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Abstract. In this paper we study the node failure identification prob-
lem in undirected graphs by means of Boolean Network Tomography.
We argue that vertex connectivity plays a central role. We show tight
bounds on the maximal identifiability in a particular class of graphs,
the Line of Sight networks. We prove slightly weaker bounds on arbi-
trary networks. Finally we initiate the study of maximal identifiability
in random networks. We focus on two models: the classical Erdős-Rényi
model, and that of Random Regular graphs. The framework proposed in
the paper allows a probabilistic analysis of the identifiability in random
networks giving a tradeoff between the number of monitors to place and
the maximal identifiability.

1 Introduction

A central issue in communication networks is to ensure that the structure works
reliably. To this end it is of the utmost importance to discover as quickly as pos-
sible those components that develop some sort of failure. Network Tomography
is a family of distributed failure detection algorithms based on the spreading of
end-to-end measurements [8, 24] rather than directly measuring individual net-
work components. Typically a network G = (V,E) is given as a graph along
with a collection of paths P in it and the goal is to take measurements along
such paths to infer properties of the given network. Quoting from [12] “A key
advantage of tomographic methods is that they require no participation from
network elements other than the usual forwarding of packets. This distinguishes
them from well-known tools such as traceroute and ping, that require ICMP
responses to function. In some networks, ICMP response has been restricted by
administrators, presumably to prevent probing from external sources. Another
feature of tomography is that probing and the recovery of probe data may be em-
bedded within transport protocols, thus co-opting suitably enabled hosts to form
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impromptu measurement infrastructures”. The approach is strongly related to
group testing [11] where, in general, one is interested in making statements about
individuals in a population by taking group measurements. The main concern
is to do so with the minimum number of tests. In our setting, the connectivity
structure of the network constrains the set of feasible tests. Graph-constrained
group testing has been studied before, starting with [7]. We are interested in us-
ing structural graph-theoretic properties to make statements about the quality
of the testing process.

Research in Network Tomography is vast. The seminal works of Vardi [24],
and Coates et al. [8], or more recent surveys like [6] each have more that 500 ci-
tations, according to Google Scholar. Methods and algorithms vary dramatically
depending on the network property of interest, or the measurements one has to
rely on. Boolean Network Tomography (BNT) aims to identify corrupted compo-
nents in a network using boolean measurements (i.e. assuming that elementary
network components can be in one of two states: “working” or “not-working”).
Introduced in [12], the paradigm has recently attracted a lot of interest [14, 20]
because of its simplicity. In this work we use BNT to identify failing nodes.
Assume to have a set P of measurement paths over a node set V . We would
like to know the state xv (with xv = 0 corresponding to “v in working order”
and xv = 1 corresponding to “v in a faulty state”) of each node v ∈ V . The
localization of the failing nodes in P is captured by the solutions of the system:

∧
p∈P

(∨
v∈p

xv ≡ bp

)
(1)

where bp models the (boolean) state of the path p ∈ P. Of course, systems of
this form may have several solutions and therefore, in general, the availability of
a collection of end-to-end measurements does not necessarily lead to the unique
identification of the failing nodes. We will investigate properties of the underly-
ing network that facilitate the solution of this problem. In particular, we follow
the approach initiated by Ma et. al. [19] based on the notion of maximal identi-
fiability (see Section 2 for a precise definition). The metric aims to capture the
maximal number of simultaneously failing nodes that can be uniquely identified
in a network by means of measurement along a given path system. It turns out
that the network maximal identifiability is an interesting combinatorial measure
and several studies [2, 15, 19, 21] have investigated variants of this measure in
connection with various types of path systems. However, it seems difficult to
come up with simple graph-theoretic properties that affect the given network
identifiability. We contend that the maximal identifiability using measures over
the collection of all simple paths between two disjoint sets of vertices S and T
enables us to make good progress on this issue. More specifically we show that
the proposed approach provides an almost tight characterization of the maximal
identifiability in augmented hypergrids (see definition in Section 2) and more gen-
eral Line-of-Sight (LoS) networks. LoS networks were introduced by Frieze et al.
in [13] and have been widely studied (see for instance [10, 9, 22, 23]) as models for
communication patterns in a geometric environment containing obstacles. Like



grids, LoS networks can be embedded in a finite cube of Zd, for some positive
integer d. But LoS networks generalize grids in that edges are allowed between
nodes that are not necessarily next to each other in the network embedding.

Using the network vertex-connectivity, κ(G), (i.e. the size of the minimal set
of nodes disconnecting the graph) we are able to prove the following:

Theorem 1. Let H be an augmented hypergrid. For every pair of disjoint S, T ⊆
V (H), the maximal identifiability of H, µ(H) using measures over simple paths
between S and T satisfies: µ(H) ≤ κ(H). Furthermore, there is a way to choose
S and T that guarantees µ(H) ≥ κ(H)− 1.

