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Abstract

Accurately modelling charge trapping phenomena is a vital part of understanding

and improving the behaviour of semiconductors in both current and future devices.

While charge traps are frequently observed in doped crystals, the formation of so-

called self-trapped polarons means that charges can trap even in defect-free bulk crys-

tals. This in turn reduces charge carrier mobility in materials, sometimes to the detri-

ment of the underlying device. More effective methods of modelling self-trapping

typically introduce a few free parameters, each of which can significantly influence

results obtained by the model. The focus of this thesis is on developing parameter-

free, computationally inexpensive and accurate approaches to modelling charge trap-

ping, with a focus on titanium dioxide, a material used in promising new photo-

voltaics. Through comparison to both experimental data and solutions to the exact

many-electron Schrödinger equation, this thesis demonstrates that use of the gener-

alised Koopmans’ theorem in conjunction with hybrid functionals can yield strikingly

accurate results. This technique is subsequently used to predict the formation of self-

trapped charges in a number of titania phases, including the well-studied rutile and

anatase, and less-known brookite, TiO2(H), TiO2(R) and TiO2(B). Intrinsic point de-

fects are also investigated in rutile and anatase, where it is found that several interest-

ing and unique electronic phenomena occur in their vicinity.
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CHAPTER 1

INTRODUCTION

Charge trapping in semiconductors is a widely discussed topic in condensed matter

physics, materials chemistry and engineering, and is relevant to a vast range of ma-

terials. Many of these materials are used in a number of devices and applications

such as batteries, photovoltaics, photocatalysis, self-cleaning glass and even nuclear

reactors.1–8 Certain applications may benefit from additional charge trapping, such

as self-cleaning glass where trapped charges can interact with molecular impurities

adsorbed onto the glass coating.9 In other applications, such as photovoltaics, charge

localisation leads to undesired effects which reduce device efficiency, such as non-

radiative electron-hole recombination and a reduction in charge mobility.10 It follows

that developing accurate and predictive models of this phenomenon can provide a

better understanding of key bottlenecks hindering applications. While a number of

theoretical approaches have been used to model this phenomenon, many often require

the input of experimental data, making them somewhat semi-empirical. Furthermore,

this can cast doubt into whether these methods can be used predictively to model

or improve the underlying material. The work presented in this thesis builds upon

previous theoretical efforts and provides an inexpensive, accurate and non-empirical

approach to modelling charge trapping. In this chapter, the motivations for perform-

ing studies shown later in this thesis are presented and discussed in the context of

charge trapping more generally.
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2 1.1. Motivation

1.1 Motivation

An ideal semiconductor is one which has extended electronic states and a forbid-

den energy gap, known as the band gap, which separates occupied and unoccupied

states.11 Electrons in such systems occupy dispersive states, well-described by Bloch’s

theorem. The presence of localised, and strongly bound, electrons and holes near

the Fermi energy can give rise to nearly-dispersionless states that lie within the band

gap.8 In some materials these states can only be induced via doping, whilst in others

these can form intrinsically through charge carriers breaking the underlying crystal

symmetry. The latter of these results in so-called self-trapped charges, or polarons,

whose presence can hinder the underlying material’s conductivity.8 These form in

materials where electron-phonon coupling is sufficiently strong, enabling charge car-

riers to distort local atomic configurations and occupy bound states. This behaviour

has been observed in numerous materials used in new cutting-edge devices which

may significantly impact the way we generate and store energy. Through use of the-

oretical models, charge trapping in materials can be studied to both understand and

remedy key bottle-necks present in these devices. However, commonly employed

models often rely on experimental data to be parametrised, reducing their predictive

power. The series of studies presented in this thesis lay out an inexpensive, accurate

and parameter-free approach to modelling localised electronic states in materials.

While theoretical techniques play a central part in this thesis, the material under

study, titanium dioxide (TiO2), is itself technologically significant with a number of

valuable applications. As a strongly correlated material, TiO2 is an example of a ma-

terial where electronic interactions are difficult to accurately describe using conven-

tional theoretical techniques. The material finds applications in a new generation of

photovoltaics, called mesoscopic perovskite solar cells.12 In the last five years, these

have dramatically risen in energy efficiency, going from 14% in 2013 to around 25%

this year, rivalling the 27% seen in more traditional silicon-based devices.13 The pri-

mary advantage perovskite solar cells offer is low construction costs, which comes

from the nanoporous nature of the devices.12 A few factors hinder the commercial

use of perovskite cells, the main one being the instability of the solar absorber mate-

rial methyl-ammonium lead iodide (CH3NH3PbI3).14 Another factor, hindering effi-

ciency, is electron-hole recombination, a process in which photo-generated electrons

and holes non-radiatively recombine, emitting a phonon into the device.10 As such
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1.2. Charge trapping in materials 3

Figure 1.1: (Left) Isosurface of a self-trapped polaron in TiO2 rutile taken from Ref. 15 (Wallace
and McKenna, 2015), with titanium and oxygen atoms shown as grey and red spheres. Pub-
lished by the American Chemical Society under CC BY 4.0. (Right) Isosurface of an F-centre
defect state surrounding an oxygen vacancy defect in MgO taken from Ref 16 (Rinke et al,
2012). Here magnesium and oxygen ions are represented as blue and red spheres. Published
by the American Physical Society under CC BY 3.0. DOI: 10.1103/PhysRevLett.108.126404.
Article title, journal citation and full list of authors provided in the bibliography.

events reduce energy available to the device, they should ideally be minimised to

achieve optimal device efficiency. Charge trapping in particular has been shown to be

a leading cause of electron-hole recombination. Trapping has other unfortunate con-

sequences, such as reducing conductivity, which can further reduce device efficiency.

The combination of increasing electron-hole recombination and reducing conductivity

essentially means that charge trapping is a compounded disadvantage that needs to

be remedied.

1.2 Charge trapping in materials

In a large number of semiconductors, the presence of a charge trap will give rise to

defect states that lie between the valence band minimum (VBM) and conduction band

maximum (CBM). When probed further, these states are usually found to be localised

either on an existing atom in the crystal or inside a defect site. The oxygen vacancy

defect in MgO (shown in Fig. 1.1) is one such case, where zero, one or two electrons can

be bound inside an oxygen vacancy site, resulting in a configuration called an F-centre

defect.16 Extrinsic defects, such as dopants or impurities, can also create trap states in

a material. The case of Al-doped α-quartz (SiO2) is one example, where the presence

of these impurities results in holes trapping on oxygen ions in their vicinity;. This is in

contrast to the pure crystal, where neither electrons nor holes can trap.8 As previously

mentioned, trap states need not occur only at defect sites; in some materials charges
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4 1.3. Self-trapping in materials

can localise in the defect-free crystal by forming self-trapped polarons. A key difference

between intrinsically self-trapped charges (such as polarons) and extrinsic trap states

arising from impurities is the positioning and mobility of localised charges. Trapped

charges from intrinsic point defects or dopants may only be stable in the vicinity of the

defect, while crystals that can host self-trapped polarons may in principle form them

anywhere. As a result of this, polarons can be considered somewhat more mobile, as

they can migrate from site to site via a hopping mechanism. In spite of this apparent

mobility, self-trapping charges may still not be a desirable result as overall charge

mobility will be reduced.

The self-trapped charges that are a key topic of this thesis are often referred to in

literature as small (or Holstein) polarons.17 They are termed small as the localised

charge carriers typically reside on the scale of one to three atoms, all separated by a

short distance. Another species of polaron is also often discussed in literature, called

a large (or Frölich) polaron, which is much more diffuse and can localise on a larger

number of atoms than a small polaron.17 The scale on which large polarons reside

is often prohibitively large to be probed using atomistic techniques. Instead, many

opt to use model Hamiltonians to describe them, with the key quantities obtained

being an effective polaron mass and radius. These models are idealised and do not

account for complex band structures, defects or include realistic electron-phonon in-

teractions.18 In fact, these models often describe phonons as being dispersionless.

While these models may be idealistic, they can provide better physical intuition into

the behaviour of polarons, something atomistic techniques may not provide. There

are therefore two, somewhat separate, bodies of work that are used to describe po-

larons in materials: atomistic techniques and model Hamiltonians. This thesis fits into

the former category, with its main focus being understanding and applying atomistic

techniques. However, recent efforts have attempted to draw both these bodies of work

together, using a mixture of model Hamiltonians and atomistic techniques to probe the

behaviour of polarons.18

1.3 Self-trapping in materials

In its equilibrium structure, a defect-free crystal is assumed to be in its lowest energy

configuration (disregarding the effects of temperature); distorting ions in a crystal will

have some energy requirement. In materials that can host self-trapped charges, this

distortion energy penalty Estrain is offset by the energy gained from localising the elec-
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tron in a defect-state below the conduction band minimum. The so-called trapping

energy Et can therefore be thought of as the difference in two sets of these energies,

Ee
t =

Strain energy︷ ︸︸ ︷
(Ebulk − Edistorted)−

Defect state energy︷ ︸︸ ︷
(εpolaron − εCBM), . (1.1)

The first set of energies Ebulk − Edistorted compare the energies of the pure bulk crystal

Ebulk and the distorted bulk crystal Edistorted, providing a strain energy. The second set

of energies compares the eigenvalue of a delocalised CBM state and a localised polaron

state, εCBM and εpolaron. A similar equation can be constructed for hole polarons,

Eh
t =

Strain energy︷ ︸︸ ︷
(Ebulk − Edistorted)−

Defect state energy︷ ︸︸ ︷
(εVBM − εpolaron), (1.2)

where the eigenvalues compared in this case are of a delocalised hole at the valence

band maximum εVBM and a localise hole polaron state. By distorting the crystal, a

defect state whose energy depth is εpolaron − εCBM is created. If the energy gained by

occupying this defect state is larger than the strain energy required to create it, the

localised charge configuration can be considered a stable one. The above (Eqn. 1.1)

is useful for understanding the energetics of localising a state, however the trapping

energy is more simply calculated as

Et = Epolaron − Edeloc (1.3)

where Epolaron denotes the energy of a localised polaron configuration and Edeloc is the

energy of a delocalised electron in the defect-free, unperturbed bulk. 1

The sheer number of materials where small polarons can form, as well as the sub-

stantial number of studies on self-trapping, is highlighted by Table 1.1. While the

approaches developed in this thesis are only applied to TiO2, they can be straightfor-

wardly and inexpensively applied to other materials. Several materials in Table 1.1

could have a significant impact on the modern world if their complications are suffi-

ciently dealt with; one particular material, LiO2, has been shown to have a theoretical

energy density exceeding 10,000 Wh/Kg, closely following gasoline’s (approximately)

1 It should be noted that Eqn. 1.1 is only true within particular frameworks, whereas Eqn. 1.3 is al-
ways true; the discussion which takes place in Chapter 4 elucidates this. While it may seem that Eqn. 1.1
does not consider electronic relaxation effects due to the presence of an additional charge, this informa-
tion is contained within the eigenvalues.
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13,000 Wh/Kg.19 In short, this material is the best battery material currently known.

It has a few properties prohibiting its large scale use, such as a large voltage gap be-

tween charge and discharge cycles (1000 mV), also called the overpotential.20 Use of

heavier alkali metals, such as NaO2 and KO2, causes a reduction in overpotentials to

around 100 mV and 50 mV, but unfortunately also reduces theoretical energy capaci-

ties.20 Conductivity in these materials is primarily governed by the movement of hole

polarons, also called Vk centres, and metal ion conduction.21 Our understanding of

these battery materials is therefore dependent on employing appropriate and accurate

models for localised charges in materials.

1.4 Simulating charge trapping

Density functional theory (DFT), an atomistic technique that is central to this thesis,

is frequently used to model real materials from first principles (as seen in Table 1.1).

Indeed, use of this approach has expanded rapidly, with the number of publications

developing, or using, the technique growing from around 100 per year in 1985 to over

15,000 per year in 2015.22 Owing to this, two DFT publications, Ref. 23 (Becke, 1993)

and Ref. 24 (Lee, Yang and Parr, 1988), are in the Web of Science top ten most cited

scientific papers of all time. A detailed discussion of DFT itself takes place in Chap-

ter 2, however the above information should highlight its utility for many researchers

as a modelling tool. Despite its successes, the application of DFT has systematic errors

that render some of its predictions, particularly those surrounding the localisation of

charge, as incorrect if left untreated.

Piecewise linearity of the total energy

Previous studies have established that the exact DFT functional yields a total energy

that is piecewise linear with respect to fractional number of electrons25 and have a

slope corresponding to the frontier orbital eigenvalue (see Fig. 1.2).26, 27 Commonly

used DFT approximations, such as the local density approximation (LDA) and gen-

eralised gradient approximation (GGA), give total energies which are convex with

respect to fractional numbers of electrons and cause the spurious delocalisation of

charge.28–30 The Hartree-Fock (HF) approximation on the other hand exhibits con-

cave behaviour and tends to over-localise charge. Hybrid functionals mix these two

approaches together, introducing an additional parameter α which determines the ad-
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mixture of HF and DFT. Another method, DFT+U, applies an occupation dependent

correction to the energy.31, 32 The parameter introduced in this case is the Hubbard-U,

which determines the size of the energy correction applied. Both DFT+U and hybrid

functional approaches successfully alter charge localisation properties in a calculation,

with the hope that more realistic localisation properties are obtained. By choosing an

appropriate set of parameters, both approaches can provide energy curvatures closer

to the correct piecewise linear behaviour.

The generalised Koopmans’ theorem (GKT),25, 116–118 which must be satisfied for an

exact Kohn-Sham (KS) or generalised Kohn-Sham (GKS) functional, provides a con-

venient way to formulate the requirement of piecewise linearity,

−I(N + 1) ≡ E(N + 1)− E(N) = εN+1(N + 1). (1.4)

where I(N) and E(N) are the total energy and ionisation energy of an N electron

system and ε i(N) denotes the ith eigenvalue of an N electron system. This theorem

only makes reference to the highest occupied molecular orbital (HOMO) and so only

addresses piecewise linearity between N and N + 1 electrons. Strictly speaking, this is

a necessary but not sufficient condition, however previous work has shown linearity

is greatly improved when the condition is satisfied.119–121 While application of the

GKT to localised states (such as polarons) is straightforward using the above equation,

its application to delocalised states has had less success.122 This condition, used in

subsequent chapters, enables an essentially parameter-free approach to obtaining the

localisation properties of charge using DFT.

1.5 Experimental techniques

A number of experimental techniques are used to probe charge trapping, each of

which generate data by exploiting particular features of trap states. It is often the

case that ambiguities remain even when experimental data is available. To counter

this, studies may use than one experimental technique with several samples, each

constructed using a different approach. Below, a non-exhaustive list of experimen-

tal techniques relevant to charge trapping is shown, describing key experimental ap-

proaches. Other techniques, such as deep-level transient spectroscopy (DLTS), X-ray

photoelectron spectroscopy (XPS) and electron energy loss spectroscopy (EELS), have

not been described here in as much detail, although relevant information can be found

Chapter 1 Introduction
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Chemical Group Carrier(s) Theoretical technique(s) Experiment(s) Eg (eV)

BiVO4 C2/c e, h Hybrid33, 34 DFT+U35 EPR36 2.437

UO2 Fm3̄m e, h DFT+U∗,38 Conductivity39 2.040

Ga2O3 C2/m h Hybrid41, 42 DLTS43 4.843

CeO2 Fm3̄m e Hybrid44 DFT+U44 Conductivity45 3.344

TiO2 P42/mnm e, h Hybrid46 DFT+U47 RPA48 EPR49 3.050

TiO2 I41/amd e, h Hybrid46 DFT+U47 RPA48 EPR 3.251

HfO2 P21/c h DFT+U52 GW∗,53 EPR54 5.6–5.755, 56

ZrO2 P21/c h DFT+U52 GW∗,53 EPR54 5.6–5.757, 58

Fe2O3 R3̄c e Hybrid59 DFT+U59–61 EPR62 Optical63, 64 2.065

Li2O2 P63/mmc e, h Hybrid66, 67 DFT+U68 GW69 Optical70 Conduct.71 4.9–7.869, 72†

LiO2 Pnnm e, h Hybrid73 – –

Na2O2 P6̄2m e, h Hybrid74, 75 GW74, 75 – 4.8–6.774, 75†

NaO2 Pnnm e, h Hybrid75 GW75 – 5.375†

K2O2 Cmce – – – –

KO2 I4/mmm e, h Hybrid‡, GW‡ Conductivity21 5.0‡

AgCl Fm3̄m h DFT+U76 EPR77 3.378

KBr Fm3̄m h – EPR79 8.080

KCl Fm3̄m h – EPR79 8.781

BaSnO3 Pm3̄m h DFT+U82 EPR83 3.184

BaCeO3 Pm3̄m e, h Hybrid85 Optical86 4.1–4.286, 87

BaTiO3 Pm3̄m e Hybrid88 DFT+U88, 89 Conductivity90, 91 3.3–3.492, 93

SrTiO3 Pm3̄m h Hybrid94 DFT+U89 GW95 EPR96 Optical97 3.398

Cs2HfCl6 Fm3̄m e, h Hybrid99 EPR100, 101 Optical101 6.099†

Cs4PbBr6 R3̄c e, h Hybrid102 Optical103, 104 2.3103–105

CsPbBr3 Pm3̄m e, h Hybrid102 Optical104 2.4103, 104

Cs2ZrCl6 Fm3̄m e, h – Optical106 –

Cs2LiYCl6 Fm3̄m e, h Hybrid107 Optical108, 109 EPR110 7.5109

MnWO4 P2/c e, h Hybrid111 Conductivity112 2.4–3.0113, 114

FeWO4 P2/c e, h Hybrid111 Conductivity115 2.0114

∗ Relevant, however polarons not discussed † No experimental data, theoretical gap(s) used
– No data found ‡ Unpublished work

Table 1.1: A non-exhaustive list of theoretical and experimental studies on polaronic proper-
ties of materials. For each case, carriers e and/or h which are either theoretically predicted,
or experimentally observed, to be trapped are shown, along with the shortest optical gap of
the material. In the case of theoretical data, quasiparticle gaps were used. A study on KO2,
a potential alkali-metal-air battery material, was taken from the recent PhD thesis of S. Yang
(2018),20 a student under the supervision of Prof. Siegel from Refs 69 and 75.

in Refs 123, 124 and 125.

Electron paramagnetic resonance

Electron paramagnetic resonance (EPR) is used to probe unpaired spins in crystals

through use of a magnetic field and photon source.126 The magnetic field splits elec-
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Figure 1.2: A schematic showing the variation of total energy for exact, LDA/GGA and HF
with the number of electrons is shown. It can be seen that the exact case is piecewise-linear,
LDA/GGA DFT has convex behaviour and HF is concave. An optimised hybrid functional
would ideally follow the exact line closely. It should be noted that correcting piecewise lin-
earity does not necessarily correct the total energy, but only its curvature between integer
numbers of electrons.

tronic energy levels into spin-parallel and spin-antiparallel configurations (via the

Zeeman effect), with the magnitude of the splitting determined by field strength.

EPR experiments can be conducted by either applying light of a fixed-frequency and

varying magnetic field strength, or through the reverse, and observing (typically mi-

crowave) photon absorbance. Usually, photon frequencies are kept fixed whilst the

magnetic field is varied. The photon absorbance spectrum is monitored to obtain a

g-factor, which depends on the chemical environment an electron is in. The hyper-

fine structure of atoms can be anisotropic with magnetic field direction, providing

further information on the particular atomic orbitals occupied. While this technique

can provide information on specific atomic orbitals an electron occupies, it can fail to

differentiate between unpaired spins on interstitial and substitutional sites in crystals

where symmetries of the two sites are similar.

Conductivity measurements

The first experimental observation of polarons was through conductivity measure-

ments on oxidised uranium dioxide, an intrinsic polaronic semiconductor.8, 127 In the

temperature range relevant to nuclear reactors, key thermal properties such as ther-

mal conductivity are determined by the behaviour of small polarons. It was found

that hole mobility µ increased with temperature, as described by the formula

µ ∝
1
T

exp
(
− ∆E

kBT

)
(1.5)
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which has a Boltzmann factor containing the polaron hopping activation energy ∆E.

This increase in mobility with temperature is in contrast with systems where transport

is governed by large polarons, which typically decrease with T due to the increased

number of phonon scattering events. Measurements of the Seebeck coefficient in CeO2

are independent of temperature, suggesting that the number of charge carriers does

not change with temperature.128 This implies that conductivity is governed mainly by

hole polarons instead of dispersive states as in band theory.127, 128

Optical measurements

A number of optical techniques can be used to probe polaronic states in semicon-

ductors, such as photoluminescence (PL) or ultraviolet/visible light spectroscopy

(UV/Vis). In PL experiments, high-frequency light is directed towards samples to en-

able the photoexcitation of charges. The absorbed light is then emitted from samples

and collected to form a spectra which can provide information on intra-gap states.

UV/Vis measures absorbed and reflected photon frequencies on samples, also pro-

viding a spectrum to probe gap states. infrared spectroscopy (IR) is another technique

that has been used to probe polarons.129 Similar to other optical approaches, IR exper-

iments generally measure relative absorption by different photon frequencies.

Scanning tunnelling microscopy

Scanning tunnelling microscopy (STM) has been used in a number of TiO2 studies to

both probe and manipulate the material’s surfaces.47, 130 The technique, which won

its creators a Nobel price in 1981, uses an atomically sharp tip to detect electron tun-

nelling currents. Surface planes are typically scanned with either constant height or

constant current settings. In the latter, the probe adjusts its height at each scanning

point to ensure the appropriate current is maintained. Forward and reverse biases can

be used to probe occupied and unoccupied states on surfaces. In scanning tunnelling

spectroscopy (STS), a range of voltages are explored at a fixed height, providing a

local density of states. STS can be particularly helpful when studying differences in

electronic structure between defective and defect-free surfaces.
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1.6 Research presented

While the work in this thesis primarily focuses on TiO2, the techniques discussed

can be easily and straightforwardly applied to other materials. As previously men-

tioned, TiO2 is a strongly correlated material with complex electron-electron interac-

tions which many theoretical techniques often fail to accurately describe. This makes

it an ideal material for testing new theoretical techniques, ensuring their suitability.

In the first study presented (Chapter 4), the accuracy of the model employed in later

chapters (Chapter 5 and Chapter 6) is assessed, and highlights that electron densities

and other quantities of interest, such as ionisation energies, are well-described by us-

ing the GKT in conjunction with hybrid functionals. Chapter 5 applies the approach to

polaronic states in TiO2 alongside other cost-reducing methods, such as the auxiliary

density matrix method, Coulomb interaction truncation and Cauchy-Schwarz integral

screening. The combination of theoretical techniques employed in Chapter 5 produces

an inexpensive and non-empirical hybrid functional which reproduces results from

other similar theoretical studies at a fraction of the computational cost. Furthermore,

properties of both the crystal and polarons in TiO2 are found to be in very good agree-

ment with experimental data. In Chapter 6 the approach is applied once more to in-

trinsic defects in titania. Literature reviewed in this chapter clearly indicates a lack of

consensus, from both experimental and theoretical studies, on the behaviour of point

defects in the TiO2. In this chapter, a number of intriguing findings are discussed,

such as the multiple interesting characteristics of oxygen interstitial defects. In both

the rutile and anatase phases of TiO2, the interstitial displayed the strongest trapping

behaviour, causing both electrons and holes to localise in its surroundings. For a few

of the defects in Chapter 6, findings could explain certain experimentally observed

differences between the two phases, such as the substantially higher conductivity of

anatase over rutile. Trends could also be drawn by combining the findings of Chap-

ter 6 and Chapter 5, which indicate that electrons are generally much more diffuse in

bulk anatase than rutile.
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CHAPTER 2

ELECTRONIC STRUCTURE THEORY

Many-body problems in physics are consistently included among the most computa-

tionally demanding problems in the world. The complexity of such problems becomes

apparent when data from the UK national supercomputer ARCHER is considered,

showing that on a typical month the most-used applications are those which specialise

in many-body problems (see Fig. 2.1). Treating large numbers of particles without in-

teractions is somewhat trivial; the complexities in many-body problems arise from

accurately describing particle interactions. As negatively charged particles, electrons

in a crystal exhibit a repulsion between one another which is dampened by the pres-

ence of other electrons. This effect is often called ‘screening’ and cannot be practically

described without approximation. If particle interactions are treated exactly, the re-

sulting complexity of the interacting electron problem scales poorly with numbers of

electrons, making practical calculations infeasible; even if an exact solution could be

obtained, the amount of memory required to store the solution would be enormous.

In this chapter, a number of approaches are described that neither treat particle in-

teractions exactly nor ignore them. By taking a happy medium between these two

extreme cases, solving the many-electron problem becomes more feasible, practical

and inexpensive.
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Figure 2.1: UK national supercomputer (ARCHER) application usage by research area for De-
cember 2018. The size of each circle is proportional to computational cost in node hours. CP2K,
VASP and CASTEP, all of which are electronic structure theory codes, use the largest number of
node hours across all applications.

2.1 Many-body quantum mechanics

The systems we aim to describe require simulations of hundreds of nuclei and a

few thousand electrons. The wavefunctions Ψi, describing all electrons and nuclei in

the system, and the Hamiltonian Ĥ are both contained within the time independent

Schrödinger equation,

ĤΨi = EiΨi, (2.1)

where Ei denotes the energy of each eigenfunction Ψi. In principle, solving this equa-

tion would allow access to all physical observables via the wavefunctions Ψi. These

wavefunctions depend on all electron and nuclear positions (denoted ri and Ri),

Ψi = Ψi(r1, r2, . . . , rNe , R1, R2, . . . , RNn). (2.2)
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In general, an analytic solution to the many-body Schrödinger equation is not pos-

sible, therefore the problem needs to be solved numerically. However, the problem

can be simplified via a series of approximations to make numerical simulations more

feasible.

2.1.1 The low temperature limit

While the effects of temperature in a crystal are occasionally non-negligible, the com-

putational cost associated with taking these effects into account is substantial. In order

to correctly assess these effects, a statistical picture, built up over a large number of

calculations, is needed. When temperature effects are included, the kinetic energy

of atoms in a crystal increases, meaning atoms exhibit more movement around their

equilibrium positions. In addition, electrons in a crystal start to occupy higher en-

ergy levels as described by the Fermi-Dirac distribution. A commonly prescribed ap-

proximation when modelling materials is that calculations are done at the 0 Kelvin

limit. At this temperature, the wavefunction describing a crystal only exists in the

lowest possible energy, called the ground state wavefunction Ψ0. While atoms at 0 K

do exhibit zero-point motion, this is often disregarded in calculations, and only the

equillibrium positions of atoms are considered. These approximations are removed

in particular cases when a correct description of atomic motion becomes necessary.

Many experimental techniques allow low temperatures to be probed, allowing com-

parison to theoretical data. The first approximation made is to primarily be concerned

with the ground state wavefunction Ψ0, and disregard zero-point motion.

2.1.2 The variational principle

The variational principle is a method which can be used to aid finding the ground state

wavefunction of a system. By definition, a normalised ground state wavefunction Ψ0

(with energy E0) is related to any other arbitrary trial wavefunction Ψ (with energy E)

as shown below:

E0 ≤ E;

〈Ψ0| Ĥ |Ψ0〉 ≤ 〈Ψ| Ĥ |Ψ〉 . (2.3)

By using this technique, it is possible to assess whether one wavefunction is closer to

the ground state than another via the energy. The ground state energy may also be
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16 2.1. Many-body quantum mechanics

degenerate, meaning more than one ground state wavefunction can exist.

2.1.3 The many-body Schrödinger equation

The Hamiltonian describing the electronic system, along with the nuclei, is given by

Ĥ = T̂n + T̂e + V̂n−n + V̂e−n + V̂e−e, (2.4)

where T̂ and V̂ denote kinetic energy and interaction terms. The subscripts n and e

denote nuclear and electronic components of the Kinetic energy (i.e. T̂n and T̂e). The

interaction term subscripts n− n, e− n and e− e denote interactions between nuclei

and electrons in all possible unique combinations. Using the standard definition of

the Laplacian operator, the terms are fully expressed below (in Hartree atomic units):

T̂n = − 1
2mn

Nn

∑
i
∇2

i , V̂n−n =
Nn

∑
i

Nn

∑
j>i

ZiZj

|Ri − Rj|
,

T̂e = −
1
2

Ne

∑
i
∇2

i , V̂e−e =
Ne

∑
i

Ne

∑
j>i

1
|ri − rj|

,

V̂e−n =
Ne

∑
i

Nn

∑
j

−Zj

|ri − Rj|
.

where charged particles interact via the Coulomb interaction. The quantity mn is the

nuclear atomic mass in Hartree units. In principle, solving the Schrödinger equation

(Eqn. 2.1) with the above Hamiltonian will provide access to any physical observables.

However, the equation still has no analytic solutions and is extremely difficult to solve

computationally.

2.1.4 The Born-Oppenheimer approximation

The Born-Oppenheimer approximation is commonly used in electronic structure the-

ory, and arises from the fact that the nuclei are substantially more massive than an

electron, or in the case of crystals the reduced electron mass. This has two key con-

sequences: first, the kinetic energy of the nuclei T̂n can be assumed to be very small.

Secondly, the electronic and nuclear problems can be separated:

Ψ0 = ΨnΨe (2.5)

Ĥ = Ĥe + Ĥn. (2.6)
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which decouples the electronic and nuclear wavefunctions. The corresponding Hamil-

tonian can therefore also be separated into a nuclear Ĥn and an electronic Ĥe part,

thus simplifying the problem. While it may seem that the equation cannot be sepa-

rated because of the V̂e−n term, which depends on both ri and Rj, the dependence of

this interaction can be made parametric. Later sections discuss how to optimise the

positions of nuclei, however for now they will be considered as fixed in space, mean-

ing the term V̂n−n can be safely neglected. The resulting set of equations essentially

reduces the problem to only solving the electronic part of the Hamiltonian,

Ĥ = T̂e + V̂e−e + vext, (2.7)

where electrons sit inside a fixed external potential generated by the atomic nuclei.

For the remaining sections, the (atomic) potential in which all electrons reside will

be called vext(r), the external potential, which is analogous to V̂e−n when all nuclei are

fixed. The presence of an external electric field (i.e. not generated by any charge within

a system) changes the form of the external potential, however such electric fields will

not be considered.

2.2 Hartree and Hartree-Fock theories

While the Born-Oppenheimer approximation simplifies the problem posed by the

many-body Schrödinger equation (Eqn. 2.4), the equation still has no analytic solu-

tions. The Hartree approximation is one of the first approximations used to solve the

many-electron problem. The Hartree ansatz proposed for the ground state wavefunc-

tion is given by

ΨH
0 (r1, r2, . . . , rN) = ψ1(r1)ψ2(r2) . . . ψN(rN), (2.8)

which is a product state of many single-electron orbitals ψi. By using of the many-

electron Schrödinger equation (Eqn. 2.7) and variational principle (Eqn. 2.3), the

Hartree approximation can be found as

(
− 1

2
∇2

i +

Hartree potential︷ ︸︸ ︷
occ

∑
j 6=i

∫ |ψj(rj)|2

|ri − rj|
drj +vext(ri)

)
ψi(ri) = ε iψi(ri), (2.9)
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where one essentially finds a single-particle picture of interacting electrons. In order

to simplify notation, the orbital spin degree of freedom is suppressed. The Hartree

interaction potential (labelled in Eqn. 2.9) essentially corresponds to an electrostatic

potential generated by an electron density (of all other electrons ψj) that each orbital

ψi resides in.

