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Abstract—A fundamental building block towards intelligent environments is the ability to understand who is present in a certain area. A
ubiquitous way of detecting this is to exploit unique vocal characteristics as people interact with one another in common spaces.
However, manually enrolling users into a biometric database is time-consuming and not robust to vocal deviations over time. Instead,
consider audio features sampled during a meeting, yielding a noisy set of possible voiceprints. With a number of meetings and
knowledge of participation, e.g., sniffed wireless Media Access Control (MAC) addresses, can we learn to associate a specific identity
with a particular voiceprint? To address this problem, this paper advocates an Internet of Things (IoT) solution and proposes to use
co-located WiFi as supervisory weak labels to automatically bootstrap the labelling process. In particular, a novel cross-modality
labelling algorithm is proposed that jointly optimises the clustering and association process, which solves the inherent mismatching
issues arising from heterogeneous sensor data. At the same time, we further propose to reuse the labelled data to iteratively update
wireless geofence models and curate device specific thresholds. Extensive experimental results from two different scenarios
demonstrate that our proposed method is able to achieve 2-fold improvement in labelling compared with conventional methods and can
achieve reliable speaker recognition in the wild.

Index Terms—Cross-modal Association; Internet of Things; Speaker Identification
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1 INTRODUCTION

S PEAKER recognition and verification are key components
of smart spaces, e.g., offices and buildings for deter-

mining who is where [1], [2]. Knowing this information
allows a wide range of context-aware applications such as
personalized heating and cooling, entertainment, behavioral
analysis or health sensing.

A vast amount of research over the past decades has
focused on the design of bespoke systems for speaker
recognition, and with the advent of deep learning, progress
has rapidly accelerated. As an example of a state-of-the-art
speaker recognizer, X-vector [3] uses a deep neural network
(DNN) as the feature extractor and achieves extremely
low error rate (e.g., 4.16%) on very challenging datasets
through a trained feature embedding. Although X-vector
and similar approaches can operate at remarkable levels of
performance, transferring them to real-world scenarios is
far from trivial. Deploying a reliable speaker recognition in
a smart space faces two overarching issues. Firstly, unlike
many classification tasks where the class labels are shared
with many public datasets, speaker labels in a particular
smart environment are inherently out of set, due to their
uniqueness. For instance, although VoxCeleb [4], the largest-
scale human speech dataset, contains utterances from more
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Fig. 1: Given sets of co-located observations (utterances and
device identifiers) from multiple sessions, utterances can be
associated with device identifiers. With a sufficient number
of sessions, this mapping can be made unique, leading to
automatic utterance labeling.

than 7, 000 speakers, most of them are celebrities and are
orthogonal to the target speaker group in a particular
environment. Other domain differences, such as usage of
low-fidelity microphones and emotion changes within the
speaker could also impact the recognition performance [5].
Therefore, a speaker recognizer trained on public datasets
cannot be used directly in a new environment, but has to
be re-trained or adapted with the labelled utterances in
new environments. This leads to the second issue: labelling
utterances in the wild is challenging since subject enrollment
incurs significant user effort and cost [6]. Unfortunately,
crowdsourcing tools such as Amazon Mechanical Turk [7]
are not applicable as conversations include sensitive data
and many users are not willing to post them online.

On the other hand, with the recent advent of Inter-
net of Things (IoT), we also witness our physical spaces
(e.g., smart buildings) being equipped with more and more
sensors and communication infrastructure. For example, a
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variety of sensors have been deployed in commercial offices,
such as microphones, WiFi access points, cameras etc. In this
work, we utilize this emerging trend of IoT and propose to
automatically achieve high levels of recognition with zero
user enrollment effort by harvesting the voice labels from
ambient WiFi data. To this end, we exploit the fact that
speakers are usually, but not always, co-located with their
mobile devices, e.g., smartphones and fitness monitors. To
provide ubiquitous connectivity, these devices have some
forms of wireless interfaces, e.g., BLE, WiFi, cellular. These
provide a unique identifier, ranging from the hardware
level, e.g., International Mobile Equipment Identity (IMEI)
or MAC addresses, to the network authentication level (e.g.,
usernames). Our aim is to use a set of such identifiers as ID
proxies to label a set of collected speech utterances and use
the labeled data to adapt a pre-trained speaker recognizer.
The adapted speaker recognition model can then work
independently, even in rooms without WiFi MAC scanning.
Fig. 1 describes this intuition.