The result on hypergrids immediately suggests the related question about
general graphs. In this work we prove upper and lower bounds on the maxi-
mal identifiability of any network G. The following statement summarizes our
findings (here κST (G) is the size of smallest set of vertices separating S and T ):

Theorem 2. Let G = (V,E) be an arbitrary graph. For every pair of disjoint
S, T ⊆ V (G), the maximal identifiability of G, µ(G) using measures over simple
paths between S and T satisfies: µ(G) ≤ min(δ(G), κST (G)). Furthermore, there
is a way to choose S and T that guarantees µ(G) ≥ bκ(G)/2c − 1.

In both results, the upper bound is proved by showing that there are sets
of κ(G) + 1 vertices that cannot be identified. The lower bounds which require
the construction of paths separating large sets of nodes in the graph, are based
on a well-known relationship between κ(G) and the existence of collections of
vertex-disjoint paths between certain sets of nodes in G. In fact a much higher
lower bound can be proved for graphs with low connectivity. The following result
applies to arbitrary LoS networks, and to many topologies studied in relation
to communication problems including various types of grids, butterflies, hyper-
cubes, and sparsely connected sensor networks.

Theorem 3. Let G = (V,E) be an arbitrary network with κ(G) ≤ |V |/3. Let
µ(G) denote the maximal identifiability of G using measures over simple paths
between two disjoint sets of vertices S and T .

1. For all pairs of disjoint S, T ⊆ V , µ(G) ≤ κ(G).
2. There is a pair of disjoint S, T ⊆ V (G) such that µ(G) ≥ κ(G)− 2.

Finally, we look at random networks (Erdős-Rényi and Random Regular
Graphs). In these structures we are able to show a trade-off between the suc-
cess probability of the relevant path construction processes and the size of the
sets S and T defining the path set P. Random graphs also give us alternative
constructions of networks with large identifiability.

The rest of the paper is organized as follows. After a section devoted to pre-
liminaries and important definitions, we have a section that focuses on Theorem
1. Section 4 focuses on arbitrary graphs. First we look at the proof of Theorem
2. Then describe a different construction that leads to the proof of Theorem
3. Finally Section 5 is dedicated to the analysis of the maximal identifiability
in random graphs. First we look at Erdős-Rényi graphs, then random regular
graphs.



2 Preliminaries

Sets, Graphs, Paths, and Connectivity. If U and W are sets, U4W = (U \W )∪
(W \ U) is the symmetric difference between U and W . Graphs (we will use
the terms network and graph interchangeably) in this paper will be undirected,
simple and loop-less. A path (of length k) in a graph G = (V,E) from a node
u to a node v is a sequence of nodes p = u1, u2, . . . , uk+1 such that u1 = u,
uk+1 = v and {uiui+1} ∈ E for all i ∈ [k]. The path p is simple of no two ui
and uj in p are the same. Any sub-sequence ux, . . . , ux+y (x ∈ {1, . . . , k + 1},
y ∈ {0, . . . , k + 1 − x}) is said to be contained in p, and dually we say that p
contains the sequence or passes through it. We say that path p and q intersect
if they contain a common sub-sequence. The intersection of a path p and an
arbitrary set of nodes W is the set of elements of W that are contained in
p. When p intersect W sometimes we say that p touches W . For an arbitrary
U ⊆ V (G), N(U) is the set of neighbours of u ∈ U . If U = {u} we write N(u)
instead of N({u}). The degree of u, deg(u), is the cardinality of N(u), and let
δ(G) = minu∈V deg(u) be the minimum degree of G.

In what follows κ(G) denotes the vertex-connectivity of the given graph
G = (V,E), namely κ(G) is the size of the minimal subset K of V , such that
removing K from G disconnects G. In particular it is well-known (see for example
[16], Theorem 5.1, pag 43) that

κ(G) ≤ δ(G). (2)

It will also be convenient to work with sets of vertices disconnecting particular
parts of G. If S, T ⊆ V , then κST (G) is the size of the smallest vertex separator
of S and T in G, i.e. the smallest set of vertices whose removal disconnects S
and T (set κST (G) = ∞ if S ∩ T 6= ∅ or there are s ∈ S and t ∈ T such that
{s, t} ∈ E). Notice that κST (G) ≥ κ(G).

Grids and LoS networks. For positive integers d, and n ≥ 2, let Zdn be the
d-dimensional cube {1, . . . , n}d. We say that distinct points P1 and P2 in a
cube share a line of sight if their coordinates differ in a single place. A graph
G = (V,E) is said to be a Line of Sight (LoS) network of size n, dimension
d, and range parameter ω if there exists an embedding fG : V → Zdn such
that {u, v} ∈ E if and only if fG(u) and fG(v) share a line of sight and the
(Euclidean) distance between fG(u) and fG(v) is less than ω. In the rest of the
paper a LoS network G is always given along with some embedding fG in Zdn
for some d and n, and with slight abus de langage we will often refer to the
vertices of G, u, v ∈ V in terms of their corresponding points fG(u), fG(v), . . .
in Zdn, and in fact the embedding fG will not be mentioned explicitly. Note that
d-dimensional hypergrids, Hn,d, as defined in [15] are particular LoS networks
with ω = 2 and all possible nd vertices. In the forthcoming sections we will study
augmented hypergrids Hn,d,ω (or simply Hn,ω in the 2-dimensional case), namely
d-dimensional LoS networks with range parameter ω > 2 containing all possible
nd nodes.



