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Demand for smartwatches has taken off in recent years with new models which can run independently from smartphones and
provide more useful features, becoming first-class mobile platforms. One can access online banking or even make payments on
a smartwatch without a paired phone. This makes smartwatches more attractive and vulnerable to malicious attacks, which to
date have been largely overlooked. In this paper, we demonstrate Snoopy, a password extraction and inference system which
is able to accurately infer passwords entered on Android/Apple watches within 20 attempts, just by eavesdropping on motion
sensors. Snoopy uses a uniform framework to extract the segments of motion data when passwords are entered, and uses
novel deep neural networks to infer the actual passwords. We evaluate the proposed Snoopy system in the real-world with
data from 362 participants and show that our system offers a ∼ 3-fold improvement in the accuracy of inferring passwords
compared to the state-of-the-art, without consuming excessive energy or computational resources. We also show that Snoopy
is very resilient to user and device heterogeneity: it can be trained on crowd-sourced motion data (e.g. via Amazon Mechanical
Turk), and then used to attack passwords from a new user, even if they are wearing a different model.

This paper shows that, in the wrong hands, Snoopy can potentially cause serious leaks of sensitive information. By raising
awareness, we invite the community and manufacturers to revisit the risks of continuous motion sensing on smart wearable
devices.

CCS Concepts: • Security and privacy→ Authentication; • Human-centered computing→ Mobile devices;

Additional Key Words and Phrases: Smartwatch, APL, Motion Sensors

1 INTRODUCTION
Smartwatches are becoming increasingly ubiquitous: it is expected that the global smartwatch market has a
potential to reach $32.9 billion by 2020 [29]. They are now deeply embedded in our daily lives, and over time
can accumulate a variety of sensitive and important information such as emails, contacts and payment details.
Due to their current role as an extension to the smartphones, the security and privacy of smartwatches have
been overlooked, and instead delegated to the paired phones. However, driven by the major players such as
Google and Apple, smartwatches are becoming more independent and can act as first class citizens in the mobile
ecosystem: they are no long just secondary displays, but are able to offer all basic functionalities without the
presence of smartphones. For instance, it is already possible to pay via a smartwatch without even needing
to carry a smartphone [2, 6, 11], and many recent apps on smartwatches such as fitness tracking, well-being
monitoring, and messaging (email/text) apps can work independently of phone usage.
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Fig. 1. An example of motion sensor data changes induced by swiping a pattern-lock on a smartwatch. Tapping or swiping
passwords does not follow uniform motion and is very challenging to distinguish individual digits, let alone reveal the entire
code.
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Fig. 2. Signal-to-noise ratio (SNR) of motion sensors on smartphones, high-end IMUs and smartwatches. Left: Accelerometers;
Right: Gyroscopes

These increased functionalities make smartwatches more useful, but also attract malicious attacks which
traditionally target smartphone class devices only. Smartwatches are typically secured using a 4 digit PIN or
a pattern lock, e.g., Android Pattern Locks (APLs). These are used not only to unlock the phone, but also to
authenticate the payments. In practice, the consequences of such an attack can be more serious than just security
breach of the smartwatch screen lock [32]: as shown in our user study (discussed in Sec. 6), over 80% of 745
anonymous participants have a frequent habit of reusing the same passwords across services e.g. PayPal, card
payments e.g. ATM PIN codes or even physical security e.g. home alarm systems. Therefore compromising a
smartwatch password could lead to a series of cyber and physical attacks.

There has been a solid body of work on the similar problem of attacking passwords on smartphones, including
analysing oily residues on the screen [4], video footage [41], radio signal perturbations [18] and motion sensor
data [8]. In particular, attacking passwords by eavesdropping motion data is popular, since motion sensors are
commonly sampled by a wide variety of applications, e.g. those designed for positioning, fitness tracking and
activity recognition. In addition, giving access to on-board motion sensors appears to be innocuous, and many
users (76% according to our user study) would grant instantly. Motion sensors leak information about the location
of events such as taps through small changes in orientation and impacts. Existing techniques for cracking PINs
on smartphones typically segment digits by extracting tap events and then use the extracted features to tell
which digit has been pressed. As such, existing techniques rely on significantly handcrafted features and ad hoc
approaches for digit segmentation.
Smartwatches with their smaller form factor compound the password classification problem, making it far

more challenging than the smartphone case. Fig. 1 shows examples where the motion sensor data changes as
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the user swipes an APL on a smartwatch. As can be seen, the motion induced by password entries is small and
not easily segmented. Fig. 2 highlights this by considering the signal-to-noise (SNR) ratio of motion sensors
on different devices. We see that motion signals on smartwatches are far noisier, and can be 20-40dB worse
than that of smartphones or high-end IMUs. In the presence of such low SNR, existing techniques designed for
smartphones [8] typically fail to work. This is due to the reliance on hand-engineered features, which are not
robust to variability across users and devices, particularly given the much weaker and noisier motion signals on
smartwatches.

Although there are a number of papers which look at cracking PINs on smartphones, to date, only one paper
has considered the issue of revealing APLs. This is because APLs can have an arbitrary length and hence have
significantly more possible combinations e.g. 60 passwords vs 10k for a 4 digit PIN. In this paper, we provide a
universal data driven technique for inferring both APLs and PINs on smartwatches. This requires no handcrafted
feature extraction or digit segmentation and is able to generalize well to the problem of arbitrary length APLs,
even when faced with the extremely low SNRs found on smartwatches. Our novel deep learning approach, based
on recurrent neural networks (RNNs), exhibits a 3-4 fold increase in accuracy compared with the state-of-the-art.
We propose two different architectures. The first exploits the skewed distribution of passwords to perform entire
passwords inference. This technique shows superior results on popular passwords. The second is capable of
digit level inference i.e. it can generalize to any password that may or may not be present in a training database.
Although we have only considered the challenges of smartwatches in this paper, this technique would easily
work on the high SNR signals found on smartphones as well. In addition, we propose an adaptive motion sensing
technique to detect the password in low sampling rate and it only sends motion data of the candidate password
events to the server, minimizing battery and bandwidth usage to mimic a Trojan fitness app more readily. In
summary, the contributions of this paper are:

• We present Snoopy, the first system that demonstrates the feasibility of intercepting password information
entered on smartwatches by sensing resulting motion data.
• Snoopy is also the first approach that can infer universal APLs, a significantly more difficult problem than
PINs, due to the challenges of digit segmentation.
• We propose a universal password inference mechanism based on deep recurrent neural networks that is able
to attack PINs and APLs. We present two variants, one which cracks popular passwords and another which
infers arbitrary passwords. Our system does not require any handcrafted features, only a crowdsourced
training dataset.
• We have conducted a user study and collected over 1,000 answered questionnaires, which shows that the
affected population of smartwatch users is nonnegligible and the majority of users are not aware of the
potential password leak on smartwatches via motion data and its consequences.
• We have extensively evaluated the proposed Snoopy system, using data from over 360 distinct participants
and > 60K password entries on both Android and Apple devices. Our results show that the Snoopy achieves
a 3-4 fold improvement in correctly inferred passwords compared to competing techniques.

The remainder of the paper is organised as follows. Sec. 2 covers the technical background, while Sec. 3 presents
the overview of the proposed Snoopy system. Sec. 4 proposes a uniform approach to extracting the relevant part
of the motion signal that corresponds to entering PINs and APLs. Sec. ?? proposes two models of inferring the
actual contents of passwords using deep neural networks. Sec. 5 evaluates the proposed extraction and inference
approaches and compares them with competing state-of-the-art methods. Sec. 6 reports the results of our user
study, while Sec. 7 discusses the energy/accuracy tradeoff of Snoopy and possible countermeasures. Finally, Sec. 8
presents an overview of related work, and Sec. 9 concludes the paper and points to directions for future work.
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2 TECHNICAL BACKGROUND

2.1 Tapped vs. Swiped Passwords
There are two predominant types of password input mechanism on smartwatches (also on smartphones): tapped
and swiped passwords [37].
For iOS platforms, the default password type is four digit PIN, where the users tap their passwords on the

screen when prompted. A four digit PIN has 10, 000 possible combinations. It is possible to use longer passwords,
but in this paper, we only consider the four digit PIN.
For the Android platform, users have the option to use a PIN or a graphical pattern lock (also known as

APL), where the users swipe a pattern over a three-by-three matrix of dots (see Fig.1 for an example). Unlike
the numerical passwords where the users can choose freely from ten possible digits at each tap, the smartwatch
operating systems typically have certain constraints over the trajectories of the swiped patterns. For instance
as shown in Fig.1, starting from the top left dot, it is only possible to swipe towards four reachable neighbours:
the immediate right and the three dots in the second row. Therefore, the size of the search space for swiped
passwords is restricted to a maximum of 389, 112 [4].
In practice, for both PINs and APLs, if one fails to input the correct password three times the smartwatch

will prevent any further attempts for a few minutes. When the number of failed attempts reaches a threshold,
typically ten, the smartwatch can enter ‘lost’ mode, e.g. erase all data.