The main challenge to update the model is that the bind-
ing between a voice and a wireless identifier is loose and
noisy, for two major reasons. Firstly, unlike standard fusion
problems where two sensor modalities are both observing
temporally evolving systems, the cross-modality data in our
case is temporally unaligned. For instance, detecting a WiFi
identifier does not imply the device owner is speaking at
the exact instant. However, a recognition system cannot
be trained without a fine-grained association between the
identifiers and utterances, while conventional diarization
systems [6] cannot provide explicitly labelled data either
and are unable to select high-confident utterance samples.
Secondly, the co-located WiFi identifiers are determined by
the device received signal strength (RSS) and these colloca-
tions are not necessarily accurate. For instance, the presence
of a smartphone in the room is decided by a threshold RSS
value, which effectively defines a geofence. Due to device
heterogeneity, this threshold varies significantly and largely
depends on the particular device. Because we could not
know a suitable geofence value for each device a priori,
the detected collocations are uncertain and add noise to the
relationship between device and speaker presence.

We hence present SCAN+, a novel framework which
gradually associates vocalizations with a specific identity
through ambiently harvested wireless identifiers. In this
way, the developed speaker recognition model is bespoke to
the vocal dynamics of a set of users within a particular smart
space, without the cost and effort of having to make users
enroll into the system. We explicitly assume that the sensed
WiFi data and voice features will be noisy, and present
a technique that simultaneously clusters and names utter-
ances, yielding accurate, zero-effort speaker recognition. To
account for device heterogeneity, we propose an iterative ap-
proach to automatically curate the best geofence RSS value
for individual devices. We show that this can be further
improved by iterating between clustering and naming to
minimise the mismatch. In summary, our contributions are:

• We show that co-located side-channel information
about likely participants in an event provides valu-
able, albeit noisy, clues about speaker identity.

• We propose a novel algorithm which simultaneously

handles clustering and association, and highlight the
benefits of the algorithm compared to handling these
problems in a sequential manner.

• We propose an iterative optimization framework to
automatically customize the personalized geofence
to tackle the device heterogeneity issue, which im-
proves the detection accuracy of collocation.

• We compare SCAN+ against various baselines in dif-
ferent scenarios and show 2-fold improvements in
performance especially in noisy environments.

The rest of the paper is organised as follows. Sec. 3
overviews the workflow of our proposed system and Sec. 4
describes the cross-modality labelling module. In Sec. 5 we
present a novel curation method to simultaneously identify
and localize speakers based on the labelling module. Sec. 6
provides implementation details. Sec. 7 evaluates the pro-
posed system, and compares its performance with the com-
peting approaches. Sec. 2 surveys the related work, while
Sec. 9 concludes the paper and outlines future directions.

2 RELATED WORK

Cross-modality Matching: Cross-modal matching has re-
ceived considerable attention in different research areas.
Methods have been developed to establish mappings from
images [8], [9], [10] and videos [11] to textual descriptions
(e.g., captioning), developing image representation from
sounds [12], [13], and generating visual models from text
[14]. In cross-modality matching between images and radio
signals, however, work is very limited and all dedicated to
trajectory tracking of humans [15], [16], [17]. The field of
recognizing speaker identities from wireless signals is still a
blank space.
Data Association: Our proposed cross-modal labelling
approach is also related to data association methods. Given
a track of sensor readings, data association aims to figure out
inter-frame correspondences between them. Data associa-
tion is widely used in radar systems, when tracking blips on
a radar screen [18], as well as object monitoring of surveil-
lance systems [19]. To find inter-frame correspondences, a
lot of Bayesian filtering approaches have been developed,
including Nearest-Neighbour Data Association Filter [20],
Probabilistic Data Association Filter [21], Joint Probabilistic
Data Association Filter [22] and Multiple Hypothesis Track-
ing [23]. Unlike our work, these approaches rely on state-
based models, where both sensors are observing temporally
evolving systems. In our problem, detecting a MAC address
does not imply that someone will be speaking at that exact
instant.
Speaker Recognition: A standard speaker recognition sys-
tem can be distilled down to two tasks: speaker feature
extraction and feature scoring. The unsupervised extractor
i-vector [24] is based on a linear Gaussian model. It has
dominated speaker recognition tasks and has inspired the
design of DNN-based systems in this field. DNN-based
embedding extractors are, on the other hand, supervised.
Speaker features can be extracted from the last layers of the
network. A typical example is the x-vector system proposed
in [3]. The difference in model structures makes x-vector
more discriminative and superior in short-utterances com-
pared with i-vector. Other DNN-based speaker recognisers
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Fig. 2: Relationship of heterogeneous sensor observations.
(a) Abstract relationship. (b) Example. Given the noisy co-
located device observations, SCAN+ aims to accurately har-
vest vocal observations to the respective speakers.