Paths, Monitors and Identifiability. In BNT one takes measurements along
paths, and the quality of the monitoring scheme depends on the choice of such
paths. Let P be a set of paths over some node set V . For a node v ∈ V , let P(v) be
the set of paths in P passing through v. For a set of nodes U , P(U) =

⋃
u∈U P(u).

Hence if U ⊆ V , P(U) ⊆ P(V ). Crucially, we identify two disjoint sets of vertices
S and T , and assume that P is the set of all S − T paths in G, i.e. simple paths
with one end-point in S and the other one in T . This is similar to the CSP
probing scheme analyzed in [18], but the scheme in that paper does not assume
S ∩ T = ∅.

Traditionally in Network Tomography all measurements originate and end
at special monitoring stations that are connected to the structure under obser-
vation. For any tomographic process to have any chance of succeeding one has
to assume that such monitors are infallible. It is therefore customary to assume
that the monitors are external to the given network, but connected to it through
a designated set of nodes. S ∪T is such set in our case. We call the pair (S, T ) a
monitor placement. In this settings, two sets of vertices U and W are separable
if P(U)4P(W ) 6= ∅. A set of vertices N is k-identifiable (with respect to the
probing scheme (P, S, T )) if and only if any U,W ⊆ N , with U4W 6= ∅ and
|U |, |W | ≤ k, U are separable. The maximal identifiability of N with respect to
(P, S, T ), µ(N,P, S, T ), is the largest k such that N is k-identifiable. For a graph
G = (V,E), we write µ(G,P, S, T ) to indicate the maximal identifiability of the
set of nodes in V which are used in at least a path of P. In what follows we
usually omit the dependency of µ on the probing scheme (P, S, T ) when this is
clear from the context.

Note that k-identifiability is monotone: if G is k-identifiable then it is k′-
identifiable for any k′ < k. This implies that to prove that µ(N) ≤ k − 1 it is
sufficient to show that N is not k-identifiable. By the definition given above this
boils down to showing the existence of two distinct node sets U and W in N of
cardinality at most k that are not separable.
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Fig. 1. On the left, the network Hn,ω for n = 5 and ω = 4 (note that vertices u and v
are not adjacent); on the right a more general example of LoS network, having ω = 3,
embedded in Z2

5 (represented as a dashed grid).



Conversely, if we want to prove that µ(N) ≥ k for some k, then it is enough
to argue that all distinct node sets U and W of cardinality |U |, |W | ≤ k are
separable. To prove this we have to show that for any two distinct node sets U
and W of cardinality at most k there exists a path in P intersecting exactly one
between U and W .

3 Failure Identifiability in Augmented Hypergrids

Let ω > 2 be an integer. In this section we analyze the maximal identifiability
of augmented hypergrids. To maximize clarity, we provide full details for the
special case of Hn,ω, the 2-dimensional augmented hypergrid. The proof of the
result for d-dimensional structures, which we state at the end of this section, is
left for the full version of this work.

In [15] two of us showed that µ(G) ≤ δ(G) for any (P, S, T ). In Hn,ω each
node u has ω−1 edges for each one of the possible directions (north, south, east,
west). Hence the minimal degree in Hn,ω is reached at the corner nodes and it
is 2(ω − 1). Thus µ(Hn,ω) ≤ 2(ω − 1) for any (P, S, T ). In the remainder of this
section we pair this up with a tight lower bound for a specific monitor place-
ment. Note that these results readily imply the upper bound in Theorem 1 as in
augmented hypegrids the vertex connectivity is actually equal to the network’s
minimum degree. The rest of this section focuses on the second inequality in
that theorem.

We say that nodes with coordinates (1, j) in Hn,ω, for some j ∈ {1, . . . , n},
are on the north border of Hn,ω. Analogously we can define nodes on the south,
west and east borders of Hn,ω. Given a node u of Hn,ω, identified as a pair
(i, j) ∈ Z2

n, and a positive integer k, we define:

SEk(u) = {(i′, j′) ∈ Z2
n : i+ k ≥ i′ ≥ i ∧ j + k ≥ j′ ≥ j}

and
NWk(u) = {(i′, j′) ∈ Z2

n : i− k ≤ i′ ≤ i ∧ j − k ≤ j′ ≤ j}.
In particular we denote by SE(u) (resp. NW (u)) the union of all SEk(u) (resp.
NWk(u)). Furthermore ∂SEk(u) (resp. ∂NWk(u)) is the set of all points in
SEk(u) (resp. NWk(u)) with coordinates (i′, j) or (i, j′). Expressions ∂SE(u)
and ∂NW (u) are defined analogously. Also, we say that a direction X (north,
south, west, east) is W -saturated on u all neighbours of u in direction X are in
W .