For the Hartree equations, the total energy is not simply a sum of single-particle

eigenvalues. Rather, it is given by

EH
tot =

occ

∑
i

ε i

Hartree interaction energy, −EH︷ ︸︸ ︷
− 1

2

occ

∑
i

occ

∑
j 6=i

∫∫ |ψi(ri)|2|ψj(rj)|2

|ri − rj|
dridrj, (2.10)

where the additional term removes double-counting errors associated with electron

interactions contained in the sum of the eigenvalues. The external potential energy

and kinetic energy contributions from 〈ψi| vext |ψi〉 and 〈ψi| − 1
2∇2

i |ψi〉 are contained

within the eigenvalue sum once only, therefore do not need d.c. corrections.

While in principle calculations using Hartree theory can be calculated in reason-

able time, the theory does not explicitly incorporate anti-symmetry of electrons, specif-

ically

Ψ0(r1, r2, . . . , rN) = −Ψ0(r2, r1, . . . , rN). (2.11)

HF theory remedies this by using a different form for the many-electron wavefunction

ansatz, given by

ΨHF
0 (r1, r2, . . . , rN) =

1√
N!

∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(r1) ψ2(r1) . . . ψN(r1)

ψ1(r2) ψ2(r2) . . . ψN(r2)
...

...
. . .

...

ψ1(rN) ψ2(rN) . . . ψN(rN)

∣∣∣∣∣∣∣∣∣∣∣∣
, (2.12)

known as a Slater determinant. It is simple to show for an N-electron case that wave-

function anti-symmetry is obeyed by using this form for the many-electron wavefunc-

tion.

Using the Slater-determinant wavefunction ansatz, the many-electron Schrödinger

equation (Eqn. 2.7) and variational principle (Eqn. 2.3) produces the following expres-
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sions, known as the HF equations.

(
− 1

2
∇2

i +

Hartree potential︷ ︸︸ ︷
occ

∑
j

∫ |ψj(rj)|2

|ri − rj|
drj +vext(ri)− F̂

)
ψi(ri) = ε iψi(ri) (2.13a)

F̂ψi(ri) =
∫

F(ri, rj)ψi(rj)drj (2.13b)

F(ri, rj) =
occ

∑
j

ψ?
j (ri)ψj(rj)

|ri − rj|
. (2.13c)

The form of these equations is quite different to the Hartree equations as they contain

an additional operator, known as the (non-local) Fock exchange operator (F̂ ). It is

called a non-local operator as it includes information into its potential that is non-local

in space (i.e. v(ri, rj) rather than v(ri)). It is only when the many-body wavefunction

is given the appropriate degrees of freedom contained within the Slater determinant

that this term arises. A consequence of non-local potentials is each orbital can see a

different interaction potential to each other orbital.

The total energy given by the HF equations also contains an additional term corre-

sponding to the Fock operator, given by 1

EHF
tot =

occ

∑
i

ε i − EH +
1
2

occ

∑
i

occ

∑
j

∫∫ ψ?
j (ri)ψ

?
i (rj)ψi(ri)ψj(rj)

|ri − rj|
dridrj︸ ︷︷ ︸

Hartree-Fock exchange energy, −EHF
x

. (2.14)

As the spin degree of freedom has been suppressed in this chapter, it should be men-

tioned that the exchange potential only affects electrons of like spin; for a two-electron

helium atom with one electron in each spin channel, the HF equations are reduced to

just the Hartree equations.

2.3 Correlated electrons

While HF accurately describes some systems, it behaves very poorly in others. A

well-known failure relates to metals, where the HF predicts many of them to be in-

sulators. Thus, this theory is surely lacking some vital component(s) required to ac-

1 In the Hartree equations, the i = j summation term is excluded from the Hartree energy. The
HF equations are usually shown with this term present in both the Hartree and exchange potentials.
Regardless of how the equations are presented, the i = j terms cancel due to the Fock operator.

Chapter 2 Electronic structure theory



20 2.4. Kohn-Sham density functional theory

curately describe electrons in crystals – these effects are termed ‘correlation’ effects.

Systems where exchange is the (main) ingredient required to accurately describe elec-

trons are dubbed ‘exchange-dominated’. In contrast, systems where correlation effects

dominate are called ‘strongly correlated’. The term correlation refers specifically to

the movement of electrons. In strongly correlated systems, the motion of one elec-

tron would result in a significant response of the surrounding electrons, meaning the

movement of charges becomes strongly intertwined. Unfortunately, many interesting

systems we would like to model require at least some correlation effects included in

order to be accurately described. This includes a material studied in this thesis (TiO2).

Thus, the relation between the correlation energy Ecorrelation, exchange energy EHF
tot and

exact total energy Eexact of a system can be defined as

Ecorrelation = Eexact − EHF
tot . (2.15)

Despite improving upon Hartree theory, HF still lacks the degrees of freedom

which the real ground state many-electron wavefunction has. The true wavefunc-

tion is known to require a large sum of Slater determinants. However, finding a set of

analytic equations (like the HF equations) is not possible. Instead the problem must be

solved numerically (at a high computational cost). Notable methods which method-

ically include correlation include configuration interaction, Møller-Plesset perturba-

tion theory and the GW approximation. These more sophisticated theories essentially

use HF as the 0th order and expand their approach by including correlation effects

systematically; in limiting cases, these theories essentially revert to becoming HF.

2.4 Kohn-Sham density functional theory

The KS approach makes use of density functionals (i.e. functionals of the density) and

introduces an auxiliary system of non-interacting electrons that should, in principle,

reproduce all effects of ground-state many-body systems. This approach introduces

some correlation effects and is capable of being an exact theory. In practise, the KS

approach often requires approximations in order to be useful. By comparing to more

exact techniques, such as quantum Monte-Carlo (QMC), approximate KS approaches

are assessed on their ability to reproduce ground-state energies and densities. The key

advantage of KS DFT over other techniques lies in its relatively low computational cost

and reasonable accuracy.
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2.4.1 Hohenberg-Kohn theorems

Pierre Hohenberg and Walter Kohn proved two key theorems, work which later led

to the development of the well-known DFT.131 Walter Kohn later won the Nobel prize

in chemistry in 1998 for his contributions to the field, highlighting the significance the

KS approach had.

For a fixed number of electrons Ne, the external potential vext(r) of a system deter-

mines its ground state electronic energy and wavefunction, therefore also the density.

The ground state of a system may be degenerate, however degenerate ground states

result in the same density and energy unless the degeneracy is lifted. Hohenberg and

Kohn proved that this mapping, {vext} → {ρ}, may also be reversed.131

The external potential is a unique functional of the ground state electronic density (to within

an additive constant). The (ground state) total energy is therefore also uniquely determined by

the same density.

In other words, there is a one-to-one mapping from the ground state density ρ(r) to

external potential in many-electron systems. As a result of this theorem, the ground

state density can, in principle, uniquely determine all other properties of the system.

Such properties include the many-body wavefunction, or energy

E[ρ] = FHK[ρ] +
∫

ρ(r)vext(r)dr (2.16)

where FHK[ρ] is some unknown functional. However, the theorem does not elaborate

on how to find the functional FHK[ρ]. Further, it should be noted that this only applies

to ground state densities; for an arbitrary density (ground state or otherwise), the

theorem does not hold as the ground state density of one system may be the excited

state of another.

The second Hohenberg-Kohn theorem simply states:

Only the true ground state density minimises the functional which delivers the ground state

density.

If the ground state density is denoted ρ0, the theorem simply states that131

δE
δρ

∣∣∣∣
ρ=ρ0

= 0. (2.17)
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2.4.2 Kohn-Sham equations

KS DFT makes use of the Hohenberg-Kohn theorems and provides a means in which

to perform electronic structure calculations. The total energy functional in KS DFT can

be decomposed as

E[ρ] = Ts[{ψi[ρ]}] + EH[ρ] + Eext[ρ] + Exc[ρ], (2.18)

where Ts, EH, Eext and Exc are the total single-particle kinetic, Hartree, external poten-

tial and so-called exchange-correlation (xc) energies.132 Of these terms, only the first

three have well-defined analytic expressions:

Ts[{ψi[ρ]}] = −
1
2

occ

∑
i

∫
ψ?

i (r)∇2ψi(r)dr (2.19a)

EH[ρ] =
1
2

∫∫ ρ(ri)ρ(rj)

|ri − rj|
dridrj (2.19b)

Eext[ρ] =
∫

ρ(r)vext(r)dr. (2.19c)

While analytic expressions for the (total) single-particle kinetic and Hartree energies

are known, they are the KS approximations to their corresponding many-electron en-

ergies; the real many-electron kinetic and interaction energies are not equal to the

single-particle kinetic and Hartree interaction energies. This means that the remaining

term, Exc[ρ], must account for both of these discrepancies for KS DFT to be exact.132

It is useful to note that the Hartree energy from the KS approximation is not equal

to the Hartree energy from the Hartree approximation. If the reader looks closely,

Eqn. 2.9 does not contain the so-called ‘self-interaction’ term; in the Hartree equations,

the j = i summation term is omitted from the interaction potential, meaning each

orbital does not see its own density in the interaction potential. The HF approach also

does not have the self-interaction term due to cancellation. As DFT does not omit this

term in the interaction potential, the xc energy must also account for this.132

The potentials which correspond to the energies given in Eqn. 2.19b and Eqn. 2.19c

can be obtained by performing a functional derivative with respect to the density,

δEH

δρ
= vH(r) =

∫ ρ(rj)

|ri − rj|
drj (2.20a)

δEext

δρ
= vext(r). (2.20b)
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However, the potential corresponding to Exc, vxc(r), is still not known, as is the form

of Exc itself. The renowned KS equations are

(
− 1

2
∇2

i +

Effective potential, veff(r)︷ ︸︸ ︷
vH(r) + vxc(r) + vext(r)

)
ψi(r) = ε iψi(r), (2.21)

where all single-particle orbitals {ψi(r)} see the same effective potential veff(r).

2.4.3 Exchange-correlation approximations

In essence, only the vxc term needs to be found in order to solve these equations ex-

actly, resulting in quantities otherwise obtained via solving the exact many-electron

Schrödinger equation. Currently no exact form exists and the potential is known to

be non-analytic. This behaviour is discussed in Section 2.4.5. In other words, finding

the exact form of this potential will prove to be very challenging, if not impossible, for

most systems. In this section, we detail a list of commonly used approximations to xc

which render practical calculations possible.

The exchange correlation energy Exc in common density functional approxima-

tions can be manipulated as follows.

Exc[ρ] =
∫

ρ (r) εxc dr =
∫

ρ (r) εx dr︸ ︷︷ ︸
Ex[ρ]

+
∫

ρ (r) εc dr︸ ︷︷ ︸
Ec[ρ]

, (2.22)

where εxc is xc energy per electron for a homogeneous electron gas with density ρ(r).

The components εx and εc are the exchange and correlation parts of εxc respectively.

While an analytic expression for (the exact) exchange energy Ex can be found via

the Fock operator (Eqn. 2.13b and Eqn. 2.13c), a similar expression for Ec is not known.

One key point is that the HF potential is non-local, whilst KS DFT is primarily con-

cerned with local potentials. Even when DFT is extended to include non-local poten-

tials, so-called GKS DFT, using full HF exchange with an approximation to correlation

generally yields poor results. Using insight from many-body perturbation theory (via

the GW method), part of correlation essentially cancels out HF exchange (through use

of the screened Coulomb interaction W for exchange interactions rather than the bare

Coulomb one). This means that full HF exchange with the small portion of correlation

contained within DFT is not a viable method for modelling materials.
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Figure 2.2: A schematic (corresponding to an infinite square well) which illustrates how the
LDA calculates εLDA

xc (ρ), thus the energy and potential. In this case, the densities at points ri
and rj are the same, meaning both points in space would have the same value of εLDA

xc .

Local density approximation

The LDA was one of the first approximations to xc and has the form

εLDA
x

(
ρ(r)

)
= −k · ρ (r)1/3 (2.23)

where k is a constant found analytically that derives from the energy density of the

homogeneous electron gas.133 The form this constant takes depends on a number of

factors, including the way electron spins are treated. There exist a variety of ways to fit

the correlation part of the energy functional Ec, although most rely on parametrisation

from QMC data. The most elegant form is from relatively recent work by Chachiyo et

al (2016) and is given by

εLDA
c (ρ(r)) = a ln

(
1 +

b
rs

+
b
r2

s

)
(2.24)

where a and b are constants.134 The parameter rs is a dimensionless quantity that is re-

lated to the density as r3
s (r) = 3/4πρ(r). In this simple case, the constants can either be

fitted to QMC data or by using various constraints. Other notable approaches for find-

ing εLDA
c include the Ceperley-Adler, Perdrew-Wang and Vosko-Wilk-Nusair function

fits, however all fits behave in a similar fashion to the fit provided above.135–137

For meaningful calculations to take place, the potential vLDA
xc and total energy ELDA

tot

must also be calculated. Using the definitions given above, the xc potential can be
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found as

vLDA
xc (r) =

δELDA
xc

δρ(r)
= εLDA

xc (ρ(r)) + ρ(r)
∂εLDA

xc (ρ(r))
∂ρ(r)

, (2.25)

and the total LDA energy is given by

ELDA
tot =

occ

∑
i

ε i − EH −

Incorrect xc energy︷ ︸︸ ︷∫
ρ(r)vLDA

xc (r)dr+
∫

εLDA
xc (ρ(r)) ρ(r)dr.︸ ︷︷ ︸
Correct xc energy

(2.26)

In the above (total energy) equation, the LDA xc potential includes a variationally in-

correct contribution. This quantity, contained within the eigenvalue sum, is removed

and replaced by the variationally correct form, as seen in Eqn. 2.26.

As shown in this section, the quantity εLDA
xc (ρ(r)) is merely a fitted function of the

density. With it being known, all quantities in the KS equations (Eqn. 2.21) are also

known, and only vxc(r) is approximated. In practical calculations, the LDA works

by calculating potentials (and energies) point-wise, i.e. the LDA xc potential at point

ri with density ρ(ri) is given by looking what value εLDA
xc (ρ(ri)) should be at such a

density. This is illustrated more clearly in Fig. 2.2. Indeed, the schematic highlights

why the LDA carries the name local density approximation, as it only assesses the

value of εxc by observing the density at one point in space. The real many body system

is not quite so simple, as density contributions from other regions in space may also

affect the xc potential.

Generalised gradient approximation

The GGA takes the LDA a step further; by considering not only the value of the den-

sity, but also the gradient of the density at a point in space, a more sophisticated ap-

proximation to xc can be found. This can be thought of as similar to a Taylor expansion

to a function, with the first order contribution being only the density, and second order

being the first derivative of the density. Higher order gradients can also be included

(so-called meta-GGAs), potentially leading to more accurate εxc approximations, how-

ever currently these are known to have issues with stability.138 Nonetheless, the form

of GGA functionals takes the form

Exc[ρ] =
∫

ρ (r) εxc(ρ,∇ρ)dr. (2.27)
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The most popular GGA functionals include the Perdew-Wang 1991 (PW91) and

Perdew-Burke-Ernzerhof (PBE) parametrisations.136, 139

Spin density approximations

For systems with spin, extending the LDA and GGA approaches merely separates the

densities of both spin channels (α and β). For example, the LDA and GGA would take

the form

ELDA
xc [ρα, ρβ] =

∫
ρ (r) εLDA

xc (ρα, ρβ)dr (2.28a)

EGGA
xc [ρα, ρβ] =

∫
ρ (r) εGGA

xc (ρα, ρβ,∇ρα,∇ρβ)dr (2.28b)

where the quantities εLDA
xc and εGGA

xc , as described for the spinless LDA case, are merely

functions of the density. The densities of α and β spin channels would be varied inde-

pendently, potentially leading to different spatial descriptions of the two densities (ρα

and ρβ). Consider the simple example of two well-separated hydrogen atoms and two

electrons, with one electron in each spin channel. The ground state of such a system

should be one full electron with each proton. If the density of both spin channels is

not varied independently, it would not at all be possible to obtain the correct solution.

The spin restricted case (also called the closed-shell solution) would better apply to a

helium atom, where the spatial distribution of the two electrons is the same.

2.4.4 Meaning of orbital eigenvalues

In principle, solving the KS equations exactly (once only) can easily yield three quan-

tities which are identical to the many-electron ones: the ground state density ρ0(r),

energy E0 and ionisation potential I(N). The third quantity, I(N), corresponds to the

energy released by removing the Nth lowest energy electron from the system. In exact

DFT, this is accessed from the HOMO εHOMO.140 This quantity arises somewhat by

coincidence; the ionisation potential is dependent on the decay of the density, which

exact DFT should replicate, towards the edge of a system.25

The unoccupied orbitals in DFT do not carry any information on excited states. As

DFT is primarily a ground-state theory, it need not obtain excited state properties to

model the ground state (in theory). The subsequent subsection discusses this further.

Moreover, apart from the HOMO, all other occupied orbitals, in theory, also have no

physical meaning. However, empirical evidence shows that there is large agreement
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between occupied orbital band structures and those obtained from experiment.

2.4.5 Derivative discontinuity

The (eigenvalue) energy gap between occupied and unoccupied orbitals should not

correspond to the experimental band gap in DFT. Exact DFT requires an energy con-

tribution added to unoccupied states, called the derivative discontinuity term ∆xc, that

restores correct energy gaps.25, 140 This constant, discussed further in Chapter 4, arises

from a constant shift in the xc potential around integer numbers of electrons,

vN−δ
xc (r) + ∆xc = vN+δ

xc (r), (2.29)

where δ is an infinitesimal charge added to and removed from an integer number of

electrons N.140 In other words, the entire xc potential is shifted by a constant ∆xc af-

ter adding a small amount of charge. This concept may seem slightly perplexing, as

a constant shift in the potential would reproduce the same density. The key change

occurs in the orbitals; a constant shift in the potential causes the orbitals to have differ-

ent energies, which reproduce the same energy and density when inserted into the KS

equations. In other words, unoccupied orbitals are subject to a constant shift in their

energies when they become occupied. This can be written as 2

εN+1(N − δ) + ∆xc = εN+1(N + δ). (2.30)

In turn, this means that the energy gap between occupied and unoccupied orbitals Eg

in exact functionals is actually given by140

Eg = [εN+1(N) + ∆xc]− εN(N). (2.31)

While not being available from the eigenvalues, the quantity Eg can instead be

obtained by performing the calculation

Eg = I(N)− A(N) (2.32)

where A(N) is the electron affinity of an N electron system. Consequently, the energy

Eg can only be accessed via two separate sets of orbitals in the exact DFT case 3.

2 εN(M) is the Nth lowest energy orbital from an M electron system.
3 The ionisation potential and electron affinity are defined as −I(N) ≡ E(N)− E(N − 1) and
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An unfortunate consequence of ∆xc means that the correct form of the xc potential

must include a discontinuity. The implication is that the exact functional is not smooth

with respect to the density and is therefore non-analytic:

∆xc = vN+δ
xc (r)− vN−δ

xc (r) =
δExc

δρ(r)

∣∣∣∣
N+δ

− δExc

δρ(r)

∣∣∣∣
N−δ

. (2.33)

The LDA and PBE functionals are created using smooth functions of the density, mean-

ing they do not have this feature.140

2.5 Hybrid functionals

As discussed in Chapter 1, both DFT and HF calculations tend to be systematically

erroneous, but in opposing ways. Hybrid functionals exploit this by mixing these

two approaches together. While this may initially seem haphazard from a pragmatic

point of view, the approach can, for some systems, yield substantially improved re-

sults when comparing to experimental data. Hybrid functionals exist within a frame-

work known as GKS DFT. In this, the xc potential is allowed to be both local or non-

local. Use of hybrid functionals does come at a cost, as calculating HF exchange is an

expensive procedure

2.5.1 Linearly-mixed functionals

Some commonly used hybrid approximations to xc are shown below. The simplest is

given by

EPBEα
xc (α) = αEHF

x + (1− α)EPBE
x + EPBE

c , (2.34)

which simply mixes PBE and HF exchange, with α being the fraction of HF exchange.

The PBE0 functional is defined as the case when α = 1/4.141 For molecular (and

aperiodic) systems B3LYP,

EB3LYP
xc (a0, ax, ac) = ELDA

x + ax

(
EGGA

x − ELDA
x

)
+ a0

(
EHF

x − ELDA
x

)
−A(N) ≡ E(N + 1)− E(N), where E(N) is the energy of an N electron system. While I(N) needs
both E(N) and E(N − 1), in the exact DFT case it can instead be evaluated from the HOMO
of an N electron system, εN(N) = −I(N). The second quantity A(N) must be obtained from
E(N + 1)− E(N), which requires an additional calculation for the energy E(N + 1). Alternatively,
the orbital εN+1(N + 1) = −I(N + 1) ≡ A(N) can be used, although this also requires an additional
calculation. Three sets of orbitals are required for inexact or non-Koopmans-compliant functionals as
εN(N) 6= −I(N).
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y

r

Error functions: Truncation:
y

r
Rc

Figure 2.3: A schematic illustrating how range-separation can be introduced. For the error
functions case, it can be seen that the terms 1/r ≈ erf(r)/r and erfc(r)/r ≈ 0 for large r. For
the truncation case, large values of the truncation radius mean 1/Rc ≈ 0.

+ELDA
c + ac

(
EGGA

c − ELDA
c

)
, (2.35)

is commonly used, where ax, ac and a0 are fixed constants.24 Its performance for con-

densed phase systems varies; it usually performs poorly for systems with small and

medium energy gaps Eg, but better with large gap systems.

2.5.2 Range-separated functionals

So far, the only electron-electron interaction u(ri, rj) discussed has been of the form

u(ri, rj) =
1

|ri − rj|
=

1
r

. (2.36)

In order to reduce cost associated with HF exchange, it is useful to determine its short-

and long-range components. The short-range components, when r is small contribute

more to the exchange energy than the long-range components, when r is large, due to

the inverse dependence on r (see exchange energy in Eqn. 2.14). In this section two ap-

proaches are detailed that alter the interaction term u to induce range separation. The

first approach uses the error and complimentary error functions (erf(x) and erfc(x))

to induce this. The second approach simply truncates the long-range HF component

and adds a long-range correction term given by a local functional.
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Error function interaction

A very successful hybrid functional for condensed phase systems by Heyd, Scuseria

and Ernzerhof, called the HSE functional, works by changing the form of the Coulomb

interaction.142 The interaction u can be rewritten as

u(ri, rj) =
1
r
=

erfc(ω · r)
r

+
erf(ω · r)

r
. (2.37)

Using the above, the HF exchange energy can be manipulated as 4.

EHF
x = −1

2 ∑
i,j

〈
ψjψi

∣∣ 1
r
∣∣ψiψj

〉
(2.38)

EHF
x = −1

2 ∑
i,j

〈
ψjψi

∣∣ erfc(ω · r)
r

∣∣ψiψj
〉

︸ ︷︷ ︸
Short-range exchange, EHF, SR

x

−1
2 ∑

i,j

〈
ψjψi

∣∣ erf(ω · r)
r

∣∣ψiψj
〉

︸ ︷︷ ︸
Long-range exchange, EHF, LR

x

. (2.39)

This separates long and short range components of HF exchange by introducing a

range-separation parameter ω. The (semi-local) PBE functional can also be separated

into similar terms. If the exchange parts of the PBE0 functional are expressed in terms

of short- and long-range components, the following expression can be found.

EHSE
x (α, ω) = αEHF, SR

x + αEHF, LR
x + (1− α)EPBE, SR

x + (1− α)EPBE, LR
x (2.40)

The long-range PBE0 and HF components are very small, and tend to cancel each

other out when large (i.e. αEHF, LR
x ≈ αEPBE, LR

x ) for sensible ω values. The resulting

expression

EHSE
x (α, ω) = αEHF, SR

x + (1− α)EPBE, SR
x + EPBE, LR

x (2.41)

essentially reduces the problem to only calculating short-range HF exchange. This

simple re-expression reduces computational cost significantly; as r grows large, the

short-range component of the Coulomb interaction essentially falls to zero, as seen in

Fig. 2.3. In other words, when EHF, LR
x ≈ EHF

x , which usually occurs at the characteristic

length 2/ω, HF exchange need not be calculated at all as it cancels with EPBE, LR
x .143 The

HSE06 functional is defined as when α = 1/4 and ω = 0.2 Å−1.

4 The i = j summation term in the Hartree and HF exchange energies (Eqn. 2.14) is included in the
context of hybrid functionals.
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Truncated Coulomb interaction

An alternative hybrid functional, called the Coulomb-truncated PBEα (tr-PBEα), has a

simpler means of inducing range-separation. The form of the Coulomb operator used

in this case is given by

utr(ri, rj) =


1
r

, for r ≤ Rc

0, for r > Rc

(2.42)

where Rc is some specified cut-off radius. This truncation is illustrated in Fig. 2.3. In

other words, the exchange energy for sufficiently large r values (i.e. the long range

term) is not calculated. For appropriately chosen values of Rc, the long-range terms

contribute little to the energy, meaning this should not be a problem. While the long-

range effects of exchange have been omitted, this functional attempts to capture them

using a long-range correction term via a local functional. This correction is calculated

from the PBE functional and is termed EPBE, LRC. The form of this correction is com-

pared with that of HSE in the subsequent section (Section 2.5.2), however a detailed

discussion can be found in reference 144. The final exchange energy is given by,

Etr-PBEα
x (α, Rc) = αEtr-HF

x + αEPBE, LRC
x + (1− α) EPBE

x (2.43)

where

Etr-HF
x = −1

2 ∑
i,j

〈
ψjψi

∣∣ utr
∣∣ψiψj

〉
. (2.44)

This functional is also called PBE0-TC-LRC and PBE0-TC, with and without the long-

range correction.

Comparison of range-separation

PBE functionals incorporate gradient approximations into a functional by

εx(ρ,∇ρ) = εLDA
x (ρ) · FPBE

x (ρ,∇ρ) (2.45)
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where FPBE
x (ρ,∇ρ) is known as the enhancement factor. This is usually expressed in

terms of a fitted function JPBE
x (s, r) known as the spherically averaged exchange hole,

FPBE
x (ρ,∇ρ) = −8

9

∫ ∞

0
kF JPBE

x (s, r)dr, (2.46)

where kF = (3π2ρ)
1
3 and s = |∇ρ|/2kFρ. The ranged PBE parts in the HSE and tr-

PBEα functionals are calculated as

FPBE, SR
x =− 8

9

∫ ∞

0
kF JPBE

x (s, r) erfc (ω · r) dr (2.47a)

FPBE, LR
x =− 8

9

∫ ∞

0
kF JPBE

x (s, r) erf (ω · r) dr (2.47b)

FPBE, LRC
x =− 8

9

∫ ∞

Rc

kF JPBE
x (s, r)dr. (2.47c)

In other words, the HSE functional has a smooth PBE energy contribution whilst

tr-PBEα does not.144 As detailed in previous subsections, the same can be said of

exchange energy contributions for these functionals.

2.6 Solid state calculations

At the start of this chapter, it was mentioned that the systems we aim to describe re-

quire a few hundred nuclei and a few thousand electrons. This begs the question:

given real crystals contain ∼ 1023 atoms, how can one describe them using such a

small system? A simulation containing this number of atoms is seemingly impossible.

To this end, many simulations of solid state matter make use of periodic boundary

conditions. While both naturally occurring and synthetic crystals usually contain de-

fects, very pure crystals often have, at least in some small region, a repeating structure

of atoms. In that region, particular quantities surrounding the electronic structure are

also repeating. For example, the density follows the rule ρ(r) = ρ(r + R), where R is

a vector that is commensurate with the periodicity of the crystal.11

The periodic symmetry of a crystal is not necessarily mirrored by the symmetry

of the single-particle orbitals, meaning ψ(r) need not equal ψ(r + R). In general the

symmetry of a system does not necessarily reflect in its solution(s) to the underlying

differential equation. One example would be an empty (and boundless) box with

a constant potential and one electron. In such a box, the potential is constant with

respect to all translations, whereas solutions are of planewave form.
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2.6.1 Periodic systems

Consider a 3D system with a periodic potential and density. The smallest repeating

unit of such a crystal is called a unit cell and (can in general) span across three direc-

tions, given by a1, a2 and a3. These vectors, called primitive lattice vectors, have a

magnitude that equals the length of each repeating unit. If a point r in one unit cell is

translated by R,

R = n1a1 + n2a2 + n3a3 (2.48)

where n1, n2 and n3 are integers, an equivalent point would be found in another rep-

etition of the unit cell. Using this, an additional basis which corresponds to the atoms

within each primitive cell can also defined. For example, atoms A1 and A2 could be

given position co-ordinates R1 and R2 as

R1 = (1/2 |a1|, 1/2 |a2|, 1/4 |a3|) (2.49)

R2 = (1/2 |a1|, 1/2 |a2|, 3/4 |a3|) . (2.50)

With the above, our atomic nuclei have positions in real space that are well-defined,

as is their periodicity via the lattice vectors. Another set of vectors whose relevance

will be discussed below, called reciprocal lattice vectors, can also be defined:

b1 = 2π
a2 × a3

a1 · (a2 × a3)
(2.51a)

b2 = 2π
a3 × a1

a2 · (a3 × a1)
(2.51b)

b3 = 2π
a1 × a2

a3 · (a1 × a2)
. (2.51c)

2.6.2 Bloch’s theorem

Bloch theorem states that the wavefunction of a periodic crystal contains is described

by

ψn,k(r) = un,k(r) · eik·r, (2.52a)

ψn,k(r + R) = ψn,k(r) · eik·R, (2.52b)
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where k is described by the reciprocal lattice vectors k = (θ1b1, θ2b2, θ3b3). The term

un,k(r) is a function that is periodic with the crystal lattice vectors ai. Conversely, the

term describing the wavefunction ψn,k(r) is not necessarily periodic. Essentially, the

wavefunction describing the crystal ψn,k(r) has a periodic component that is modu-

lated by an exponential envelope function eik·r that has the periodicity of the lattice.

This equation contains the band index n, which is analogous to the single-particle

eigenvalue indices, and an additional index corresponding to the vector k.

If Bloch’s equation (Eqn. 2.52) is substituted into the KS equations (Eqn. 2.21), a

differential equation describing a periodic crystal can be found,

[
−1

2
(∇+ ik)2 + veff(r)

]
un,k(r) = εn,kun,k(r), (2.53)

where un,k and ψn,k are both eigenvectors of the same Hamiltonian (at a given k

value).11 As the eigenfunction un,k is now periodic, solving these equations inside

one unit cell would be the equivalent of solving the KS equations for an infinitely re-

peating crystal. It can be seen that the vector k needs to be specified in order to solve

these equations. At a particular value of k, called the Γ-point [Γ = (0, 0, 0)] (i.e.

the origin of the reciprocal lattice), the equation takes a similar form to the normal

KS equations. In this case, solutions to the equation can be taken to be real, reducing

computational cost.

2.6.3 k-point convergence

The reciprocal lattice also has its own version of the (primitive) unit cell, called the

Brillouin zone. In addition to being periodic in real space, the function un,k(r) is also

periodic with the reciprocal lattice vectors. This means that any k vector outside the

Brillouin zone can be mapped to a symmetrically equivalent one within the Brillouin

zone.