2.2 Motion Induced by Password Input
Intuitively, entering both tapped and swiped passwords will induce forces and orientation changes on the
smartwatch [35]. Since human skin has a certain level of elasticity, tapping on the smartwatch screen will cause
minor displacement at the contact point along the vertical direction, i.e. the watch body will rotate for a small
angle. Tapping causes an underdamped impulsive wave to develop, which causes small oscillations, shown in
Fig. 1. On the other hand, when swiping passwords, the pressing and friction force between the user’s finger and
touch screen will “drag” the smartwatch to move along both vertical and horizontal directions. This gives rise to
small slip-pulse waves which have a longer duration than impulsive taps, as shown in Fig. 1.

In practice, induced motion can be picked up by the Inertial Measurement Units (IMUs) embedded on most of
the commercial smartwatches. IMU sensors have been widely used in many mobile sensing scenarios, since they
are able to capture displacement and rotation of the devices in 3-D space, and become increasingly cheap and
power efficient. Concretely in this work we consider both accelerometers and gyroscopes, which capture the
linear acceleration and angular velocity (roll, pitch and yaw) with respect to the three axis. By default the IMU
sensors on most smartwatches are set to be always-on, continuously sensing motion for various applications such
as gesture recognition, localisation, and fitness monitoring. This can lead to involuntary information leakage,
which may be leveraged by malicious parties to infer private and valuable data such as passwords.

3 SYSTEM OVERVIEW

3.1 Attack Assumptions
We assume that the user installs Snoopy, a Trojan app that can be easily disguised as a fitness or gaming app [20].
Snoopy requires access to the motion sensors, which does not require explicit permission in Android or via
CMMotionManager in iOS. Snoopy logs and periodically sends candidate extracted password events via the
network. In Android this is given by the INTERNET permission which is classed as a normal permission, not
a dangerous permission. In iOS, this is done via a normal system API and thus no additional permissions are
required. The amount of data that needs to be sent is also small - a 10s batch of candidate password data is only
3 kByte, so Snoopy is unlikely to trigger any network level monitors. Note that throughout the attack, Snoopy
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Fig. 3. System overview:The attacker builds a deep RNN classifier using crowd-sourced data. On a victim’s smartwatch, a
trojan app uses an adaptive sampling scheme to record and identify a victim’s motion data. Candidate password sequences
are uploaded to the server. The back-end server runs the trained deep RNN classifier to infer possible passwords. Note,
training is only required by the attacker; no training is needed by the victim.

only needs to eavesdrop motion data, without having access to any other sensing modality, such as monitoring
the touch screen [31, 41].

3.2 Attack Goals
There are two key goals of the attack. The first is to successfully harvest candidate password events for later
extraction. This is because sending raw motion data without segmentation will cause heavy traffic loads and
lead to the app more likely being flagged. The second is to be able to infer both tapped PINs and swiped APLs.
Once comprised, an attacker can unlock the physical device, accessing all stored information. Alternatively as
we observe in our user study (Sec. 6), many users would use the same passwords across different accounts and
platforms, where compromising one password can be harmful to many services.

3.3 System Architecture
In this section we present the high-level architecture of Snoopy, a system for inferring PINs and APLs on
smartwatches. Snoopy contains a client front-end which runs locally on a victim’s smartwatch which periodically
sends motion data to a password inference back-end that resides on the cloud. Fig.3 shows the the architecture of
the proposed system.
Front-end Password Input Extraction: The front-end of Snoopy disguises itself as a harmless app, such as
fitness app, and runs in the background continuously once installed. It listens to the IMU sensors and tries to
detect when users are tapping or swiping passwords on their watches. To avoid being flagged as malicious by
the host OS, the front-end of Snoopy uses an adaptive motion sensing strategy. It continuously samples the
accelerometers at low rates to detect potential password input events. This conserves power, as accelerometers
are typically one to two orders of magnitude more power efficient than gyroscopes. Once a candidate event has
been detected, it enables the gyroscope and increases the sampling rate of both sensors, logging motion data until
the user finishes entering passwords. Then the segment of data is smoothed and passed through a lightweight
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classifier, to determine retrospectively if it corresponds to a true password input event, or other user interactions
such as swiping down to check notifications. In the latter case the data segment is simply discarded, while the
data of true password input events is transmitted to the back-end for further analysis.
Back-end Password Inference: Given extracted segments of motion data, the back-end of Snoopy aims to infer
user entered passwords. Instead of relying on bespoke signal processing algorithms which require hand-crafted
features and tuning, Snoopy considers an end-to-end deep learning approach, which takes the raw motion data
as the input, and computes the most likely password that the users has entered. To achieve this, Snoopy extends
standard deep Recurrent Neural Networks (RNNs) to capture the unique characteristics of device motion induced
by tapped PINs and swiped APLs. For PINs, it uses a hierarchical RNN with two layers to filter out the motion
gaps (i.e. when the user lifts her finger off the touchscreen in between two taps) before inference, while for APLs
it considers a bidirectional RNN to model the long continuous motion caused by swiping patterns. Now we are in
a position to present the proposed Snoopy system in more detail.

4 IN SITU PASSWORD EXTRACTION
From a high level point of view, Snoopy infers the users’ passwords by collecting and analyzing the motion data
generated on their smartwatches. Of course one can task the motion sensors continuously at high sampling rates,
and stream the sensor data to the cloud for password inference. However in practice, this will incur significant
cost in energy, computation and communication, where the smartwatch operating systems (Android Wear or
WatchOS) can easily detect such unusual behaviour and kill Snoopy instantly. To make our attack realistic, we
would like Snoopy to be as “benign” as possible, i.e. it should not ask for excessive battery or bandwidth use
most of time, but only become active (processing/transmitting) when the users are actually inputting passwords.
In Secs. 4.1 and 4.2, we first explain how to adaptively task the motion sensors to detect potential password
input events without incurring heavy load on the system. Then, in Sec. 4.3 we discuss how to extract the precise
segments of motion data corresponding to those detected candidate events, and identify if the segments are
related to actual password input events.

4.1 Adaptive Motion Sensing
Snoopy uses the onboard accelerometers to detect potential password input events, since they are very power
efficient compared with gyroscopes [39]. Concretely, we consider an adaptive sensing strategy, which switches
between three modes: passive listening, password input monitoring, and motion data extraction, depending on
different user behaviour. Most of the time Snoopy stays in the passive listening mode, where it only samples
accelerometer data at low rates and runs a gesture detection algorithm. Note that in this mode, Snoopy won’t
necessarily incur extra load on the sensors, since in practice major smartwatch platforms have their own gesture
recognition or fitness services running in the background, which already task the accelerometer continuously.
When it detects a user’s intention to interact with their device, via detection of a characteristic wrist movement,
Snoopy transitions into the password input monitoring mode, where it increases the accelerometer sampling rate
to look for potential password input events. It keeps analysing the received acceleration data, seeking to detect
when the user will start entering their password. Once such an event is detected, Snoopy immediately turns into
the motion data extraction mode, and samples both accelerometer and gyroscope at higher rates until it detects
that the user has finished typing/swiping passwords. This segment of motion data is cached locally and passed
through a classifier which decides if it corresponds to normal tapping/swiping, e.g. check email notifications, or
a true password input event. In the latter case, the cached data is sent to the cloud for password inference. At
the end of this process, Snoopy goes back to passive listening. In this way, Snoopy only actively processes and
transmits short bursts of password related motion data, and avoids unnecessarily alerting the OS or malware
monitoring frameworks.
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4.2 Password Input Event Detection
As discussed above, when the users try to interact with their watches, Snoopy increases the accelerometer
sampling rate and starts to check if any password is entered. Given the raw acceleration stream, Snoopy uses a
sliding window of lengthT and stride S (both expressed in terms of samples) to segment the data into frames. Each
frame contains T data points and the overlap between adjacent frames is T − S (assuming T ≥ S). In practice, the
optimalT and S depend on the accelerometer sampling rate and can be learned from the data. For instance in our
experiments, when the accelerometer rate is set to 40 Hz, the bestT and S are 60 and 6 measurements respectively.
Then for each frame, we would like to decide whether the user starts to input passwords within that frame. To
achieve this, we first extract various features of the data frame, e.g. moments, maximum/minimum, skewness,
kurtosis of individual acceleration axis, and different norms (e.g. l1, l2, Infinity and Frobenius norms) across all
three axes. In the current Snoopy implementation we consider 41 features in total. Based on the extracted feature
vector, we consider a Support Vector Machine (SVM) to label if the current frame belongs to a password input
event. If so, Snoopy switches to the motion data extraction mode, which samples both the accelerometer and
gyroscope at a high rate (e.g. 200Hz) and caches the data locally. This continues until it observes a sequence of
consecutive frames that are not labelled as password input. In this way, Snoopy tends to save the motion data of
as many potential password input events as possible. In what follows, we show how to extract the true password
input event through sequence alignment and classification.