Definition 1. (W -unreachability) Let u = (i, j) be a node in Hn,ω and W be a
set of nodes in Hn,ω. A node u′ = (i′, j′) for i′ ≥ i and j′ ≥ j is W -unreachable
from u if either ∂SE(u) ⊆ W or ∂NW (u′) ⊆ W . Otherwise we say that u′ is
W -reachable from u.

A canonical monitor placement forHn,ω is a pair (S, T ), such that S is formed
by the node (1, 1) and its neighbours, and T formed by (n, n) and it neighbours.
Hence |S| = |T | = 2ω − 1. We are now ready to state the main result in this
section.



Theorem 4. Let n, ω ∈ N, ω > 2 and n > 3(ω − 1). Let (S, T ) be a canonical
monitor placement for Hn,ω. Then µ(Hn,ω) ≥ 2(ω − 1)− 1.

Proof. We have to prove that for any pair of node sets U , and W of cardinality
at most 2(ω − 1) − 1, with U4W 6= ∅ we can build an S − T path touching
exactly one of them. Assume without loss of generality that u ∈ U \W . Since
|S| = |T | = 2(ω − 1) and |W | < 2(ω − 1), there is a node in s ∈ S \W and
a node t ∈ T \W . Assume without loss of generality that s = (1, 1) (the case
s 6= (1, 1) is similar, and give even better results). Similarly for T , assume that
t = (n, n) 6∈W .

We build two disjoint paths iu and ou such that their concatenation is an
S − T path passing through u and not touching nodes in W . We show how to
build iu (ou is analogous).

If u = (i, j) and min(i, j) > ω−1 and u is W -reachable from s we proceed by
a careful induction on |NW (u)|. In the inductive step, two things can happen.
If u is far from the north and west borders there is at a least a direction X
between North and West which is not W -saturated. Hence there is a node u′ ∈
NW (u) \W on direction X from u at distance less than ω. Hence there is an
edge {u′, u} ∈ Hn,ω. Since NW (u′) ⊂ NW (u) the inductive hypothesis applied
on u′, give us a path iu′ and the path iu = iu′ , u. Alternatively if u is close to s
(i.e. min(i, j) ≤ ω − 1) we know that u is W -reachable and this guarantees the
existence of a neighbour u′ of u in NW (u) that is NOT in W and the inductive
hypothesis can be applied to u′ again to complete iu.

The induction reaches a base case in one of two possible ways. If |NW (u)| =
1, then u = s and we have done: iu is s. Otherwise |NW (u)| > 1 but u is W -
unreachable from s. In such case we proceed as follows (see also Fig. 2 for an
example). Notice that in this case it must be that u has less than ω−1 neighbours
either in direction North or West, for otherwise it would not be possible for W ,
which is of size at most 2(ω−1)−1, to cover ∂NW (u) or ∂SE(s). Let u = (i, j),
hence, by unreachability property, it must be that in NW (u) there are at least
t = (i−1)+(j−1) ≥ 2 nodes in W . Let us look at the neighbours of u in SE(u)
which are South of u at distance at most ω−1−i from u and East of u at distance
at most ω − 1− j. (Notice that these nodes are at distance at most ω − 1 from
the North and West borders). First we claim that either in direction South or
direction East, there is a neighbour (say wlog direction South) u′ = (i′, j) of
u at distance at most ω − 1 − i from u such that both u′ and u′′ = (i′, 1) are
not in W . This is because the sum of nodes at distance at most ω − i− 1 from
u in direction South and at distance at most ω − j − 1 in direction East is at
most 2ω − i − j. Hence there are at most 2ω − i − j pairs of nodes of the type
(u′, u′′), but only 2ω− i− j − 1 nodes in W (the latter is because |W | ≤ 2ω− 3
and t = (i − 1) + (j − 1) nodes of W are already used in NW (u)). Then there
is at least a pair (u′, u′′) such that neither u′ nor u′′ are in W . Hence the path
iu = s, u′′, u′, u connecting s to u without touching W . This path iu is ok, unless
u′ is already on the path we have built by induction so far. In that case we can
cut iu at u′ and link it to the inductive path.



◦
(1, 1)

◦

◦ u = (i, j)

◦u′ = (i′, j)◦u′′ = (i′, 1)

Fig. 2. An example of how to build iu when u is not W -reachable and in SEk((1, 1))
for some k < ω − 1.