Many quantities in a periodic (DFT) calculation require an integral over the Bril-

louin zone. The density is one such example and is described by

ρ(r) =
Ω

(2π)3

∫
BZ

ρk(r)dk (2.54a)

ρk(r) =
occ

∑
i

ψ?
n,k(r)ψn,k(r), (2.54b)

where Ω is the volume of the unit cell. Similar integrals exist for other variables,
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(c)

(a)

(d)

(b) (e)

 
(f)

Irreducible wedge

Tetragonal cell: k-path:

Figure 2.4: (a)-(d): A schematic illustrating the (tetragonal) TiO2 rutile primitive cell. (e)-(f):
The corresponding Brillouin zone is shown, with high symmetry points marked. As with the
real space cell, the Brillouin zone contains many points which are symmetrically equivalent.
An irreducible wedge can be constructed where all non-equivalent k-points are present. Band
structure calculations for a tetragonal cell follow the high-symmetry k-point path indicated.

such as the energy. Luckily, electronic wavefunctions in a small enough region over

k-space (i.e. the space of k vectors) are very similar, meaning k-space can be discre-

tised. Convergence with number of k-point is therefore required for these quantities

to be meaningful. Computational cost can be reduced by making use of symmetry

within the Brillouin zone. As shown in Fig. 2.4 for a tetragonal cell, this means the

volume of k-space that needs to be explored is reduced to a much smaller region,

called an irreducible wedge.

The magnitude of reciprocal lattice vectors takes the form 2π/|ai| where ai is a

real-space lattice vector. As the size of a real-space cell increases, the Brillouin zone

shrinks, meaning each k-point sampled can be mapped on more reciprocal lattice

sites. In other words, if the Brillouin zone is sufficiently small, the integrals above

(Eqn. 2.54a and Eqn. 2.54b) can be performed at only one value of k. This means

that, rather than sampling more k-points, an alternative approach to converging the

above integrals is by using a large enough real-space cell. In practise, this would mean

duplicating a primitive cell in all directions creating a ‘supercell’.
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2.6.4 Optimising atomic configurations

Up until this section, atomic positions have been fixed and included into the electronic

Hamiltonian via an external potential. In practise, it is not always known exactly

where atomic positions lie in a crystal. It is therefore necessary to have a means of

optimising these positions. A variety of algorithms exist to optimise atomic positions,

however they all rely on calculation of forces from electronic structure calculations.

The forces on each ion I at position RI are calculated using the Hellman-Feynman

theorem,

FI = −
∂E
∂RI

= − 〈Ψ0|
∂Ĥ
∂RI
|Ψ0〉 (2.55)

which essentially treats nuclei as classical particles. In order for the above equation

to hold true, various corrections need to be considered. These include corrections for

spurious forces that arise from use of finite basis sets, called Pulay forces. As shown in

Fig. 2.5, the ground state orbitals {ψi} are often found using density mixing schemes.

As this is a not a variational approach, further corrections may also be considered to

account for this.

While the forces on atoms in a primitive cell can be reduced to equal zero, the

primitive cell itself may also be incorrect. The cell can be relaxed calculating the stress

tensor σαβ,

σαβ =
1
Ω

∂E
∂εαβ

, (2.56)

where εαβ is an applied strain to the crystal. The components of the strain tensor cor-

respond to strains in different directions. Once the stress tensor is minimised, the cell

can be assumed to be in its equilibrium shape. By employing symmetry conditions,

the number of tensor components that need to be calculated can be reduced.

2.7 Solving single-particle equations

In previous sections, procedures for finding the ground state electronic and atomic

configurations have been discussed. Here, a discussion is presented on how typical

electronic structure codes use all the above to find ground state configurations. Fig. 2.5

shows, how an initial guess for the ground state can be used to find the actual ground

state. For the electronic convergence, the relevant single-particle equations are ap-
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Converged

Construct new orbital guess

Self-consistent field (SCF) found

Calculate forces and stress tensor

End
with atomic positions, cell vectors

 and electronic structure found

Start 
with atomic 

position guess

Move atoms to new positions

if not converged

Fully converged

Assess convergence of atomic positions

Repeat 
if not converged

Solve differential equations for orbitals

Assess electronic convergence Calculate new total energy and density

SCF 
procedure

Figure 2.5: A schematic illustrating the procedure that happens when attempting to find the
ground state electronic and atomic configurations. Starting from cell vector, atomic position
and orbital guesses, {ai}, {RI} and {ψn,k}, this procedure is applied until convergence is
reached with respect to energy, density, forces and stresses. In cases where atomic forces
and/or cell vectors do not need to be optimised, only the SCF procedure is applied iteratively.

plied iteratively until the input and output orbitals do not change. The criteria for

convergence is usually defined as when either the energy ∆E or density ∆ρ changes

are below some specified cutoff. Once the electronic ground state has been reached,

a self-consistent field (SCF) is found, and the atomic forces and stresses are assessed.

If these are not converged, atomic positions are improved via the forces and lattice

vectors via the stress tensor. The SCF procedure starts again with the new positions

and the process entire process starts again. This process repeats until convergence is
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reached (i.e. the input and output orbitals do not change by more than a specified

measure, as seen in Fig. 2.5).

For the electronic part, there are numerous approaches to changing the density

(hence orbitals) between each iteration, many of which use a history of the density

from previous iterations. These approaches are dubbed ‘mixing schemes’ and essen-

tially attempt to use an educated guess for what the ground state electronic configu-

ration should be. Notable examples include Broyden and Pulay mixing. For simple

systems, a pure mix of the previous and current densities would suffice for conver-

gence, however this simple approach often leads to slower convergence. Usually the

performance of these algorithms depends on the system under investigation, meaning

the user must optimise their choice by testing.

Numerous algorithms exist to aid atomic configuration convergence as well. Many

of these only converge on local minima, meaning the global minimisation must be

done by other means, of which a variety exist. When a structure is near its local min-

ima, approaches such as the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm or

the conjugate gradients algorithm can be employed.145 As with the electronic con-

vergence, some algorithms may be more appropriate than others depending on the

system under study.

2.8 Calculating defect properties

A number of defects types are considered in this thesis, such as purely electronic de-

fects (e.g. polarons) and intrinsic point defects (e.g. vacancies and interstitials). As

many bulk crystals are inherently stable (i.e. energy is released on their formation),

forming defects in a perfect bulk crystal will usually carry an energy cost, called the

defect formation energy E f . This cost will vary depending on chemical conditions;

forming excess oxygen defects in oxygen rich conditions may require less energy than

forming an oxygen vacancy in the same conditions. Excess electrons or holes may

bind to these defects, negating any p- or n-type doping. The energy released by bind-

ing excess charges may result in a more stable configuration. This means that different

charge states q must also be explored for each possible defect. For each charge state a

number of configurations may be found, however the most stable one is usually used

to calculate the defect formation energy E f at a given Fermi energy EF. The quantity
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E f for a defect X in charge state q is given by

E f [Xq] = E[Xq]− E[Hq=0]−∑
i
(ni −mi)µi + q(εv + EF). (2.57)

E[Hq=0] denotes the total energy for the defect-free host crystal (i.e. bulk) and µi the

chemical potential for adding or removing a particular atomic species. 5 The quan-

tities ni and mi are the number of times an atomic species is added and removed. εv

denotes the valence band minimum and EF the Fermi energy (relative to VBM). While

an actual calculation will have the Fermi energy fixed, the above definition of E f can

be considered as varying the energy of a reservoir of electrons that interacts with elec-

trons in the crystal. When EF is varied, E f can be thought of as the ease in which a

defect will form when the crystal is n− or p−type doped. Changes in µi reflect the

ease in which a defect will form under particular chemical conditions. For example,

an oxygen-rich environment will reduce the cost of an oxygen interstitial defect as

there is an abundance of oxygen.

2.9 Discussion

Despite the large success of the single-particle approaches introduced above, there is

not one universal approach that can be used for all types of systems. This may perhaps

lead one to think that more sophisticated approximations must be employed, however

their use also currently has severe limitations. In the following sections, the limitations

of both single-particle and many-body approaches are briefly discussed.

2.9.1 Limitations of Hartree-Fock

As briefly discussed in Section 2.2, HF is an extremely poor choice of method to inves-

tigate materials that do not have a band gap. Specifically, this theory predicts many,

if not all, metals to be insulators; even materials with a band gap (i.e. semiconductors

and insulators) are predicted to have much larger gaps than experimental data sug-

gests. This failure stems from the tendency of HF to over-localise electrons, a topic

discussed in Chapter 1. An over-localised electron is also a very energetically bound

one. By predicting this behaviour, electrons cannot delocalise as they do in metals.

As the valence band states (i.e. the occupied ones) are more energetically bound, they

5 The total energies in 2.57 are assumed to be free from finite size errors. Finite size errors, and the
relevant corrections, discussed in more detail in Chapter 6.
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lie much lower in energy than they should be. In turn, a gap is induced between the

occupied and unoccupied states. Thus, by virtue of electron over-localisation, this the-

ory predicts materials to have much larger band gaps than they actually do. For the

same reason, the theory also fails to predict correct ionization energies for materials.

2.9.2 Limitations of Kohn-Sham density functional theory

In contrast to HF, KS DFT predicts metallic behaviour very well. However, this is not

construction, but by a convenient cancellation of errors. As mentioned in Chapter 1,

DFT has a tendency to under-localise electrons by virtue of the self-interaction error

(SIE). As electrons in metals are naturally more delocalised, and DFT tends toward

delocalisation anyway, the correct behaviour is found. In fact, DFT tends to reduce

gaps in semiconductors, often predicting them to be metallic. This error is in direct

contrast with HF. The approach therefore tends to predict much smaller band gaps

due to electrons being weakly bound.

2.9.3 Limitations of hybrid functionals

The remaining chapters of this thesis discuss and address many of the limitations asso-

ciated with hybrids, of which there are mainly three: computational cost, introduction

of free parameters and accuracy. The computational cost limitation is addressed in

Chapter 3, where various techniques are employed to reduce this. These techniques

reduce cost to roughly two to three times the cost of (semi-)local DFT calculations. Re-

garding free parameters, hybrids also introduce at least one additional free parameter,

the fraction of HF exchange α. Other functionals, such as HSE and tr-PBEα (discussed

in Section 2.5), have an additional range-separation parameter that also needs to be

tuned. The GKT (discussed in Chapter 1), introduces a means to remove the degrees

of freedom associated with hybrid functionals. In Chapter 4 and Chapter 5 the condi-

tion is examined and used in model systems and semiconductors. The final concern,

accuracy, is addressed in Chapter 4 by testing hybrid functionals on model systems

where exact solutions can be found.

2.9.4 Beyond the single-particle picture

Employing higher level approximations to the time-independent Schrödinger equa-

tion may seem like a sensible choice given some of the limitations discussed above,

however these carry too large a computational cost. Use of the so-called ‘post-HF’
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techniques, such as Møller-Plesset perturbation theory or configuration interaction,

usually increases computational costs due to poor scaling with number of electrons.

Other approaches, such as QMC, have even worse scaling. Consequently, obtaining

convergence with respect to atomic positions is not feasible, as each of the electronic

steps is far too costly. To this end, many employ these techniques on fixed geometries

obtained from DFT, which can be a reasonable approach.

The electronic structure of a defective crystal is often affected by the concentra-

tion of its defects. The chosen size of a supercell determines defect concentration. For

example, one vacancy per primitive cell corresponds to a much larger defect concen-

tration than one vacancy in a 2× 2× 2 supercell. Ideally, the chosen supercell would

reflect defect concentrations seen in experimental conditions. In DFT simulations, de-

fect concentrations tend to be larger than those in experiments due to computational

costs. While defect concentrations can be made to match experimental conditions (at

a larger computational cost), the larger cells tend to be not feasible for post-HF meth-

ods. Subsequently, post-HF methods are usually only really applied to high defect

concentrations, meaning their description of defective crystals is often unphysical.

2.10 Summary

The relevant underlying approaches used in many electronic structure simulations of

materials have been summarised in this chapter. In Section 2.2, the HF approxima-

tion is discussed, followed by KS DFT in Section 2.4 then a marriage of these two

approaches, specifically hybrid functionals, in Section 2.5. The approaches used to

enable periodic simulations, such as Bloch’s theorem, are discussed in Section 2.6.

Bloch’s theorem can be used in conjunction with one of the single-particle approxima-

tions outlined in Section 2.2, Section 2.4 or Section 2.5, such as hybrid DFT, to model

periodic systems. Finally, the approaches were critiqued in the previous section.
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CHAPTER 3

IMPLEMENTATION OF THEORY

In Chapter 2 a set of commonly used approaches for simulating materials were out-

lined, all of which require a differential equation of some form to be solved. As none

of these differential equations have general analytic solutions, they must be solved nu-

merically. The performance of calculations, measured in terms of both accuracy and

computational cost, is heavily influenced by particular implementation choices. For

example, plane wave basis sets are slower compared to atomic ones for calculations

that involve Hartree-Fock as a larger number of basis functions is required; conversely,

atomic basis sets are susceptible to inaccurate orbital descriptions via the basis set su-

perposition error. The particular choices made therefore heavily depend on intended

use. In this chapter, the key implementations discussed are those of CP2K, VASP and

iDEA, where each code serves a slightly different purpose. The main aim of the iDEA

code is to benchmark new electronic structure approximations against exact solutions

in model 1D systems. In contrast, CP2K and VASP apply existing approximations to real

3D materials and molecules, which in turn can be directly compared to experiment. In

the subsequent sections, the key implementation details of the above three codes are

discussed.
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3.1 General techniques

There are a few general techniques that are common to some of the electronic struc-

ture implementations explored in this chapter, such as basis sets and pseudopotentials.

These are discussed first, then a more detailed discussion of each code’s implementa-

tions is presented.

3.1.1 Basis sets

In general an orbital ψi(r) with index i may be represented in terms of a set of basis

functions φν(r),

ψi(r) = ∑
ν

Ciν φν(r) (3.1)

where Ciν are their corresponding coefficients. In order for a calculation to complete in

a reasonable amount of time, the number of functions considered must be truncated at

some point. While this does mean that the basis set is effectively incomplete, care can

be taken to ensure that the number of basis functions included sufficiently describes

an orbital.

Plane waves are a popular choice of basis for periodic electronic structure codes.

The periodic component of a Bloch wavefunction un,k(r) (Eqn. 2.52) can be expressed

in terms of periodic plane waves,

un,k(r) =
1

Ω1/2 ∑
|G|<GC

Cn,k(G)eiG·r (3.2)

where the Cn,k(G) are the basis coefficients and Ω is the volume of the cell. Each

of the plane waves has the periodicity of the lattice (i.e. G is an integer multiple of

the reciprocal lattice vectors). The series is truncated at a specified cutoff GC, with a

corresponding energy |G|2/2 being a convenient measure of basis set completeness.

Plane waves can also be used to represent the density,

ρ(r) =
1
Ω ∑
|G|<GC

ρ(G)eiG·r. (3.3)

The Fourier transformed (total) real-space density ρ(G) evaluated at a point G is the

coefficient of its corresponding plane wave eiG·r.
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3.1.2 Pseudopotentials

Changes in core electron levels of a particular atomic species between materials have

little impact on electronic structure near the Fermi energy. For example, the difference

in bonding between metallic titanium and an oxide of titanium has little to do with

changes in the 1s electron levels of titanium. If these core levels were somehow elimi-

nated (or frozen) then the chemical properties of a material would not be substantially

different. In addition, plane wave basis sets require a large number of basis functions

to sufficiently describe these core electrons, meaning computational cost can be greatly

reduced if core levels were eliminated. To this end, many electronic structure codes

use a pseudopotential or effective core potential to alleviate some of the computational

cost associated with these electrons. The pseudopotential essentially replaces the bare

atom with one that has fewer electrons. The resulting pseudopotential enforces the

condition that its remaining electrons have the properties

ε′i = ε i (3.4)

ψ′i(r)
∣∣
|r|>rc

= ψi(r)||r|>rc
, (3.5)

where the primed quantities represent results from using a pseudopotential. The

value rc defines a spherical region, inside of which an orbital is allowed to differ from

its all-electron counterpart. Outside this, orbitals must equal the all-electron orbitals.

Norm-conserving and ultra-soft pseudopotentials are two commonly used flavours in

electronic structure codes.

3.2 The iDEA code

The iDEA code is used to benchmark approximations against exact solutions to the

many-electron Schrödinger equation. The many-electron problem becomes difficult

to solve for systems in 3D with large numbers of particles; the code avoids this prob-

lem by operating in 1D with a few electrons. Currently the iDEA code can only solve

this for three electrons. The Schrödinger equation is solved using a real-space finite

differences approach for electrons without spin. Electrons interact via the softened

Coulomb interaction

u(xi, xj) =
1

|xn − xm|+ k
(3.6)
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where k = 1. An interaction of this form avoids a singularity at zero separation.

The parameter k is often set to allow 1D data to be mapped onto a real 3D problem,

usually exploiting a symmetry that the 3D system has. Written in C and Python, the

code currently runs using parallelised linear algebra libraries on a single node. On

a single high-end computing node, the three electron problem can be solved exactly

within 24 hours.

3.2.1 Finite differences approach

The code solves differential equations using finite differences on a real-space grid. In

this approach, the position variable is discretised, as are all functions of the position

variable 1.

x → [x1, x2, . . . , xn] (3.7)

f (x)→ [ f1, f2, . . . , fn]. (3.8)

The single-particle approaches discussed in the previous chapter require the calcula-

tion of a second derivative. This can be found for each fn by using a Taylor expansion:

fn+1 = fn +
d fn

dx
∆x +

d2 fn

dx2
(∆x)2

2
+O(x3) (3.9)

fn−1 = fn −
d fn

dx
∆x +

d2 fn

dx2
(∆x)2

2
+O(x3) (3.10)

fn−1 + fn+1 ≈ 2 fn +
d2 fn

dx2 (∆x)2 (3.11)

d2 fn

dx2 ≈
fn−1 − 2 fn + fn+1

(∆x)2 . (3.12)

Using this, the second derivative operator can be turned into a matrix to speed up the

calculation. This is given by:

(
d2

dx2

)


f1

f2

f3
...

fn


≈


1

∆x2



−2 1 0 0 0

1 −2 1 0 0

0 1 −2
. . . 0

0 0
. . . . . . 1

0 0 0 1 −2







f1

f2

f3
...

fn


=



f ′′1
f ′′2
f ′′3
...

f ′′n


. (3.13)

1The grid is uniform in iDEA, xn+1 − xn = ∆x ∀ n. To simplify notation, fn = f (n∆x)
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The above operator is only applied to orbitals when kinetic energy components are

required. The systems investigated in iDEA are contained within an infinite potential

barrier. The boundary condition imposed in iDEA enforces that orbitals decay to zero

at the boundary of the system. The above matrix holds even for the edge cases, f1 and

fn, as f−1 and fn+1 (which correspond to points outside the system) both equal zero.

3.2.2 Exact many-electron solutions

Solutions to the exact time-independent Schrödinger equation can be used to form a

basis. An arbitrary many-body wavefunction Ψ may therefore be expressed using a

linear sum of these solutions. In order to ensure consistency with previous sections in

this chapter, the basis comprising of many-body Schrödinger equation solutions will

be denoted φn. The time evolution of this arbitrary wavefunction is given by

Ψ(x1, x2, . . . , xn, t) = ∑
n

Cnφne−iEnt. (3.14)

If instead the system is propagated through negative imaginary time, t → −iτ, the

above equation becomes an exponential decay, with higher energy basis functions de-

caying faster than others. As the ground-state wavefunction has the lowest energy, it

will be the slowest decaying one. This means that the coefficients Cn will slowly vary

as

lim
τ→∞

Ψ(x1, x2, . . . , xn, τ) = Ψ0(x1, x2, . . . , xn). (3.15)

Normalisation of Ψ must also be ensured during this process. This discussion is a

proof of principle that propagation of an arbitrary wavefunction through negative

imaginary time yields the exact solution to the many-electron Schrödinger equation.

Excited states can also be found using this approach, however only ground-state so-

lutions will be discussed in this work.

The implementation of wavefunction propagation uses the Crank-Nicholson algo-

rithm with the equation

(
1 +

∆τ

2
H
)

Ψ(x1, x2, . . . , xn, τ + ∆τ) =

(
1− ∆τ

2
H
)

Ψ(x1, x2, . . . , xn, τ) (3.16)

where ∆τ is the time step, typically set at 10−3 (a.u.). The many-body Hamiltonian ma-

trixH is constructed using a position basis and has GN×GN elements, where G and N
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are number of real-space grid points and number of electrons. Solving an eigenvalue

equation has a similar time complexity to matrix multiplication (i.e. scaling with the

cube of matrix size), meaning calculations at each time step have a time complexity

of around O(G3N). Typical calculations have around 300 grid points, meaning that

each additional electron makes calculations around 108 times slower. Currently, cal-

culations involving more than three electrons would be far too costly to perform. Use

of additional dimensions causes the calculation to scale as O(G3ND) where D is the

number of dimensions, making it clear why these are also not possible.

The many-body matrix expressed using a position basis in 1D is given by

H =
〈

x1′ , x2′ , . . . , xN′
∣∣∣ Ĥ ∣∣∣x1, x2, . . . , xN

〉
(3.17)

where the Hamiltonian operator is given by

Ĥ = ∑
i

Ki + ∑
i

vext(xi) + ∑
i

∑
j>i

u(xi, xj). (3.18)

The term Ki is the kinetic energy operator acting on the position co-ordinate of electron

i. In the two electron case, the many-body Hamiltonian matrix has the form

〈
x1′ , x2′

∣∣∣ Ĥ ∣∣∣x1, x2
〉
=

(x1
1, x2

1) · · · (x1
1, x2

G) (x1
2, x2

1) · · · (x1
2, x2

G) · · · (x1
G, x2

G)



(x1′
1 , x2′

1 ) H(1,1) · · · H(1,G) H(1,G+1) · · · H(1,2G) · · · H(1,G2)

(x1′
1 , x2′

2 ) H(2,1) · · · H(2,G) H(2,G+1) · · · H(2,2G) · · · H(2,G2)

...
...

. . .
...

...
. . .

...
. . .

...

(x1′
1 , x2′

G) H(G,1) · · · H(G,G) H(G,G+1) · · · H(G,2G) · · · H(G,G2)

(x1′
2 , x2′

1 ) H(G+1,1) · · · H(G+1,G) H(G+1,G+1) · · · H(G+1,2G) · · · H(G+1,G2)

(x1′
2 , x2′

2 ) H(G+2,1) · · · H(G+2,G) H(G+2,G+1) · · · H(G+2,2G) · · · H(G+2,G2)

...
...

. . .
...

...
. . .

...
. . .

...

(x1′
2 , x2′

G) H(2G,1) · · · H(2G,G) H(2G,G+1) · · · H(2G,2G) · · · H(2G,G2)

...
...

. . .
...

...
. . .

...
. . .

...

(x1′
G , x2′

G) H(G2,1) · · · H(G2,G) H(G2,G+1) · · · H(G2,2G) · · · H(G2,G2)

, (3.19)

where each matrix element is given by a set of co-ordinates (x1
k , x2

l ) and (x1′
i , x2′

j ), il-

lustrated above and on the left side of the matrix. The subscript refers to the grid

co-ordinate index, while the superscript refers to the electron number. The matrix
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elements are given by

Ĥab =
〈

x1′
i , x2′

j

∣∣∣K1

∣∣∣x1
k , x2

l

〉
+
〈

x1′
i , x2′

j

∣∣∣K2

∣∣∣x1
k , x2

l

〉
+
〈

x1′
i , x2′

j

∣∣∣ u(x1, x2)
∣∣∣x1

k , x2
l

〉
+
〈

x1′
i , x2′

j

∣∣∣ vext(x1)
∣∣∣x1

k , x2
l

〉
+
〈

x1′
i , x2′

j

∣∣∣ vext(x2)
∣∣∣x1

k , x2
l

〉
(3.20)

where each i, j and k, l translate to a indices a and b within the many-body matrix. The

elements can be simplified to

Ĥab =
〈

x1′
i

∣∣∣K1

∣∣∣x1
k

〉
δ(x2′

j , x2
l ) +

〈
x2′

j

∣∣∣K2

∣∣∣x2
l

〉
δ(x1′

i , x1
k)

+
[
u(x1, x2) + vext(x1) + vext(x2)

]
δ(x1′

i , x1
k)δ(x2′

j , x2
l ). (3.21)

The size of the above matrix can be truly massive, meaning a large amount of memory

is required. This problem is worsened in 3D; a calculation involving 14 electrons (i.e. a

silicon atom) in 3D with 300 grid points requires 300(14×3×2) floating point numbers to

be stored, which is around 1094 terabytes of data. The Kronecker delta functions above

should highlight that the many-body matrix is quite sparse, with most of the elements

being zero. Despite this, the matrix is still quite large, highlighting why working in

small numbers of dimensions is a necessity. In iDEA, this matrix is stored using sparse

matrix techniques, thus avoiding memory issues.

3.2.3 Kohn-Sham DFT implementation

The KS DFT implementation in iDEA uses a non-standard form for the LDA which is

parametrised from finite slabs in 1D systems.146 These have been shown to be identical

to more traditional approximations based on the homogeneous electron gas (HEG).

The Hartree potential for DFT is calculated as

vH(x) =

Continuous︷ ︸︸ ︷∫
u(xi, xj)ρ(xj)dxj ≈

Discretised︷ ︸︸ ︷
∑
xj

u(xi, xj)ρ(xj)∆x


vH(x1)

vH(x2)
...

vH(xn)

 =


u(x1, x1) u(x2, x1) · · · u(xn, x1)

u(x1, x2) u(x2, x2) · · · u(xn, x2)
...

...
. . .

...

u(x1, xn) u(x2, xn) · · · u(xn, xn)




ρ(x1)

ρ(x2)
...

ρ(xn)

∆x (3.22)

where the Coulomb interaction matrix has elements u(xi, xj). Like the Hartree poten-

tial, local DFT approximations (e.g. the LDA) also give rise to a vector of discretised
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values. The resulting Hamiltonian matrix,

ĤLDA =
1

∆x2


1 −2 0 0

−2 1
. . . 0

0
. . . . . . −2

0 0 −2 1

+


vH1 0 0 0

0 vH2 0 0

0 0
. . . 0

0 0 0 vHn



+


vext1 0 0 0

0 vext2 0 0

0 0
. . . 0

0 0 0 vextn

+


vxc1 0 0 0

0 vxc2 0 0

0 0
. . . 0

0 0 0 vxcn

 , (3.23)

is then used in an eigensolver. The lowest energy eigenvectors are then used as the oc-

cupied orbitals, giving access to the ground state density. This process is then iterated

until convergence. Convergence is set as when the density residual,

∆ρ = ∑
i
|ρnew(xi)− ρold(xi)| (3.24)

between new and old density iterations is less than 10−8 a−1
0 . This typically gives an

energy convergence of 10−6 (a.u.).

3.2.4 Hartree-Fock implementation

The Fock operator can be manipulated as follows on a real-space grid.

F̂ψk(xj) =

Continuous︷ ︸︸ ︷∫
F(xi, xj)ψk(xj)dxj ≈

Discretised︷ ︸︸ ︷
∑
xj

F(xi, xj)ψk(xj)∆x

= ∆x


F(x1, x1) F(x1, x2) · · · F(x1, xn)

F(x2, x1) F(x2, x2) · · · F(x2, xn)
...

...
. . .

...

F(xn, x1) F(xn, x2) · · · F(xn, xn)


︸ ︷︷ ︸

Fock matrix F


ψk(x1)

ψk(x2)
...

ψk(xn)

 (3.25)

In the above, the order of multiplication by ∆x does not matter, meaning knowledge

of the orbitals is no longer required before using an eigensolver. The Fock matrix

elements F(xi, xj) are calculated using a tensor product ⊗ of the discretised orbitals,
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then a Hadamard product ◦ with the Coulomb matrix 2.

F =
occ

∑
k




ψ?

k (x1)

ψ?
k (x2)

...

ψ?
k (xn)

⊗


ψk(x1)

ψk(x2)
...

ψk(xn)



 ◦


u(x1, x1) u(x2, x1) · · · u(xn, x1)

u(x1, x2) u(x2, x2) · · · u(x1, x2)
...

...
. . .

...

u(x1, xn) u(x2, xn) · · · u(xn, xn)

 (3.26)

3.2.5 Hybrid functional implementation

The following functionality was implemented into the iDEA code for a part of this the-

sis. The work was collaborative with members of Rex Godby’s group. The HF code

implemented was vectorised to increase computational efficiency. The full implemen-

tation can be found on the iDEA GitHub page.147 The hybrid Hamiltonian is given

by

ĤHYB = −1
2

d2

dx2 +


vH1 0 0 0

0 vH2 0 0

0 0
. . . 0

0 0 0 vHn

+


vext1 0 0 0

0 vext2 0 0

0 0
. . . 0

0 0 0 vextn



+(1− α)


vxc1 0 0 0

0 vxc2 0 0

0 0
. . . 0

0 0 0 vxcn

+ α


F(x1, x1) F(x1, x2) · · · F(x1, xn)

F(x2, x1) F(x2, x2) · · · F(x2, xn)
...

...
. . .

...

F(xn, x1) F(xn, x2) · · · F(xn, xn)

∆x. (3.27)

3.3 The CP2K code

CP2K is one of the most popular electronic structure codes in the UK (see Fig. 2.1).

Its implementation is efficient and scalable for calculations that involve HF exchange.

Compared to other codes, CP2K is unique in its choice of basis sets, as it uses both

augmented plane waves and atom-centred basis sets to describe its valence electrons.

One drawback of CP2K is that it operates using the Γ-point only, with limited function-

ality for larger numbers of k-points. As discussed in Section 2.6.3, this means k-point

convergence must instead be done by increasing system size.

2 The matrix elements Fij (which make the matrix F) are given by Fij = ∑k φ?
k (xi)φk(xj)u(xi, xj)∆x.

The tensor and Hadamard products are instead used to speed up the calculation. An alternative expres-
sion for the tensor product v⊗w is simply vwT , where v and w are vectors. The Hadamard product is
simply an element-wise multiplication of matrix elements.
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3.3.1 Representation of the orbitals

CP2K uses contracted Gaussian-type orbitals (GTOs) for its basis functions,

φν(r− R) =
L

∑
k

ck(x− Rx)
l(y− Ry)

m(z− Rz)
ne−αk(r−R)2

(3.28)

where ck are called the contraction coefficients and L is the contraction length. Rx, Ry

and Rz denote the Cartesian coordinates of an atom. The quantities n, l and m denote

the principle, azimuthal and magnetic quantum numbers. Each of the basis functions

consists of a sum of primitive Gaussian functions whose width is dependent on the

exponent αk. If the basis functions φν were only made of primitive Gaussians (i.e. the

sum over k is removed in the above equation), a large number of basis functions φν

would be needed to accurately describe each orbital ψi. Instead, the approach can

be made more efficient by having each basis function be comprised of a fixed com-

bination of many primitive Gaussians. The proportion of each primitive function

is described by the (fixed) contraction coefficients ck. Compared to other choices of

basis set, such as Slater-type orbitals (STOs), GTOs allow for a faster evaluation of

four-centre integrals. This arises from the fact that a product of two GTOs results in

another GTO. As a result, GTOs can be around five orders of magnitude faster than

STOs. These basis functions are not necessarily orthogonal, meaning their overlap

matrix may not equal the identity matrix (Sij =
〈
φi
∣∣φj
〉
6= δij).

3.3.2 Representation of the density

In some electronic structure codes, orbitals and densities can be described by different

basis sets. CP2K is one such case, where a primary basis set is used to represent both

orbitals and densities, and an additional auxiliary basis set is used for representing

densities. By having a dual representation of the density, parts of a calculation can be

evaluated faster, such as the Hartree potential. CP2K has a representation of the density

in terms of GTOs,

ρ(r) =
occ

∑
i
|ψi|2 =

occ

∑
i

(
∑
µ

C?
iµ φ?

