 2, 3} are shown.

The metric information gain can be estimated for l objects l ≤ s in the database
it is,

mu(Uk(DB)) ≈ mul
i=1(Uk(DB)),

mul
i=1(Uk(DB)) := {

∑ 2 · d(Uk(x(i)), Uk(x(j)))
(s − 1) · s |∀i �= j ∈ {1..l}, l ≤ s} (20)

A graph representing mul
i=1(Uk(DB)) in dependency to l, for l ∈ {1..s} and for

k ∈ {0, 1, 2, 3} indicates strong correlated fluctuations in four spaces, corresponding
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Figure 8: Computing costs, the x-axis indicates the number of the mot similar
images which are retrieved, the y-axis the computer costs. The computing costs are
dependent on the size U0(σ)).

to the outliers consisting of the color drawings of dinosaurs or photos of flowers with
only several colors (see Figure 10).

These outliers can also be identified by fluctuations in the graph representing
the image entropy of the U1(DB) (see Figure 11). Image entropy is a scalar; it is
a statistical measure of randomness that can be used to characterize the texture of
the input image. Entropy is defined as −∑3

i=0

∑255
j=0(pji ·ln(pij)) where pij contains

the histogram counts returned from image histogram, 256 bins are used to compute
the histogram for each color of an RGB image [7]. The mapping from U1 to U2 and
U2 to U3 reduce the entropy, fluctuations become more and more washed-out, there
is not enough entropy information. This is not the case with the mean distance
mul

i=1(Uk(DB)), as shown in Figure 10.
Table 1 shows the quality of the mapping functions for the three subspaces of

the space V = U0 for the test image database of 1000 images.

a, b ca
b ιab qa

b

0, 1 6 1.084 (1,09) 0.756 (0.7489)
1 ,2 5 1.186 (1.197) 0.643 (0.636)
2, 3 2 1.159 (1.167) 0.363 (0.357)
0, 2 30 1.286 (1.307) 0.744 (0.732)
0, 3 60 1.491 (1.525) 0.654 (0.639)

Table 1: The quality of the mapping functions for the three subspaces of the space
V = U0 for the test image database of 1000 images.

F0,1() := {mean over W |W with size 6 × 6} is the mapping with the best
quality for the test database. F2,3() := {mean over W |W with size 2 × 2} is
the mapping the worst quality for the test database, because of that only minimal
savings in computing costs occur. The quality of the mapping is not only dependent
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Figure 9: d[U0(DB)]n =line 1 and d[Uk(DB)]n · ιk0 =line k, k ∈ {1, 2, 3}.

on the size of the window as can be seen by the size of the following quality values;
q0
1 > q0

2 > q0
3 .

The image entropy has less spatial information that is taken into account. Be-
cause of that, the proportion of the mean entropy values (image entropy loss) can
not be used to estimate the metric information loss. Mean entropy values corre-
spond to the entropy of Uk(DB),

entopy(Uk(DB)) =
s∑

i=1

entropy(U0(x(i))
s

image entropy gaink
0 =

entopy(U0(DB))
entopy(Uk(DB))

.

Table 2 shows the values for metric information loss compared with the corre-
sponding proportion of the mean entropy values.

Uf/Uk metric information gainf
k image entropy gainf

k

U0/U1 1.08 1.0
U1/U2 1.19 1.36
U2/U3 1.16 1.5

Table 2: Metric information loss compared with the corresponding proportion of the
mean entropy values (the image entropy loss). The image entropy has less spatial
information that is taken into account, because of that more image entropy is lost
in lower dimensional space compared to the metric information loss.

The metric information gain can be estimated for l objects l ≤ s in the database
it is,

mu(Uk(DB)) ≈ mul
i=1(Uk(DB)),

mul
i=1(Uk(DB)) := {

∑ 2 · d(Uk(x(i)), Uk(x(j)))
(s − 1) · s |∀i �= j ∈ {1..l}, l ≤ s} (21)
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k=0 k=1

k=2 k=3

Figure 10: A graph representing mul
i=1(Uk(DB)) in dependency to l for l ∈ {1..s}

and for k ∈ {0, 1, 2, 3} indicates strong correlated fluctuations in four spaces cor-
responding to the outliers consisting of color drawings of dinosaurs or photos of
flowers with only several colors. Shown are the values corresponding to the dis-
tance dUk

inside the orthogonal space, the correctly scaled values are obtained by
multiplication with a constant ck.

and

ι0k(DB) ≈ mul
i=1(U0(DB))

mul
i=1(Uk(DB)) · c0

k

. (22)

The metric information gain is estimated by l first objects l = 20 in the database,
as shown in Figure 12. The four first first values which correspond to the ratio of
one, two, three and four objects in different spaces are taken out and the mean value
is computed from the 4− 20 remaining values, ι01 ≈ 1.0913 ι12 ≈ 1.2017, ι23 ≈ 1.1490
(see Figure 12).