The argument presented so far leaves a gap in che case when u ∈ U \W is
close to s and it is W -unreachable. This case is in fact not very different from the
last one we have considered. As in that case we consider the neighbours of u in
∂SEω−i(u) at distance ω− i in the South direction (instead of distance ω− i−1
as in the previous case) and at distance ω − j in the East direction (instead
of ω − j − 1). Exactly the same counting argument now justifies three pairs of
nodes (u′, u′′), (v′, v′′) and (w′, w′′) such that none of u′, u′′, v′, v′′, w′, w′′ are in
W (notice that as before, u′′, v′′ and w′′ are nodes on the border of Hn,ω). If
either one between v′ and w′, say wlog w′, is exactly at distance ω−1 from u, then
we can define a path iu touching u and not touching W as iu = (1, 1), u′′, u′, u, w′

(see also Fig. 3). If both of v′ and w′′ are at distance < ω − 1, then two among
u′, v′ and w′, say u′, and v′ are on the same direction, say wlog South, and hence
one of them, say wlog u′ is northern of the other. In this case we define iu as the
path (1, 1), u′′, u′, u, v′.

◦
(1, 1)

◦

◦ u = (i, j)

◦u′ = (i′, j)◦u′′ = (i′, 1)

◦ w′ = (i+ ω − 1, j)

Fig. 3. An example where u ∈ SEk(1, 1)) for some k < ω − 1 and w′ is at South
distance exactly ω − 1 from u.

ut

Theorem 4 generalizes to d-dimensional augmented hypergrids. We leave the
details to the full version of this work.



Theorem 5. Let d, n, ω ∈ N, d, n ≥ 2 and ω > 2. There is a monitor placement
for Hn,d,ω for which µ(Hn,d,ω,P, S, T ) ≥ d(ω − 1)− 1.

4 General Topologies

We now look at the maximal identifiability in arbitrary networks. Theorem 2
stated in Section 1 will be a consequence of two independent results. In [15] it
was proved that µ(G) ≤ δ(G), for any monitor placement (S, T ). Here we show
that µ(G) can be upper bounded in terms of κST , the size of the minimal node
set separating S from T .

Theorem 6. Let G = (V,E) be a graph and (S, T ) be a monitor placement.
Then µ(G) ≤ κST (G).

Proof. If there is no vertex set in G separating S and T , κST (G) = ∞ and the
result is trivial. Let K be the set witnessing the minimal separability of S from T
in G. Hence |K| = κST (G). Let N(K) be the set of neighbours of nodes in K and
notice this cannot be empty since K is disconnecting G. Pick one w ∈ N(K) and
define U := K and W := U ∪ {w}. Clearly P(U) ⊆ P(W ). To see the opposite
inclusion assume that there exists a path from S to T passing from w but not
touching U = K. Then K is not separating S from T in G. Contradiction. ut

Note that, while in general κST (G) may be larger than δ(G), if S and T
are separated by a set of κ(G) vertices then, by inequality (2), the bound in
Theorem 6 is at least as good as the minimum degree bound proved earlier by
the first two authors [15]. This implies the upper bound in Theorem 2.

Moving to lower bounds, in this section we prove the following:

Theorem 7. Let G = (V,E) and (S, T ) be a monitor placement for G. Then
µ(G) ≥ min(κ(G)− 1, |S|, |T |)− 1.

The lower bound in Theorem 2 can be derived easily from Theorem 7. Let K
be a vertex separator in G of size κ(G), set SK to be the first bκ(G)/2c elements
of K and TK = K \ SK . By Theorem 7 the maximal identifiability of G is at
least |SK | − 1 = bκ(G)/2c − 1.

The proof of Theorem 7 uses Menger’s Theorem, a well-known result in graph
theory (see [16, Theorem 5.10, p. 48] for its proof).

Theorem 8. (Menger’s Theorem) Let G = (V,E) be a connected graph. Then
κ(G) ≥ k if and only if each pair of nodes in V is connected by at least k
node-disjoint paths in G.

Menger’s Theorem is central to the following Lemma which is used in the
proof of Theorem 7.

Lemma 1. Let G = (V,E). Let W ⊆ V such that |W | ≤ κ(G) − 2. Then any
pair of vertices in V \W is connected by at least two vertex-disjoint simple paths
not touching W .



Proof. By Menger’s Theorem, for any pair of nodes u and v in V \W there are
at least κ(G) vertex-disjoint paths from u to v in G. Call P the set of such paths.
Since |W | ≤ κ(G)− 2, then the nodes of W can be in at most κ(G)− 2 of paths
in P. Hence there are at least two paths in P not touching W . ut

Proof of Theorem 7. LetG = (V,E) be an undirected connected graph and (S, T )
be a monitor placement in G. Note that without loss of generality min(κ(G) −
1, |S|, |T |) > 1 (for otherwise there is nothing to prove).

Assume first that |S| ≥ κ(G)− 1 and |T | ≥ κ(G)− 1. We claim that

µ(G) ≥ κ(G)− 2.