µ(r)

)(
∑
ν

Ciν φν(r)

)
=∑

µν

occ

∑
i

C?
iµ Ciν︸ ︷︷ ︸

Pµν

φ?
µ(r)φν(r)

=∑
µν

Pµν φ?
µ(r)φν(r). (3.29)

where Pµν are elements of the density matrix P.
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The Gaussian and plane waves approach (GPW) approach in CP2K uses GTOs as

the primary basis set and plane waves as an auxiliary representation of the density.

Using this, the KS potential to be evaluated at a reduced computational cost.

3.3.3 Hybrid functional implementation

In this section a series of approximations are used to reduce the computational cost

associated with HF exchange integrals. While the techniques used do constitute an

approximation, they essentially only filter out exchange integrals which do not con-

tribute much to the total energy. The discussion begins with the Roothan equations,

which provide a means to solve the HF equations when using basis sets.

Roothan equations

The HF equations (Eqn. 2.13a, Eqn. 2.13b and Eqn. 2.13c) can be expanded in terms of

a basis set and manipulated as follows. 3

ĤHF
i ∑

ν

Ciν φν(r) =ε i ∑
k

Ciν φν(r) (3.30a)

∫
φ?

µ(r)

(
ĤHF

i ∑
ν

Ciνφν(r)

)
dr =

∫
φ?

µ(r)

(
ε i ∑

ν

Ciνφν(r)

)
dr (3.30b)

∑
ν

Ciν

(∫
φ?

µ(r)ĤHF
i φν(r)dr

)
︸ ︷︷ ︸

Fock matrix elements Fµν

=∑
ν

Ciν

(∫
φ?

µ(r)φν(r)dr
)

︸ ︷︷ ︸
Overlap elements Sµν

ε i (3.30c)

∑
ν

FµνCiν =∑
ν

SµνCiνε i (3.30d)

The final set of equations are simply a matrix multiplication and can be expressed

concisely as

FC = SCε. (3.31)

These equations, known as the Roothaan equations, are an eigenvalue problem that

can be solved numerically. While the above resembles a generalised eigenvalue prob-

lem, a normal eigenvalue problem can be recovered by solving S−1FC = Cε instead.

However, using a generalised eigenvalue problem solver (e.g. one from LAPACK) is

usually faster than inverting the S matrix and using a regular eigensolver. In the case

3 Standard calculations include the self-interaction term in the Hartree potential and its correction
in HF. In this section, references to the HF equations (Eqn. 2.13a, Eqn. 2.13b and Eqn. 2.13c) and hybrid
functionals refer to those equations but with all i = j terms included.
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where basis functions are orthogonal, S = I where I is the identity matrix. In general,

the matrix C can be complex, however they are real when only the Γ point is used in

periodic calculations. The above Roothan equations are for closed-shell systems; for

open-shell systems a pair of Roothan equations would be solved and are known as

the Pople-Nesbet-Berthier equations. A similar equation to the Roothaan equations

can be made for the KS equations

KC = SCε, (3.32)

where K is called the KS matrix.

Four-centre integrals

If the wavefunctions in the HF exchange energy (Eqn. 2.14) are expanded in terms of

basis functions φν, the following expression can be found:

EHF
x = −1

2

bf

∑
νµσλ

(
occ

∑
i

C?
iνCiλ

)
︸ ︷︷ ︸

Pνλ

(
occ

∑
j

C?
jµCjσ

)
︸ ︷︷ ︸

Pµσ

∫∫ φ?
ν(ri)φ

?
µ(ri)φσ(rj)φλ

(rj)

|ri − rj|
dridrj︸ ︷︷ ︸

Shorthand (νµ|σλ)

(3.33)

EHF
x [P] = −1

2

bf

∑
νµσλ

PνλPµσ (νµ|σλ) (3.34)

where the elements Pµν are again components of the density matrix P. These equations

highlight very clearly the sheer number of exchange integrals, known as four-centre

integrals, that need to be evaluated in a HF calculation. If these integrals are calculated

as is, the scaling with both number of basis functions and system size is O(N4).

Permutation symmetry

The above integrals have eight-fold symmetry that can be exploited,

(νµ|σλ) = (µν|σλ) = (νµ|λσ) = (µν|λσ)

= (λσ|µν) = (σλ|µν) = (λσ|νµ) = (σλ|νµ) , (3.35)

resulting in an eight-fold reduction in the number of integrals performed. By looking

at the expanded form of the exchange energy above (Eqn. 3.33), it is clear that these

symmetries arise from the the interchangeable order of basis function multiplication.

While reducing the pre-factor associated with calculation scaling, this symmetry does
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not change scaling with either number of basis functions or system size.

Integral screening

Near-field screening techniques can be used to reduce the computational cost of HF

exchange integrals. A Cauchy-Schwarz inequality

(νµ|σλ) ≤ (µν|µν)
1
2 (σλ|σλ)

1
2 (3.36)

can be used to provide an upper bound on an exchange integral’s value. If the right-

hand side of the above inequality is below a specified threshold εcs, the left-hand in-

tegral can be discarded. The upper bound integrals that need to be performed are

only two-centre integrals. Instead of computing and storing these two-centre inte-

grals, they can instead be parametrised into a function of inter-atomic distances |R|µν

between each of the two basis functions (φµ and φν) in the two centre integrals:

log (µν|µν)
(
|Rµν|

)
/ a1|R|µν + a0 (3.37)

where a1 and a0 are fitted coefficients. In order to ensure accuracy, different fits are

done at the start of each calculation for each different type of basis function, shell and

atomic nucleus. This function is approximately an upper-bound to the (upper-bound

of the) Cauchy-Schwarz inequality and reduces scaling with system size from O(N4)

toO(N2). When both near- and far-field screening techniques are applied, system size

scaling reduces to O(N). An illustration of this is shown in Fig. 3.1

The quantity εcs is usually set to around 10−6 to 10−10. The error in the total energy

from using this approach is approximated to be around εcs per electron. Calculations

performed in Chapter 5 and Chapter 6 contain around 2000 electrons, amounting to

an error of around 3 meV in the total energy. This error will likely be smaller when

considering total energy differences.

Auxiliary density matrix method

Despite improvements in integral screening techniques, scaling with basis set quality

remains O(N4). In addition to the previously mentioned auxiliary basis CP2K uses for

the density, the code also employs an additional basis for HF exchange integrals. This

approach is known as the auxiliary density matrix method (ADMM) and can reduce

the computational cost of HF calculations by a factor of around 20. In this section, a hat
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Figure 3.1: (Left) The two electron integral (µν|µν) between lithium p- and hydrogen d-
functions as a function of interatomic distance |Rµν|. (Right) The dashed line shows the log-
arithm of the left hand panel data, while the solid (blue) line shows a fitted upper-bound
function to the data. Reprinted with permission from J. Chem. Theory Comput. 2009, 5, 11,
3010-3021. Copyright 2009 American Chemical Society.

or a tilde is used to denote variables expressed in an auxiliary basis. The expression

relating an orbital ψ̂i and its auxiliary basis φ̂i is

ψ̂i(r) = ∑
ν

Ĉνiφ̂ν(r), (3.38)

where the new auxiliary basis set is either smaller in size or described by more rapidly

decaying Gaussian primitive functions. The exact HF energy can be expressed in terms

of the auxiliary density matrix P̂ as

EHF
x [P] = EHF

x [P̂] + (EHF
x [P]− EHF

x [P̂]). (3.39)

While the above still requires use of the non-auxiliary density matrix for HF, the term

can instead be approximated as

EHF
x [P] ≈ EHF

x [P̂] + (EDFT
x [P]− EDFT

x [P̂]) (3.40)

which reduces computational costs. Numerical tests have shown that the exchange

energy difference is well-captured by DFT, as shown in reference 148.

The auxiliary basis coefficients can be chosen as the those which minimise the func-
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tional

∆1
[
ψ̂i
]
= ∑

i

∫ (
ψi(r)− ψ̂i(r)

)2 dr (3.41)

with respect to the auxiliary basis coefficients Ĉiµ. The non-auxiliary orbitals ψi are

assumed to be orthonormal (i.e.
〈
ψi
∣∣ψj
〉
= δij). The above functional is expanded in

terms of a basis set and manipulated as

∆1
[
ψ̂i
]
= ∑

i

∫ (
ψi(r)ψi(r)− ψi(r)ψ̂i(r) + ψ̂i(r)ψ̂i(r)

)
dr (3.42)

∆1
[
Ĉi?
]
= ∑

i

∫ (
∑
nn′

CinCin′φnφn′ − 2 ∑
nm

CinĈimφnφ̂m + ∑
mm′

ĈimĈim′ φ̂mφ̂m′

)
dr (3.43)

δ∆1
[
Ĉi?
]

δĈi?

= ∑
i

∫ (
−2 ∑

mn
Cinφnφ̂m + 2 ∑

mm′
Ĉimφ̂mφ̂m′

)
dr. (3.44)

If the functional is minimised (i.e. δ∆/δĈi? = 0), the following expression can be

found:

∑
im

Ĉim ∑
mm′

∫
φ̂m(r)φ̂m′(r)dr︸ ︷︷ ︸

Overlap elem. Ŝmm′

= ∑
in

Cin ∑
mn

∫
φn(r)φ̂m(r)dr.︸ ︷︷ ︸

Overlap elem. Qnm

(3.45)

In matrix notation, this would be

Ĉ = Ŝ−1QC (3.46)

P̂ = ĈĈT, (3.47)

providing a means to project orbitals expressed in basis set onto another basis set using

the projector matrix Ŝ−1Q.

The orbitals ψ̂(r) expressed in the auxiliary basis are not orthonormal using the

above approach. It would benefit calculation scaling properties if the orbitals had

such a property. This can be achieved by minimising an alternative functional,

∆2 [ψ̃i] = ∑
i

∫
(ψi(r)− ψ̃i(r))

2 dr + ∑
kl

∫
Λkl (ψ̃kψ̃l − δkl) dr (3.48)

where orthogonality is be enforced via Lagrange multipliers. Following a similar pro-

cedure to the above, the projection between the primary and auxiliary basis is given
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by 4

C̃ = ĈΛ−1/2 (3.49)

Λ = ĈTŜĈ (3.50)

P̃ = C̃C̃T (3.51)

The use of this second scheme removes certain properties that a pure density matrix

should have. For example, a pure matrix satisfies the condition

tr(PS) =

∫ (
occ

∑
i

Ciµφµ

)(
occ

∑
i

Ciσφσ

)
dr =

∫
ρ(r)dr = Ne (3.52)

which ensures that the number of electrons is correct. When using the orthonormal

orbitals ψ̃ this constraint is not met. Matrix purification is a technique that can be used

to ensure that these constraints are met. If purified, the orthonormal density matrix P̃

reverts to becoming the same as P̂. Further, the eigenvalues corresponding to ψ̃ cannot

be used once purification has taken place. Using either the non-purified ψ̃ or non-

orthogonal ψ̂ introduces similar errors into a calculation as shown by Guidon et al,148

so we opt for the (faster) non-purified approach (i.e. the ψ̃ given by ∆2). Calculations

performed in Chapter 5 assess the impact of different ADMM basis sets on relevant

semiconductor properties. A more detailed discussion on the ADMM approach can

be found in Reference 148.

3.3.4 Pseudopotentials

CP2K uses Goedecker-Teter-Hutter (GTH) pseudopotentials in its calculations, which

describe pseudo-atoms by a local and non-local potential. GTH pseudopotentials are

also norm-conserving, meaning they also satisfy the condition

∫
|r|<rc

ψ′i(r)ψ
′
j(r) dr =

∫
|r|<rc

ψi(r)ψj(r)dr. (3.53)

4 The overlap matrix elements Qnm for the orthogonal ADMM approach are defined in the same way
as the previous case, i.e. Qnm =

∫
φn(r)φ̃m(r)dr. Similarly, S̃nm =

∫
φ̃n(r)φ̃m(r)dr.
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3.4 The VASP code

In contrast to CP2K, the code VASP expresses orbitals in terms of plane waves (see

Eqn. 3.3), meaning the cutoff EC is an exact measure of basis set completeness. Us-

ing plane waves reduces the cost of Fourier transforms and construction of the KS

matrix. Pulay forces are also absent with this basis set choice. Generally, plane wave

electronic structure codes perform quite well for calculations that do not require HF

exchange. A large number of plane waves is usually required to accurately describe

an orbital, meaning the O(N4) for HF exchange with basis set size results in large

computational cost. In addition, integral screening techniques (e.g. Cauchy-Schwarz)

cannot be applied with plane waves.

Plane wave DFT calculations contain a series of steps which are rate limiting under

different circumstances. Scaling of DFT calculations isO(N3
e ) due to the wavefunction

orthonormalisation step required.149 However, for smaller numbers of atoms the di-

agonalisation step has a small prefactor and computational cost is dominated by other

operations. For many calculations, the cost of DFT calculations is dominated by fast

Fourier transforms, which have a cost of O(NeNG ln NG) where NG is the number of

plane waves.149 The so-called ‘nearsightedness’ or ‘locality’ of quantum mechanics

can be exploited to achieve linear scaling DFT calculations through use of localised

basis sets.132

3.4.1 Projector augmented wave method

The projector and augmented plane wave method used in VASP bears some resem-

blance to the approach used in CP2K . In this, space is divided into a series of augmen-

tation (or core-like) regions and interstitial regions. The all electron and pseudopoten-

tial orbitals are denoted ψi and ψ′i . In the interstitial regions both of these are equal. In

the augmentation region, the two wavefunctions can differ. Within the augmentation

region the two wavefunctions are related via

ψi(r) = ψ′i(r) + ∑
ν

[
φν(r)− φ′ν(r)

] 〈
p′ν
∣∣ψ′i〉 (3.54)

which requires three key quantities to be defined – an all-electron basis {φν}, a pseudo

wavefunction basis {φ′ν} and a set of projectors p′ν. The projectors must satisfy both
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the above equation and the following conditions:

∑
ν

∣∣φ′ν〉 〈p′ν
∣∣ = 1 (3.55)

〈
p′ν
∣∣φ′ν′〉 = δν,ν′ . (3.56)

Critically, Eqn. 3.54 only holds if the two basis sets have the property

ψ′i(r) =∑
ν

〈
p′ν
∣∣ψ′i〉 φ′ν(r) = ∑

ν

Ciνφ′ν(r) (3.57)

ψi(r) =∑
ν

〈pν|ψi〉 φν(r) = ∑
ν

Ciνφν(r), (3.58)

where pν in this case is a projector onto the all-electron basis. The above simply states

that expansion coefficients of the pseudo and all-electron orbitals are the same in their

respective basis expansions. The basis functions are defined using solutions of the

Schrödinger equation for the isolated atom (which the pseudopotential is for). The

augmentation region can be defined using a radial cutoff, outside of which both the

pseudo wavefunction and all-electron wavefunction are equal. The pseudo wavefunc-

tion in VASP is expressed using a plane wave basis.

3.4.2 The Hubbard correction

DFT+U is another common approach to overcome the delocalisation errors present in

DFT. The so-called Hubbard-U correction is implemented using

EDFT+U
tot [nIσ] = ∑

Iσ

U I

2
Tr
[
nIσ

(
1− nIσ

)]
(3.59)

where nIσ is the occupation matrix of an atom I for spin σ electrons. There exist a few

ways to implement this correction, however the above form is the simplest and has

nicer properties, such as rotational invariance. This is calculated using

nIσ
m,m′ = ∑

nk
fnk 〈ψnk| PI

m,m′ |ψnk〉 (3.60)

where PI
m,m′ is a projector onto a predefined localised state 5. In VASP this state is

defined using spherical harmonics, as shown in reference 150. The above occupation

matrix elements are simply projections of the KS orbitals onto a localised basis. Using

5 fnk is the occupation of a KS state with indices n and k. This number is between 0 and 1 for electrons
with spin. In the closed-shell case, the number is between 0 and 2.
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the above energy correction, the potential becomes repulsive for electrons that occupy

an electronic state by less than half and attractive for the remainder. This behaviour

forces electrons to localise and adds an energy penalty to delocalised states. The size

of the repulsiveness is governed by the size of the Hubbard-U energy correction U I .

A key difference between the DFT+U and hybrid approaches is that DFT+U pro-

vides additional parameters; while hybrid functionals have one key parameter (α),

DFT+U introduces one parameter per orbital. In the case of TiO2, a correction is

needed for oxygen p (UO
2p) and titanium 3d (UTi

3d) orbitals as polarons can localise on

either orbital. In principle the GKT can be used to fit these parameters however the

fitted values are interdependent. In turn, these values need to be either optimised self-

consistently (through iterative fittings) or through other means. Furthermore, cases

where defects are present can introduce different chemical environments on surround-

ing orbitals of the same kind, all of which also require further fitting. As a result, the

DFT+U approach is much more time consuming and will likely provide only a quali-

tatively correct picture.

3.5 Summary

The techniques this chapter introduces three DFT implementations which use the the-

ory provided in Chapter 2. While some additional electronic structure techniques

are discussed, such as the DFT+U approach, this chapter largely discusses numeri-

cal techniques for solving single-particle equations. In subsequent chapters we both

use and assess these techniques on relevant systems.
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CHAPTER 4

ACCURACY OF KOOPMANS-COMPLIANT

HYBRID FUNCTIONALS 1

The work presented in this chapter compares results obtained from hybrid functionals

to exact solutions of the many-electron Schrödinger equation. By performing such a

comparison, it becomes possible to identify the accuracy of hybrid functionals over-

all, and also whether the Koopmans parameterisation yields accurate densities and

energies. As mentioned in previous chapters, exact solutions come at a substantial

computational cost, therefore restricting the numbers of electrons, even in 1D. The im-

plementation details of this work are described in Chapter 3, alongside the approach

used to obtain exact many-electron solutions. The results indicate that Koopmans’

compliant hybrid functionals yield strikingly accurate electron densities and energies

for both exchange dominated and correlated systems.

1 This chapter represents collaborative work that has been published: A. R. Elmaslmane, J. Wetherell,
M. J. P. Hodgson, K. P. McKenna, and R. W. Godby. ‘Accuracy of electron densities obtained via
Koopmans-compliant hybrid functionals’. Phys. Rev. Materials 2, 040801(R). The remaining sections
of this chapter have been adapted from the publication.
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4.1 Introduction

A key measure of success for any electronic-structure theory is its ability to yield ac-

curate electron densities and energies for many-electron systems. For example, KS

DFT131, 151 is in principle exact, but the use of an approximate xc potential, such as

the LDA152 or GGA,139 is associated with a self-interaction error which can cause the

spurious delocalisation of localised charge153 and incorrect dissociation behavior for

molecules.154 Recently, hybrid functionals that mix HF exchange with a (semi-)local

approximation (such as the LDA or GGA)141 have become popular as an alternative

approach to xc. However, hybrids introduce at least one additional parameter, the

mixing parameter α. This is often determined empirically, e.g., via experimental data,

or through the adiabatic connection.155 In this chapter, α is determined using a group

of more physically justified constraints, including the GKT.31, 119, 156–158 While it has

been shown that this constrained hybrid approach results in ionisation energies and

band gaps close to experimental values,119, 157 to date the electron density of this ap-

proach has not been directly compared to the exact density.

4.2 Background

As Medvedev et al argue,159 progress in the accuracy of electronic structure calcula-

tions requires improvements in both energies and densities. Srebro et al indirectly as-

sessed densities obtained via hybrid functionals using the electric field gradient at the

nucleus.120 Reference 160 obtained densities from popular empirical hybrid functional

parameterisations and found sensitivity to the value of the various mixing parameters.

Good agreement between hybrid and coupled cluster densities (singles and doubles)

has been found for the CO molecule.161

In order to address the density more directly, a set of model systems are considered

where the many-body problem can be solved exactly for a small number of electrons,

allowing for a direct comparison of densities, energy gaps and ionisation potentials

(IPs) obtained from the constrained hybrid approach to the exact values. It is shown

that an ab initio determination of α results in hybrid functionals yielding extremely

accurate densities and gaps.

The exact total energy E (of a many-electron system) is piecewise linear with re-

spect to the number of electrons, N.25, 116 In exact KS DFT, the slope of each straight-

line segment ∂E/∂N is shown by Janak’s theorem to equal the highest (partly) occu-
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pied molecular orbital eigenvalue.26 The usual approximate density functionals (LDA

and GGA), and HF, exhibit nonzero curvature ∂2E/∂N2, which can lead to qualita-

tively wrong physical behavior.28–30 The curvatures are of opposite signs which means

that hybrid approximations benefit from a partial cancellation of these errors.119, 156

The exact total energy difference E(N−1) − E(N) is both the ionisation energy

of the N–electron system, I(N), and the electron affinity of the (N−1)–electron sys-

tem, A(N−1). In HF, the equivalent of Janak’s theorem140 shows that the slope

(∂E/∂N)N−δ is equal to the HOMO eigenvalue, and (∂E/∂N)N+δ to the lowest unoc-

cupied molecular orbital (LUMO) eigenvalue. In exact KS DFT, the LUMO eigenvalue

differs from the negative electron affinity −A by a discontinuity, ∆, in the xc poten-

tial.25 Thus all three quantities εN(N−1) + ∆, εN(N) and E(N) − E(N−1) should,

in principle, be equal, where ∆ is non-zero for exact DFT methods. But for approx-

imate methods such as hybrids where exchange and correlation are explicitly ana-

lytical functionals of the single-particle orbitals and therefore exhibit zero derivative

discontinuity ∆, the first quantity becomes εN(N−1).140, 162, 163 Three requirements

may therefore be identified,

(A) εN(N−1) = −A(N−1) ≡ E(N)− E(N−1),

(B) εN(N−1) = εN(N),

(C) εN(N) = −I(N) ≡ E(N)− E(N−1),

which may be used to constrain a hybrid calculation by enforcing internal consistency.

In practice, the parameter α of the basic hybrid approach provides a single degree of

freedom and so can be used to impose (A) the LUMO-A condition or (B) the LUMO-

HOMO condition or (C) the HOMO-I condition, or GKT. The merits, as regards elec-

tron energies, of satisfying the last two conditions using a more elaborate hybrid form

has been investigated164–166

A key point regarding the hybrid approach is that the derivative discontinuity ∆ in

the xc potential not only is zero, but also should be zero, when viewed from the perspec-

tive of many-body perturbation theory. This is most clearly seen by noting that the

description of exchange and correlation in the hybrid approach includes a reduced-

strength Fock operator, essentially mimicking the screened exchange operator that is

at the heart of the well-known GW approximation to the self-energy operator,167–170

plus LDA exchange and correlation reduced in strength. This identification of the hy-

brid approach’s “self-energy” as a screened-exchange approximation to the exact self-
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energy Σxc, as noted by other authors,171, 172 means that Σxc would yield exact electron

addition and removal energies through its one-electron eigenvalues that then acquire

the significance of quasiparticle energies. Hence in both the N and (N−1)–particle

systems both the HOMO and LUMO energies may be regarded as fairly sophisticated

approximations to the ionisation potential and electron affinity, and therefore require

no ∆ correction.

4.3 Methods

The hybrid functional that is tested straightforwardly mixes HF with an LDA xc po-

tential:

vHYB
xc (α) = αvHF

x + (1− α)vLDA
xc , (4.1)

where VHYB
xc , VLDA

xc and VHF
x denote the hybrid and LDA xc potentials and the non-

local HF exchange potential, respectively. This has the advantage of focusing more

on the variational power of HF for exchange-dominated systems and accommodating

better the cross-over between exchange and correlation when the LDA is applied to

inhomogeneous systems.

The LDA used in this work is parameterised from finite slabs.146 Testing has shown

these give indistinguishable results compared to HEG-based LDAs. The retention of

the full LDA correlation potential is also explored, mixing only the exchange terms,

vHYB
xc (α) = αvHF

x + (1− α)vLDA
x + vLDA

c . (4.2)

Hybrid functionals are assessed both in systems where correlation is relatively

unimportant (“exchange-dominated”) and systems in which correlation is more sig-

nificant. The exact many-body wavefunction (used to compute the exact density) is

obtained by direct solution of the many-body Schrödinger equation using the iDEA

code.173 The electrons interact via the softened Coulomb interaction

u(x, x′) =
1

|x− x′|+ 1
(4.3)

and are treated as spinless in order to model more closely the richness of correlation

found in systems containing a large number of electrons.

In order to verify that the curvature ∂2E/∂N2 in the functionals tested is indeed

Chapter 4 Accuracy of Koopmans-compliant hybrid functionals



4.3. Methods 67

better using the constrained hybrid approach, the derivative of energy with respect

to number of electrons ∂E/∂N is calculated. This means calculating energies for frac-

tional numbers of electrons, which can accessed by setting the density and kinetic

energy contributions as

ρ(x) = ∑
i

fi|ψi|2 (4.4)

Ts[{ψi[ρ]}] = ∑
i

fi 〈ψi| −
1
2
∇2 |ψi〉 = ∑

i
fi ti. (4.5)

This is in line with Reference 26. In the above ti is the kinetic energy contribution of

an orbital with index i to the total kinetic energy. The occupation number fi satisfies

0 ≤ fi ≤ 1. While in principle each orbital has its own occupation, only the occupation

of the HOMO may be fractional. By expressing the single-particle kinetic energy term

as

ti = ε i − 〈ψi| (vH + vxc) |ψi〉 (4.6)

the total energy can be found as

Etot = ∑
i

fi ti + EH + Exc (4.7)

Etot = ∑
i

fiε i −∑
i

[∫
ψ?

i (vH + vxc)ψidx
]

︸ ︷︷ ︸
2EH + 2Exc

+EH + Exc (4.8)

Etot = ∑
i

fiε i − EH − Exc. (4.9)

If the correct form of Exc is substituted into the above, taking into account the incorrect

variational form of the LDA xc energy, the following can be found

EHYB
tot = ∑

i
fi ε i − EH + αEx − (1− α)

[∫
ρ(r)vLDA

xc (r)dr−
∫

εLDA
xc ρ(r)dr

]
(4.10)

where the density in this equation is given by Eqn. 4.4. Therefore, only the energy

and density calculations need to be varied in order to access fractional numbers of

electrons.
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Figure 4.1: (Upper) The variation in hybrid ionisation energy I(3)(= A(2)), exact I(3)(=
A(2)), ε3(3) and ε3(2) with α are illustrated for three electrons in an harmonic oscillator with
ω = 0.25, an exchange-dominated system. Energies are in Hartree atomic units. There are
three ‘crossing points’: (A) A-LUMO, (B) HOMO-LUMO and (C) I-HOMO. (Center) The in-
tegrated absolute error in the density ∆ρ is shown for each value of α. This is defined as∫
|ρEXT(x)− ρHYB(x)|dx where the ρEXT and ρHYB correspond to the exact and hybrid densi-

ties. (Lower) The densities for crossings (A) and (C) are benchmarked against the exact, LDA
and HF cases; the hybrid, HF and exact curves lie close together.

4.4 Exchange-dominated systems

Fig. 4.1 demonstrates for the harmonic well with angular frequency ω = 0.25 (an

exchange-dominated system) that application of any of the conditions (A)–(C) yields

an α very close to pure HF, i.e., α ≈ 1, as expected. Other exchange-dominated sys-

tems tested yield similarly good results from the constrained hybrid.

Conditions (A)–(C) correspond to three ‘crossing points’, as shown in Fig. 4.1. Us-

ing the argument laid out previously, the self-energy should satisfy all three of these

conditions. Generally, (A)–(C) correspond to different conditions that specify where

the HOMO, LUMO and IP of a system lie with respect to one another. Although it

clear from Fig. 4.1 that the three conditions cannot be exactly satisfied, the three cross-
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Figure 4.2: As Fig. 4.1, for three electrons in an atom-like external potential (Vext (x) =
−1/ (0.05|x|+ 1)). The system is correlated as hf fails to predict the exact density and energy.

ing points lie pleasingly close together, and the density error ∆ρ (see figure caption)

is small in their vicinity. Generally, it is found that densities obtained from α values

lying between crossing points (A) and (C) are in excellent agreement with the exact

case.

4.5 Correlated systems

Given that both of the underlying functionals usually fail to produce a near-exact den-

sity in these systems, one can ask: is a hybrid functional capable of reproducing a

near-exact density for any value of α? Results are shown in Fig. 4.2 for three electrons

in an atom-like potential. Once again, all three conditions (A)–(C) produce values of α

that yield strikingly accurate densities.

Although in the exchange-dominated case crossing points (A) and (C) correspond

to an α differing by only one percent, in the correlated system they differ more (∼

10%). Crucially, however, the density error ∆ρ corresponding to condition (A) and (C)
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Figure 4.3: As Fig. 4.2, however using the more common exchange-only mixing.

is better than 0.03. Hence, as before, each density corresponding to these conditions

is in excellent agreement with the exact. Of note is that condition (A) corresponds

to a slightly better density than (C), the GKT, for both this correlated system and the

exchange-dominated system. The alternative hybrid strategy of mixing only the ex-

change potentials yields accurate, but slightly inferior, densities, as seen in Fig. 4.3.

This shows that the traditional approach of mixing only the exchange potentials and

including full LDA correlation may not be the most accurate. Comparing to Fig. 4.2

shows that the density error using full xc mixing is twice as small.

Fractional numbers of electrons

Data for fractional numbers of electrons is shown in Fig. 4.4, where it can be seen that

the HF case is exact for values leading up to one electron, however curvature is present

for anything larger. This is as expected, as the HF energy and density are exact for one

electron systems. Unlike HF, the LDA is inexact for all numbers of electrons. The α

values corresponding to conditions (A) and (C) in the atom-like potential follow the
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Figure 4.4: The derivative of energy with respect to total number of electrons N, ∂E/∂N, for
a number of approximations. The external potential and α values chosen are the same as that
of Fig. 4.2. It was verified that the ∂E/∂N curve lies exactly on that of the HOMO eigenvalue
within each approach. Each node at integer numbers of electrons corresponds to the HOMO
and LUMO, with the lower energy value being the HOMO.

exact line much more closely than the LDA and HF between two and three electrons,

the region where conditions (A)–(C) have been imposed. This suggests that the cur-

vature has indeed been reduced. Comparing the curvature for conditions (A) and (C),

it can be seen that the two are comparable to one another.

4.6 Fractional dissociation problem

It is now demonstrated that hybrids are capable of rectifying the fractional charge

problem common to many xc approximations for molecular dissociation. Specifically,

a system with two separated wells is tested where the usual DFT approximations inac-

curately predict the amount of charge present in each well. Fig. 4.5 demonstrates that,

when compared with the exact case, the constrained hybrid approach and HF yield

near-exact densities. In addition, it can be seen that even for a small fraction of exact

exchange (α = 0.200), the correct charge in each well is obtained, and hence a large

range of values of α yield accurate densities. However, the density has an incorrect

shape within each well when an α not corresponding to conditions (A)–(C) is used.

4.7 Errors in the energy

It is shown in Table 4.1 that the accuracy of hybrid functionals for densities is not at

the expense of energies. Of particular interest is the quasiparticle energy gap (I − A),

which the LDA and HF usually under- and over-estimate, respectively, as well as

the values of I and A individually. This establishes contact with the performance of
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Figure 4.5: (Upper) Densities for various approximations are shown for an exchange-
dominated asymmetric double-well potential. The dashed line, illustrating the potential
(scaled by 0.15), shows that the two wells are asymmetric. The HF case follows the exact
one, placing one electron in each well of a strongly localised system. The LDA predicts that
an additional 0.1 electrons are present in the deeper well. The GKT yields α ≈ 1, effectively
HF. The density for α = 0.2 is shown, which places the correct charge in each well, but has an
incorrect density shape. (Lower) The integrated charge of the left (shallower) well is shown
for a range of α values.

Koopmans-compliant hybrids in 3D systems119, 165, 169 and suggests that useful quasi-

particle energies can be extracted from functionals which also produce an accurate

density. The tendency of constrained hybrids to reduce these energy gaps from HF to

near-exact levels further supports the idea that this approach is similar to a screened-

exchange method.