The resulting d[U2(DB)]n ≈ d∗[U2(DB)]n = ι23 ·d[U3(DB)]n, and d[U1(DB)]n ≈
d∗[U1(DB)]n = ι12 · d∗[U2(DB)]n and d[U0(DB)]n ≈ d∗[U0(DB)]n = ι02 · d∗[U1(y)]n
providing an approximation with about 80% accuracy, saving about 99% of com-
putation time (see Figure 13). The savings correspond to the proportion dim(U0)
to dim(U3). Because d∗[U3(DB)]745 = 466.02 · 60 = 27961 and
U0(σ) = |U0(DB[DB])27961|=133, U1(σ) = 203 and U2(σ) = 504 satisfying also the
Equation 7.

It follows that to get the 133 most similar images, U0(DB[DB])23175, the com-
putation costs according to Equation 9 are:

(43200 · 203 + 1200 · 504 + 48 · 745 + 12 · 1000) · 3 = 9422400 (12021360) · 3

which is 4.5848 (3.5936) less complex then list matching, which requires 43200 · 3 ·
1000 operations.
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Figure 11: Graph representing the image entropy of U1(DB), U2(DB) and U3(DB).
Less entropy means, less information. Smaller values indicate less information. The
mapping from U1 to U2 and U2 to U3 reduce the entropy; fluctuations become more
and more washed-out because there is not enough entropy information. U0(DB) ≈
U1(DB) it is not shown.

4.5 Errors

By the metric information loss of the transition from U0(DB) to Uk(DB) errors
emerge as indicated for example by d[U0

k (y)]n with y = x(4), see Equation 15, for
n ∈ {1..s} in Figure 14 and for n ∈ {1..30} in Figure 15.

(a) (b)

(c) (d)

Figure 14: For n ∈ {1..s}, d[U0
k (y)]n with y = x(4). (a) The original d[U0(y)]n, (b)

d[U0
2 (y)]n, (c) d[U0

2 (y)]n, (d) d[U0
3 (y)]n.
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Figure 12: The metric information gain is estimated by l first objects l = 20 in the
database, line 1=ι01, line 2=ι12 and line 3= ι23
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Figure 15: For n ∈ {1..30}, d[U0
k (y)]n with y = x(4). (a) The original d[U0(y)]n, (b)

d[U0
2 (y)]n, (c) d[U0

2 (y)]n, (d) d[U0
3 (y)]n.

The resulting mean error in Uk is indicated by the distance of the ordered sub-
sequencs in Uk from the sequence in U0 according to Equation 16, the graph repre-
senting the mean error for m ∈ {1..s} is shown in Figure 16. The Error0

1(1000) =
28968, Error0

2(1000) = 67655, Error0
3(1000) = 92143. Surprisingly the resulting

mean ordered sequence in U0 using the so called Manhattan distance function d = l1
in relation to the mean ordered sequence in U0 using the Euclidian distance function
d = l2 distance metric produce a higher error, then Error0

1(1000), namely 33122.
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Figure 13: Characteristics of d∗[U0(DB)]n =line 1, d∗[U1(DB)]n = line 2,
d∗[U2(DB)]n = line 3 and d[U3(DB)]n = line 4 U0, and 745 = line 5, below the
value 745 computing time is saved (around 80% of accuracy).
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Figure 16: Graph representing the mean error, line 1 indicates Error0
1(n), line 2

indicates Error0
2(n) and line 3 indicates Error0

3(n).

5 Conclusion

Metric indexes trees operate efficiently when the number of dimensions is small.
Growth of the number of dimensions has negative implications for the performance
of multidimensional index trees. Tree indexing methods explode exponentially with
the dimensionality, eventually reducing the search time to sequential scanning.
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Based on the generic multimedia indexing approach and lower bounding methods
an hierarchical subspace indexing method was described which does not suffer from
the dimensionality problem. This is because no sphere or a minimum bounding
rectangles are used.

The hierarchical subspace approach offers a fast search method for large content-
based multimedia databases as shown by mathematical estimations. The introduced
metric information loss differs from the image entropy, because it takes into account
the metric properties of the images.

The developed framework was demonstrated on a practical example of fast
searching methods for content-based image retrieval. The test database DB con-
sisted of 1000 color images. In our image indexing method the subspaces correspond
to different resolutions of the images. The search starts in the subspace with the
lowest resolution of the images, where the set off all possible similar images is de-
termined. In the next subspace, additional information corresponding to a higher
resolution is used to reduce the set of the possible similar images. This procedure is
repeated until the similar images can be determined in the space from the selected
set eliminating the false candidates. Different resolutions of an image were com-
puted by the arithmetic mean using the pixels in rectangle windows, corresponding
to an orthogonal projection of these values onto a bisecting line.

We have shown empirically (software experiments) and theoretically that our
method can save the computing time considerably.
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