We show that for any distinct non-empty subsets U and W of V of size at most
κ(G) − 2, there is a path in P touching exactly one between U and W . Given
such U and W , fix a node u ∈ U4W and assume w.l.o.g. that u ∈ U . Since
|W | ≤ κ(G)− 2 and |S| ≥ κ(G)− 1 there is at least a node in s ∈ S \W . By the
Claim above applied to nodes s and u and to the set W , there are two vertex-
disjoint simple paths πs1, π

s
2 from s to u not touching W . The same reasoning

applied to T , guarantees the existence of a node t ∈ T \ W and two vertex-
disjoint paths πt1, π

t
2 from u to t not touching W . If at least one between πs1,

and πs2 only intersects one of πt1, and πt2 at u then the concatenation of such
paths is a (longer) simple path from s to t passing through u and not touching
W . Otherwise the concatenation of one between πs1, and πs2 with one between
πt1, and πt2 is a non simple path. In what follows we show that the subgraph
of G induced by the four paths does contain a simple path from s to t passing
through u and not touching W . In the construction below we exploit the fact
that πs1, and πs2 (resp. πt1, and πt2) are simple and vertex disjoint. Let p be a path
from s to u. Define an order on the nodes of p as follows: v ≺p w if going from
v to u we pass though w. From now on we will use ≺ instead of ≺p when the

path under consideration will be clear from the context. Let Zj1 be the nodes
in πs1 ∩ πtj . Z1

1 and Z2
1 are disjoint but there will be a node in those sets, say

z, which is minimal according to ≺. Without loss of generality let us say that
z ∈ Z1

1 . The subpath πs1[s . . . z] of πs1 going from s to z, is intersecting neither
πt1 nor πt2. Hence the concatenation of the following three disjoint paths defines
a simple path from s to t passing through u avoiding W , hence a path in P with
the required properties:

1. πs1[s . . . z], going form s to z;
2. πt1[z . . . u] a sub path of πt1 going from u to z and traversed in the other

direction;
3. πt2, connecting u to t.

Now assume that at least one between |S| and |T | is less than κ(G) − 1.
Let r = min(|S|, |T |)− 1. As before we prove that for all distinct non-empty U
and W subsets of V of size at most r, there is an S − T path in G, hence in
P, touching exactly one between U and W . Let u ∈ U4W and without loss of
generality assume u ∈ U . Notice that r+1 = min(|S|, |T |), then both |S| ≥ r+1



and |T | ≥ r + 1. Since |W | ≤ r, as before there are s ∈ S \W and t ∈ T \W .
Furthermore, since κ(G) ≥ min(|S|, |T |), then by previous observation on |S| and
|T |, κ(G) ≥ r+1 and, since |W | ≤ r, then κ(G)−|W | ≥ 2, that is |W | ≤ κ(G)−2.
As in the previous case we can apply the Claim above once to s, u and W getting
the vertex-disjoint paths πs1 and πs2 from s to u, and once to t, u and W getting
the vertex-disjoint paths πt1 and πt2 from t to u. The proof then follows by the
same steps as in the previous case. We then have proved that if |S| or |T | are
smaller than κ(G)− 1, then µ(G) ≥ min(|S|, |T |)− 1 and the proof of Theorem
7 is complete. ut

Proof of Theorem 3. We complete this section investigating a different way to
relate the graph vertex connectivity to µ(G). It is easy to see that, in general,
the bounds in Theorem 2 are not very tight, particularly when κ(G) is large.
However, if κ(G) is small, we can do better.

In what follows let K be a minimal vertex separator in G. Let GKi =
(V Ki , EKi ), i ∈ {1, . . . , rK} be the rK ≥ 2 connected components remaining
in G after removing K. Since κ(G) ≤ n

3 , then 2κ(G) ≤ n − κ(G) and one can
define disjoint sets S, and T with κ(G) vertices each in such a way that the
smallest among the V Ki ’s contains only elements of S. This can be done as fol-
lows: if the smallest V Ki ’s has less than κ(G)− ` nodes, then assign all its nodes
to S. Then use the other components GKj ’s to assign ` nodes to S and κ(G)

other nodes to T . If the smallest V Ki has more than κ(G) nodes, choose κ(G)
among them and put them in S. Choose κ(G) nodes in other components and
assign them to T .

We now prove that the set of simple paths between S and T defined as above
allow a very high identifiability. The lower bound on µ(G) follows from Theorem
7 noticing that |S| = |T | > κ(G) − 1. We now prove that µ(G) ≤ κ(G). Let
GKi be the component where all the S-nodes are assigned. Let w be a node in
V Ki ∩ N(K). This node has to exists since G was connected and the removal
of K is disconnecting GKi from K. Fix U = K and W = K ∪ {w}. We will
show that P(U) = P(W ). It suffices to prove that P({w}) ⊆ P(K), since clearly
P(U) ⊆ P(W ). Observe that no S−T path p in G can live entirely inside GKi , i.e.
have all of its nodes in V Ki . This is because at least one end-point (that in T ) it is
necessarily missing in any path entirely living only in GKi . Hence a path touching
w is either entering or leaving GKi . But outside of GKi w is connected only to K,
since otherwise K would not be a minimal vertex separator. Hence it must be
P({w}) ⊆ P(K). We have found U,W of size ≤ κ(G) such that P(U) = P(W ).
The upper bound follows.