Quasiparticle gaps (a.u.) Ionisation potentials (a.u.)

LDA HF Hybrid Exact LDA HF Hybrid Exact

Harmonic 0.222 0.491 0.472 0.469 -0.761 -0.620 -0.629 -0.628

% error 53% 5% 1% – 21.2% 1.3% 0.2% –

Atom-like 0.037 0.172 0.152 0.141 0.551 0.620 0.608 0.612

% error 74% 22% 8% – 9.9% 1.4% 0.5% –

Table 4.1: The quasiparticle gap of two-electron systems as extracted from the LDA, HF and
hybrid HOMO-LUMO eigenvalue differences, compared to the exact gap calculated from
many-body total energies. Gaps are compared for the exchange-dominated (harmonic) and
correlated (atom-like) systems. The two-electron IPs are shown for the same systems. These
results are constrained using condition (C), though (A) and (B) yield similar results.
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Eext EH EK Exc Sum

Hartree-Fock 0.036 0.132 0.044 0.021 0.233

Hybrid 0.014 0.042 0.019 0.083 0.158

LDA 0.090 0.250 0.024 0.296 0.661

Table 4.2: The absolute error (in eV) in each component of the total energy for Hartree-Fock,
hybrid and LDA approaches calculated for two electrons in an atom-like potential. Here con-
dition (C) is used, however conditions (A) and (B) yeild similar results. In each case, these
errors are broken down into the individual Kohn-Sham energy components.

In addition to the error in ionisation and eigenvalue gap energies, the error in the

total energy is evaluated in Table 4.2. It can be seen that for all components bar Exc

the hybrid approach parametrised using condition (C) yields errors in total energy

components that are reduced compared to other approaches. The component where

hybrid functionals outperform the other approaches most is the Hartree energy, which

can be attributed to the improved electron density obtained using this approach. This

is made clearer when considering the form of the Hartree energy, which only depends

on the electron density. Surprisingly, the error in total energy calculated using the

LDA yields the lowest error. This arises from a cancellation of the errors in EH and

Exc, which are roughly equal and opposite in sign.

4.8 Conclusion

Through direct comparison of solutions to the exact many-electron Schrödinger equa-

tion, it has been shown that hybrid functionals yield accurate densities and quasiparti-

cle energy gaps in both exchange-dominated and correlated systems, if the fraction of

exact exchange, α, is chosen using physically justified constraints, such as the gener-

alised Koopmans’ theorem. Particularly accurate densities are obtained from a hybrid

strategy that mixes LDA correlation, as well as LDA exchange. The three studied con-

straints are all in close agreement with one another and all yield accurate densities and

gaps. In double-well systems, hybrid functionals are found to perform well and are

free from the fractional dissociation problem for a large α range. A key perspective is

the interpretation of a hybrid method as a simple screened-exchange approximation

within many-body perturbation theory.

Chapter 4 Accuracy of Koopmans-compliant hybrid functionals





CHAPTER 5

SELF-TRAPPING POLARONS IN TITANIA

POLYMORPHS 1

The previous chapter illustrated that quantities of interest, such as electron densi-

ties and IPs, were well-described in model systems by combining hybrid functionals

with the GKT. The focus of this chapter shifts away from model systems and towards

3D periodic crystals, where a similar set of techniques are applied. The set of ap-

proaches described in Chapter 3, including ADMM, Coulomb interaction truncation

and Cauchy-Schwarz screening, are also used to reduce the computational cost associ-

ated with HF exchange, providing an inexpensive hybrid functional. The self-trapped

charges introduced in Chapter 1 are discussed in much more detail in this chapter,

focusing primarily on six phases of TiO2: rutile, anatase, brookite, TiO2(B), TiO2(H)

and TiO2(R). While a large body of literature relevant to rutile and anatase exists, the

remaining phases are not well understood. The approach shown in this chapter is first

compared to previous studies on rutile and anatase, and subsequently used to provide

a set of predictions for the polaronic properties of the remaining TiO2 phases.

1 This chapter represents work that has been published: A. R. Elmaslmane, M. B. Watkins, and K.
P. McKenna. ‘First-Principles Modeling of Polaron Formation in TiO2 Polymorphs’. J. Chem. Theory
Comput. 14, 3740–3751. The remaining sections of this chapter have been adapted from the publication.
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5.1 Introduction

Charge trapping in semiconductors and insulators has widespread interest in the

fields of physics, chemistry and materials science and controls performance for im-

portant applications, such as photocatalysis, superconductivity, tribocharging, mag-

netism and microelectronics.1–7 The trapping of electrons or holes may take place

at pre-existing defects (such as vacancies or impurities) or even in the perfect lat-

tice in some materials (so-called polaronic self-trapping).8, 15, 46, 94, 174, 175 Predictively

modelling these effects is vital to obtaining a deeper theoretical understanding of

charge trapping and to guide materials optimisation for applications. Variants of KS

DFT131, 151 are often used to model charge trapping.15, 46 Although DFT is exact in

principle, practical calculations require an approximation to the xc potential. The

SIE which plagues many xc approximations, such as the local density approxima-

tion152 or (semi-local) GGA,136, 139 results in the spurious delocalisation of localised

charges.28–30, 153, 176, 177 Other methods, such as DFT+U178 and hybrid DFT,141 aim to

correct this behaviour, however they introduce additional parameters that are often fit

to experimental data142 limiting its predictive power. More sophisticated many-body

methods that are in principle predictive, such as Møller-Plesset perturbation theory

or the GW approximation, are extremely computationally demanding, especially for

modelling polaronic charge trapping where full self-consistency for electrons and ions

is essential. For these reasons, finding an inexpensive, predictive and transferable

method to model charge trapping in materials is urgently needed.

5.2 Background

DFT+U has been applied successfully to model polarons in a range of metal oxides by

introducing a Hubbard-U correction on cations and, optionally, anions. Both the GKT

and comparison to experimental data have been used to determine these Hubbard-U

values.179, 180 One shortcoming of these approaches is, although a qualitatively correct

description of the polarons is obtained, quantitative results are often incorrect. For

example, the anatase band gap given by DFT+U (for reasonable parameterisations) is

significantly underestimated from the experimental band gap of 3.2 eV.181 A similar

situation is found in other crystals, such as zinc oxide, ceria and rutile-TiO2.181 This

underestimation naturally yields incorrect polaron charge transition levels (CTLs),

hindering comparison to experimental data. The DFT+U approach also predicts a
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low (total) dielectric constant in titania,182, 183 meaning electron and ionic screening

properties are underestimated. As finite size corrections are inversely proportional to

the total dielectric constant ε,184 an underestimated ε means that they become more of

an issue.

Unlike DFT+U, hybrid functionals such as PBE0 or HSE06 can generally yield

better-behaved crystal properties. These functionals usually have at least one parame-

ter, the fraction of exact exchange α, which determines the proportion of HF exchange

used. Some hybrid functionals make a distinction between short- and long-range ex-

change (e.g. HSE06), resulting in an additional range-separation parameter ω. The

parameterisation of hybrid functionals usually comes in two varieties. A ‘one-size-

fits-all’ approach, where parameters are fixed by comparison to a large set of training

data and then used for a variety of different systems. The performance of such hy-

brids usually varies depending on the choice of system. An alternative approach is to

fit hybrids for a specific system, either by using the GKT or by fitting to experimen-

tal data.119, 121, 156 Fitting parameters to experimental properties such as the band gap

may give reasonable results, however the approach is somewhat semi-empirical. Fur-

thermore, the predictive power of such an experimental fitting can also be questioned.

In contrast, methods using the GKT to parameterise the hybrid functional have been

shown to yield extremely accurate ionisation and band gap energies.119 However, the

degree of transferability for these parameters remains somewhat unknown. A com-

mon issue regarding the use of hybrid functionals is the computational cost associated

with them, usually around ten times the cost of a standard DFT calculation. To com-

pensate for this, one is forced into using smaller supercells in periodic calculations.

This can hinder the quality of a calculation as artificial interactions between period-

ically repeated defects tend to grow larger with smaller system sizes.184 Therefore,

while hybrid functionals can be superior to DFT+U, they come at a higher computa-

tional cost.

Previous experimental and theoretical results for charge trapping in TiO2 are now

discussed. The stability of electron polarons in rutile and anatase is a widely discussed

question, with many differing reports from both experimental and theoretical work.

While only self-trapped electron and hole polarons are considered in this chapter, nu-

merous studies highlight the effects of reduced cation and oxidised anion species due

to dopants, such as Nb, Li and H, and vacancy defects.47, 130, 185–189 EPR,49, 190 IR191 and

STM47 data suggest that small (Holstein) electron polarons can form in rutile localiz-
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ing on titanium 3d orbitals. IR studies suggest that the polaron CTL lies roughly 0.3 eV

below the CBM.191 Other data from deep level transient spectroscopy, STM and opti-

cal absorption places the polaron CTL 0.5 eV,192 0.7 eV47 and 0.8 eV188 below the CBM,

giving the CTL a range of 0.3–0.8 eV below the CBM. Of note is that oxygen vacancies

give rise to defects known to lie across a similar, albeit slightly deeper, range of CTLs

below the CBM. Yang et al determined the experimental thermal activation energy

associated with polarons in rutile to be around 20-30 meV, although the mechanism

for this was not found.49 The two main mechanisms for this activation are polaron

hopping or excitation into a conduction band-like state.

In rutile, the HSE06 hybrid functional has been shown to satisfy the GKT to within

0.1 eV, making it a suitable choice.46, 193, 194 It predicts the electron polaron CTL is

around 0.5 eV below the CBM, in good agreement with the 0.3–0.8 eV range (deter-

mined through optical measurements), and a quasiparticle gap of 3.4 eV, only a slight

overestimate with respect to the optical gap value of 3.0 eV. An alternative parameter-

isation of the HSE functional (with a smaller range separation parameter, ω = 0.1 Å−1)

predicts the polaron CTL is 0.8 eV below the CBM,195 however the linearity of this

functional was not assessed. It is expected that such a parametrisation widens the

quasiparticle gap and polaron CTL. Another hybrid functional, B3LYP, significantly

overestimates the band gap of rutile196 resulting in much deeper defect levels than

HSE06, and is known to not satisfy the GKT.197 The polaron trapping energy Et, the

difference between localised and delocalised electron solutions, provides a measure

of polaron stability. This energy difference is predicted to be small with HSE06 and

DFT+U (< 0.1 eV),47 and substantially larger with the random phase approximation

(RPA) (0.6 eV),48 although use of a PBE0 geometric configuration from the RPA study

should be noted. Polaron migration barriers calculated using HSE (with ω = 0.1 Å−1),

the RPA and DFT+U (with U = 10.0 eV) yield 0.3 eV, 0.04–0.14 eV and 0.3 eV.48, 195, 198

In defect-free anatase, electronic states are likely more delocalised than that of ru-

tile as suggested by EPR data.190, 199 This information leads us to believe that, unlike

rutile, excess electrons in bulk anatase do not form self-trapped (small) electron po-

larons, but are much more diffuse. Further confirmation is obtained from STM exper-

iments which find similar results in Nb doped samples.47 This is also highlighted by

conductivity measurements, which find Nb doped samples of anatase exhibit three-

to-four orders of magnitude higher conductivity compared to rutile.200, 201 HSE06,46

the RPA48 and DFT+U (with U parameterised through the RPA)47 all indicate that
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small electron polarons are unstable in anatase, further indicating why anatase has a

higher electron mobility than rutile. On the other hand, B3LYP predicts that electron

polarons in anatase are stable.9, 196, 202–204 RPA results indicate that a large (Fröhlich)

polaron forms when using large system sizes,48 however experiments indicate that

this only occurs in the vicinity of a Nb defect.47

The behaviour of hole polarons in rutile and anatase is the opposite of the electron

polaron case. Specifically, hole polarons can form in anatase, but not rutile. HSE06

results predict that excess holes in anatase form self-trapped hole polarons (on oxy-

gen 2p orbitals), however hole polarons are not predicted to form in rutile (i.e. they

are delocalised). HSE06 predictions suggests that hole polaron levels in anatase are a

deep acceptor state, lying roughly 1.3 eV above the VBM with a trapping energy of

0.2 eV. EPR experiments suggest trapped holes can form in anatase.205 The concentra-

tions of trapped holes (O− species) were higher than those of trapped electrons (Ti3+

species), primarily because most electrons were delocalised in the conduction band,

and hence EPR silent. In contrast, rutile samples showed larger EPR signals attributed

to electron trapping than hole trapping,206 in agreement with HSE06 results. Other

EPR experiments somewhat confuse the picture as it is suggested that hole trapping

in rutile is observed.207 There have been very few studies of polaron formation in

phases of TiO2 other than rutile and anatase. This includes an experimental investi-

gation into polaron self-trapping in brookite,190 which finds that anatase and brookite

have similar trapping properties. There has also been a theoretical study of polaron

formation using DFT+U which finds charge strongly localised on Ti sites in Li-doped

TiO2(B).208

5.3 Methods

The hybrid DFT implementation laid out in previous chapters (Chapter 2 and Chap-

ter 3) is used to perform all calculations.144, 148, 209–211 Gaussian type orbitals are mapped

onto CP2K’s multi-grid solver with a relative cutoff of 60 Ry. Five multi-grids, with the

finest levels of grid having a cutoff of 600 Ry, are used. The primary oxygen and

titanium basis sets used are of triple-ζ quality with valence and polarisation expo-

nents.212 Norm-conserving GTH pseudopotentials available with CP2K213 are used.

As CP2K only samples the Γ-point in reciprocal space, crystal properties must be con-

verged with respect to system size as opposed to number of k-points. For all phases,
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it is found that supercell dimensions are well-converged at around 18 Å. 2 Of note is

that using larger system sizes results in band folding, which increases the number of

bands sampled at each k-point in the Brillouin zone. This is equivalent to increasing

the number of k-points sampled, meaning that the calculation remains accurate de-

spite only sampling the Γ-point. Furthermore, using, using larger system sizes instead

of a greater number of k-points reduces the size of the interaction between charged su-

percell images.

The exchange part of the hybrid functional employed (tr-PBEα) is described in

Chapter 2 (Section 2.5.2). In both the short range (r ≤ Rc) and long range (r > Rc)

regions the full PBE correlation energy is used. This truncation is performed to re-

duce computational costs associated with HF exchange. However, predicted proper-

ties (e.g. lattice constants, band gaps, polaron trapping energies and charge transition

levels) converge rapidly with respect to increasing Rc. It is found that crystal proper-

ties, such as lattice constants and the band gap, are well-converged at Rc = 6.0 Å in

all phases. In addition to HF exchange truncation in the functional, CP2K has other

tools to alleviate computational cost. One such method is the ADMM148 (described in

Chapter 3), which approximates exchange integrals by mapping orbitals onto smaller,

more localised, basis sets. These significantly improve the speed of HF exchange cal-

culations, meaning the approach can be used to model larger systems with reasonable

computational cost. In later sections, variations in properties induced by changes in

ADMM basis sets are considered to establish any error these may introduce. CP2K also

takes advantage of other exchange integral screening methods which reduce compu-

tational cost, all of which are described in Chapter 3.

The procedure for determining the proportion of HF exchange for electron or hole

polarons is as follows. Cell vectors are initially optimised for a large defect-free su-

percell. As hybrid functional CP2K calculations use the Γ-point only, this must be done

using the supercell rather than the unit cell. Following this a distortion is applied to

the geometry, pushing ions within 2.2 Å of a chosen ion radially outward by 0.1 Å.

This distortion creates a precursor potential well for localisation of the polaron on a

given ion. An additional electron (or hole) is then added to the supercell and atoms

are relaxed until the magnitude of forces on atoms is less than 0.01 eV/Å. The final

calculation (vertically) removes the added electron (or hole) from the system, keeping

ions in the polaronic configuration. The above calculations yield all the necessary en-

2 Graphs depicting this are illustrated in Appendix B.
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Rutile Anatase

Figure 5.1: The crystal structures of rutile and anatase TiO2. All sites of the same species
in each phase are equivalent by symmetry. Oxygen atoms are shown in red whilst titanium
atoms are shown in grey. Figure taken from J. Chem. Theory Comput. 14, 3740–3751.

ergies to test the GKT (Eqn. 1.4). With half-percent granularity, the range of α values

which satisfy the condition to within 0.05 eV are identified. The degree to which the

GKT is satisfied, also called the nonlinearity, is denoted ξ:

ξ =

E(N + 1)− E(N)− εN+1(N + 1), for electrons

E(N)− E(N − 1)− εN(N), for holes.
(5.1)

A limit of |ξ| ≤ 0.05 eV is set as physical properties of the crystal can change quickly

with small changes in nonlinearity. Operating within this limit causes changes in the

GKS gap of around 0.2 eV over the range −0.05 ≤ ξ ≤ 0.05 eV.

5.4 Anatase and rutile

In this section the approach described above is applied to model electron and hole

polarons in anatase and rutile. The structures of the two crystals are shown in Fig. 5.1.

Initially titanium FIT9 and oxygen pFIT3 (FIT9/pFIT3) ADMM basis sets are used,

although alternatives are tested below to demonstrate basis set quality. 5× 5× 2 and

4× 4× 6 expansions of the anatase and rutile unit cells are used, with 600 and 576

atoms in the supercell.

In Fig. 5.2 α is tuned to satisfy the GKT for electron and hole polarons in rutile and

anatase. It can be seen that the anatase electron polaron case does not satisfy the GKT

in the range 0.25 ≤ α ≤ 0.40. Attempting to reduce α to a lower value (α = 0.225)

results in a delocalised conduction band state, suggesting that the electron polaron is

not stable at the Koopmans-compliant value of α. Probing the point where the electron

delocalises closely, ξ = 0.29 eV at α = 0.230. A small move to α = 0.225 results in a
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Figure 5.2: The variation in charge transition levels, (defect-free) band gap Eg and highest
occupied eigenvalue with α for the anatase (left) and rutile (right) electron (upper) and hole
(lower) polarons. With half-percent granularity, it is found that Koopmans theorem is satisfied
at α = 0.105 and α = 0.115 for the anatase hole and rutile electron cases. Figure taken from J.
Chem. Theory Comput. 14, 3740–3751.

completely delocalised electron, meaning that this method of constraining α predicts

that even a metastable electron polaron configuration is not possible. Of note is that

fully self-consistent optimisation of the geometry for a given α is essential for accurate

prediction of polaron properties. For example, if one fixes the polaron geometry to

that obtained with α = 0.25, the electron polaron remains localised even when α is

reduced to 0.10, contrary to the behavior seen when the geometry is self-consistently

optimised.

Unlike the electron polaron case, the anatase hole polaron does satisfy the GKT at

α = 0.105 with ξ ≈ 0 eV. The hole polaron spin density is illustrated in Fig. 5.3, where it

can be seen that the hole polaron is largely localised on a single oxygen ion. The trap-

ping energy Et is defined as the energy difference between localised and delocalised

states, which for the hole polaron is -0.21 eV. While it would be wrong to advocate

use of a non-self-consistent geometry for prediction of polaron properties, for deep

traps, such as the hole polaron in anatase, there is little difference in polaron geometry

between α = 0.25 and α = 0.105.

In rutile, electron polarons satisfy the GKT whilst hole polarons do not, as shown in

Fig. 5.2. As mentioned in Section 5.2, this result is also in agreement with findings us-
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ing HSE06 by Deák et al.46 However, unlike the anatase case, a large number of α val-

ues satisfy the GKT. As the value of α decreases across range where −0.05 ≤ ξ ≤ 0.05

eV, the electron polaron trapping energy increases from a value suggesting the polaron

is mildly stable (Et = −0.07 eV at α = 0.14) to metastable (Et = 0.01 eV at α = 0.10).

The localised solution cannot be found at α = 0.095. Ultimately, as the polaronic state is

capable of satisfying the GKT it may be that the polaron is stable. A low trapping en-

ergy suggests there is little difference energetically between localised and delocalised

states, in agreement with HSE06 and DFT+U results.46, 47 The small trapping energy

may explain why these polarons rapidly delocalise in EPR experiments when temper-

ature is raised.206 The spin density for the electron polaron is illustrated in Fig. 5.3,

where it is clear that, unlike the hole polaron in anatase, the electron polaron is much

more diffuse.

In the region 0.100 < α < 0.140 the GKT is satisfied to less than 0.05 eV for the

rutile electron polaron. Across this range, the polaron CTL moves from 0.22 eV to

0.65 eV below the CBM. The largest value of α satisfying |ξ| < 0.01 eV (α = 0.115)

is selected as the optimal value for evaluation of polaron properties. In this case the

electron polaron CTL is predicted to lie 0.40 eV below the CBM. Experimental work

puts the CTL at 0.3–0.8 eV below CBM as previously mentioned, which is in good

agreement with the predicted result. The prediction is also in good agreement with

previous calculations performed using the HSE06 functional which places the polaron

CTL at 0.5 eV below the CBM.46

The discussion in Section 5.2 highlighted that TiO2 band gaps from B3LYP and

DFT+U are generally over- and under-estimated, by around 1 eV.181, 196 In contrast,

the HSE06 functional overestimates the gap only slightly by 0.2 eV.46 Surprisingly, the

outlined procedure yields defect-free band gaps in both rutile and anatase that deviate

only by around 6% from the experimental values of 3.0 eV and 3.2 eV (with α = 0.115

and α = 0.105) respectively. In both cases, the gap is underestimated by around 0.2

eV, as seen in Table 5.1. It should be stressed that results have not been optimised

for the band gap. However, it seems that applying the GKT to these localised states

results in a band gap very close to the experimental value. If the upper limit of |ξ|

tolerance is used, errors in the band gaps of rutile and anatase shrink further. Lattice

constants are also in good agreement with experiment, with errors of 0.3% (vector a)

and 1.1% (vector c) in anatase and 0.7% (vector a) and 0.1% (vector c) in rutile. This

is somewhat reassuring, as it suggests that the method is able to accurately describe
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Rutile Anatase

Figure 5.3: Spin density for a hole polaron in anatase and an electron polaron in rutile (isosur-
face value 0.01 a−3

0 ). As the polarons lie largely on a single crystallographic plane, only a slice
of the crystal is shown. Titanium and oxygen ions are represented by red and grey spheres
respectively. The electron polaron, localised on a titanium 3d orbital, has a much more diffuse
nature than the hole polaron, localised on an oxygen 2p orbital. In rutile, the visible isosurface
extends around 5.8 Å, while in anatase the distance is 5.3 Å. Bader spin-density analysis shows
that the central atom in rutile contains 50% of an electron, while the central atom in anatase
contains 75% of a hole. Figure taken from J. Chem. Theory Comput. 14, 3740–3751.

both the polaronic and bulk properties of these crystals using only the GKT. This is

also in line with results from finite systems, which report similar findings regarding

gaps between the HOMO and the LUMO.119

The optimised values of α which satisfy the GKT for anatase and rutile, 0.105 and

0.115, are very close together. In rutile, one could satisfy the GKT with |ξ| < 0.05 eV

using 0.100 ≤ α ≤ 0.140 and for anatase one can use 0.095 ≤ α ≤ 0.115, meaning there

is a large overlap of α values. This means that one could feasibly choose the same value

of α to model both electron and hole polarons in these phases. This transferability in

α values is somewhat unexpected, however it allows for more than one phase to be

described by the same functional. In later sections, it is shown that this transferability

extends to other phases as well.

As the primary basis sets used are all of good quality, it is expected that the ADMM

basis will likely be a key source of inaccuracy in subsequent calculations. To investi-

gate the error introduced, changes in bulk and polaron properties are explored with

differing titanium and oxygen basis sets. Table 5.1 illustrates that the choice of ADMM

basis set has little effect on both the trapping energy, local magnetic moment and

charge transition energy for both electron and hole polarons across both phases. Mag-

netic moments are calculated via Bader analysis of the spin density.214–216 The choice

of basis set has no effect on the optimised value of α or the nonlinearity. Similarly,

bulk quantities change very little with increasing ADMM basis set quality. Using con-
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Ti ADMM basis set FIT9/ FIT9/ FIT9/ FIT9/ FIT10/ FIT11/

O ADMM basis set cFIT3 FIT3 cpFIT3 pFIT3 pFIT3 pFIT3 Exp.

Anatase hole

Lattice vector a 3.784 3.783 3.794 3.793 3.794 3.793 3.782a

Lattice vector c 9.708 9.701 9.623 9.617 9.605 9.605 9.502a

GKS gap Eg 3.03 3.00 2.94 2.94 2.93 2.93 3.23b

Nonlinearity ξ -0.02 -0.01 -0.01 -0.01 -0.01 -0.01 -

Trapping energy Et -0.21 -0.21 -0.21 -0.21 -0.20 -0.20 -

Bader magnetisation 0.76 0.76 0.75 0.75 0.75 0.75 -

CTL - VBM 1.23 1.24 1.19 1.20 1.21 1.18 -

Rutile electron

Lattice vector a 4.618 4.617 4.620 4.618 4.618 4.618 4.587a

Lattice vector c 2.961 2.959 2.960 2.958 2.958 2.957 2.954a

GKS gap Eg 2.82 2.79 2.84 2.82 2.82 2.81 3.03c

Nonlinearity ξ <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 -

Trapping energy Et -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -

Bader magnetisation 0.48 0.49 0.49 0.48 0.48 0.49 -

CTL - CBM -0.41 -0.38 -0.44 -0.40 -0.41 -0.42 -

All energies and lengths shown are in electron-volts and Angstroms.
a Ref 217 , b Ref 50 , c Ref 51

Table 5.1: Bulk and polaron properties are compared using different auxiliary oxygen basis
sets in anatase and rutile. As only anatase holes and rutile electrons are predicted to be stable,
only these two polarons are shown. The titanium basis FIT9 has 9 basis functions (FIT9),
comprising of three s-, p- and d-functions. Titanium basis sets FIT10 and FIT11 have 10 and
11 basis functions, whilst the oxygen basis sets cFIT3, FIT3, cpFIT3 and pFIT3 have 4, 6, 5
and 7 basis functions. For each combination of the basis sets, the value of α which minimises
nonlinearity ξ is found. It can be seen that the choice of basis set does not produce a difference
in the optimised α. For anatase and rutile, the optimised α values are 0.105 and 0.115.

tracted basis sets, labeled with a lower case letter c, does not affect polaron or bulk

properties. To this end, using FIT9/pFIT3 provides the best balance between accuracy

and computational efficiency.

In the preceding calculations Rc was converged with respect to the predicted bulk

lattice constant and band gap, resulting in the value Rc = 6 Å. This parameterisation is

now compared with lower values of Rc. By varying Rc, the optimal value of α that sat-

isfies the GKT (for the selected value of Rc) changes. As Rc increases, the amount of ex-

change energy increases, resulting in a slightly more concave functional (see Fig. 1.2).

It was previously shown for rutile electron polarons that the using Rc = 6 Å with

α = 0.115 satisfies the GKT with nonlinearity ξ < 0.05 eV. For the values Rc = 4 Å

and Rc = 2 Å it is found that α = 0.115 and α = 0.2 satisfy the GKT to within 0.05 eV.

The α parameter effectively remains the same when going from Rc = 6 Å to Rc = 4 Å,

suggesting that restricting exchange interactions over 4 Å yields similar results to 6 Å.
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However, for Rc = 2 Å predicted polaron properties are very different. Taking Rc = 6 Å

yields a band gap of 2.8 eV, with the electron polaron CTL being 0.4 eV below the CBM.

In contrast, Rc = 2 Å yields a band gap of 3.1 eV and a polaron CTL that is roughly

0.9 eV below the CBM, much higher than that reported experimentally. This suggests

that functionals with lower Rc values have a tendency to predict more stable polaronic

states. A similar conclusion can be drawn from the polaron trapping energy, where

using Rc = 2 Å and Rc = 4 Å results in Et = −0.14 eV and Et = −0.02 eV respectively.

Comparing the range-separation used in this work and the popular HSE functional,142

HSE more smoothly weighs short- and long-range Coulomb interactions (using the

complimentary error and error functions). Short-range Coulomb interactions typi-

cally become negligible a length of 2/ω. Values of ω are usually around 0.2 Å−1,143

meaning short-range exchange is negligible beyond 10 Å.

The nonlinearity ξ for polaronic states also depends on the supercell size. This was

studied for the following supercell sizes (number of atoms in brackets): 3× 3× 5 (270),

4× 4× 6 (576) and 5× 5× 8 (1200). Using the α optimised for the 576 atom system,

nonlinearity was calculated for 270 and 1200 atom systems. It is found that ξ changed

by 0.04 eV and 0.01 eV when moving from 270 to 576 and 576 to 1200 atom systems

respectively. The next reasonable (cubic) supercell size to test for nonlinearity is far

too large (1944 atoms). However, as system size (576 atoms) has a nonlinearity only

different by 0.01 eV to much larger systems (1200 atoms), it provides a good balance

between computational time and accuracy.

5.5 Brookite, TiO2(H), TiO2(R) and TiO2(B)

Having benchmarked calculations on rutile and anatase, the model is now applied to

model polaron formation in four other phases of titanium dioxide: brookite, TiO2(H)

(hollandite), TiO2(R) (ramsdellite) and TiO2(B). Each of these possess a number of lat-

tice sites that are inequivalent by symmetry (see Fig. 5.4). Lattice sites are denoted

using shorthand notation: e.g. OBr
a and OBr

b label oxygen sites a and b in the brookite

crystal. To avoid confusion, rutile and anatase are abbreviated to Ru and An, while

TiO2(H), TiO2(R) and TiO2(B) are abbreviated as H, R and B.

For all localised polarons, the range of α values which satisfy |ξ| < 0.05 eV is

determined (shown in Fig. 5.5). Across a large number of sites, there is significant

overlap in the range of acceptable α values. This means that it is feasible to model

all phases and sites using the same α whilst still satisfying the GKT. It can be seen
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Figure 5.4: Crystal structure of brookite, TiO2(H), TiO2(R) and TiO2(B). Titanium and oxygen
ions are represented by red and grey spheres respectively and Ti-centered polyhedra are high-
lighted. Lattice sites which are inequivalent by symmetry are labeled. Figure taken from J.
Chem. Theory Comput. 14, 3740–3751.
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Figure 5.5: The range of α values which satisfy the generalised Koopmans’ theorem to within
0.05 eV for polarons localised on different lattice sites. For each site, the point which has the
smallest ξ is marked with a cross. For α = 0.115, |ξ| < 0.08 eV across all sites. Figure taken
from J. Chem. Theory Comput. 14, 3740–3751.

α = 0.115 ensures |ξ| < 0.08 eV across all phases and sites. In the following sub-

sections the predicted properties of polarons in each phase are describe in detail. The

polaron properties of each phase are evaluated using an α that minimises nonlinearity

for that phase. This allows us to compare CTLs of different polaron sites using the

same functional (and hence the same lattice constant and band gap). These α values

are shown in Table 5.2 alongside the predicted bulk properties. If instead, one uses

α = 0.115 to model all phases, good quantitative agreement is seen. In Table 5.2 the

stability of each of the phases relative to anatase is shown, where it can be seen that

the energy differences between phases are small. For phases where data is available

(rutile, anatase and brookite), the energy differences are in line with previous (local)
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Phase Anatase Rutile Brookite TiO2(H) TiO2(R) TiO2(B)
α 0.105 0.115 0.105 0.130 0.125 0.120
Eg (eV) 2.94 2.82 3.20 3.76 3.65 3.85
∆ (eV) 0.000 0.031 0.017 0.054 0.054 -0.001
a (Å) 3.794 4.618 9.228 10.236 4.950 12.236
b (Å) - - 5.479 - 9.425 3.746
c (Å) 9.617 2.958 5.151 2.968 2.968 6.575
β (◦) 90 90 90 90 90 107.0

Phase Anatasea Rutilea Brookiteb TiO2(H)c TiO2(R)d TiO2(B)e

a (Å) 3.782 4.587 9.184 10.164 4.902 12.197
b (Å) - - 5.447 - 9.459 3.754
c (Å) 9.502 2.954 5.145 2.963 2.956 6.654
β (◦) 90 90 90 90 90 107.16

a Ref 217 b Ref 222 c Ref 223 d Ref 224 e Ref 225

Table 5.2: (Upper) Optimised α value for each TiO2 phase with corresponding bulk lattice
constants and band gaps. The internal energy ∆ (per TiO2 formula unit) is given for each of
the phases, relative to anatase. (lower) Experimentally determined lattice parameters.