are also proposed in different application scenarios [25],
[26]. Although the above methods have been proven re-
markably effective in speaker recognition, the training needs
a vast amount of labeled utterances to train the deep speaker
recognisers. However, such amount of utterances are always
achievable in a particular domain and using a small amount
of training data will incur poor generalisation ability in the
wild. SCAN+ aims to automatically label utterances in the
wild which is complementary to the above work as their
label provider.

3 SYSTEM OVERVIEW

We now give an overview of our system model and archi-
tecture.

3.1 System Model
We consider a recognition problem with m speakers of
interest (SOI) and each speaker owns one WiFi-enabled
device, e.g., a smartphone. We denote the identity set as I =
{ij |j = 1, 2, . . . ,m}. The set of observed SOI’s devices in the
target environment is denoted by L = {lj |j = 1, 2, . . . ,m}.
We assume the mapping from device MAC address L to the
user identity I is known and denoted as L ⇒ I . In practice,
the mapping between a MAC address to a user is easy
to get for smart-space managers. In order to authenticate
legitimate WiFi users, say Eduroam1, device MAC addresses
and user account information are usually bound together
in the building management system. A collection of vocal
observations is collected by microphones in a target envi-
ronment, which contains the segmented utterances from g
sessions of conversations (S = {sj |j = 1, 2, . . . , g}). Note
that, to mimic the real-world complexity, this collection
includes voices of both SOI and some non-SOI. Formally, let
X = {xj |j = 1, 2, . . . , h} denote the utterance collection. In
this sense, the identification problem addressed in this paper
is: given the noisy vocal observations X , find the correct

1. https://en.wikipedia.org/wiki/Eduroam

associations between the device ID observations L. Then
through the mapping between device IDs to user identi-
ties, a database of pairs of vocal observations and identity
labels can be developed. Finally, an independent speaker
recognizer can be trained on this database to automatically
determine identity label ik given a vocal observation xj in
the future. Fig. 2 provides a simple schematic illustration of
this problem.

3.2 System Architecture
In this section, we provide an overview of the system
architecture. SCAN+ consists of three modules:

• Heterogeneous Data Collection. This module collects
audio data (vocal observations) and WiFi data (de-
vice ID observations) through microphones and WiFi
sniffers2 in a target environment. The audio data is
then preprocessed into homogeneous utterances.

• Cross-modality Labeling. This module labels utterances
by associating them with the correct device IDs. De-
vice IDs in this work are MAC addresses detected via
a collocated WiFi sniffer with the microphone. With
an unknown table, MAC addresses can be mapped
to user identities, i.e., labels.

• Cross-modality Curation. This module refines the ge-
ofence RSS value for each device and use the new
RSS value to re-estimate collocation sessions. The
goal of curation is to diminish the labelling incon-
sistency between the device observations and utter-
ances.

with the exception of the one-off data collocation module,
the labeling and curation modules are iteratively tasked in
SCAN+ until the cross-modality observations are sufficiently
consistent. The speaker recognition model trained in the
final iteration is the model that is uniquely tailored to the
environment. A byproduct of SCAN+ is a set of personalized
geofence models for individual devices that could be used
for future localization tasks at room level. Fig. 3 illustrates
the workflow of SCAN+.

4 CROSS-MODALITY LABELING

In this section, we introduce the labeling module in SCAN+.
The challenge in the labeling module is that collected audio
and sniffed WiFi data are temporally unaligned. For exam-
ple, detecting a device WiFi address does not imply that
the device owner will be speaking at the exact instant and
vice versa. Such mis-alignment distinguishes our problem
for prior sensor fusion problems, where multiple sensors
are observing a temporal evolving system.