Arbitrary LoS networks have minimum degree, and hence also vertex con-
nectivity at most 2d(ω − 1). The next corollary follows directly from Theorem
3.

Corollary 1. Let G be an arbitrary LoS network over n nodes and with fixed
range parameter ω, independent of n, such that n ≥ ω. Then µ(G) ≥ κ(G)− 2.
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Fig. 4. A node v ∈ U∆W and a possible way to connect it to S and T .

5 Random Networks and Tradeoffs

The main aim of this work is to characterize the identifiability in terms of the
vertex connectivity. In this section we prove that tight results are possible in
random graphs. Also we show an interesting trade-off between the success prob-
ability of the various random processes and the size of the sets S and T . Finally,
random graphs give us constructions of networks with large identifiability.

5.1 Sub-Linear Separability in Erdős-Rényi Graphs

We start our investigation of the identifiability of node failures in random graphs
by looking at the binomial model G(n, p), for fixed p ≤ 1/2 (in this section only
we follow the traditional random graph jargon and use p to denote the graph
edge probability rather than a generic path). The following equalities, which
hold with probability approaching one as n tends to infinity (that is with high
probability (w.h.p.)), are folklore:

κ(G(n, p)) = δ(G(n, p)) = np− o(n). (3)

(see [5]). Here we describe a simple method which can be used to separate sets
of vertices of sublinear size.

We assume, for now, that S and T are each formed by γ = γ(n) nodes
with κ(G(n, p)) ≤ γ < n/2. Let M = S ∪ T . Let U and W be two arbitrary
subsets of V \M of size k. The probability that U and W are separable is at
least the probability that an element v of U∆W (w.l.o.g. assume v ∈ U \W ) is
directly connected to a node in S and to a node in T . This event has probability
(1− (1− p)γ)2. Hence the probability that U and W cannot be separated is at
most 1 − (1 − (1 − p)γ)2 = 2(1 − p)γ − (1 − p)2γ and therefore the probability
that some pair of sets U and W of size k (not intersecting M) fail is at most
2
(
n−2γ
k

)(
2k
k

)
(1− p)γ .

Theorem 9. For fixed p with p ≤ 1/2, under the assumptions above about the
way monitors are placed in G(n, p), the probability that G(n, p) is not k-vertex

separable is at most 2k
(
n
k

)2
e(2k−γ)p.



Proof. The argument above works if both U and W contain no vertex in M . The
presence of elements of vertices in M in U or W may affect the analysis in two
ways. First v could be in M (say v ∈ S). In this case U and W are separable if v is
directly connected to a vertex in T . This happens with probability (1−(1−p)γ) >
(1 − (1 − p)γ)2. Second, M might contain some elements of U and W different
from v. In the worst case when v is trying to connect to M , it must avoid at

most 2k element of such set. There is at most
∑
h≤k

(
n
h

)2 ≤ k
(
n
k

)2
pairs of U

and W of size at most k. Thus the probability that G(n, p) fails to be k-vertex

separable is at most 2k
(
n
k

)2
(1−p)γ−2k. and the result follows as 1−p ≤ e−p. ut

Note that the bound in Theorem 9 can only be small if k = o(n) for otherwise
the factor e(2k−γ)p is large. In fact it has to be k = O(nε) for sufficiently small

positive ε otherwise the large factor
(
n
k

)2
is not “killed off” by the magnitude of

the small exponential.

5.2 Linear Separability in Erdős-Rényi Graphs

The argument above cannot be pushed all the way up to κ(G(n, p)). When trying
to separate vertex sets containing Ω(n) vertices the problem is that these sets
can form a large part of M and the existence of direct links from v to S \W and
T \W is not guaranteed with sufficiently high probability. However a different
argument allow us to prove the following:

Theorem 10. For fixed p ≤ 1/3, κ(G(n, p)) − 1 ≤ µ(G(n, p)) ≤ κ(G(n, p))
w.h.p.

Full details of the proof are left to the final version of this paper, but here
is an informal explanation. The upper bound follows immediately from (3) and
Theorem 6. For the lower bound we claim that the chance that two sets of size
at most κ(G(n, p)) − 1 are not vertex separable is small. First note that w.h.p.
G(n, p) has a single vertex of minimum degree. Choose S of size at least n/3 so
that it contains such vertex. Choose T of size at least n/3 in V \ (S ∪ N(S))
arbitrarily. To believe our claim pick two sets U and W , assume without loss
of generality that U \W 6= ∅ and remove, W from the graph. G(n, p) \W is
still a random graph on at least n − np = Ω(n) vertices and constant edge
probability. Results in [4] imply that G(n, p) \W has a Hamilton path starting
at any s ∈ S with probability at least 1 − o(2−n) (and in fact one can use
well-known algorithmic techniques [1] to find one such path in polynomial time,
w.h.p.). Such Hamiltonian path, by definition, contains a path from S to T
passing through v 6∈ W , for every possible choice of v. This proves, w.h.p., the
separability of sets of size up to κ(G(n, p)) − 1 (if |W | = κ(G(n, p)) − 1, v is
the unique vertex of minimum degree and W ⊆ N(v) then one needs to use a
Hamiltonian path starting at v).