DFT calculations.218, 219 Diffusion QMC results yield, ignoring the effects of lattice

dynamics, a similar energetic ordering.220, 221

5.5.1 Polarons in brookite

It is found that brookite is in many ways similar to anatase. Specifically, the GKT

predicts the formation of hole polarons, but not electron polarons. This is in good

agreement with EPR data, which also suggests that the polaronic properties of the

two crystals are quite similar.190 The two inequivalent O sites in brookite, differing

mainly by bond angles to neighboring Ti, are both capable of forming hole polarons.

Both sites have (+/0) CTLs differing only by 0.02 eV at the optimal α for brookite

(α = 0.105), as seen in Table 5.3. However, their trapping energies differ by around

0.1 eV, making OBr
a the most stable trapping site in brookite. The predicted band gap

of brookite is 3.2 eV, consistent with the experimentally determined optical values of

3.1-3.4 eV.226

5.5.2 Polarons in TiO2(H) and TiO2(R)

The phases TiO2(H) and TiO2(R) are now discussed together, as predictions suggest

they exhibit similar charge trapping properties. TiO2(H) contains two unique oxygen

sites and one unique titanium site. It is found that the best α for all sites in this phase
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is α = 0.130, as seen in Table 5.2. A small hole polaron, similar to that formed in

anatase, is predicted on one oxygen site (OH
b ). On the second oxygen site (OH

a ), a multi-

site small polaron, or molecular polaron, is predicted to form, previously unseen in

titania. The multi-site polaron, illustrated in Fig. 5.6, is predicted to localise over two

ions, with almost equal charge on both ions. Comparing the single- and multi-site

hole polarons, it is found the (+/0) CTL from the multi-site polaron lies deeper in the

band gap (with respect to the VBM) by 0.1 eV. Furthermore, the multi-site polaron is

also more energetically stable, with a trapping energy 0.1 eV lower than the single-site

polaron. On the only unique titanium site in TiO2(H), a multi-site electron polaron can

be found (illustrated in Fig. 5.6). The (-/0) CTL of this polaron is twice as deep as the

electron polaron found in rutile, lying 0.8 eV below the CBM.

The two oxygen (OH
a ) ions on which the multi-site hole polaron forms (see Fig. 5.6)

move closer together by 0.3 Å compared with their equilibrium position. In contrast,

two nearby titanium ions (shared by the two oxygen ions on which the multi-site po-

laron resides) move apart by 0.3 Å. The single-site hole polaron (OH
b ) results in an

asymmetric distortion of nearby titanium ions, with bond lengths increasing by 0.1–

0.3 Å from their defect-free positions. With geometries compared, it is clear that the

nature of polarons these two sites is different. Despite large changes in the geometry

compared to the equilibrium positions, the multi-site polaron remains more energeti-

cally stable than the single-site one. A similar behaviour is found regarding multi-site

electron polarons, where two titanium ions involved to move together by 0.2 Å, whilst

two surrounding oxygen ions are pushed apart by 0.2 Å.

Single- and multi-site polarons are predicted to form in TiO2(R), on sites OR
a and

OR
b respectively. The geometric distortions of both polarons are also quite similar to

the TiO2(H) case. Of note is that in both phases multi-site polarons are more stable

than single-site polarons, as seen in Table 5.3.

One distinguishing factor between single-site and multi-site polaron sites in the

TiO2(H) and TiO2(R) phases is the bonding. The multi-site electron polarons form

over two cations ions that bond with two of the same anions, shown in Fig. 5.6. Anions

which display the same double-sharing behaviour also form multi-site hole polarons.

The multi-site polarons reside on sites of the same symmetry.
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Hole Electron

Figure 5.6: Molecular (two-site) electron and hole polarons in TiO2(H). The polaron charge are
shared over two equivalent sites, roughly 0.5e on each site. It is found that molecular polarons
require the double-sharing of titanium ions by oxygen ions (or vice versa) to form. The double
sharing behaviour for both cases is shown in the boxed figures. A spin density isosurface of
0.02 a−3

0 was used to generate the above figures. Figure taken from J. Chem. Theory Comput. 14,
3740–3751.

5.5.3 Polarons in TiO2(B)

Of the four unique oxygen sites in TiO2(B), only polarons on two sites (OB
a and OB

d )

remain stable across the range −0.05 < ξ < 0.05, with one site (OB
d ) being the most

stable trapping site predicted in this work. The site OB
a is under-coordinated with

two bonds to neighboring titanium ions, whilst OB
d has the same coordination (three)

as other phases. Although the GKT allows for polaron formation on both sites, site

OB
d is 0.1 eV more stable than site OB

a . The site OB
c is nearly capable of satisfying the

GKT with ξ = 0.06 eV at α = 0.135, however the site OB
d is 0.47 eV more stable than

OB
c , implying that polarons are less likely to trap on OB

c than OB
d . The final site, OB

b is

four-coordinated and the GKT predicts a localised hole polaron is not possible on this

site.

The electron polaron case in TiO2(B) is slightly more complicated than the hole

polaron case. While the sites TiBa and TiB
b are both capable of forming small polarons

that satisfy the GKT to within 0.06 eV, the polarons begin to delocalise over the range

0 < ξ ≤ 0.05 eV. Small polarons on TiB
a and TiBb delocalise at α = 0.145 and α = 0.140

respectively, with the more delocalised states having similar total energies to the small

polarons. At α = 0.145, the small electron polaron on site TiB
b has a (-/0) CTL of 0.40 eV

and a trapping energy -0.04 eV. As electron polarons are capable of satisfying the GKT

over a small range, it plausible that they form in TiO2(B). However, the small trapping

Chapter 5 Self-trapping polarons in titania polymorphs



5.6. Comparison of polarons across phases 91

Site Polaron type CTL (eV) Magnetisation Et (eV)

TiRu Single-site -0.40 0.45 -0.02

TiH Multi-site -0.82 0.44, 0.37 -0.14

TiR Multi-site -0.82 0.45, 0.37 -0.35

OAn Single-site 1.20 0.75 -0.20

OBr
a Single-site 1.11 0.72 -0.25

OBr
b Single-site 1.09 0.73 -0.16

OH
a Multi-site 1.71 0.41, 0.47 -0.42

OH
b Single-site 1.59 0.80 -0.34

OR
a Single-site 1.32 0.81 -0.31

OR
b Multi-site 1.48 0.42, 0.45 -0.43

OB
a Single-site 1.62 0.70 -0.42

OB
d Single-site 1.60 0.74 -0.52

Table 5.3: Charge transition levels, local magnetic moment (from Hirshfeld spin density anal-
ysis) and polaron trapping energy for all polarons studied in this work. Each of the systems
shown above is in a spin-doublet formation. For electron polarons (on Ti sites) the (-/0) tran-
sition is shown in reference to the CBM, whilst hole polarons (on O sites) have (+/0) charge
transitions that are shown in reference to the VBM. For multi-site polarons, two magnetisation
numbers are shown, corresponding to the two sites over which the multi-site polaron resides.
The four multi-site polarons break magnetisation symmetry, which may be an artefact of the
Hirshfeld spin density analysis.

energies indicate that they may be less likely to form.

5.6 Comparison of polarons across phases

The trapping energies, CTLs and Hirshfeld spin density analysis of each polaron is

shown in Table 5.3. These values are calculated using the ideal value of α for each

phase (shown in Table 5.2). It can be seen (from the trapping energy) that site OB
d

is the most stable site of all sites explored. The multi-site hole polarons formed in

TiO2(H) (OH
a ) and TiO2(R) (OR

b ) are both much more stable than their single-site po-

laron counterparts. In addition, multi-site electron polarons (TiH and TiR) are much

more stable than the single-site electron polaron found in rutile. The deepest (-/0) and

(+/0) CTLs correspond to multi-site polarons in TiO2(H) and TiO2(R). Sites OBr
a and

OBr
b both have differing trapping energies, yet the CTLs are quite similar. The same

can be said of sites OB
a and OB

d . In contrast, CTLs from multi-site polarons are distinctly

split from those of small polarons, as seen in phases TiO2(H) and TiO2(R). As previ-

ously mentioned, the transferable and phase-specific α values are in good quantitative

agreement.
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Figure 5.7: Alignment of polaron CTLs with respect to a common vacuum energy. The polaron
CTLs and band gaps are computed using phase-specific optimised α values as shown in Table
5.2. For clarity, only the subscript letter index for each of the polaron sites is shown. Electron
and hole polaron energy ranges with respect to vacuum are labeled as e and h. Figure taken
from J. Chem. Theory Comput. 14, 3740–3751.

To compare polaron CTLs across different phases, the band alignment of the

phases with respect to each other is required. Here the VBM of all phases is aligned

using the ionisation energies obtained in a previous theoretical study,227 which cal-

culates these energies through a hybrid quantum mechanical/molecular mechanical

embedded cluster approach. This allows us to compare the calculated band gaps

and polaron CTLs for all phases (Table 5.3) against a common vacuum level refer-

ence (Fig. 5.7). The deepest electron and hole states from the vacuum level are the TiH

and OH
b polarons. In contrast, the shallowest electron and hole polaron sites are TiR

and OB
a . It can be seen that, across phases, electrons and holes have an energy range

which is separated by roughly 0.2 eV when aligned to a common vacuum level. Of

the phases explored in this work rutile is the only phase of TiO2 which cannot form

hole polarons.

5.7 Discussion

Some factors which may influence the accuracy of predictions shown are now dis-

cussed. As noted in Section 5.3 the use of the ADMM basis set allows for a vast

speedup in calculation of exact exchange but also may introduce inaccuracies. How-

ever, bulk and polaronic properties of rutile and anatase were compared with a vari-

ety of titanium and oxygen basis sets and found that the choice of ADMM basis set

has little influence. The choice of pFIT3/FIT9 yields similar results to pFIT3/FIT11,

suggesting that including polarisation ( f -)functions for titanium are largely unneces-

sary in these materials. Similarly, pFIT3/FIT9 gives similar results to FIT3/FIT9, also
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suggesting that polarisation (d-)functions for oxygen are not required. These tests sug-

gest that the choice of pFIT3/FIT9 is sufficiently accurate for the prediction of polaron

properties.

Another potential source of error is the truncation of exact exchange in the hybrid

functional beyond a cut-off radius Rc. The approach was to converge predicted bulk

properties with respect to Rc to mimic the PBE0 functional but with reduced compu-

tational cost. This approach yielded Rc = 6 Å. However, the effects of using smaller

cut-off values were also tested. While results obtained using Rc = 4 Å were not sig-

nificantly different, reduction of the cut-off to 2 Å led to over-stabilisation polarons,

absence of transferability between phases and predicted polaron properties inconsis-

tent with experiment. It is notable that empirical attempts to tune the amount of HF

exchange in the PBE0 functional to give a reasonable description of the band structure

of anatase TiO2 arrived at α = 0.125.228 This is very consistent with the value ob-

tained in this chapter from application of the GKT providing further support for the

approach.

The previous discussion (in Section 5.2) highlights that (small) electron polarons

are stable in rutile, but not in anatase. In addition, some evidence suggests hole po-

larons are more stable in anatase compared to rutile. This in agreement with both

experiment47, 190, 199 and other theory.46, 48, 193, 194 It was shown that the predicted band

gaps of 2.82 eV and 2.94 eV for rutile and anatase are in very good agreement with the

experimentally observed values of 3.0 eV and 3.2 eV. The rutile (-/0) electron polaron

CTL is found to be 0.4 eV below the CBM in this chapter, which is in agreement with

experimental data placing the level at 0.3 eV, 0.5 eV and 0.7 eV.47, 191, 192 It was high-

lighted that the rutile and anatase CTL data is also consistent with HSE06 findings.46

In addition, the trapping energies of -0.02 eV and -0.20 eV for rutile and anatase are

found to be in good agreement with HSE06. It was found that anatase and brookite

have very similar charge trapping properties, behaviour which has been seen experi-

mentally in Ref 190. Specifically, the two phases have much more delocalised electron

polarons compared to the rutile case. Experimentally, little information exists on pola-

ronic trapping in the phases TiO2(H), TiO2(R) and TiO2(B). Therefore, the predictions

shown are extremely valuable with regards to guiding future experimental work.
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5.8 Conclusion

It has been demonstrated that hybrid functionals coupled with the GKT gives predic-

tive capabilities with regards to localised charges in TiO2. The stability and properties

of small electron and hole polarons were assessed in various TiO2 phases. Further-

more, by fitting the fraction of exact exchange to reduce nonlinear behaviour of energy

with respect to occupation number of these polaronic states, a band gap differing from

experimental results only around 6% was obtained. This suggests that this approach is

not only capable of predicting polaron localisation properties, but also results in well-

behaved bulk crystal properties. In addition to this, it was shown that the fraction

of exact exchange α is transferable between phases. Using α = 0.115 along with the

tr-PBEα functional satisfies the GKT to within 0.08 eV for all phases. Parameters that

influence the key results, such as the ADMM basis set, were explored ensuring that

they are of sufficient quality. Work from this chapter suggests that the approach used

is of reasonable quality, inexpensive, transferable and should be easily extendable to

other metal-oxides capable of polaron formation.

Using this approach on the brookite, TiO2(H), TiO2(R) and TiO2(B) phases has

shown that intrinsic polaron formation is not unique to rutile and anatase. Unlike the

remaining phases, TiO2(H) and TiO2(R) display multi-site electron and hole polarons,

arising from to the unique nature of bonds between anions and cations. TiO2(B) ex-

hibits (small) hole polarons, but has shallow electron polaron states. While theoretical

exploration of brookite is scarce, EPR data suggests the phase capable of forming hole

polarons but not electron polarons, in agreement with findings shown here. Some-

what surprisingly, it is found that rutile is the only phase of titania which is incapable

of forming hole polarons. The techniques employed in this work have been shown

to be consistent with experimental data where available and transferable across all

of the TiO2 phases considered. Furthermore, the computational efficiency of the ap-

proach means it can be applied to more complex systems, such as surfaces, interfaces

and doped systems, to provide greater insight into the nature of charge trapping in

materials.
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CHAPTER 6

INTRINSIC DEFECTS IN TITANIA

Purely-electronic defects, such as small electron and hole polarons, were discussed in

the previous chapter (Chapter 5), where it was shown that the nature of these defects

is sensitive to both the level of theory and its parametrisation. In this chapter, the fo-

cus shifts to intrinsic point defects, such as vacancies and interstitials. Oxygen and

titanium defects are explored in both rutile and anatase, each with their thermody-

namically feasible range of charge states. The GKT is also assessed for each charge

state where possible. For most point defects, the tr-PBEα functional parametrisation

used here yields similar results to previous studies. However, several stable charge

traps relating to oxygen defects have been identified in this work, with many having

binding energies substantially larger than the self-trapped polaron cases.
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6.1 Introduction

The numerous applications of TiO2, most notably its rutile and anatase phases, which

include photocatalysis, superconductivity, tribocharging, magnetism and microelec-

tronics have been discussed in previous chapters.1–7 The change in electronic struc-

ture caused by point defects, such as oxygen vacancies, can give rise to trap states or

scattering sites, possibly hindering the movement of charges. Applications such as

photocatalysis rely on materials having particular properties to facilitate and enhance

their use. Such properties may include the absence of charge trapping or adequate

carrier concentrations. Intrinsic defects can also be used to dope and enhance a mate-

rial; oxygen vacancies in oxides such as TiO2 can release electrons into the conduction

band, increasing n-type carrier concentrations. In contrast, other intrinsic defects, such

as cation vacancies in metal oxides, may cause a reduction in n-type carrier concen-

trations. Studying these defects, and their impact on the electronic structure of the

underlying material, would provide a better understanding of a defective material’s

properties and how its applications will be affected.

6.2 Background

Oxygen vacancies in rutile

The behaviour of oxygen vacancies in rutile has been investigated in a number of

studies using DFT, DFT+U and hybrid functionals. The transition levels reported in

previous literature for this defect are shown in Table 6.1. There is broad consensus

that the V2+
O charge state is stable across a wide range of Fermi energies. In this charge

state, the vacancy causes a distortion of the surrounding crystal, pushing titanium ions

away, and oxygen ions toward, the vacancy site. A number of configurations for other

charge states have been identified in literature, including a closed-shell configuration

where excess charge localises in the vacancy and a lower-energy, open-shell, configu-

ration where excess charges form small polarons around the vacancy.229–231 An LDA

study (using a large supercell) finds delocalised charges (presenting as shallow gap

states) for V0
O, with a portion of charge located near the vacancy site.232 Interestingly,

if the experimental band gap is used instead of the calculated one, good qualitative

agreement can be seen between GGA and screened exchange hybrid data regarding

transition levels.233, 234 The range of charge states which are most thermodynamically
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stable varies even between similar methods (see Fig. 6.1, Table 6.1).231, 234, 235 Of note

is that the behaviour of oxygen vacancies in rutile is highly-dependent on defect con-

centration (and therefore supercell size).46 This may explain the discrepancy between

HSE data in Table 6.1.

Oxygen deficient (110) surfaces of TiO2 present an optical level peak at around

0.75 eV below the Fermi energy.236 Another study suggests this peak lies around 1.1 eV

below the band edge,237 giving some indication of the optical depth of this level. A

third study suggests that such a feature should instead be attributed to titanium in-

terstitials as it remains present even when vacancies are healed.238 Nevertheless, DFT

eigenstates cannot be directly attributed to experimental optical measurements as elec-

trons can excite into resonant or bound states above and below the conduction band

edge. EPR data has identified the V0
O and V1+

O charge states in rutile, which contains

Ti3+ centres adjacent to the oxygen vacancy site along the c direction.239, 240 For V0
O

the two centres were found to lie in a triplet (S = 1) configuration when illuminated

with 442 nm (2.81 eV) laser light. The first of the two bound electrons was released

at around 26 K (∼ 2 meV), highlighting that one electron is only loosely bound. This

low thermal activation energy suggests the defect essentially dopes the crystal n-type

with one electron per vacancy.

It should be noted that defects in materials tend to self-regulate, preventing exces-

sive n- or p-type doping through Fermi level pinning.241 The Fermi energy is generally

pinned at the intersection of donor and acceptor defects; under O-rich conditions the

Fermi energy is pinned at around 1.2 eV, as seen in Fig. 6.1. Under O-poor conditions,

this would correspond to an energy above the CBM, meaning both phases would dis-

play n-type characteristics typical of TiO2 samples. As a consequence, excessively

negative formation energies far from the pinned EF have little meaning.

Oxygen vacancies in anatase

Like rutile, the V2+
O charge state in anatase causes a distortion in the underlying crystal

with no excess charge present. Information provided in Chapter 5, as well as other the-

oretical and experimental studies, indicates that small electron polarons do not form in

bulk anatase.199, 235, 249 It follows that the V1+
O and V0

O solutions in anatase may differ to

those found in rutile as excess charges will not localise on sites far from the vacancy.

DFT+U reports suggest excess charges localise around titanium atoms nearest the

oxygen vacancy,46, 229, 250 while hybrid functionals predict charges localises inside the
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Ref Approach Parameters Size Gap States 2+/1+ 1+/0 2+/0

Rutile

231 HSE {0.20, 0.20} 72 3.1 2+ - - -

242 HSE {0.25, 0.20} 576 - 2+ - - -

243 LDA - 72 1.7 2+ - - -

233 GGA - 270 - 2+/0 - - 2.1

234 sX - 72 3.1 2+/0 - - 2.3

244 GGA+U {4.20, 5.25} 216 2.4 2+/0 - - 1.8

245 G0W0 - 72 3.1 2+/0 - - 2.8

235 HSE {0.25, 0.20} 192 3.4 2+/1+/0 2.6 3.0 -

246 GGA+U {3.25, -} 96 2.0 2+/1+ 1.6 2.1 -

246 GGA+U {3.25, 5.00} 96 2.7 2+/1+/0 2.4 2.7 -

Anatase

247 HSE {0.25, 0.20} 108 3.7 2+ - - -

248 LDA - 108 2.2 2+ 2.7 2.9 -

246 GGA+U {3.23, -} 108 2.5 2+/1+ 2.4 2.5 -

235 HSE {0.25, 0.20} 96 3.6 2+/1+/0 3.2 3.5 -

246 GGA+U {3.23, 5.00} 108 3.3 2+/1+/0 3.1 3.3 -

180 GGA+U {4.20, 5.25} 108 2.6 2+/1+/0 2.2 2.3 -

All energies are given in electron-volts

Table 6.1: Supercell sizes, calculated band gaps and defect transition levels (with respect to
the VBM) for a number of TiO2 oxygen vacancy studies. The parametrisation used for HSE
and DFT+U studies is provided as {UTi, UO} and {α, ω} for studies. The behaviour of the
Hubbard-U term strongly depends on the pseudopotential used, which can be found in the
appropriate reference. The screened exchange study used a Thomas Fermi screening length
of 2.15 Å−1. The most thermodynamically stable charge states for each study are also noted.
(Rutile only) Ref. 231 and Ref. 243 found only the (2+) charge state to be thermodynamically
stable within the band edges, however the open-shell localised solution was not used to calcu-
late the V0

O formation energy. Ref. 242 used a relatively large supercell, however the electron
localisation configuration was not reported. Ref. 233 did not find a localised solution, however
data extrapolated beyond the calculated band edges is in good quantitative agreement with
a screened-exchange (sX) hybrid functional study. (Anatase only) Ref. 246 shows two sets of
results for different DFT+U parametrisations. Ref. 247 found only the V2+

O charge state to be
stable.

vacancy site.46 Both approaches also find that the V0
O configuration exists in a singlet

state. A solution where one electron localises on a titanium ion near the vacancy and

another localises on a next-nearest titanium site is reported to be similar in energy to

the solution where two electrons localise on the nearest titanium sites.180 Studies per-

formed using the LDA do not find localised states, however this approach is known

to favour such solutions.248 Some studies did not report electronic configurations for

this defect, however all reported transition levels for this defect are shown in Table 6.1.

Oxygen vacancies on anatase (101) surfaces bind excess electrons to the defect site

as seen in STM data.47 The presence of this defect introduces a gap state roughly 1 eV
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Figure 6.1: Defect formation energies for rutile reproduced from a screened-exchange hybrid
functional study (left, Ref. 234) and a DFT+U study (right, Ref. 244). All energies were calcu-
lated using oxygen-rich chemical potentials (i.e. µO = 1

2 E[O2]).

below the CBM.251 Unlike rutile, surface oxygen vacancies in anatase are less stable

than bulk ones, allowing for migration of vacancies into the bulk.252 The migration

barrier for surface to subsurface migration is larger (0.6-1.2 eV) than bulk to bulk va-

cancy migration (0.2 eV).253 Livraghi et al find two key EPR signals in anatase micro-

crystals, one attributed to diffuse electrons in bulk anatase (g‖ = 1.962, g⊥ = 1.992)

and another, present in both chemically and thermally reduced samples, assigned to

reductive processes involving surface layers (g = 1.93).199 This information suggests

that a larger number of vacancies in anatase are located on surfaces, and those in the

bulk may be of a more diffuse nature. This picture is consistent with, and perhaps

explains, the n-type behaviour often seen in TiO2 anatase samples. More specifically,

this may explain why anatase has higher charge mobility than rutile.200, 254

Oxygen interstitials in rutile

DFT, DFT+U and hybrid functional studies of this defect in rutile suggest the inter-

stitial forms a bond with a lattice oxygen, with the two atoms in a planar configura-

tion, and causes a distortion in the surrounding crystal.234, 255, 256 As oxygen ions in

TiO2 have a formal charge of O2−, the addition of a neutral oxygen results in an O2−
2

molecule. A DFT+U study reports that a rotated configuration is lower in energy than
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Figure 6.2: Defect formation energies for anatase reproduced from a HSE06 hybrid functional
study (left, Ref. 247) and a DFT+U study (right, Ref. 180). All energies were calculated using
oxygen-rich chemical potentials (i.e. µO = 1

2 E[O2]).

a planar one.244 The most thermodynamically stable charge states for this defect are

reported to be the O0
i and O2−

i , with the O1−
i charge state having a higher formation

energy. There is good quantitative agreement between local DFT, hybrid functional

and DFT+U studies regarding defect formation energies (of the neutral case), with

two examples shown in Fig. 6.1.234, 244, 255, 256 Reported transition levels for this defect

are shown in Table 6.2. There is little mention of positive charge states for this defect

in literature.

Unfortunately experimental studies on this defect are few in number, however two

relevant studies have been identified. The first suggests that interstitial oxygen may

be the defect which causes a transformation from an n- to a p-type semiconductor

when oxygen pressure is increased near 1000◦.257 The second reports that improved

photocatalytic performance of TiO2 can be achieved by using a preparation that al-

lows for excess oxygen, however both anatase and rutile phases are present in these

samples.258

Oxygen interstitials in anatase

A DFT+U study reports that the range of thermodynamically stable charge states for

this defect are similar to the rutile case, with both forming O0
i and O2−

i .255 Of note

is that this study did not incorporate a Hubbard-U value on oxygen atoms, which
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Ref Approach Parameters Size Band gap States 2+/0 0/2-

Rutile

234, 259 sX - 72 3.1 0/2- - 1.4

256 GGA - 216 - 0/2- - 0.9

255 GGA+U {3.00, - } 24 - 0/2- - 1.3

244 GGA+U {4.20, 5.25} 216 2.4 0/2- - 1.6

Anatase

247 HSE06 {0.25, 0.20} 108 3.7 2+/0 0.8 -

260 LDA - 108 2.3 0 - -

180 GGA+U {4.20, 5.25} 108 2.6 0 - -

255 GGA+U {3.00, - } 24 - 0/2- - 1.5

All energies are given in electron-volts.

Table 6.2: System sizes, calculated band gaps and defect transition levels for a number of
TiO2 oxygen interstitial studies. The most thermodynamically stable charge states, approach
and parametrisation of the approach are also reported. Ref. 255 and Ref. 256 did not report a
calculated band gap. Many studies found the O1−

i charge state was less thermodynamically
stable than O2−

i at all Fermi energy values. (Anatase only) Ref. 180 and Ref. 260 find that only
the O0

i charge state is stable in anatase.

may have prohibited an investigation into localised positive charge states. The study

suggests the defect forms more easily in anatase than rutile and have similar transition

levels.255 Two studies conducted on this defect, using the LDA and DFT+U, found

only the O0
i charge state to be stable, as shown in Table 6.2.180, 260 Only one study, using

HSE, was found reporting positive charge states for this defect in anatase, however no

transitions to negative charge states were reported.247

It has been observed through PL that oxygen-rich anatase has a reduced band gap

compared to control samples.261 In addition, O-rich anatase has been reported to re-

main as anatase even when annealed at 900◦, a temperature that would usually trigger

an irreversible phase transformation to rutile.261 Core level spectroscopy data sug-

gests that O2 annealing of Nb-doped anatase compensates for the additional carriers

provided by doping by introduction of oxygen interstitials.262

Titanium vacancies in rutile

This defect in TiO2 is a p-type one that can introduce a number of holes into the crys-

tal. The neutral defect introduces four holes, each of which get filled as electrons are

added until none remain in the V4−
Ti charge state. A DFT+U study reports the opti-

mum configuration for the neutral defect to be four holes immediately surrounding

the defect site.244 One other study using the LDA indicates that oxygen ions move

away from the vacancy, while titanium ions move towards it.243 Further studies on
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this defect in rutile are scarce, however those available have their transition levels

shown in Table 6.3.

Prolonged oxidation of undoped TiO2 single crystals at high temperatures ( 75kPa

P(O2) at 1323 K for over 6000 hours) causes a reduction in conductivity over time as

expected.263, 264 As the (irreversible) rutile to anatase phase transition occurs at around

600◦, the remaining crystals are likely mainly composed of rutile. Strangely, perform-

ing the same experiment at lower temperatures (1123 K) causes an increase in conduc-

tivity of the material. This has been explained by increasing oxygen pressure required

to undergo an n–p mobility transition.265 Many of these effects have been attributed to

titanium vacancy formation propagating from the surface to the bulk over prolonged

periods of time.263 However, this is in contrast with data from Fig. 6.1, which implies

that p-type TiO2 forms oxygen interstitials much more easily than titanium vacancies.

A large body of work suggests that TiO2 becomes a majority p-type conductor when

in a strongly oxidised regime.264–267

Titanium interstitials in rutile

This n-type defect donates four electrons into the crystal in its neutral charge state. The

reported transition levels for this defect are fairly wide-ranging, as seen in Table 6.4.

In addition, the most thermodynamically stable charge states also vary even between

similar approaches. A DFT+U study suggests excess charges do not localise on the

defect itself but on nearby titanium ions, behaving like a weakly bound polaron.244

Another DFT+U study found a similar result,229 albeit with a small amount of charge

on the interstitial. A HSE06 study reports the contrary, indicating that the Ti3+
i and

Ti2+
i charge states result in defect-bound electrons that sit in a (closed-shell) singlet

configuration.235 Two hybrid studies, using screened exchange and B3LYP, suggest

the interstitial ion only traps one electron, with the remaining three being donated

into the crystal or around the defect site.234, 268 Another DFT+U study reports similar

findings to Refs 268 and 234.246

Experiments using photoelectron spectroscopy (PES) and STM have indicated that

a gap state 0.85 eV below the Fermi energy is mostly likely associated with interstitial

titanium atoms.238 This feature, which has previously been associated with bridging

oxygen vacancies, was shown to be present even when the so-called bridging oxygen

vacancies were healed. Interestingly, it is found that these interstitial atoms diffuse to

the surface when a sufficient amount of oxygen is present. The re-emergence of this
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Ref Approach Parameters Size Gap States 4-/3- 4-/2- 3-/2- 2-/0

Rutile

243 LDA - 72 1.7 4- - - - -

244 GGA+U {4.20, 5.25} 216 2.4 4-/2-/0 - 0.6 - 0.4

Anatase

260 LDA - 108 2.3 4- - - - -

247 HSE {0.25, 0.20} 108 3.7 4-/2-/0 - 1.2 - 0.9

180 GGA+U {4.20, 5.25} 108 2.6 4-/3-/2-/0 1.5 - 1.4 0.8

All energies are given in electron-volts.

Table 6.3: Supercell sizes, calculated band gaps Eg and defect transition levels for a number of
studies on the TiO2 titanium vacancy.

feature beneath the Fermi energy occurs after annealing at 400 K. It has been suggested

that this occurs due to Ti atoms reacting with surface adsorbed oxygen, causing deeper

Ti atoms to migrate into interstitial sites closer to the surface. This occurrence has

been noted by other authors previously.269–271 EPR data on this defect in rutile finds

that in particularly non-stoichiometric samples a signal can be found (g1 = 1.9780,

g2 = 1.9746, g3 = 1.9414),272, 273 indicating a paramagnetic species. Other EPR data

(obtained at 77 K) assigns two signals to surface and near-surface sites (dehydrated

surface: g1 = 1.970, g2 = 1.961, g3 = 1.948 and hydrated surface: g1 = 1.973, g2 =

1.961, g3 = 1.948), and a negligible amount of signal associated with interstitial Ti3+

(g1 = 1.978, g2 = 1.975, g3 = 1.942).190 It has been argued by other authors that

this final signal is actually associated with regular lattice sites and not interstitials,274

raising a question as to whether bulk titanium interstitials can be detected through

EPR. As indicated by HSE data (see previous paragraph), it may be that this state is

EPR silent.