4.3 Frame Smoothing and Password-positive Sequence Identification
Given a cached sequence of data frames, which correspond to a potential password input event, Snoopy needs to
decide: a) the accurate starting and ending frames of this event, and b) if this candidate event is a true password
input event or not. For the former task, we use a smoother to align the sequence of frames based on labels of
nearby frames. The intuition is that labels of adjacent frames should be consistent, i.e. a chunk of frames should
either belong to a password input event or not, but not have many interleaving labels. In Snoopy we consider two
types of smoothers, one based on a Hidden Markov Model (HMM) to exploit the temporal correlations, and the
other based on moving average (essentially majority voting). From the output of the smoother, Snoopy extracts
the longest segment of frames whose labels are positive. If the segment length exceeds a minimum threshold,
Snoopy considers this segment of motion data to be able to cover the potential password input event precisely.
In Sec. 5 we will show why this smoothing process is crucial, and how the two smoothers perform in different
settings. However in practice, the motion data extracted might not always correspond to password input; for
instance, it could correspond to users tapping or swiping their smartwatches to preview email, or check upcoming
calendar notifications. Therefore, given the extracted motion data, we need to identify whether it is corresponding
to a true password input event, or not. Snoopy addresses this by post-hoc feeding the extracted data segment
into a binary classifier, which is trained on a pre-collected motion dataset covering various user interactions.
In our experiments, we find that this classification step can be efficiently run on the smartwatches in real-time.
Therefore, Snoopy is able to locally identify and extract the precise segments of motion data corresponding
to password input events, and only send such data to the cloud for further password inference, which will be
discussed in the next section.
Chris Xiaoxuan Lu is currently a third-year PhD student in Department of Computer Science, University of

Oxford. Before that, he obtained his MEng degree at Nanyang Technology University, Singapore. His research
interest lies in ubiquitous and mobile computing, with a focus on enabling ambient intelligence for Internet of
Things (IoT) via cross-modality inference.

5 EVALUATION
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We evaluate the proposed Snoopy system extensively on large-scale real world datasets collected in three different
sites: Oxford, Shanghai and Harbin. In total, our experiments collected preferred/generated passwords from 420
anonymous participants, recruited a separate group of 362 volunteers to contribute their motion data when
entering passwords on smartwatches (worn on their left hands), and accumulated over 60k samples of motion
data during password entries1. In the following, Sec. 5.1 focuses on evaluating the performance of the front-end
password extraction capability of the proposed Snoopy system; Sec. 5.2 presents the performance of Snoopy in
inferring APLs; and finally Sec. 5.3 assesses our system’s capability of PIN inference.

5.1 Performance of Password Input Extraction
5.1.1 Experimental Setup.

Data Collection: To evaluate the performance of password input extraction, we recruited 15 volunteers (10
males and 5 females), and asked them to wear different smartwatches (Android and iWatches) on their left wrists.
Throughout our experiments we use four different models of Android watches: Sony SmartWatch3, Samsung
Gear Live, Moto 360 Sports, LG Urbane, and two Apple watches: 38mm and 42mm versions of iWatch2. Note that
Android smart watches typically use APLs for system level authentication, whereas Apple watches use PINs.

During the experiments, we asked the participants to perform three different types of actions: password input
where they enter their passwords on their smartwatches; non-password input where they tap/swipe on the
watches screen to do other tasks (e.g. preview email or check a calendar notification) but not to enter a password;
and no input when they just perform a series of activities wearing their smartwatches, such as drinking, drawing,
eating, walking, going down/upstairs, typing on keyboards and holding hands still. We designed a data collection
app on the smartwatches, which samples the motion sensors in the background (100Hz in this case), and instructs
the participants to perform certain actions at a given time. In this way we can obtain accurate ground truth as to
when the user is performing a certain action.

To collect rich enough data, in one episode we requested a participant to at least perform three actions, where
the action in the middle should be password input or non-password input action, e.g. she may first walk, then
enter her password, and finally go upstairs. Each participant is requested to contribute multiple episodes, and in
total we obtained 455 episodes for Android watches, and 387 for Apple watches.
Competing Approaches: Since the front-end of Snoopy has to run locally, in this series of experiments we only
consider lightweight approaches that can run in real-time on the smartwatches. Recall that the task of password
extraction has not been attempted on smartwatches before. Previous related work has focused on the extraction
of PINs on smartphones only [8, 27, 40]. However, features used to extract keystrokes on smartphones are not
suitable for smartwatches due to the limited screen size and low signal to noise ratio (see Fig. 2). And even in the
case of smartphones, previous work has assumed that any keystroke is part of a password; however in practice,
keystrokes could be used in the middle of other tasks not related to password input, for example replying to email.
There is no competing approach that currently addresses the entire password extraction task. In what follows,
we evaluate a realistic password extraction approach for smartwatches that has three stages. In the first stage, we
assess how well we can detect the beginning of a password (see Sec. 4.2 for details); we compare a number of
classifiers including the Support Vector Classifier (SVC), decision trees, logistic regression, naive Bayesian
and random forest classifiers. Once we have detected the beginning of a password, in the second stage, we
continue to define the full extent of the potential password, by classifying individual frames, and smoothing
classification results (see Sec. 4.3 for details). Here for smoothing, we compare the Hidden Markov Model (HMM)
based and the voting based moving average (moving average) approaches implemented in Snoopy with the
baseline approach without smoothing (raw). Once the start and end of a potential password are found, the final
stage classifies this sequence as an actual password, or a non-password sequence (as discussed at the end of

1The study has received ethical approval R50768 from the University of Oxford.
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Fig. 4. Performance of detecting potential password input events. Left: PINs; Right: APLs

Sec. 4.3); here we also compare the performance of several classifiers, including SVC, decision trees, logistic
regression, naive Bayesian and random forest. The collected dataset is split into a training set (data from 10
subjects) and a test set (data from the other 5 subjects), and we consider 5-fold cross-validation.

5.1.2 Experiment Results.
Detecting Password Input Events: As discussed in Sec. 4.2, for a given frame of acceleration data, we would like
to decide whether it corresponds to password input or not. As in many other binary classification problems, here
we consider the precision, recall, F1 score and accuracy of the classifiers. Fig. 4 shows that the SVC outperforms
competing classifiers in terms of all evaluation metrics. For both PINs and APLs, it can achieve > 0.95 F1 scores
and > 0.98 accuracy. The random forest and decision tree classifiers can achieve comparable recall with SVC, but
their precision is nearly 8% lower than that of SVC. Based on these results, in what follows, we adopt SVC as the
default classifier for detecting the beginning of a potential password input event in Snoopy.
Smoothing Detected Sequences: The above SVC approach is iteratively used in ensuing frames to classify
them as password-related (‘1’) or not (‘0’). When we start seeing a lot of ‘0’-s this indicates the end of a potential
password. The candidate password sequence that we derive (e.g. ‘11001111110001101’) is then passed through a
smoothing process as discussed in Sec.4.3. The smoother adjusts the frame labels taking into account those of
nearby frames, and further refines the start and end point of the potential password input event. To evaluate the
performance of the smoothing process, we consider the similarity of a frame sequence sr with respect to the
ground truth st :

d (sr , st ) =
|sr ∩ st |

( |sr | + |st |)/2
(1)

where | · | is the cardinality of the positive labels, and |sr ∩ st | is the number of frames that have the same labels
in both sr and st . Intuitively a sequence sr with higher d is better because it is closer to the ground truth, and
thus tends to contain larger portion of correctly labelled frames. Fig. 5 shows the average similarity scores of
sequences generated by different smoothers (HMM and majority voting moving average vs. no smoothing). As
we can see for different frame sizes, sequences without smoothing (raw) consistently have lower d scores. This
confirms that the smoothing process is beneficial. For instance, for APLs, the moving average smoother can reach
0.98 in terms of sequence similarity score, while for PINs the HMM smoother can achieve 0.94. Note that for the
PINs, the performance gain between not using (raw) and using smoothers (HMM and moving average) can be up
to 35%. This is because the motion data generated by PINs contains “gaps” between two adjacent finger touches,
where the detection approaches would naturally label frames within the gaps as negative (i.e. no password input).
In those cases, the smoothers can correct those errors, and output a sequence with more consistent labels. It is
also interesting to see that although the two smoothers considered in Snoopy have comparable performance,
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Fig. 5. Performance of sequence smoothing when using different frame sizes. Left: PINs; Right: APLs

F1
Score Precision Recall

Decision
Tree 0.89 0.92 0.86

Naive
Bayesian 0.91 0.90 0.91

Logistic
Regression 0.95 0.96 0.93

SVC 0.93 0.92 0.95
Table 1. PIN sequence identification results.