5.3 Random Regular Graphs

A standard way to model random graphs with fixed vertex degrees is Bollobas’
configuration model [3]. There’s n buckets, each with r free points. A random



pairing of these free points has a constant probability of not containing any pair
containing two points from the same bucket or two pairs containing points from
just two buckets. These configurations are in one-to-one correspondence with
r-regular n-vertex simple graphs. Denote by Cn,r the set of all configurations
C(n, r) on n buckets each containing r points, and let G(r-reg) be a random
r-regular graph.

As before assume |S| = |T | = γ. The main result of this section is the
following:

Theorem 11. Let r ≥ 3 be a fixed integer. r−2−o(1) ≤ µ(G(r-reg)) ≤ r w.h.p.

The result resembles Theorem 3 but its proof uses different techniques. The
upper bound is true of any r-regular graph G as µ(G) ≤ δ(G) = r. The lower
bound is a consequence of the following:

Lemma 2. Let r ≥ 3 be a fixed integer. Two sets U and W with U,W ⊆ V (G(r-
reg)) and max(|U |, |W |) ≤ k are separable w.h.p. if k = r − 2− o(1).

Proof. In what follows we often use graph-theoretic terms, but we actually work
with a random configuration C(n, r). Let U and W be two sets of k buckets. For
simplicity assume that (the vertices corresponding to the elements of) both U
and W are subsets of V \M . The probability that U and W can be separated is at
least the probability that a (say) random element v of U4W (w.l.o.g. v ∈ U \W )
is connected to S by a path of length at most `s and to T by a path of length
at most `t, neither of which “touch” W . Fig. 5 provides a simple example of
the event under consideration. The desired paths can be found using algorithm
PathFinder below that builds the paths and C(n, r) at the same time.

PathFinder(v, `s, `t,W )

SimplePaths(v, `s, `t,W ). Starting from v, build a simple path ps

of length `s that avoids W . Similarly, starting from v, build a
simple path pt of length `t that avoids W .

RandomShooting(ps, pt). Pair up all un-matched points in ps

and pt.

Complete the configuration C(n, r) by pairing up all remaining
points.

Sub-algorithm SimplePaths can complete its constructions by pairing points
starting from elements of the bucket v then choosing a random un-matched
point in a bucket u, then picking any other point u and then again a random
un-matched point and so on, essentially simulating two random walks RWs and
RWt on the set of buckets. Note that the process may fail if at any point we re-
visit a previously visited bucket or if we hit W or even M . However the following
can be proved easily.

Claim. RWs and RWt succeed w.h.p. provided `s, `t ∈ o(n).

As to RandomShooting, the process succeeds if we manage to hit an ele-
ment of S from ps and an element of T from pt.
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Fig. 5. Assume r = 4. The picture represents a bucket (i.e. vertex) v ∈ U4W and
two possible “paths” (sequences of independent edges such that consecutive elements
involve points from the same bucket) of length 3 and 5, respectively connecting it to
S and T .

Claim. RandomShooting(qs, qt, S, T ) succeeds w.h.p. if `s, `t ∈ ω(1).

Any un-matched point in ps or pt after SimplePaths is complete is called
useful. Path ps (resp. pt) contains qs = (r − 2)`s + 1 (resp qt = (r − 2)`t + 1)
useful points. During the execution of RandomShooting a single useful point
“hits” its target set, say S, with probability proportional to the cardinality of S.
Hence the probability that none of the qs useful points hits S is (1 − γ

n )qs and
the overall success probability is (1− (1− γ

n )qs)(1− (1− γ
n )qt).

Back to the proof of Lemma 2 Set `s = `t = ` and q the common value of qs
an qt. The argument above implies that the success probability for U and W is
asymptotically approximately (1− (1− γ

n )q)2 and the rest of the argument (and
its conclusion) is very similar to the G(n, p) case (the final bound is slightly
weaker, though). The chance that a random r-regular graph is not k-vertex
separable is at most

O(n2k)× (1− (1− (1− γ

n
)q)2) ≤ O(n2k)× 2(1− γ

n
)q ≤ O(n2k)× 2e−

γ
n q,

which goes to zero as n−C provided ` is at least logarithmic in n. The constraints
on ` from the claims above imply that the parameter can be traded-off agains γ
to achieve high identifiability. ut
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