Titanium vacancies in anatase

Like the rutile case, there are very few studies on this defect, as seen in Table 6.3. A

GGA study using a 48 atom supercells reports that the neutral form of this defect has a

magnetic structure with total spin 4µB. Work using DFT+U suggests that excess holes

generated by this defect sit on oxygen ions near the vacancy site, similar to a DFT+U

report in rutile.180, 244

An experimental study reports Ti deficient anatase can lead to improved photocat-

alytic activity and high charge mobility through p-type conduction.275 p-type conduc-

tion was verified in this case through Hall effect measurements, which show a positive
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Ref Approach Size Gap Stable 4+/3+ 4+/0 3+/2+ 3+/1+ 2+/1+ 2+/0 1+/0

Rutile

233 GGA 270 - 4+ 2.0 - 2.0 - 2.2 - 2.2

234 sX 72 3.1 4+/0 - 2.8 - - - - -

246 GGA+U 96 2.7 4+/3+/2+ 2.3 - 2.6 - 2.7 - 2.8

246 GGA+U 96 2.0 4+/3+/2+/1+ 1.8 - 1.8 - 2.0 - 2.0

244 GGA+U 216 2.4 4+/3+/1+/0 1.5 - - 1.8 - - 2.1

235 HSE 192 3.4 4+/3+/2+/1+/0 1.9 - 2.3 - 2.8 - 3.2

Anatase

260 LDA 108 2.3 4+ - - - - - - -

246 GGA+U 96 2.5 4+/3+ 2.3 - 2.5 - 2.5 - 2.7

246 GGA+U 96 3.3 4+/3+/2+ 2.9 - 3.2 - 3.3 - 3.6

247 HSE 108 3.7 4+/3+/2+ 3.4 - 3.7 - 3.8 - 4.0

235 HSE 96 3.6 4+/3+/2+/0 2.3 - 2.9 - - 3.3 -

All energies are given in electron-volts.

Table 6.4: Supercell sizes, calculated band gaps Eg and defect transition levels for a number
of TiO2 titanium interstitial studies. (Anatase only) One further study DFT+U study (Ref. 180)
with transition levels (4+/1+) = 2.5 eV and (1+/0) = 2.6 eV was not included in the table due
to space restrictions. The transition levels can instead be seen in Fig. 6.2.

Hall coefficient. The experimental data is in contrast with HSE, which predicts that the

Fermi energy is still 2.3 eV above the valence band even under extremely O-rich condi-

tions.247 The experimental study also reports room temperature ferromagnetism and

an EPR signal at g = 1.998.275 The absence of oxygen interstitials and presence of

titanium vacancies was argued through comparison of X-ray diffraction (XRD) data,

which shows a change in lattice constants, with DFT relaxed lattice constants of de-

fective supercells. Use of positron annihilation indicates a longer lifetime of positrons

compared to the defect-free bulk, which can be attributed to a reduced electron density

and larger number of vacancies.

Titanium interstitials in anatase

As with the rutile case, this defect in anatase has a wide range of reported transition

levels. In anatase, they even differ between studies using the same functional, as seen

in Table 6.4. HSE06 data implies this defect localises two electrons near the defect site

and delocalises the remaining two into the conduction band.235 Two DFT+U studies

give a different picture, with one electron localised around the interstitial site (form-

ing Ti3+) and the remaining three localising around the interstitial.180, 246 Calculations

using the LDA approach predict that the four excess electrons are donated into the

conduction band,260 however the LDA is known to favour delocalisation of states.
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One EPR study on this defect found Ti3+ centres in bulk anatase, however it was

not possible to distinguish this defect from substitutional Ti3+.276 More recent studies

have noted that an interstitial Ti3+ centre has yet to be unambiguously identified using

EPR.199 As mentioned previously, the oxygen vacancy in anatase may also give rise

to Ti3+ centres near surfaces, which may make assigning EPR signals to this defect

directly difficult.

All defects

Aggregating the studies referenced above, a clouded picture of charge localisation be-

haviour in TiO2 emerges. The optimal configuration of charges surrounding point

defects varies wildly across the theoretical techniques surveyed above, with most rea-

sonable configurations identified in at least one study. Using oxygen vacancies in

anatase as an example, the neutral charge state is found to have charges that either

reside within the vacancy site, on neighbouring titanium atoms to the vacancy, or its

next-nearest neighbours. Supercells used in most studies tend to be small, and may

suffer from image charge interactions. Furthermore, using smaller cells may prohibit

finding the optimal configuration of charges surrounding a defect, artificially raising

defect formation energies. Experimental techniques in some cases cannot directly as-

sign particular measurements to certain defects, confusing the picture further. Worse

still, certain measurements may be misassigned to defects, as seen in some studies

above. This highlights the urgent need for predictive theoretical techniques to be em-

ployed, with the aim of guiding future experimental and theoretical work.

As noted by previous authors, the n-type behaviour of TiO2 has previously been

attributed to titanium interstitial defects,235 however recently it has emerged that these

play more of a role in heavily reduced crystals, while oxygen vacancies dominate the

mildly reduced regimes. However, this picture is at odds with a large number of

theoretical approaches, most of which predict excess charge binds near defect sites.

As self-trapped electron polarons have been shown to be only mildly stable at zero

temperature in bulk rutile and anatase (both experimentally and theoretically), the

behaviour of point defects may play a part in explaining why anatase has enhanced

n-type behaviour over rutile. In particular, the four orders of magnitude larger con-

ductivity seen in Nb-doped anatase compared to Nb-doped rutile may be explained,

at least in part, by the behaviour of intrinsic point defects.
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Defect Symbol Charge states

Oxygen interstitial Oi O2+
i O1+

i O0
i O1−

i O2−
i

Oxygen vacancy VO V0
O V1+

O V2+
O

Titanium interstitial Tii Ti0i Ti1+i Ti2+i Ti3+i Ti4+i

Titanium vacancy VTi V0
Ti V1−

Ti V2−
Ti V3−

Ti V4−
Ti

Table 6.5: The symbol and explored charge states for all intrinsic defects in rutile and anatase
are shown.

6.3 Methods

All calculations in this section were performed using the hybrid functional implemen-

tation in CP2K along with GTH pseudopotentials.144, 148, 209–211, 213 As CP2K only sam-

ples the Γ-point in reciprocal space, crystal properties were converged with respect to

system size instead of k-point mesh size. The tr-PBEα hybrid functional, discussed in

previous chapters, was used with α = 0.115 and Rc = 6.0 Å. The primary basis sets

used were of triple-ζ quality and included valence and polarisation exponents.212 The

FIT3 and pFIT3 ADMM basis sets, provided in Ref. 277, were used for titanium and

oxygen. In Chapter 5, testing of the above parameterisation was done to ensure that

the bulk and polaron properties of rutile and anatase were well-converged. For rutile

and anatase, 4× 4× 6 and 5× 5× 2 expansions of the conventional unit cells were

used to construct the supercells used. These contain 576 and 600 atoms, respectively.

6.3.1 Transition levels

The defects explored in subsequent sections, and their possible charge states, are shown

in Table 6.5. The trapping energy Et for a charge localised around an intrinsic defect

Xq can be calculated as

Et[Xq] = E[Xq]− E[H0] +


E[H−1]− E[Xq−1], for n-type defects

E[H+1]− E[Xq+1], for p-type defects
(6.1)

which provides a measure of trap stability by comparing the energy of a trapped

charge near a defect E[Xq] to one delocalised in the bulk E[H±1] 1. Using n-type de-

fects as an example, it can be shown that the trapping energy Et is equivalent to the

charge transition levels with respect to the band edges between different charge states.

1 E[H0] is the total energy of the host (i.e. defect free bulk) in a neutral cell, as defined in Chapter 2.
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At the transition level between defects Xq and Xq−1, the two defect formation energies

are equal,

[
E f [Xq]− E f [Xq−1]

]
EF=E?

F

= 0, (6.2)

and have the same Fermi energy E?
F. The transition between the pristine bulk and a

delocalised electron in the pristine bulk, which occurs near the conduction band edge

ECBM
F , also equals zero

[
E f [H−1]− E f [H0]

]
EF=ECBM

F

= 0. (6.3)

Both energy components of the above (Eqn. 6.3) are individually zero as well; the

defect formation energy of the defect-free bulk is zero by definition, as is the defect

formation energy of a delocalised bulk, band-like, electron when EF = ECBM
F . The

sum of Eqn. 6.2 and Eqn. 6.3 is therefore

[
E f [Xq]− E f [Xq−1]

]
EF=E?

F

+
[

E f [H−1]− E f [H0]
]

EF=ECBM
F

= 0. (6.4)

Expanding the formation energies (using Eqn. 2.57) gives

(
E[Xq] + E[H−1]

)
︸ ︷︷ ︸

Reactants

−
(

E[Xq−1] + E[H0]
)

︸ ︷︷ ︸
Reagents

= ECBM
F − E?

F = Et[Xq] (6.5)

where it has been assumed that the chemical potentials of atoms are the same for all

formation energies. The LHS of Eqn. 6.5 can be thought of as the energy released or

gained through the reaction

E[Xq] + E[H−1]
 E[Xq−1] + E[H0] (6.6)

which is equivalent to a trapping energy for systems containing crystallographic de-

fects.
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Charge state |q| = 1 |q| = 2 |q| = 3 |q| = 4

Rutile correction 0.003 0.011 0.024 0.043

Anatase correction 0.015 0.059 0.133 0.236

Table 6.6: The size of image charge corrections in eV for rutile and anatase using the Lany-
Zunger scheme.

Defect O interstitial O vacancy Ti interstitial Ti vacancy

Rutile correction 0.016 -0.005 0.064 -0.052

Anatase correction 0.012 -0.007 0.054 -0.047

Table 6.7: Potential alignment corrections (in eV) for each defect. These were calculated by
comparing the bulk electrostatic potential to the geometrically unrelaxed and uncharged de-
fect, as described in Ref. 278.

6.3.2 Chemical potentials

All defect formation energies are calculated under oxygen-rich chemical potentials,

meaning the chemical potential of oxygen µO and titanium µTi atoms are given by

µO =
1
2

E[O2] (6.7)

µTi = E[TiO2]− E[O2] (6.8)

where E[TiO2] in this case is the formation enthalpy per formula unit of TiO2. For

oxygen-poor conditions, chemical potentials are chosen at the TiO2/Ti2O3 equilib-

rium,234, 260

µTi + 2µO = E[TiO2] (6.9)

2µTi + 3µO = E[Ti2O3]. (6.10)

Going from O-rich to Ti-rich conditions, oxygen and titanium chemical potentials shift

by ∆µO = 3.80 eV and ∆µTi = −7.61 eV for rutile. In anatase, the shifts are ∆µO =

3.97 eV and ∆µTi = −7.93 eV.

6.3.3 Image charge correction

As charge states relating to the titanium defects can be high (|q| = 4), corrections to

the total energy must be made to account for periodic image interactions. The Lany-

Zunger implementation of the Makov-Payne corrections straight-forwardly provides
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a third order correction.184, 278, 279 The scheme provides an energy correction to charged

systems ∆Eic that is given by

∆Eic =
q2αM

2εL
· f LZ (6.11)

f LZ = 1− csh

(
1− 1

ε

)
(6.12)

where αM is the Madelung constant, which only depends on the shape of the cell.184, 278

The dielectric constant ε should equal the high-frequency one ε∞ when only electronic

relaxations are considered. If ionic relaxations take place, the static constant should

instead be used instead. In the above correction, L is the distance between defects and

csh is a shape factor that depends on the size of the cell.

As dielectric constants cannot be directly obtained from CP2K at present, these

quantities were instead calculated in VASP for a PBEα hybrid functional with α = 0.115.

This will naturally cause an error, as the dielectric response of electrons and ions in

these two DFT implementations will differ. However, the error in ε will not signifi-

cantly change the image charge correction. To illustrate this, image charge corrections

were calculated using LDA and HSE06 dielectric constants. For the |q| = 4 case, the

largest charge considered, the difference in Eic was found to be < 0.01 eV in anatase.

This same difference was also found to be 0.03 eV in rutile. This highlights that use of

a dielectric constant from VASP will not significantly impact defect formation energies.

For rutile, the calculated dielectric constants (ε∞
a , ε∞

c , εa, εc) were found to be (6.90,

8.41, 224.6, 328.2). In anatase, these were (6.48, 6.11, 49.3, 28.9). The subscripts a and

c correspond to the two inequivalent lattice vector directions. The associated image

interaction corrections for are shown in Table 6.6.

6.3.4 Eigenvalue correction

Calculations involving a charged supercell include an error contained within eigen-

values that is proportional to the total energy error. With increasing system sizes, the

change in eigenvalue energies corresponding to localised states can be attributed to

two factors. First, an increase in the degrees of freedom, allowing the localised charge

to extend further into the crystal. Second, an electrostatic interaction between localised

states in periodic cells. While the first change cannot be accounted for straightfor-

wardly using a post-hoc correction, the second can be approximated reasonably well.

In Appendix C, we show for the case of an oxygen molecule in a large periodic box
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Figure 6.3: Electrostatic potentials for the oxygen interstitial defect in rutile (left) and anatase
(right). The average electrostatic potential across cell slices is shown along the three crystallo-
graphic directions. For each direction and phase, three electrostatic potentials are compared:
the difference between bulk and geometrically relaxed interstitial defect (orange), bulk and ge-
ometrically unrelaxed defect cell (blue) and the potential for only an oxygen atom in the same
sized box (green). The smoother (green and blue) lines correspond to potentials used in the
correction scheme proposed by Durrant et al (Ref 278). The Lany-Zunger potential alignment
correction (Ref 279) often relies on a less smooth potential (yellow lines above).

that the correction (in hybrid DFT) is of the form

εic = ε− 2
q

∆Eic (6.13)

where εic and ε are the corrected and uncorrected eigenvalues. This correction matches

the form used in Ref 280, but without a potential alignment correction included. Ap-

plying the same correction to the V1+
O defect in MgO, an F-centre defect, results in ideal

eigenvalue scaling with system size (also shown in Appendix C).

6.3.5 Potential alignment correction

In periodic DFT calculations, the average electrostatic potential is usually set to zero.

When calculating defect formation energies, this can cause issues as the bulk and de-
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(a) (b)

Figure 6.4: Illustrated is a portion of the rutile TiO2 crystal with an oxygen vacancy present.
Spin density isosurfaces for non-paired spins are shown for V1+

O (a) and V0
O (b) charge states.

Spin density isosurfaces are set at 0.01 a−1
0 .

fective cells’ energies may have different references. The Lany-Zunger potential align-

ment procedure calculates a total energy correction to account for this using

Vq/b(r) = Vq(r)−Vb(r)
∣∣
rfar

(6.14)

which compares the bulk electrostatic potential Vb(r) to the defect potential Vq(r). For

the defect potential, a region far from the defect is used, allowing the defect cell’s

bulk-like region to align to the true bulk. As a result, the energy correction can vary

depending on how and where the bulk-like region is defined. Durrant et al argue that

use of Eqn. 6.14 corrects both the potential alignment and image charge interaction,

meaning when used in conjunction with Eqn. 6.12 the image interaction correction

is double-counted.278 Instead, they propose that the potential alignment correction

should be performed by comparing the defective, geometrically unrelaxed, and un-

charged electrostatic potential to the defect-free bulk one. In their paper, they argue

a key component of potential alignment is adding and removing atoms to periodic

cells. As seen in Fig. 6.3, this approach removes much of the variation in the electro-

static potential due to ionic relaxation. Durrant et al also find that this component of

potential alignment can be approximated by the electrostatic potential of a cell with

just the atom relating to the defect in the simulation cell, as shown in Fig. 6.3.278 The

size of the potential alignment corrections used is given in Table 6.7.

Additional information can be calculated from the outputs of ab initio calculations,
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such as optical gaps or shallow defect corrections, using the sumo package.281 This

is currently only available for calculations using VASP, although there are plans to

include other ab initio codes to this package.

6.4 Oxygen defects

Vacancies in rutile

The presence of an V2+
O defect in rutile causes a distortion of the lattice, moving nearby

oxygen atoms towards the vacancy site and titanium atoms away from it. This is il-

lustrated in Fig. 6.4. As self-trapping polarons can form in rutile, the excess electron

present in the V1+
O charge state can localise in a number of locations in the cell. The

most stable localised configuration was found to be one where the electron is in the

vicinity of the oxygen vacancy, as shown in Fig. 6.4. A fully delocalised configuration

is found to be 0.1 eV higher in energy than the most stable localised one. The V2+
O /V1+

O

transition level for this defect is found to be 0.12 eV below the CBM, suggesting that

oxygen vacancies are a trapping site for excess electrons. For the V0
O charge state, the

most stable configuration is also one where two electrons are localised in the vicinity

of the defect, shown in Fig. 6.4. A change in the spin configuration of the two charges

does not cause a significant change in energy, with the singlet and triplet configura-

tions differing by only a few meV. The V1+
O /V0

O transition level is 0.03 eV below the

CBM, indicating that the first localised charge is much more strongly bound than the

second. An V2+
O configuration with two delocalised electrons is found to be 0.13 eV

higher in energy than the localised V0
O configuration, confirming that a delocalised

configuration is unfavourable. These energies are much larger than the polaron bind-

ing energy (found in Chapter 5), which was -0.02 eV. Fig. 6.5 shows p-type conditions

would favour the V2+
O charge state, while n-type conditions will produce mainly the

V0
O charge state.

Interstitials in rutile

Previous studies have identified the optimal configuration for O0
i , O1−

i and O2−
i charge

states in rutile, however the O1+
i charge state has not been reported yet in litera-

ture. Calculated charge isosurfaces and atomic configurations are shown are shown in

Fig. 6.6 for the calculated most stable configurations of all charge states. The neutral

O0
i defect displaces, and forms a bond with, a lattice oxygen, causing an O2−

2 pair to
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Figure 6.5: The variation in defect formation energy with Fermi energy for the lowest energy
configurations of each charge state is shown for the oxygen vacancy (left) and oxygen intersti-
tial (right) defects in rutile. The dashed vertical black and blue lines show the calculated and
experimental CBM.

(a) (b) (c)

Figure 6.6: (Upper) Structure and spin density isosurfaces (where unpaired-spins are present)
for O1+

i (a), O0
i (b) and O1−

i (c) charge states of the oxygen interstitial defect in rutile. (Lower)
The Crystal structure and isosurfaces for the εN(N) and εN−1(N) orbitals are shown for the
O2−

i charge state in rutile. The HOMO has very few contributions which lie spatially on the
interstitial defect site, while the following occupied orbital does.

form. The midpoint of the O2−
2 bond lies near the defect-free lattice oxygen site. The

atoms surrounding the defect are also distorted as a consequence. The O1+
i and O1−

i
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(a) (b)

Figure 6.7: Isosurfaces and structures for the anatase V2+
O (a) and V1+

O (b) oxygen vacancy
defect.

charge states are found to have excess charge localised to the defect site. The addition

of an electron (to O0
i ) pushes the two oxygen atoms further apart by 0.43 Å, while the

addition of a hole moves them closer together by 0.09 Å. The trapping energies for

O1−
i and O1+

i are found to be -0.54 eV and -0.46 eV, indicating that these are stable

traps. The O2−
i charge state does not form localised solutions, however it can form

spontaneously under n-type (and O-rich) conditions in rutile. This defect pushes the

oxygen pair further apart, making the bond length 0.68 Å longer than the V0
O con-

figuration. Interestingly, this defect produces no gap states as its two highest-energy

orbital eigenvalues lie beneath the VBM, as shown in Fig. 6.6. With reference to the

CBM, it can be seen that the O1−
i /O2−

i transition is much larger than the O0
i /O1−

i tran-

sition, making this a negative-U defect.282 As seen in Fig. 6.5, the O1−
i charge state is

not thermodynamically stable compared to other defects. The previously unreported

O1+
i configuration is found to be the most thermodynamically stable defect under p-

type conditions.

Vacancies in anatase

The positively charged V2+
O defect in anatase, whose structure is shown in Fig. 6.7,

causes a distortion in the underlying crystal as in the rutile case. While a localised

solution can be found for the V1+
O charge state, a delocalised one, shown in Fig. 6.7, is

0.52 eV lower in energy. The lowest energy V0
O configuration explored was one with

two charges delocalised. This solution was found to be 0.47 eV lower in energy than
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Figure 6.8: Variation of defect formation energy E f against Fermi energy EF in anatase under
O-rich conditions for the oxygen vacancy defect (left) and oxygen interstitial defect (right).

one with a single charge localised and 0.95 eV lower in energy than a localised singlet

configuration in the vicinity of the defect. This suggests that the behaviour of oxygen

vacancies in anatase is fundamentally different to the rutile case, as oxygen vacancies

(in the bulk) do not appear to be a prominent source of electron trapping. Fig. 6.8

shows that all transition levels for this defect lie close to the CBM. For most Fermi

energy values, the V2+
O defect is most thermodynamically stable.

Interstitials in anatase

The range of stable charge states for this defect goes from -2 to +2, as illustrated in

Fig. 6.8. The calculated lowest energy structures and molecular orbital isosurfaces are

shown in Fig. 6.9 for each charge state. With the exception of the neutral charge state,

all oxygen interstitial defects are made more stable by localising excess charges near

the defect. Similar to the rutile case, the added oxygen atom displaces a lattice oxygen,

leaving a bonded O2−
2 unit. Adding an electron to the crystal increases the oxygen-

oxygen bond length to 1.91 Å, making it 0.46 Å longer than the neutral configuration.

Adding a second electron increases this distance to 2.16 Å, which is comparable to the

titanium-oxygen bond distance in bulk TiO2. Adding one hole to the O2−
2 pair reduces

the bond length by 0.08 Å. The addition of a second hole causes the atomic configu-

ration to change entirely. The resulting structure is one where the interstitial oxygen

is bonded to two lattice oxygens, forming O2−
3 as seen in Fig. 6.9. Unlike the rutile

case, all charged oxygen interstitial defects leave a gap state present. Under p-type

(and O-rich) conditions, the O2+
i defect can form spontaneously, while n-type condi-
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(a) (b) (c)

(d) (e)

Figure 6.9: Structures and molecular orbital isosurfaces are shown for the thermodynamically
stable range of charge states for the oxygen interstitial defect in anatase. Isosurfaces are con-
structed for the 0.05 a−1

0 value. The orbitals used to construct these isosurfaces are the LUMO
(a), HOMO (c), LUMO (d) and HOMO (e). The HOMO up- and down-spin isosurfaces for the
O2−

i charge state only change in phase, so only the up-spin is shown here. The same is true for
the LUMO up- and down-spin isosurfaces in O2+

i .

tions can produce O2−
i . For charge states with an even number of electrons, a spin

singlet is formed, while odd numbered systems form a spin doublet. The transition

levels for the charges surrounding the interstitial defect are much larger than polaron

self-trapping energies calculated for anatase in Chapter 5.

6.5 Titanium defects

Vacancies in rutile

Neutral titanium vacancies in rutile are a p-type defect, donating four holes into the

crystal. The V4−
Ti charge state of this defect contains four excess electrons that fill the

holes created by the vacancy, resulting in a vacancy and an accompanied distortion

of nearby ions in the nearby crystal. This is illustrated in Fig. 6.10. The addition of a

hole to this configuration results in V3−
Ti , whose calculated lowest energy configuration

places a hole localised in the vicinity of this defect. The addition of one and two more
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(a) (b) (c)

(d) (e)

Figure 6.10: Structures and molecular orbital isosurfaces are shown for the thermodynami-
cally stable range of charge states for the titanium vacancy defect in rutile. Isosurfaces are
constructed for the 0.05 a−1

0 value. The charge states of the above isosurfaces are -4 (a), -3 (b),
-2 (c), -1 (d) and 0 (e).

holes results in a similar configuration, with all three holes localised near the defect as

shown in Fig. 6.10. In the V3−
Ti , V2−

Ti and V1−
Ti cases all holes are mainly localised near

on oxygen ions directly near the vacancy site. The addition of a fourth hole results in

a change in configuration, with holes localising on oxygen ions near, but further along

from the defect site, as illustrated in Fig. 6.10. The transition levels for these defects are

shallow, but still sizable, as seen in Fig. 6.12. The V4−
Ti /V3−

Ti transition lies 0.16 eV above

the VBM, and the V3−
Ti /V2−

Ti transition is 0.1 eV above the VBM. No other charge states

are found to be stable above the valence band edge. Other tested V0
O configurations

were higher in energy. One configuration placed charges mainly on two sites and was

0.08 eV higher in energy. A configuration where charges were localised on oxygen ions

immediately near the titanium vacancy site was 0.62 eV higher in energy. Of note is

that under p-type O-rich conditions, the formation energy of this defect is substantially

higher than any oxygen defect.
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(a) (b) (c)

(d) (e)

Figure 6.11: Structures and molecular orbital isosurfaces are shown for the thermodynami-
cally stable range of charge states for the titanium interstitial defect in rutile. Isosurfaces are
constructed for the 0.05 a−1

0 value. The charge states of the above isosurfaces are +4 (a), +3 (b),
+2 (c), +1 (d) and 0 (e).

Interstitials in rutile

The neutral titanium interstitial Ti0
i is an n-type defect, donating four electrons into

the crystal. In its Ti4+
i charge state the defect causes a distortion in the surrounding

crystal as seen in Fig. 6.11. The most favourable Ti3+i and Ti2+
i charge state configura-

tions have one and two electrons localise directly on the defect site, as seen in Fig. 6.11.

In the Ti2+i charge state, the additional electrons sit in a singlet configuration. The in-

terstitial defect sits in an octahedral configuration, bonding to six nearby oxygen ions.

Two of each of the surrounding oxygen ions have the same bond length to the inter-

stitial, lying 1.86 Å, 1.93 Å and 2.04 Å away from the ion. The additional electron in

the Ti3+i charge state changes these same lengths change to 1.89 Å, 2.02 Å and 2.03 Å.

In the Ti2+i charge state changes these lengths to 1.91 Å, 2.03 Å and 2.04 Å. The tran-

sition levels for these defects are quite shallow, lying 0.16 eV Ti4+
i /Ti3+

i and 0.10 eV

Ti3+
i /Ti2+

i above the valence band edge. From 0.1 eV to the calculated valence band

edge, only the Ti2+
i charge state is stable.
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Figure 6.12: Calculated formation energies for the titanium vacancy (left) and titanium inter-
stitial (right) defects in rutile for a number of charge states. (Left, inset) A magnified version
of the large left figure near the valence band edge. The V4−

Ti /V3−
Ti and V3−

Ti /V2−
Ti transitions

are 0.16 eV and 0.10 eV above the valence band edge. (Right, inset) A magnified version of
the large right hand figure, focusing near the calculated conduction band edge (2.81 eV). The
Ti4+i /Ti3+i , Ti3+i /Ti2+i and Ti2+i /Ti1+i transitions are at 2.65 eV, 2.69 eV and 2.81 eV above the
valence band edge.

(a) (b) (c)

(d) (e)

Figure 6.13: Structures and spin density isosurfaces are shown for the thermodynamically sta-
ble range of charge states of the titanium vacancy defect in anatase. Isosurfaces are constructed
for the 0.05 a−1

0 value. The charge states of the above isosurfaces are -4 (a), -3 (b), -2 (c), -1 (d)
and 0 (e).

Chapter 6 Intrinsic defects in titania



120 6.5. Titanium defects

0 1 2 3 4

CBM
(Exp)

CBM
(This work)-6

-4

-2

0

2

4

6

8

0 1 2 3

Figure 6.14: Calculated formation energies for the titanium vacancy (left) and titanium inter-
stitial (right) defects in anatase for a number of charge states.

Vacancies in anatase

The neutral titanium vacancy in anatase introduces four holes into the crystal, sim-

ilar to the rutile case, which get filled as electrons are added into the crystal. As

self-trapped holes can form in anatase, it is anticipated that these charges may be-

have differently to the rutile case. In anatase, these holes are found to localise around

the titanium defect site on nearby oxygen atoms, as shown in Fig. 6.13. All charge

states with excess charge are found to be much more stable with spins aligned in

parallel. In all cases where there is more than one hole present, maximising the to-

tal spin of localised charges gives solutions which are 0.11 eV to 0.12 eV more stable

than configurations which minimise spin. This may partially explain experimental

data which shows room temperature ferromagnetism in titanium deficient anatase.275

It can be seen from Fig. 6.13 that the transition levels associated with this defect are

much deeper than in the rutile case. This difference in behaviour of the two phases

shows a trend similar to the self-trapping polaron picture, which is expected as holes

localise much more easily in anatase than rutile.

Interstitials in anatase

This defect in anatase behaves differently to the rutile case, with delocalised electron

configurations being more favourable than localised ones. In the Ti3+
i case, which

contains one excess electron, the localised configuration is found to be 0.16 eV less

stable than the delocalised one. Localised charge configurations could not be found
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for all other charge states other than Ti3+
i . As seen in Fig. 6.14, all charge states have

shallow transition levels, lying very close to the CBM.

6.6 Assessment of Koopmans’ theorem

Compliance of Koopmans’ condition is now assessed for charges localised around the

defects discussed in this chapter. In Chapter 5, deviation from linearity was found to

be 0.08 eV at most for small electron and hole polarons across several TiO2 phases.

It can be seen from Table 6.8 that the condition is fulfilled to this degree in 12 of 21

cases. Generally, the GKT is better fulfilled in oxygen defects compared to titanium

ones. It can also be seen that different charge states of the same defect have quite

different nonlinearities. This implies that different values of α should be used for dif-

ferent charge states. While such an approach may be used to assess the localisation

properties of defects, it would not be possible to directly compare calculated defect

formation energies. In Table 6.8, a positive non-linearity indicates that lower values

of α would satisfy Koopmans’ condition, while negative values suggest larger α val-

ues. For certain defects, such as the titanium vacancy, it may be the case that charges

delocalise before the GKT is satisfied as seen in Chapter 5.

For the oxygen vacancy in anatase, optimising α for each charge state will likely

yield localised defect states that are still metastable. Earlier it was found that localised

solutions for the V0
O defect are 0.95 eV less favourable than delocalised solutions. The

V0
O charge state would require lower values of α, which in turn would reduce the

favourability of the localised solution even more. For the V1+
O charge state, a higher

value of α is required. However, data from Chapter 5 suggests that increasing α by

2% increases nonlinearity ξ by around 0.09 eV and increasing trapping energies by

a similar amount. As delocalised solutions were more favourable by 0.47 eV (with

α=0.115) for V1+
O , this indicates that the localised solution in anatase will be around

0.3 eV higher in energy than a delocalised solution. The implication of this data is

that (for reasonable values of α) localised electrons around oxygen vacancies in bulk

anatase are much more diffuse than in bulk rutile.