F1
Score Precision Recall

Decision
Tree 0.93 0.91 0.93

Naive
Bayesian 0.91 0.90 0.91

Logistic
Regression 0.96 0.97 0.95

SVC 0.94 0.95 0.94
Table 2. APL sequence identification results.

ave./max
(%)

Feature
Extraction SVM

Sony
SW3 8.9/23.0 7.2/21.4

Samsung
Gear Live 10.9/25.2 9.8/18.5

Moto 360
Sports 10.5/22.7 10.1/25.5

Table 3. CPU load of running
feature extraction and SVM.

HMM tends to work better than moving average for PINs, but can be inferior for APLs. Again this is because
HMM is able to mitigate those non-informative gaps within data of the PINs, while for APLs moving average is
more robust.
Password-positive vs. Password-negative Sequences: Given a smoothed sequence, the front-end of Snoopy
needs to identify if it corresponds to an actual password input, or non-password input such as swiping to check
notifications. As discussed in Sec.4.3, Snoopy addresses this by feeding an entire sequence into a binary classifier.
Tables 1 and 2 show the identification performance of different classifiers for PINs and APLs respectively. We see
that unlike the more expensive random forest and SVC, the simpler classifiers work surprisingly well for this
task. Note that for both types of passwords, the simple classifiers can achieve up to >0.95 F1 score, which means
they are able to reliably distinguish motion caused by password input from that of other interactions. This is
because due to the small size of the smartwatches, the ways to interact with their touchscreens are very limited.
Therefore the motion signals of PINs or APLs are very unique compared to others.
Resource Consumption: The final set of experiments analyse the resource consumption of Snoopy front-end on
three Android watches with different hardware specifications. Tab. 4 shows the average/maximum CPU load, delta
current consumption and battery usages when the front-end is running the following three tasks: a) password
input detection (Sec. 4.2); b) password-input data smoothing and identification (Sec. 4.3); and c) uploading extracted
data to the back-end. We see that among the three tasks, uploading actually consumes the largest amount of
energy, while detection and smoothing are relatively cheap. On the other hand, detection and smoothing tend to
occupy the CPU more than uploading. This is expected because it is well known that transmitting over WiFi is
power-consuming on smartwatches, while detection and smoothing are more computation-intensive as they
involve running SVM classifiers. More specifically, as shown in Tab. 3, on all three watch platforms, running
feature extraction and SVM classifiers consume similar level of CPU resources (∼10%), but the former is slightly
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more expensive since it involves continuous caching operations, e.g. maintaining the sliding windows. In addition,
like many other apps [19], to minimize impact on battery lifetime, Snoopy only uploads cached data when the
watches are connected to power with WiFi connections available. As shown in Tab. 4, in general the Snoopy
front-end doesn’t require excessive resources, and when disguised as an innocent fitness app, it is not likely to
have noticeably abnormal energy/computation impact on the smartwatches.

Model SoC RAM Battery
Cap. Task CPU load (avg/max) Current delta Battery

Usage

Sony SW3
Qualcomm
APQ8026
SD 400

512MB 420 mAh
Detection 9.2%/17.5% 8.9 mA

2% per hrSmoothing 7.2%/15.2% 3.1 mA
Uploading 2.4%/9.9% 18.9 mA

Samsung
Gear Live

Qualcomm
MSM8226
SD 400

512MB 300 mAh
Detection 8.1%/19.4% 11.4 mA

3% per hrSmoothing 15.6%/29.3% 6.2 mA
Uploading 2.1%/19.3% 25.1 mA

Moto 360
Sports

Qualcomm
MSM8926
SD 400

512MB 300 mAh
Detection 8.3%/26.2% 16.1 mA

3% per hrSmoothing 7.3%/22.4% 3.8 mA
Uploading 2.3%/26.1% 22.3 mA

Table 4. Resource consumption (CPU and power) of the Snoopy front-end on smartwatches with different hardware specs.

5.2 Performance of APL Inference
We are now in a position to turn our attention to how the back-end password inference component of Snoopy
performs. In this section we firstly discuss the performance of APL inference, while the PIN inference will be
covered in Sec. 5.3.

5.2.1 Experiment Setup.
APL Database Construction: As discussed in Sec. ??, to infer the user entered APLs, both the seq2pwd and
seq2dgt models considered in Snoopy require a good password database P for training, which can cover as
many common passwords as possible. To construct such a database P , we consider the publicly available APL
data reported in [21] and also collected our own dataset. The APL dataset in [21] contains ∼4, 000 APLs entries
collected from the anonymous users (with duplications). From this dataset, we rank the distinct APLs according
to their frequencies, and select the most popular 113 APLs that can cover half of all the APL entries (2000 out of
4000). This ensures that the selected APLs can achieve a good coverage of the most commonly used APLs, while
leaving out those APLs that are seldom used.

We also recruited 112 anonymous participants to survey their preferred passwords (both PIN and APL) when
using mobile devices. The purpose of collecting our own password dataset is to obtain an independent dataset in
addition to the publicly available data, which would make the constructed password database P more diverse.
During the data collection process, we have made sure that every step complied with data privacy policies, and
there is no link between the collected data and any individual participant. In particular, we have first obtained
the participants’ consent that their data will be used in a scientific study to evaluate password security on
smartwatches. If a participant agreed to proceed, she was then given an Android watch, and we asked her to
wear the watch on her left wrist. Then the participant is provided with an instruction sheet, which asks her
to set a password in a survey app on the smartwatch. The survey app only records the entered passwords by
monitoring touches on the touchscreen. When the participant finished entering the password, it asks if she is
aware of the purpose of the study and would like to contribute this password. If so, the password is assigned
with a unique random ID, and written into a random line of a local text file on the smartwatch. Otherwise there
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Fig. 6. APL inference accuracy of competing approach and
two proposed models in Snoopy.
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Fig. 7. Impact of network architectures on the inference
accuracy.

is no information saved. Note that during this process, the participants were asked to input passwords in private
and take their time. The watches and instruction sheet were passed directly to the next participant without our
intervention. After the survey process, fortunately we obtained 112 APL entries from all participants, among
which we have extracted 64 distinct APLs. Finally, we fuse those 64 surveyed APLs and the 113 APLs extract
from the existing dataset [21], and construct a password database P with 147 distinct APLs.
APL Input Motion Data Collection: Given the above constructed APL database P , we recruited a total number
of 322 participants across three experiment sites to collect the motion data when they are entering APLs on their
smartwatches. Each participant was randomly given 6 APLs selected from P . The participants were asked to wear
the smartwaches on their left wrist but in the most comfortable way, and then enter each password in our data
collection app about 20 times. The app logs the ground truth by monitoring tap/swipe on the smartwatch screen,
and saves the motion data at the same time. In total, we have collected 36, 569 valid samples, each of which
contains an APL and the motion data when it was entered. This set of data is used to train our models in Snoopy.
Competing Approaches: We implement both the seq2pwd and seq2dgt models considered in Snoopy using
Keras [9], and train them on NVIDIA K80 GPUs with the Adam optimiser [15]. To the best of our knowledge,
Snoopy is the first work to study the problem of inferring smartwatch APLs, and there is no existing work that
can infer APLs without knowing the exact segmentation of digits within APLs (as discussed in ??). Therefore,
here we only consider one of the best APL inference approach designed for smartphones, GestureLogger [5],
which bears some resemblance to the proposed seq2pwd model in Snoopy.