6.7 Comparison of defect formation energies

Fig. 6.15 shows defect formation energies under both titanium and O-rich conditions

for the previously discussed defects. It can be seen that the formation energies of VO
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Defect q/q′ Rutile Anatase Defect q/q′ Rutile Anatase

VO 1+/2+ -0.02 -0.12 Tii 3+/4+ -0.06 -0.02

VO 0/1+ +0.07 +0.16 Tii 2+/3+ -0.12 –

Oi 2+/1+ - +0.02 VTi 3-/4- +0.30 +0.08

Oi 1+/0 +0.04 -0.05 VTi 2-/3- +0.23 +0.12

Oi 1-/0 +0.01 -0.13 VTi 1-/2- +0.34 +0.05

Oi 2-/1- - -0.06 VTi 0/1- +0.05 +0.22

Table 6.8: Koopmans compliance for rutile and anatase defects discussed in this chapter. The
nonlinearity ξ (see Eqn. 5.1) shown for each case for the fraction of exact exchange α = 0.115.
The charge states of E(N) and E(N − 1) are presented as q/q′. This is done for all localised
defects, even those where a localised solution was found not to be energetically stable.

and Tii are similar in both phases under n-type conditions. These defects are also

the lowest energy ones in both n- and p-type Ti-rich environments. These defects

only form transition levels below the conduction band edge in rutile, supporting the

argument that electrons in bulk anatase tend to be of a much more diffuse nature.

For hole states the reverse is true, which are more shallow in rutile than anatase. The

deepest transition levels in both phases are caused by the oxygen interstitial. Fig. 6.15

highlights that the lowest energy p-type defect under p-type conditions is the oxygen

interstitial, with at least a 2 eV lower formation energy than the titanium vacancy in

all cases. Of note is that formation energies for titanium vacancies are extremely large

under p-type Ti-rich conditions and have a formation energy of over 10 eV in both

phases.

Killer defects in materials are often discussed as those which either prevent doping

of specific charge carriers, or defects which cause catastrophic failure of the device a

material is used for. Under O-rich conditions, the titanium vacancy and titanium in-

terstitial are the main killer defects in both materials, preventing n- and p-type doping.

For example, doping TiO2 n-type would reduce titanium vacancy formation energies,

increasing the defect’s concentration. This defect would in turn absorb any excess

electrons, negating the effect of doping. It can be seen (from Fig. 6.15) that Ti-rich

conditions shift this equillibrium, making formation energies of defects preventing n-

type doping very high. Under O-rich conditions the oxygen interstitial in anatase may

prevent both n- and p-type doping, making this a more severe, or perhaps even serial

killer defect.

Under n-type conditions, the relative stability of titanium interstitials to oxygen va-

cancies changes sign when going from O-rich to Ti-rich conditions, as seen in Fig. 6.15.

Chapter 6 Intrinsic defects in titania



6.8. Single-particle defect levels 123

0 1 2-6

-4

-2

0

2

4

6

8

10

3

Oxygen rich Titanium rich

0 1 2 3

Rutile Oxygen rich Titanium richAnatase

0 1 2 3 0 1 2 3

Figure 6.15: Aggregated defect formation energies for the most thermodynamically stable de-
fects in rutile (left two panels) and anatase (right two panels). For both phases, these energies
are shown for O-rich and Ti-rich conditions, corresponding to the energy of an isolated oxy-
gen molecule and the the TiO2/Ti2O3 equillibrium. (Horizontal dashed line) The transition from
defect free bulk to a self-trapped polaronic configuration. (Vertical dashed line) the defect free
bulk conduction band minimum. Defects which produce shallow delocalised states have been
omitted.

This finding is in line with previous arguments suggesting that titanium interstitials

play a larger role in heavily reduced samples, whereas oxygen vacancies will be more

dominant in lightly reduced samples.235 As Ti-rich chemical potentials correspond to

those where the formation energies of TiO2 and Ti2O3 are equal, they likely correspond

to slightly extreme Ti-rich conditions. For this reason, true experimental chemical con-

ditions are likely to correspond to chemical potential values that lie between the two

limits shown in Fig. 6.15.

6.8 Single-particle defect levels

Fig. 6.16 indicates that the Kohn-Sham eigenvalues for the O1+
i defect in anatase pro-

duce a gap state that is 1.4 eV above the VBM, and two very deep hole gap states

0.05 eV below the CBM for the O2+
i charge state. In contrast to the positive charge

state, the O2−
i charge state in anatase produces gap states that are less deep, but still

sizeable, lying 1.1 eV above the VBM. The O1−
i defect in rutile produces an extremely

deep electron state, lying 0.02 eV above the VBM. In the opposing spin channel (not

shown in Fig. 6.16), an unoccupied state 2.4 eV above the VBM appears. The additional

electron introduced by the O2−
i charge state results in two electrons lying beneath the

VBM.
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Figure 6.16: Single-particle eigenvalues of charges surrounding the defects discussed in this
chapter shown between the VBM (at zero) and calculated CBM. Occupied levels are shown as
filled circles, while unoccupied ones are unfilled. Localised anatase VO and Tii levels are also
shown, although they are found to be less stable than delocalised solutions. The O2−

i defect in
rutile has levels beneath the valence band edge, indicated with an arrow.

The behaviour of single-particle levels relating to the oxygen interstitial defect is

unexpected, and has recently been noted by other authors283 with other materials.

These include cation vacancies in MgO, Li-ion battery materials and rare-earth nickel

oxides. Dubbed antidoping, this effect occurs when unoccupied conduction band levels

merge with the valence band on occupation. The presence of this effect would in turn

cause a reduction in conductivity. As shown in Fig. 6.16, this behaviour occurs with

O2−
i in rutile and O2+

i in anatase, with the effect being more pronounced in rutile.

This indicates that oxygen interstitials would significantly reduce electron mobility in

rutile and hole mobility in anatase. This information suggests that oxygen interstitials

in rutile and anatase display a variety of characteristics, being negative-U, killer, and

anti-doping defects.

6.9 Discussion

EPR measurements have shown that the oxygen vacancy defect in rutile produces two

spin-parallel localised states, with the first state having a low thermal activation en-

ergy (∼ 2 meV). This finding is similar to those found in our theoretical predictions,

where the V0
O/V1+

O and V2+
O /V1+

O transition levels were found to be around 0.02 eV

and 0.12 eV. These findings indicate that only one of the two electrons made from an

oxygen vacancy is easily donated to the crystal. This behaviour is in direct contrast

with the anatase phase, where it is found that delocalised solutions are favoured by
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more than 0.4 eV. As oxygen vacancy defects are more dominant than titanium inter-

stitial in the mildly reduced limit, the difference in conductivity between rutile and

anatase samples may be explained, at least in part, by the behaviour of the oxygen

vacancy defects in these phases.

The oxygen interstitial defect is perhaps the most interesting one discussed, having

both positive and negative stable charge states in both phases. As mentioned earlier

in this chapter, experimental studies directly probing this defect in rutile are scarce.

When considered in light of the findings shown in this chapter, this may seem less

puzzling. Specifically, the most stable negative charge state for this defect is found

to induce delocalised states beneath the valence band minimum, which will be EPR

silent. Moreover, as no occupied single-particle states are expected to form far within

the band edges (for either O1−
i and O2−

i ), states associated with this defect may be

difficult to probe using PES. A proposed method of detection for this defect would be

conductivity measurements, which should be reduced under n-type conditions when

this defect is present. Under p-type conditions this defect would be easier to probe

in rutile, as a deeply trapped localised hole with a gap state (around 1.6 eV above

the VBM) is expected. Finally, as this defect is expected to have a formation energy

around three times lower than the titanium vacancy under p-type O-rich conditions,

it is anticipated that this will be the dominant p-type defect.

In anatase, it is expected that the oxygen interstitial displays both electron and

hole trapping behaviour, with holes being more strongly trapped. Holes trapped by

this defect will be localised but lie nearer to the conduction band edge, making them

slightly more difficult to detect. In contrast, trapped electrons are anticipated to induce

gap levels around 1.1 eV above the VBM. One experimental study finds that Nb-doped

anatase with excess oxygen has a metal-to-insulator transition when annealed at an

oxygen partial pressure of 4.6 kPa.262 The interstitial was found to significantly reduce

conductivity, in line with our findings. Another experimental study found a reduced

gap in excess oxygen samples due to a rising VBM.261 While such an effect was not

observed in this study, it may be due to differences in defect concentration.

Prolonged exposure to high oxygen partial pressures have been shown to cause

an n- to p-type conduction transition in rutile. Nowotny et al proposed that this ef-

fect is largely due to titanium vacancy diffusion into the bulk crystal.263 While such a

mechanism is no doubt feasible, no concrete evidence for this is provided. As shown

previously, titanium vacancies in rutile have a formation energy around 4 eV higher
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than oxygen interstitials under p-type O-rich conditions. The formation of a Frenkel

defect may be more likely. The findings in this chapter, as well as other theoretical

studies, indicate that titanium vacancies may play a larger role in reducing n-type

conductivity than they do inducing p-type conductivity. As mentioned by other au-

thors, oxygen interstitials may play a larger role in this transition.257 The findings

in this chapter, specifically those surrounding the O2−
i charge state of the oxygen in-

terstitial, straightforwardly explain reduced conductivity under high partial oxygen

pressures.

Previously discussed experiments shows that under O-rich conditions anatase can

turn into a p-type semiconductor, verified through a positive Hall co-efficient mea-

surement. The simplest point of comparison to this work is through the observed

ferromagnetism, where spin parallel solutions are found to be 0.11-0.12 eV more sta-

ble than spin paired solutions for all possible charge states. This behaviour is quite

distinct from that of rutile, where the lowest energy configurations are those where

holes are spin paired.

Previous theoretical studies on titanium interstitials in rutile have shown that con-

figurations localising between one and two electrons are most stable, with electrons

on either the titanium interstitials themselves or on nearby sites. The findings shown

from this chapter suggest that up to that two electrons trap directly on the defect site.

In the two electron case, one is much more strongly bound than the second, with tran-

sition levels for both of 0.10 eV and 0.16 eV. Previously discussed EPR data relating to

this defect in rutile suggests that only a negligible signal amount can be attributed to

bulk interstitials.190 Other authors argue that this signal should in fact be attributed

to substitutional Ti, not interstitials.274 Data from this chapter suggests that this defect

will not always produce an EPR signal in the bulk due to the spin-pairing of signals.

The single-particle states for this defect are found to lie 0.7 eV below the CBM (in

this work), indicating deeper levels than those in the oxygen vacancy. Continuing the

trend seen with other defects, anatase shows a reduced ability to localise electrons on

both the titanium interstitial and its surrounding atoms; an electron localised on the

interstitial has an energy 0.16 eV higher than a delocalised solution. Results shown

in this chapter indicate electrons will not trap on this defect, perhaps explaining why

EPR signals have not yet been unambiguously attributed to this defect.199, 276
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6.10 Conclusion

The work shown in this chapter supports the argument that electrons tend to more lo-

calised in rutile than anatase. As TiO2 samples generally tend to be oxygen deficient,

the oxygen vacancy and titanium interstitial defects are perhaps the most significant;

both of these defects result in electrons trapping more strongly in rutile compared to

anatase. Delocalised electrons were found to be 0.52 eV, 0.95 eV and 0.16 eV more

stable than localised ones for V1+
O , V0

O and Ti3+
i in anatase. The findings may at least

partially why Nb-doped anatase has a conductivity four orders of magnitude larger

than Nb-doped rutile.47 The reverse is found to be true with holes, which are more

deeply trapped in anatase than rutile. The main n- and p-type trapping defect found

was the oxygen interstitial, which traps both electrons and holes more strongly than

any other defect in both phases. This defect also displays interesting characteristics,

being a negative-U, killer and antidoping defect. Positive charge states for this de-

fect have been explored little in literature, with only one hybrid functional study on

anatase. For applications which require high charge mobility, avoidance of this defect

should be a key priority.

The results shown in this chapter illustrate that the transferability of Koopmans

condition seen in Chapter 5 extends to some intrinsic defects but not others. Generally

oxygen defects are better compliant with the GKT than titanium ones. The main defect

found not to be Koopmans compliant was the titanium vacancy, with all charge states

requiring a lower value of α to be used. It was also found that for some defects, such

as the titanium vacancy, different charge states would require different values of α.
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CHAPTER 7

CONCLUSIONS

Developing accurate models of charge trapping phenomena in semiconductors is vital

to both understanding and developing technologies used in many new cutting-edge

devices, such as the high-capacity batteries and nanoporous photovoltaics described

in Chapter 1. While several approaches to tackle this problem exist, as demonstrated

throughout this thesis, many are either prohibitively expensive or lack the predictive

power needed to accurately model charge trapping. As a result, progress in the ad-

vancement of technologies can be hampered and made more expensive through the

reliance of theoretical approaches on experimental data.

In this thesis an inexpensive, accurate and predictive approach to modelling charge

trapping was identified and thoroughly tested on a set of challenging systems. By

comparing to both exact theoretical models, as in Chapter 4, and experimental data

on TiO2, the use of physically justified constraints, such as the generalised Koopmans’

theorem, with hybrid functionals was shown to yield extremely accurate results. As

a result, the models developed in this thesis were subsequently used to investigate

less-understood polymorphs of TiO2 in Chapter 5, and intrinsic defects in Chapter 6

where there is a lack of consensus of the behaviour of excess charges. Outside this

thesis, the approach outlined here has already been used to model charge trapping in

more complex extended defects such as surfaces and grain boundaries.284–286

The primary focus of Chapter 4 was to assess the accuracy of electron densities

and energies of hybrid functionals overall, and whether the constraint provided by

the generalised Koopmans’ theorem sufficiently captures exchange and correlation ef-

fects present in model systems. It was demonstrated, by comparing to the exact solu-

tion to the many-electron Schrödinger equation, that the approach is indeed sensitive

to correlation effects and provides extremely accurate electron densities and energies.

In addition to the generalised Koopmans’ theorem, two further physically justified
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constraints were also suggested and tested. An alternative mixing strategy in hybrid

functionals, yielding superior densities, was identified and compared with more con-

ventional schemes. The Koopmans’ approach was found to be free from the fractional

dissociation problem common in many DFT approximations, thus providing the cor-

rect charge localisation properties. The physical intuition behind this approach was

found, when viewed from the perspective of many-body perturbation theory, to bear

resemblance to a screened-exchange approximation, similar to the GW method.

Chapter 5 took the approach assessed in Chapter 4 further by using theoretical

techniques to reduce the cost HF exchange, such as ADMM, Coulomb interaction

truncation and Cauchy-Schwarz screening. The errors introduced by these techniques

were assessed and found to be sufficiently small, enabling accurate calculations at low

computational cost. The coulomb-truncated hybrid functional was parameterised us-

ing the Koopmans’ condition for every localised polaronic state, where a number of

significant findings were noted. First, the accuracy of single-particle band gaps was

within six percent of experimental data. Second, parameters obtained from Koop-

mans’ condition have a degree of transferability which can be beneficial in extended

defects, such as surfaces and grain boundaries, where chemical environments may

vary more dramatically across a simulation cell. Finally, the polaronic properties of

all TiO2 phases were compared, providing useful information to guide future experi-

mental investigations.

It is evident from information provided in Chapter 6 that there is a lack of consen-

sus, both experimentally and theoretically, on the behaviour of intrinsic point defects

in TiO2 rutile and anatase. The functional parameterised in Chapter 5 was used to

probe these defects, referencing previous data when possible, with the aim of gain-

ing a better understanding of excess charge behaviour. The substantially higher con-

ductivity of mildly reduced anatase over rutile could be partially explained by the

behaviour of oxygen vacancies, where excess electrons strongly preferred to be de-

localised in anatase. Titanium interstitials may also explain this behaviour, where a

one-electron localised solution was found to be metastable in anatase. Interstitial de-

fects in both phases displayed interesting characteristics, being killer, antidoping and

negative-U defects. Interestingly, oxygen interstitial traps may bind pairs of conduc-

tion band electrons into states beneath the valence band minimum, meaning these

defects may be difficult to defect using EPR or optical techniques. A useful technique

to correct eigenvalues was also discussed, which may prove helpful in applying Koop-
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mans’ theorem to systems where dielectric constants are small.

7.1 Future work

While the work presented in this thesis provides a route to using physically justi-

fied parametrisations of inexpensive hybrid functionals, it has not been extensively

tested on materials other than TiO2. A number of materials identified in Chapter 1

could be used to further validate the Koopmans’ approach. Alkali-metal oxides can

form a variety of polarons and have a relatively low dielectric constant, making them

ideal for further testing with eigenvalue corrections. The alternative hybrid xc mixing

scheme, shown in Chapter 4, could also be validated on real materials. This scheme

was demonstrated to have reduced errors in the density, potentially increasing the ac-

curacy of hybrid functional calculations. Finally, extending the approaches assessed

in Chapter 4 to both molecules in 3D and extended states would be of great use to

materials modelling.

Alternative approaches to fitting the fraction of exact exchange α can also be fur-

ther investigated. One notable approach, briefly mentioned in Chapter 5, ensures that

α = ε−1
∞ where ε∞ is the electronic contribution to the dielectric constant. Previous

work has shown that application of such an approach to rutile yields α = 0.15, which

lies pleasingly close to the α = 0.115 determined in Chapter 5.287 Investigating differ-

ences in predictions made by the tr-PBEα, HSE and PBEα functionals available in CP2K

and VASP would also be useful. Finally, it would be helpful to determine how HSE

predictions change using various fixed values of ω, and α tuned to the GKT.
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APPENDIX A

SLAB VS HEG BASED LDAS

In order to verify that LDAs constructed from slabs (i.e. finite systems) perform in a

similar fashion to HEG-based LDAs, the following two figures were made using slab-

and HEG-based LDAs.

Figure A.1: Energies and densities calculated from a slab-based LDA for a two-electron sys-
tem.

I



II

Figure A.2: Energies and densities calculated from a HEG-based LDA for a two-electron sys-
tem.
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APPENDIX B

POLARONS IN TITANIA POLYMORPHS:

ADDITIONAL INFORMATION

This appendix contains information relevant to Chapter 5 that a reader may be inter-

ested to see, but is not central to the main text.

Cell size convergence

Supercell A (Å) Supercell B (Å)

Size N ax by cz Size N ax by cz

Rutile 4×4×6 576 18.347 18.347 17.702 5×5×8 1200 22.933 22.933 23.600

Anatase 5×5×4 600 18.877 18.877 19.140 6×6×5 1080 22.658 22.658 23.910

TiO2(B) 5×3×3 540 18.658 18.289 18.738 6×4×4 1152 22.394 24.381 24.985

Table B.1: Shown supercells used for size convergence. While the main text uses conventional
cells for all phases, the irreducible cells for TiO2(B) and anatase are used in this section. This
gives access to a greater range of supercell sizes.

Lattice vector ax (Å) Lattice vector by (Å) Lattice vector cz (Å) Band gap Eg (eV)

Cell A B A B A B A B

Rutile 4.587 4.587 - - 2.950 2.950 4.08 4.08

Anatase 3.775 3.776 - - 4.785 4.782 4.30 4.33

TiO2(B) 3.732 3.732 6.096 6.095 6.426 6.426 5.14 5.10

Table B.2: Cell size convergence data is shown for the rutile, anatase and TiO2(B) primitive
cells. Of note is that the main text uses conventional anatase and TiO2(B) cells.
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Range-seperation convergence

Lattice vector a (Å) Lattice vector b (Å)

Rc (Å) 2.0 4.0 6.0 8.0 2.0 4.0 6.0 8.0

Rutile 4.570 4.586 4.587 4.587 - - - -

Anatase 3.760 3.771 3.772 3.772 - - - -

TiO2(B) 12.150 12.184 12.189 12.190 3.726 3.733 3.734 3.734

Lattice vector c (Å) Band gap Eg (eV)

Rc (Å) 2.0 4.0 6.0 8.0 2.0 4.0 6.0 8.0

Rutile 2.947 2.949 2.950 2.951 3.45 4.05 4.08 4.09

Anatase 9.573 9.585 9.589 9.588 3.79 4.23 4.30 4.31

TiO2(B) 6.229 6.245 6.246 6.246 4.60 5.06 5.13 5.15

Table B.3: HF truncation radius Rc convergence data is shown for the rutile, anatase and
TiO2(B) phases. Here the supercells are constructed from the conventional unit cells.

Supercell information

Phase Atoms Supercell
size

Crystal
symmetry

Space group Inequiv. Ti
atoms

Inequiv. O
atoms

Anatase 600 5×5×2 Tetragonal I41/amd 1 1

Rutile 576 4×4×6 Tetragonal P42/mnm 1 1

Brookite 576 2×3×4 Orthorhombic Pbca 1 2

TiO2(H) 576 2×2×6 Tetragonal I4/m 1 2

TiO2(R) 576 4×2×6 Orthorhombic Pbnm 1 2

TiO2(B) 720 2×5×3 Monoclinic C2/m 2 4

Table B.4: Crystal symmetries, simulation cell sizes and space groups are shown for each
phase studied in this work. For each crystal, we show the number of symmetrically inequiva-
lent titanium and oxygen sites.
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Comparing phase-specific and transferable α values

Quantity Phase α Transferable α

Alpha value 0.105 0.115

OAn Et (eV) -0.21 -0.25

OAn CTL (eV) 1.20 1.26

Band gap (eV) 2.94 3.03

Lattice vector a (Å) 3.793 3.792

Lattice vector c (Å) 9.617 9.614

Brookite TiO2(B)

Quantity Phase α Transferable α Quantity Phase α Transferable α

Alpha value 0.105 0.115 Alpha value 0.120 0.115

OBr
a Et (eV) -0.25 -0.24 OB

a Et (eV) -0.42 -0.40

OBr
b Et (eV) -0.16 -0.21 OB

d Et (eV) -0.54 -0.52

OBr
a CTL (eV) 1.11 1.20 OB

a CTL (eV) 1.62 1.52

OBr
b CTL (eV) 1.09 1.15 OB

d CTL (eV) 1.60 1.51

Band gap (eV) 3.20 3.28 Band gap (eV) 3.89 3.80

Vector a (Å) 9.228 9.226 Vector a (Å) 12.236 12.240

Vector b (Å) 5.479 5.476 Vector b (Å) 3.746 3.746

Vector c (Å) 5.151 5.148 Vector c (Å) 6.287 6.289

TiO2(H) TiO2(R)

Quantity Phase α Transferable α Quantity Phase α Transferable α

Alpha value 0.130 0.115 Alpha value 0.125 0.115

TiH Et (eV) -0.14 -0.10 TiR Et (eV) -0.35 -0.31

OH
a Et (eV) -0.42 -0.35 OR

a Et (eV) -0.31 -0.25

OH
b Et (eV) -0.34 -0.26 OR

b Et (eV) -0.43 -0.38

TiH CTL (eV) -0.82 -0.67 TiR CTL (eV) -0.82 -0.71

OH
a CTL (eV) 1.71 1.53 OR

a CTL (eV) 1.32 1.18

OH
b CTL (eV) 1.59 1.39 OR

b CTL (eV) 1.48 1.39

Band gap (eV) 3.76 3.63 Vector a (Å) 4.950 4.952

Vector a (Å) 10.236 10.241 Vector b (Å) 9.423 9.428

Vector c (Å) 2.968 2.969 Vector c (Å) 2.967 2.968

Table B.5: Compared are the predicted bulk crystal and polaron properties, such as trapping
energies Et and CTLs, given by the phase-specific and transferable (α = 0.115) value. It can be
seen that the difference between predicted properties is generally small. For electron polarons
(on titanium sites) the CTL is given with respect to the CBM, while hole polarons (on oxygen
sites) are given with respect to the VBM.
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Polaron property range

α value range Et (eV) CTL (eV)

Min Max Min Max Min Max

TiRu 0.100 0.140 0.01 -0.07 -0.21 -0.66

TiH 0.125 0.150 -0.13 -0.20 -0.80 -0.92

TiR 0.120 0.145 -0.33 -0.45 -0.79 -0.93

OAn 0.095 0.115 -0.17 -0.25 1.12 1.28

OBr
a 0.085 0.105 -0.15 -0.25 0.96 1.11

OBr
b 0.100 0.115 -0.14 -0.21 1.05 1.17

OH
a 0.110 0.130 -0.33 -0.42 1.54 1.71

OH
b 0.115 0.130 -0.26 -0.34 1.47 1.59

OR
a 0.105 0.125 -0.19 -0.31 1.15 1.32

OR
b 0.100 0.125 -0.30 -0.43 1.31 1.48

OB
a 0.110 0.125 -0.37 -0.45 1.53 1.66

OB
d 0.105 0.125 -0.47 -0.57 1.49 1.64

Table B.6: For the range of α where |ξ| < 0.05 eV, the minimum and maximum values for
trapping energy Et and polaron CTL are shown.

Phase Eg min (eV) Eg max (eV)

Rutile 2.68 3.04

Anatase 2.85 3.03

Brookite 3.02 3.28

TiO2(H) 3.58 3.76

TiO2(R) 3.43 3.61

TiO2(B) 3.71 3.90

Table B.7: Shown is the minimum and maximum band gap Eg values within the determined
α range for each phase.
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Variation in Coulomb-truncation radius

Rc α ax cz Eg CTL ξ Et q

2.0 0.20 4.583 2.950 3.084 -0.924 0.013 0.774 -0.136

2.0 0.25 4.570 2.947 3.454 -1.245 0.225 0.825 -0.362

All energies and lengths are shown in eV and Å

Table B.8: Optimisation of α to the GKT in rutile with all the same parameters as the main
text, however with Rc reduced to 2.0 Å. Using this approach yields non-transferable values of
α between electrons and holes in rutile and anatase. The stability of polarons is also drastically
changed compared to the main text. The reader should bear in mind that a titanium-oxygen
bond is typically around 2.1 Å, which means using such low values of Rc could restrict the
effects of exchange locally on each atom. In essence, this would be similar to a Lany-Zunger
self-interaction correction. This illustrates that functionals with such low Rc predict somewhat
unphysical properties.
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APPENDIX C

FINITE-SIZE CORRECTION FOR EIGENVALUES

The form of the eigenvalue correction considered in Chapter 6 is:

εic = ε− 2
q

∆Eic. (C.1)

Most DFT codes, including CP2K, set the average electrostatic potential to 0 in a cal-

culation. For charged systems, this means both the total energy and eigenvalues may

be offset by an arbitrary amount, as discussed in Chapter 6. Furthermore, electro-

static interactions between neighbouring cells can artificially change energies. While

total energy corrections are fairly common in literature, corrections to eigenvalues are

rarely used. Table C.1 shows application of the above equation to an oxygen molecule

in periodic and aperiodic systems, where it can be seen that the aperiodic result is

quickly recovered with the eigenvalue correction. In order to further verify the ap-

proach also performs well on extended systems, a q = +1 charge state of an unrelaxed

F-centre defect in MgO was considered, shown in Fig. C.1. In order to verify the 2/q

form of the correction is indeed correct, two holes were added to the oxygen molecule.

The behaviour of the corrected values was similar to the q = +1 case, yielding similar

energies to the aperiodic case.
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X

Finite system testing

Length L E(N + 1) E(N) HOMO ξ E(N + 1)† HOMO† ξ†

10? -868.453 -867.667 2.258 -3.044 - - -

20? -868.453 -867.667 2.258 -3.044 - - -

30? -868.453 -867.667 2.258 -3.044 - - -

10 -870.251 -867.669 -1.500 -1.083 -868.209 2.586 -3.125

15 -869.742 -867.667 -0.369 -1.706 -868.380 2.355 -3.068

20 -869.444 -867.667 0.256 -2.033 -868.422 2.299 -3.054

25 -869.254 -867.667 0.645 -2.232 -868.437 2.279 -3.049

30 -869.125 -867.667 0.908 -2.366 -868.444 2.270 -3.047

35 -869.031 -867.667 1.098 -2.462 -868.447 2.266 -3.045

40 -868.960 -867.667 1.242 -2.534 -868.449 2.263 -3.045

† With finite size correction ? Aperiodic reference system

Table C.1: Application of the eigenvalue correction proposed in Chapter 6 to an oxygen
molecule inside periodic and aperiodic simulation cells. For the aperiodic case, no correc-
tion is needed as values are independent of system size, as shown above. Aperiodic cells
also provide a reference value for the correction. It can be seen that the appropriate value of
nonlinearity ξ is recovered for reasonably sized cells. This represents an extreme case of the
correction as the dielectric constant of vacuum is unity.

Length L E(N − 1) E(N) LUMO ξ E(N − 1)† LUMO† ξ†

20? -855.678 -867.762 -16.161 -4.077 - - -

10 -857.843 -867.763 -11.999 -2.079 -855.800 -16.085 -4.122

15 -857.076 -867.762 -13.415 -2.729 -855.714 -16.139 -4.090

20 -856.715 -867.762 -14.109 -3.061 -855.693 -16.152 -4.083

25 -856.503 -867.762 -14.522 -3.263 -855.685 -16.157 -4.080

30 -856.363 -867.762 -14.797 -3.398 -855.682 -16.159 -4.079

35 -856.264 -867.762 -14.992 -3.495 -855.681 -16.160 -4.078

40 -856.191 -867.762 -15.139 -3.567 -855.680 -16.160 -4.078

† With finite size correction ? Aperiodic reference system

Table C.2: As Table C.1, however for hole states on a charge deficient oxygen molecule (q = +1).
It can be seen here that the correction works well for holes as well as electrons.
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XI

Extended system testing
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Figure C.1: Scaling behaviour of eigenvalues for an MgO F-centre defect. For each system size,
one oxygen atom and one electron were removed and the electronic energy was converged.
Only the electronic component of the dielectric constant was used for the image-charge cor-
rection as ions were not relaxed.
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XII

TiO2 scaling tests
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Figure C.2: Scaling behaviour of eigenvalues for a self-trapped hole polaron configuration
in anatase. The polaron was created by radially (outward) shifting atoms surrounding one
oxygen atom by 0.3 Å. These calculations were performed using DFT to allow larger system
sizes to be investigated. Geometric relaxation would cause the hole to delocalise, therefore
geometries were not relaxed.
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ABBREVIATIONS

tr-PBEα Coulomb-truncated PBEα.

ADMM auxiliary density matrix method.

B3LYP Becke, 3-parameter, Lee-Yang-Parr.

BFGS Broyden-Fletcher-Goldfarb-Shanno.

CBM conduction band maximum.

CTL charge transition level.

DFT density functional theory.

DFT+U DFT with a Hubbard-U correction.

DLTS deep-level transient spectroscopy.

EELS electron energy loss spectroscopy.

EPR electron paramagnetic resonance.

GGA generalised gradient approximation.

GKS generalised Kohn-Sham.

GKT generalised Koopmans’ theorem.

GPW Gaussian and plane waves approach.

GTH Goedecker-Teter-Hutter.

GTO Gaussian-type orbital.
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XIV Abbreviations

GW An approximation to the self-energy in Hedin’s equations.

HEG homogeneous electron gas.

HF Hartree-Fock.

HOMO highest occupied molecular orbital.

HSE Heyd-Scuseria-Ernzerhof.

HSE06 HSE functional with a particular parametrisation.

IP ionisation potential.

IR infrared spectroscopy.

KS Kohn-Sham.

LAPACK linear algebra package.

LDA local density approximation.

LUMO lowest unoccupied molecular orbital.

PBE Perdew-Burke-Ernzerhof.

PBE0 Perdew-Burke-Ernzerhof hybrid functional with α=0.25.

PBEα Like PBE0 hybrid functional but with other values of α.

PES photoelectron spectroscopy.

PL photoluminescence.

PW91 Perdew-Wang 1991.

QMC quantum Monte-Carlo.

RPA random phase approximation.

SCF self-consistent field.

SIE self-interaction error.

STM scanning tunnelling microscopy.



Abbreviations XV

STO Slater-type orbital.

STS scanning tunnelling spectroscopy.

UV/Vis ultraviolet/visible light spectroscopy.

VBM valence band minimum.

xc exchange-correlation.

XPS X-ray photoelectron spectroscopy.

XRD X-ray diffraction.
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