5.2.2 Experiment Results.
Field Test APLs vs. Constructed APL Database: The first experiment verifies the representativeness of the
constructed APL database. We recruited an independent cohort of 308 volunteers (115 female and 193 male,
mean age 39.8 with σ = 11.3, Mdn = 40, ranging from 18 to 63), and made sure that none of them was involved
in building the APL database. Then we asked them to conduct an anonymous online survey to provide their
preferred APLs. This survey also complies with data privacy policies and there is no link between the collected
APLs and any individual participants. After the survey process, we obtained 308 APL entries from all participants.
We found that among the 308 APL entries, 223 (72.4%) fall into the constructed APL database. This confirms that
the constructed P indeed covers a good variety of commonly used APLs, and it is possible to use P to accurately
infer the user entered APLs.
APL Inference Accuracy in Field Test: This experiment evaluates the performance of APL inference of the
proposed Snoopy system in the field test. As discussed above, Snoopy uses the constructed password database P
and the associated motion data to train its models. To evaluate its true capability of inferring APLs in real-world
scenarios, we consider the field test APLs which are independent with the APL database P . Concretely, we
consider a similar approach as in [41], and recruited another 20 volunteers (13 males and 7 females), who hadn’t
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contributed any password or motion data, to reproduce (i.e. input) the 308 APLs obtained from the filed test. The
motion data associated with APL entries was collected using the same watch app, and on average each volunteer
swiped about 120 APLs. Eventually we obtained 2, 368 valid samples using three different types of watches (Sony
SW3, Samsung Gear Live and Moto 360), and this data is the used to assess the accuracy of APL inference.

We consider the successful rate at different number of attempts [24, 36] as the metric inference accuracy, which
has been widely used to quantify the threat level of a malicious app [12]. As in GestureLogger [5], we set the
maximum possible number of attempts to 20.Both proposed and competing methods take as input a motion
signal sequence, and return scores for different candidate passwords. We then select the top 20 passwords, which
are the most likely passwords according to the technique used. The first guess always selects the top password,
the second guess the next most likely, and so on.
Fig. 6 shows inference accuracy of APLs, where we include random guess as the naive baseline. We see that

both of the proposed models (seq2pwd and seq2dgt) in Snoopy consistently outperform GestureLogger, achieving
up to 3-4 fold improvement in inference accuracy. In particular, if only allowed to guess once, seq2dgt model can
get 21% accuracy, i.e. one in five times it is able to guess the correct APL, while seq2pwd can achieve an even
higher accuracy of 39%. We found that although seq2pwd model can only predict APLs within the constructed
database P (|P | = 147), its inference accuracy is ‘worryingly’ good: if 10 guesses are allowed, its accuracy can
be 65% and increases up to to 68% for 20 guesses. Note that here the inference is performed on the field test
data which is completely independent from the data used to construct P . This means that the APL database P
constructed in our experiments is very representative, and thus in practice, it is possible to infer most of the
popular APLs with such a database P . In addition, although GestureLogger also infers APLs from P , its accuracy
is very limited and only able to reach 19% after 20 attempts (more than 3 folds lower than seq2pwd).
On the other hand, seq2dgt is not limited to the size of database P , and can predict any APLs within all the

389, 112 possibilities. We see that although the search space now is ∼ 2700 times bigger, seq2dgt can still achieve
decent inference accuracy: about 43% after 10 attempts and up to 50% with 20 guesses. This indicates that the
proposed seq2dgt model can indeed learn the underlying mechanism of user entering APLs, and make informed
predictions when applicable. Note that although seq2dgt solves a much more challenging problem, i.e. no prior
knowledge on popular APLs or perfect segmentation between digits, its accuracy is still way superior than the
state-of-the-art GestureLogger: within 20 guesses, seq2dgt is 250% more likely to hit the correct password than
GestureLogger.
Impact of Network Architecture: This experiment investigates the inference performance of Snoopy when
using different deep network architectures. For seq2pwd model, we compare the inference accuracy of the
proposed bi-directional RNN (B-RNN) and standard RNN. As shown in Fig. 7, B-RNN is about 15% superior to
standard RNN at the first attempt, and is ∼ 8% more accurate on average within 20 attempts. This means that the
temporal correlations within APLs are difficult to be captured by standard RNNs, and by allowing gradient flow
from both directions, B-RNN is able to capture richer information especially in long APL sequences. On the other
hand, for the seq2dgt model, we see that the proposed attention mechanism can improve about 10% of inference
accuracy over the standard architecture. This is because the attention mechanism helps the network to focus
more on the chunks of informative sensor readings, i.e. when finger tips slide through digits, while the standard
network only decodes APLs based on fixed context vectors.
Inference Accuracy vs. Device Heterogeneity: In previous experiments, although we always consider cross-
user inference, i.e. our system is trained on data collected from one group of users, but tested against data
generated from the others, we assume that the same model of device are used in training and testing. For instance,
to infer passwords entered on a Sony SW3 watch, we assume that Snoopy can be trained with data collected
on Sony SW3 watches (not necessarily the same one). In this experiment, we further push the limit, and see
how Snoopy performs in the presence of device heterogeneity. This is very challenging, since the watches used
for testing may have different sensors, dimensions or shapes (round vs. square) with those used for training.
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Fig. 8. Cross-device APL inference accuracy. Left: seq2pwd model; Right: seq2dgt model.

To demonstrate this, for APLs we train Snoopy with data from Sony SW3 watches, and test it on the other two
models, Samsung Gear Live and Moto 360 Sports respectively. Fig. 8 shows the inference accuracy with the same
device model, and across difference models. Note that here we put the performance of GestureLoger (trained and
tested on the same device model) as the baseline. As we can see, for seq2pwd, when tested on different devices,
its performance drops elegantly. For Moto 360 which has round shape (the Sony watches used for training are
square shaped), the performance only decreases by ∼13% on average. This means heterogeneity in the shape of
smartwatches won’t affect password inference performance significantly. On the other hand, the performance on
Samsung Gear Live (square shaped) drops about 20%. Note that even for this worst case, the inference accuracy
of seq2pwd can still reach ∼50% after 10 attempts, while the best competing approach GestureLoger is less
than 10%. On the other hand, from the right of Fig. 8, we see that seq2dgt model is slightly more sensitive to
device heterogeneity. On Moto watches the accuracy decreases ∼ 18% while about 25% on the Samsung watches.
This is also expected since seq2dgt works against a massive search space (389, 112 possibilities), where a small
perturbation in sensor readings might lead to very different predictions. However even in this challenging case,
the inference accuracy is still consistently higher than that of GeastureLogger, which is trained and tested on the
same device models.

5.3 Performance of PIN Inference
In this section, we further evaluate the performance of the proposed Snoopy system in inferring PINs entered on
smartwatches.

5.3.1 Experiment Setup.
Training Data Collection: Like the previous APL case, we first constructed a PIN database by surveying the
same 112 anonymous participants. We follow the same data collection protocol as discussed in the previous
section, and obtained a database P containing 79 distinct PINs from the 112 responses. To collect the PIN input
motion data, we recruited a group of 156 users, and ask them to input 6 randomly selected PINs from P with
smartwatches (iWatches) worn on their left wrists. We use a similar data collection app, and eventually collected
23, 144 valid samples of motion data associated with the PIN input events. As in the APL case, this data is used to
train the proposed Snoopy system.
Competing Approaches: To the best of our knowledge, there is no existing work studying PIN inference on
smartwatches. Therefore, we compare Snoopy with the state-of-the-art PIN inference approaches designed for
smartphones. These approaches usually adopt an element-wise inference: it firstly identifies each digit of the
PINs and then concatenate the identified elements into whole passwords. We implemented three well-known
approaches: 1) Accessory [28]: which uses a random forest classifier to identify the individual tapped digits
from accelerator data; 2) TapLogger [40] which is very similar to Accessory but uses k−NN classifier; and 3)
TapPrints [27], which considers both acceleration and gyroscope data, and uses an ensemble classifier (SVC,
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Fig. 9. Performance of PIN inference. Left: element-wise accuracy of existing approaches; Right: inference accuracy of Snoopy
and competing approaches.

decision tree, logistic regression and random forests as base learners) to detect PIN elements. Details of the
competing approaches can be found in Tab. 6. Note that all of the three competing approaches require prior
knowledge on the accurate segmentation of motion data, while Snoopy is able to perform end-to-end inference.

5.3.2 Experiment Results.
Field Test PINs vs. Constructed PIN Database: The first experiment is to evaluate to what extend can the
constructed PIN database cover the commonly used PINs in the real world. We obtain from [3] a large online
surveyed PIN dataset containing 204, 508 PINs, and consider it as the field test PIN data. As in the APL case,
we rank those PINs according to their frequencies, and then select the top 642 distinct most popular PINs to
cover half of all the PIN entries (> 100k). For those 642 distinct PINs, we compare them with those in our PIN
database P . We found that unlike the APL case where we observe a significant overlapping between the field test
passwords and the constructed password database, here the overlapping is only about 7%. Unfortunately to the
best of our knowledge there is no study so far that can provide thorough explanation on this. Our intuition is
that people often use meaningful numbers to themselves as PINs, such as birthdays or addresses, which are quite
unlikely to collide. In addition, clearly there is less constraints when tapping digits on touch screen than that of
swiping APLs, and thus people may tend to choose from those easy-to-swipe APLs. Based on this observation, in
the following we only consider seq2dgt for PIN inference but not seq2pwd, since the latter can only predict PINs
from the database P which only covers a small percentage of commonly used PINs.
Element-wise Inference Accuracy: Before evaluating Snoopy, in this experiment, we first evaluate the perfor-
mance of the existing element-wise inference approaches. We consider two types of password inference. Firstly,
the same-user inference assumes that the algorithms would infer passwords entered by a user with access to
the ground truth password-input motion data of this particular user, e.g. they have previously “seen” the user
entering passwords (i.e. knowing the password contents), and collected the corresponding motion data. On the
other hand, the same-user inference assumes the algorithms have to infer a user’s passwords without access to her
previous labelled motion data. As shown in Fig. 9 (Left), the performance of element-wise approaches is very
limited: the best algorithm can only achieve about 25% accuracy when inferring a single digit for a PIN (one time
guess), while the accuracy of random guess is 1/10. Even in the most favorable case where the testing objects
are the same users in training, the performance only grows ∼ 10%. A possible reason for the low segmentation
accuracy is that the SNR of the motion data on smartwatches is much lower than that of smartphones, which
limits the performance of prior art designed for smartphones significantly. Overall TapPrints outperforms the
other two, and thus in the following experiments, we only include TapPrints in our competing approaches.
PIN Inference Accuracy in Field Test: To evaluate the inference accuracy of the proposed Snoopy and
competing approaches, we firstly collected a PIN input motion dataset based on the 642 distinct PINs obtained
from the field test. As in the previous section, we recruited an independent group of 20 participants who hadn’t
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contributed any data to enter those PINs on their smartwatches. The mean age of participants is 32.3 (σ = 10.4,
Mdn = 31, ranging from 18 to 53), and the data collection process is similar to that in the previous APL case. We
compare the performance of the proposed seq2dgt approach in Snoopy (with and without attention mechanism)
and the best competing algorithm TapPrints on this dataset, and include the naive random guess as the baseline.
As shown in Fig. 9 (Right), both variants of Snoopy(seq2dgt) consistently outperform the TapPrints, and is able to
achieve > 2× accuracy improvement. In particular, with a single chance Snoopy is able to achieve 6% success
rate, which is much higher than random random guess (0.01%). If more attempts are allowed, Snoopy can achieve
up to 18% success rate after 10 guesses and 28% within 20 attempts. The performance of the competing TapPrints
is much lower, and can only make to 11% after 20 attempts. In addition, we see that in this case the attention
mechanism provides more performance gain (up to about 10%) comparing to that in the previous APL case. This
is because in the case PIN inference, the motion data associated with gaps between two taps is mostly noise,
which won’t provide any useful information for prediction. Therefore by using the attention mechanism, Snoopy
can effectively ignore those gaps by assigning dynamic weights during decoding, i.e. it would put more weights
on the data segments associated with real taps.
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Fig. 13. Survey results. They were asked 8 questions about smartwacth usage and password settings.
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6 USER STUDY
We complement our experimental evaluation of Snoopy with a user study, which aims to understand the users’
awareness of the potential password leak on smartwatches via motion data and its consequences. We distributed
questionnaires on social media in the UK and China, asking anonymous participants to provide basic demographic
information such as gender, age, occupation and smartwatch platforms used. The questionnaire consists of the
following yes-or-no questions:
• Q1: Have you used the same passwords in different accounts/platforms, e.g., same PIN for PayPal2 and
your device screen lock?
• Q2: Did you know (before this survey) your passcodes on smart devices could be leaked through motion
sensors?
• Q3: Have you allowed or will allow third-party apps on your smart wearable devices to access your motion
data, e.g., allowing WeChat+3 to record the number of steps you’ve walked?
• Q4: Have you disabled or considered disabling third-party apps monitoring your motion data when entering
passwords on your smart device?
• Q5: Do you often type on smartwatches (> 3 times a day), e.g., sending instant messages4 or editing emails5?
• Q6: Are you a smartwatch owner?
• Q7: Have you set up unlock passwords on your smartwatches?

From two periods, we received 745 anonymous responses for the first 5 questions and 301 anonymous responses
for the last two questions respectively. Among them we have users from nine different occupation categories
(Fig. 10), with slightly more male than female (61% vs. 39% as in Fig. 11), and an average age of 32.3 (σ=12.1,
Mdn=28, ranging from 18 to 63). This is expected since in general, young male users are more willing to try out
new gadgets such as smartwatches. We also observe that Android and iOS dominate the smartwatch market. As
shown in Fig. 12, 39% and 57% of our participants wear Android or Apple watches, while only a tiny percentage
(4%) of them were using other platforms.

Fig 13 summarizes the distribution of answers. First of all, we see that about 25% of our participants are
smartwatch owners, and this number is expected to grow rapidly in the near future according to [29]. Among
those smartwatch owners, we find that the majority of them (73%) would use unlock passwords for their devices.
This indicates that smartwatches are truly becoming pervasive, and users tend to rely on the built-in unlock
passwords (APLs or PINs) to protect their devices. Another key finding is that over 80% of the participants tend
to use the same password across different applications. This means that the consequences of leaking smartwatch
passwords can be significant: what if the smartwatch PIN is the same PIN used for online banking or Paypal? We
also observe that a large number of users (>60%) did not know that the motion sensors on smart devices may
leak sensitive information. In fact, 76% of the participants would allow, or had already allowed, third-party apps
to access their motion data, and less than 20% of them would consider disabling motion sensors when entering
sensitive information on their devices. This shows although motion sensor attacks have been extensively studied
in academia, most users are still not aware of this. In addition, we see that unlike smartphones, users seldom
perform complex interactions on smartwatch screens such as typing, since the size of them is much smaller
than phones. This means in practice it is easier to detect password input events from other tapping/swiping on
smartwatches, which makes this a more vulnerable attack surface.

7 DISCUSSION

2https://www.paypal.com/gb/home
3https://www.wechat.com/en/
4https://hangouts.google.com/
5https://sparkmailapp.com/
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Sampling
Method

Energy
Consumption

APL PIN
Accuracy (seq2pwd) Accuracy (seq2dgt) Accuracy (seq2dgt)

50 Hz (const) 2.0% per hr 56.1% 25.7% 9.1%
100 Hz (const) 4.4% per hr 61.5% 34.6% 14.4%
200 Hz (const) 6.3% per hr 66.3% 44.5% 23.4%

Snoopy (adaptive) 2.1% per hr 64.5% 42.6% 18.0%
Table 5. Energy consumption and inference accuracy with different motion sensing strategies (profiled on Sony SW3 watches).
For the first three approaches (50Hz, 100Hz and 200Hz), we constantly sample the motion sensors and directly feed the
data to the inference algorithms. The proposed Snoopy uses an adaptive sensing approach, which uses feature extraction
techniques to only sample high frequency data when the users are entering passwords.

This section discusses some important issues related to the proposed Snoopy system. In Sec. 7 we show how
different motion sensing strategies have knock-on effects on both energy consumption and password inference
accuracy, and further highlight the benefit of the Snoopy front-end. In Sec. 7.2 we discuss the limitation of the
proposed approach, and provide two potential mitigations for such attacks.

7.1 Sampling More vs. Sampling Smart
Energy Consumption: As discussed above, the front-end of Snoopy considers an adaptive motion sensing
approach, which uses feature extraction techniques and SVM classifiers to detect when the user are entering
passwords on their devices. Of course running feature extraction and SVM on top of motion sensing requires
extra energy, however, as shown in the first two columns of Tab. 5, the overhead is not excessive: the energy
consumption of Snoopy front-end is very similar to that of constantly sampling 50Hz motion data, and is only
1/3 of the 200Hz approach. Note that the adaptive sensing mechanism in Snoopy constantly tasks accelerometers
at 40Hz, and triggers both accelerometer and gyroscope at 200Hz when the classifier fires. This confirms that
comparing to sampling motion data at high freq, the extra energy consumption required by Snoopy front-end is
cheaper.
Password Inference Accuracy: We would also like to investigate the impact on password inference accuracy
of different motion sensing strategies. Here we consider the inference results within 10 attempts. Obviously
sampling higher frequency of motion data would help password inference, since the raw data itself contains more
information. As shown in the right three columns of Tab. 5, constantly sampling 200Hz motion data gives the
best password inference accuracy: 66.3% for APL while 23.4% for PIN. However as discussed above, the energy
consumption can be prohibitively high: it would drain on average 6.3% of battery per hour, which can easily
halve the typical smartwatch lifetime [33]. On the other hand, we see that by using the adaptive motion sensing
strategies, Snoopy is able to achieve comparable password inference accuracy: 64.5% for APL and 18.0% for PIN,
while keep the energy consumption much lower. We also observe that the Snoopy front-end works better for
APLs than PINs: the gaps comparing to 200Hz(const) are ∼2% and ∼5% respectively. This is because the adaptive
sampling strategy tends to have a slight delay to switch to the high sampling rate mode when the user is starting
to entering passwords, and thus could lose a small chunk of motion data at the beginning. For APLs it won’t affect
inference much since the swiping event is continuous: one can use later data to smooth the sequence. For PINs,
this is more sensitive since such data can often determine the first digit of the password and has an important
impact on inference.

7.2 Possible Mitigations
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Like most of the other side-channel attacks, Snoopy exploits the correspondence between the leaked motion data
and the contents of entered passwords. Here we propose two possible types of countermeasures.
Context-aware Motion Sensor Access: One promising mitigation strategy is to enable context-aware motion
sensor access, as proposed in [22]. The idea is to control the access level of motion sensors given the specific
context, e.g. when users are typing on the touchscreen, it is better to limit motion sensor access, especially to
those untrusted 3rd party applications. Depending on different context, one could consider control policies such
as complete access blocking, reading order randomization and sampling rate reduction. However, the former two
may have significant negative impact on some normal motion-dependent applications such as fitness apps, while
the latter is more desirable in practice.
Eliminate Motion-Password Correspondence: The other possible countermeasure is to remove the one-to-
one mapping between user generated motion data and password contents. For instance, we may insert noise to
the motion data during password input, e.g. use random vibrations when the users tap or swipe, or randomly
change the positions of the digits each time when users are required to authenticate, or generates different
password keypads dynamically [30]. Or alternatively, one can establish more types of correspondence between
the users and their passwords, e.g. using the particular tapping or swiping behaviour of a user to add another
layer of authentication on top of standard PINs/APLs [43].

8 RELATED WORK
Attacking secrets via Side-channel: Leveraging physical sensors as a side to attack secrets has recently
received lots of attention. The authors found that the MEMS gyro sensors are able to pick up low-frequency
vibrations from ambient sounds. Aviv et al. demonstrated that it is possible to reconstruct a locking pattern by
analyzing the oily residues left on the screen [4]. This method has limited application as oily residues can be
altered by other on-screen activities after pattern drawing, and also requires an attacker to have physical access
to the device. Li et al. proposed a keystroke inference framework using variations in WiFi signals. They observe
that keystrokes on mobile devices will lead to different hand positions and finger motion which alter the channel
properties, reflected in the channel state information (CSI). A similar idea is proposed in [1], where WiFi CSI is
used to infer keystrokes on a physical keyboard. However, these classes of attacks require similar environments
and are highly sensitive to nearby moving objects. Vision-based attacks are also well established. Shukla et al. [31]
used video footage captured near the victim to decode the PIN entered on the smartphone. Ye et al. [41] recently
extend [31] to APL and their method is robust to different lighting conditions. Though video-based side-channel
attacks are very efficient in determining passwords, it is difficult for the attackers to access and locate video
footage containing password input events. Compared with the above more direct attacks, eavesdropping motion
sensor data is robust to environmental dynamics, is scalable, and can be achieved discreetly by a malicious app.
On the hand, due to their motion tracking capability and pervasiveness, motion sensors are popular side channels
for attackers. Gyrophone [26] presents a new type of threat to intercept human speech by using a smartphone
gyroscope. Marquardt et al. demonstrated the (Sp) iPhone, and show that it is possible to use the accelerometer
within an iPhone to recover text entered on a keyboard when the phone is placed nearby on a rigid surface [23].
Inferring Secrets on Smart Devices via Motion Sensors: Researchers have attempted to infer keystrokes
on smart wearables via motion sensors [5, 7, 25, 27, 28, 40]. The core idea behind these works is similar to the
aim of Snoopy: keystrokes on device screen lead to distinct force/attitude patterns. The motion data on smart
wearables can thus be used to infer entered secrets. TouchLogger [7, 8] and ACCessory [28] are early works,
where ACCessory uses accelerometer only and TouchLogger utilizes both accelerometer and gyroscope to infer
PINs. Similarly, TapLogger [40] refines previous techniques and uses a gyroscope to predict PIN-like secrets on
smartphones. TapLogger uses a k-means clustering approach to extract the most likely classes (typically top
3). Given substantial observations of the secret (e.g. 32 PIN entry events), this is sufficient to estimate the true
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secret. Note that TapLogger uses manually extracted statistical features. TapPrints [27] advances the technique
and extends inference capability beyond digits to English words. The papers mentioned above require accurate
digit-wise classification, which is hard to achieve with smartwatch motion data (as shown in Sec. 5). In contrast,
GestureLogger [5] infers keystrokes in an end-to-end manner rather than individually identifying each tapped
digit. To this end, GestureLogger firstly designs a password database of 50 graphical passwords and 50 numerical
PINs as possible passwords. It then develops a sequence classifier that infers the most likely match given the
motion data sequence. However, GestureLogger uses handcrafted features for inference, which is not robust to the
variability of scenarios [17]. For example, as demonstrated in experimental results (Sec. 5), the features designed
for smartphones in GestureLogger did not work well in the context of smartwatches. Though redesigning new
features for smartwatches is possible but the process needs domain knowledge (e.g., motion sensors). Unlike all
the above, Snoopy is the only one using deep neural networks that is able to learn the best feature representations
automatically through learning; its password inference framework can be easily applied to new scenarios without
domain knowledge about the functioned sensors.
While TapPrints is specifically tailored to inferring PIN passwords, we provide a uniform approach that can

be used to infer both PIN and APL (swiped) passwords. Even if one focuses on PINs only, we demonstrate a 2.5
fold improvement in accuracy compared to TapPrints. This is because TapPrints decouples the problems of
segmentation and classification into two separate steps, whereas our approach handles them more robustly by
tackling both tasks using the same Deep Neural Network architecture. When compared to previous work that
has focused on APLs (GestureLogger), our work is fundamentally different as it can address not only APLs that
exist in the training dataset, but also new previously unseen APLs. This is a significant benefit that increases the
impact of the attack. As we can see in Tab. 6, Snoopy is the only approach requires little domain knowledge on
attackers’ side, which significantly lower the bar for attack deployment. In addition, whereas all prior art has
focused on smartphones, we address the problem in the context of smartwatches. This is a far more challenging
scenario, due to low SNR, in which previous approaches show very low performance compared to the proposed
approach.

Work Participants
Number

Domain Knowledge
Required for Attackers Password

Extraction
PWD
Type Cross-user Cross-device

+ Cross-userDigit/swipe
Segmentation

Feature
Engineering

TouchLogger
[7, 8] 1 ✓ ✓ ✗ PIN ✗ ✗

ACCessory
[28] 4 ✓ ✓ ✗ PIN ✗ ✗

TapLogger
[40] 3 ✓ ✓ ✓ PIN ✗ ✗

TapPrints
[27] 10 ✓ ✓ ✓ PIN ✗ ✗

GestureLogger
[5] 24 ✓ ✓ ✗

APL
PIN ✓ ✗

Snoopy
(proposed) 362 ✗ ✗ ✓

APL
PIN ✓ ✓

Table 6. Comparison of related works and Snoopy in password inference.

Smartwatch Security: As an increasingly ubiquitous device, the smartwatch has triggered new security issues.
Wang et al. [38] and Liu et al. [19] pioneered this thread and have demonstrated the feasibility of inferring
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keystrokes on QWERTY keyboards by smartwatches. Their idea is that the keystroke-induced motions can be
read from the motion sensors as long as smartwatches are worn on victims’ wrists. Similar risks are also reported
on the ATM machines, where victims’ digital PINs are leaked through motion sensors on smartwatches. Maiti et
al. [22] proposed a context-aware protection mechanism which identifies sensitive motion events (e.g., typing on
the keyboard) and trigger sensor access controller accordingly. The protection mechanism has been proved to
work effectively to mitigate smartwatch based side-channel attacks with least interruption for the third-party
applications.
Though Snoopy is an attack framework based on smartwatch, the goals are fundamentally different. Above

works use smartwatches as a side channel to infer secrets entered on external devices, while Snoopy thrives to
infer the inputs entered into the watch through it screen.

9 CONCLUSION
In this paper, we studied the problem of password leaking on smartwatches via the on-board motion sensors.
Although side-channel attacks based on motion data have been widely investigated on smartphones, the problem
has so far been overlooked on smartwatch platforms. As a result, users are not fully aware of the risks and potential
consequences. To our knowledge, this is the first work that demonstrates the feasibility of attacking passwords
(PIN and Android Pattern Lock) on smartwatches using motion sensors. The proposed Snoopy system can disguise
itself as a normal app (for fitness or wellbeing monitoring), and can successfully eavesdrop motion data in the
background while passwords are entered. The extracted motion data is uploaded to the cloud, where Snoopy
infers the contents of passwords using deep neural networks trained with crowd-sourced data. We collected large
scale datasets (3 different sites, 362 users and >50k password entires), and compared the performance of Snoopy
with state-of-the-art methods proposed for smartphones. Our findings are: a) Snoopy can accurately extract
the password-positive segments of motion data (up to 98% accuracy) in real-time on smartwatches, without
consuming significant power/computational resources; b) although it is more challenging to infer passwords on
smartwatches due to the much lower signal-to-noise ratio, Snoopy is able to achieve up to 95% success rates when
attacking Android Pattern Lock within 10 attempts and 86% for PIN numbers (the best competing approaches
achieving 23% and 30% respectively); c) Snoopy is robust to user and device heterogeneity. Compared with the
best competing approach, it offersoffers a ∼ 3-fold improvement in the accuracy of inferring passwords. d) in
practice it is vital to select the appropriate deep network architecture and regularisation parameters for Snoopy to
work well. In summary, through the use of state-of-the-art deep learning, we have presented a universal technique
that works for both PINs and pattern locks, without requiring any hand-engineering of features. By lowering the
barrier to attackers in terms of engineering effort, the likelihood of being able to successfully compromise smart
devices becomes significantly higher, simply by harvesting innocuous motion data from victims. In light of these
risks, we recommend that motion sensors should be regarded as a carrying a far higher security risk than they
currently are, and should have adequate countermeasures in place or require increased permissions.
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APPENDIX

Recurrent Neural Networks (RNNs) based Sequence Learning
In our context, the task of password inference is essentially learning a function between the password related
motion data to the finite labels in the password database P . The motion data is inherently a time series, which
captures the continuous posture changes of the smartwatch induced by user tapping or swiping. In addition, our
problem is more challenging than standard sequence modelling since a) the input length can be variable, e.g.
APLs can have different lengths, and b) the temporal correlations within data are strong, e.g. the likelihood of
tapping on or swiping to a particular position depends very much on previous taps/swipes. Therefore, in this
paper we use RNNs to model the motion data, which can take arbitrary length of input, and return the most
likely password as output. In the following we explain how the standard RNN architecture solves this type of
sequence learning problem. In the last two subsections we describe how to extend the standard architecture to
cope with our particular password inference problems.
Basic RNN Architecture: Concretely, at each timestamp k a standard RNN keeps an internal hidden state hk to
describe the temporal dependencies, and given an input xk , the RNN updates its state by:

hk = H (Wxhxk +Whhhk−1 + bh )
uk =Whuhk + bu

(2)

whereWxh ,Whh are the weights of the current input xk and previous state hk−1, and bh is the bias vector.H
is an element-wise non-linear activation function, e.g., sigmoid or hyperbolic tangent function. The network
output uk is evaluated as a linear combination of the updated hidden state hk and a bias vector bu .
In practice, uk may appear at multiple timestamp, or only exist at a single (in most cases the last) timestamp.

The former type of network is able to map the input sequence to an output sequence, which is particularly useful
in scenarios such as machine translation. The latter type generates a single output, for example a label based on
the input sequence, and thus is often considered in applications such as text sentimental analysis. As discussed
above, the password inference problem studied in this paper is to compute the most likely password (i.e. label)
within the database P given the sequence of motion data, which falls naturally into the latter category. Therefore
in the following text, we only focus on those RNNs with a single output node, as shown in Fig.?? (Left).
RNNs with LSTMs: Although in theory the basic RNN is able to model sequences with arbitrary length, in
practice it often suffers from the gradient vanishing and exploding problems [13]. That is, it cannot capture
the long-term dependencies well when the length of input sequences becomes large. Therefore for long input
sequences, RNNs with Long Short Term Memory units (LSTMs) [14] are often considered. Essentially, LSTMs
use self recurrent units (memory cells) to explicitly determine which previous hidden states to “remember” or
“forget”, and thus provides a memory mechanism to capture dependencies spanning over many timesteps in the
past. Fig. 14 shows an example of the LSTM units, in which the gates (forget/input/output) control the flow of
information. Formally, the LSTM updates its own cell state ck and the hidden state hk as follows:
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Fig. 14. Folded and unfolded LSTMs and the internal structures of its unit. ⊙ and ⊕ denote element-wise product and
addition of two vectors, respectively.

ik = σ (Wxixk +Whihk−1 + bi )
gk = tanh(Wxдxk +Whдhk−1 + bд )
fk = σ (Wxf xk +Whf hk−1 + bf )
ck = fk ⊙ ck−1 + ik ⊙ gk
ok = σ (Wxoxk +Whohk−1 + bo )
hk = ok ⊙ tanh(ck )

(3)

where ik and gk are the input gates, i.e. govern which information in the previous hidden state hk−1 to remember,
while fk is the forget gate that controls which part in hk−1 to forget, given the current input xk . The cell state ck
of this LSTM unit is then updated by combining information from those gates. ok is the output gate, which is
then fused with the current cell state ck to update the hidden state hk. Note that σ is the sigmoid function, tanh
is the hyperbolic tangent function, and ⊙ is the element-wise product between vectors.
Cost Function and Optimisation: Given an input sequence X = (x1,x2, · · · ,xT ) with length of T (in our case
the 6 axis motion data), the above RNN essentially computes the likelihood of the labels y ∈ {1, 2, · · · ,M }:

p (y |X) = p (y |x1,x2, · · · ,xT )
= so f tmax (WhuhT + bu )

(4)

where we assume there isM possible labels in total. If the true label y is known for the input sequence X, then
training the network is equivalent to finding the optimal parameters (weights) θ where:

θ ∗ = argmax
θ

p (y |X;θ ) (5)

In practice, we typically use the cross entropy errors between the predicted and true labels as the cost function,
which is defined as:

L (X,y) =
M∑
j=1

1{y = j} logp (ŷj ) (6)

where p (ŷj ) ∈ [0, 1] is the probability of label j predicted by the network, and 1{y = j} is an indicator function
which returns 1 if the true label y is j . To optimize this cost function, there are various gradient-based techniques
such as AdaGrad [10] and RMSProp [34]. In this paper we use Adam [15], which combines the advantage of the
two and is very efficient for training deep RNNs with LSTMs.
Regularization: Like other deep neuronal networks, the above RNNs with LSTMs can get overfit quickly. This
is because by design the input of the network can have arbitrary length while the dimension of the output
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is fixed. Therefore through training, the RNNs tend to learn an input-dependent transition operator, which
governs how to “fold” the variable length input sequences into the hidden states and “squeeze” them into fixed
output vectors. However, as the training set won’t cover sequences with all possible lengths, when applying the
learned transition operator to an unseen test sequence, the dynamics of RNNs can be very sensitive to minor
perturbations in the hidden states at different timestamps [16]. Therefore to make the RNNs practically useful,
we need good regularization techniques to balance the fitness of training and generalization capability. In this
paper, we consider a dropout technique inspired by [42], which randomly shuts down a subset of the network
by disabling the corresponding feed-forward connections during training. Therefore, the dropout technique
deliberately corrupts the information maintained by the memory units at some timestamps, but not all of them.
In this way, we force the network to learn the general knowledge but not just specific features in the training
data, and thus make it more robust in practice.
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