4.1 Baseline: Sequential Clustering and Association
In order to tackle the above challenge, a naive approach is
to leverage the diverse participatory information in multiple
sessions and use a two-step procedure in Sequential: a) in
the Clustering Step, utterances X are firstly grouped into
clusters across all sessions, each of which represents the
vocal samples of a single individual; and then b) in the Data

2. https://www.wireshark.org/

https://en.wikipedia.org/wiki/Eduroam
https://www.wireshark.org/
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Fig. 3: Workflow of SCAN+.

Association Step, the clusters are assigned with identities
based on device ID observations L.
Clustering Step. Given a set of sessions, utterances are
first transformed into feature vectors Z , through a speaker
recognition model pre-trained fθ on public datasets. Such
extractor is trained with metric losses, e.g., triplet loss so that
the learned features could bear a good property for cluster-
ing [26]. Based on the extracted features, these utterance
samples are then merged into disjoint, non-overlapping
clusters. Without loss of generality, we denote the set of
derived clusters by C = {ci|i = 1, 2, . . . , h}. In order to
make assignments in the subsequent association step, the
number of clusters h must be equal to or greater than the
number of SOI, m.
Data Association Step. Based on the similarity of session
attendance, voice clusters can be mapped to device IDs
by data association. Let rck = (r1

ck
, r2
ck
, . . . , rgck) be the

context vector of the k-th voice cluster ck, where g is the
total number of sessions. rjck is set to 1 only if ck contains
utterances from session sj . At the same time, a SOI’s device
li is also linked with a context vector rli , and rjli is set
to 1 only if li is detected in session sj . An edge can be
created between a cluster ck and a device ID lj , with the
edge weight determined by the similarity in terms of context
vector. Intuitively, a higher similarity score means that there
are more shared session attendance and such pairs of voice
clusters and device are more likely belonging to the same
identity. Then associating identities with clusters is equiv-
alent to solving the combinatorial optimization problem
on the weighted bipartite graph, e.g. using the Hungarian
algorithm [27]. Finally, through a mapping table between
device ID and user identity, utterances in the same clusters
are all labeled with the same user identity. The pre-trained
speaker recognizer fθ can adapt its model parameters θ that
are bespoke to a new environment.
Limitations. The above method addresses the identification
problem in two Sequential steps: context observations are
firstly clustered and then matched to identities by minimiz-
ing the combinatorial mismatch. Although this approach
is simple and easy to implement, it is not robust to noisy
observations. Firstly, errors can occur due to the noise in
vocal observations. For example, people’s voices may vary
considerably across contexts due to illness or emotional
influences [5], confusing the clustering step and causing
unrecoverable knock-on effects on the ensuing association
step. Secondly, and more importantly, errors can also occur
due to noisy device observations. For example, a session

might contain non-SOI’s voices, though their device are not
sniffed. As disturbing observations incurred by non-SOI,
the number of clusters h is difficult to know for clustering.
A misleading clustering result could further degrade the
quality of data association.

4.2 SCAN: Simultaneously Clustering And Naming

In this section, we introduce how to mitigate the above lim-
itations in the sequential approach. The key insight of our
solution is that the clustering of utterances should not be fi-
nalized independently of and in advance of data association,
but both tasks should progress in tandem. The proposed
Simultaneous Clustering And Naming (SCAN) algorithm
works as follows. Firstly, it compiles sensor observations as
an augmented linkage tree, which succinctly encodes the
hierarchical clustering plans of context observations across
different contexts, and more importantly all possible data
association plans given a specific clustering plan. Then our
algorithm finds the best clustering and data association
plan by solving a constrained optimization problem on the
constructed linkage tree.
Feature Augmentation. Instead of merely depending on the
vocal feature similarity, session attendance information of
devices could bootstrap merge utterances as well. Recall that
device attendance already reveals the identities of subjects
(in the form of MAC addresses) in a particular session,
and the collected utterances may contain the utterances
of these speakers accordingly. The overlapped speakers in
distinct sessions can be used as a prior that guides the
utterance merging. For example, if there are no shared MAC
addresses sniffed in two sessions, then it is very likely that
the collected utterances in these two sessions should lie in
different clusters. Formally, for a session si, we denote the
device attendance vector as ui = (u1

i , u
2
i , . . . , u

m
i ), where

uji = 1 if device lj is detected in session si. In this way, we
can develop an augmented feature z̃k for an utterance xk
collected in the session si:

z̃k = [zk,ui] (1)

where zk is the extracted vocal features for utterances as
introduced in Sec. 4.1. Then, the similarity of two cross-
session utterances is determined by computing the distance
between their hybrid feature vectors defined in Eq. 1. The
distance is computed as follows:

Dz̃k1,z̃k2
= Dzk1,zk1

+Dui1,ui2
(2)
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Fig. 4: SCAN: Simultaneously Clustering and Naming. It simultaneously performs clustering and association, by directly
examining the fitness between a MAC address and an utterance node on the tree, in terms of context vector similarity.
SCAN can tolerate disturbances from non-SOI as it associates the pure cluster before it gets contaminated by the biometric
samples of non-SOI.

where k1 6= k2. Dzk1,zk1
is the Euclidean distance of the

vocal features and Dui1,ui2 is the Jacared index of the device
attendance vectors. Note that such hybrid features does
not affect the grouping of two feature vectors in the same
session.
Linkage Tree Construction. Based on the pairwise similar-
ity between hybrid features, the proposed algorithm com-
piles them into a linkage tree T . The leaf nodes Tleaf are the
voice samples, while a branch node represents the cluster
of all its descendant leaf nodes. Essentially T represents the
hierarchical clustering of all utterances in different sessions,
and selecting a combination of nodes from the tree will give
a specific clustering plan. For example in Fig. 4, selecting
nodes t9 means that leaf nodes t1 and t4 should be grouped
together (and thus belong to the same individual). Each
node ti in T is associated with a linkage score qfi , describing
the feature similarity or compatibility between the data
within the cluster it represents.
Augment Linkage Tree with Data Association Scores.
Given a linkage tree T , the clustering process of the baseline
approach is equivalent to finding the set of nodes in T that
maximises the total linkage score. However as discussed in
the previous section, this is not reliable due to noisy sen-
sor observations. Therefore, the proposed SCAN algorithm
augments the linkage tree by introducing additional data
association scores to each of its nodes ti, which represent
the fitness of assigning an identity label to ti given device
observations L. Concretely, let rti be the session context
vector of a node ti, where rjti = 1 if ti contains voice
samples collected from session sj . Similarly, SOI’s device
lk is also linked with a context vector rlj , and rjlj is set
to 1 only if lj is detected in session sj . Intuitively, for a
node ti and a device lj , if rti and rlj are similar enough,
it is very likely that vocal observations under node ti are
actually the voice footprint of the speaker who owns device
lj , since they appear in similar series of contexts and match
with each other well. Formally, for a node ti, we define its

data association scores with respect to the device IDs as a
vector qai = (q1

ai , q
2
ai , . . . , q

m
ai), where the j-th score qjai is

the Euclidean distance between the node context vector rti
and the device context vector rlj . Together with the feature
score, the final score to assign node ti to device lj is a
composite score function:

qji = (1− ω) ∗ qfi + ω ∗ qjai (3)

where the parameter ω governs how much we trust the
device observations and to what extent we want them to
impact the result of clustering.
Optimization Program. With the previously introduced ter-
minology and notations, we formulate the following opti-
mization problem:

max
A

n∑
i=1

m∑
j=1

qji ∗ ai,j (4)

s.t.
m∑
j=1

ai,j ≤ 1,∀i ∈ 1, . . . , n (5)

n∑
i=1

ai,j = 1,∀j ∈ 1, . . . ,m (6)

∑
i∈Πk

m∑
j=1

ai,j ≤ 1,∀k ∈ Tleaf (7)

ai,j ∈ {0, 1},∀i ∈ {1, . . . , n},∀j ∈ {1, . . . ,m} (8)

where A = (ai,j)n×m is the decision variable and qji is the
composite score determined by Eq. (3). Tleaf represents the
set of all leaf nodes in the linkage tree. The objective function
aims to maximize the total scores when selecting m nodes
in the linkage tree T with size of n. Intuitively, the selected
m nodes are the optimal clusters out of these n utterance
samples. The inequality in (5) simply means a node can
be assigned to at most one device. The constraint in (6) is
used to ensure that device is associated with a single node.
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Fig. 5: The impact of device heterogeneity on RSS index.
The difference of RSS index of two different devices can
be as large as 8dB. A universal geofence value will lead to
downstream labelling errors.

Additionally, a node cannot be selected with its ancestors or
descendants at the same time since they contain duplicate
data. In order to compile this tree structure in optimization,
the constraint (7) is enforced to guarantee that on any path
leading to a leaf node, at most one node is assigned to a
device. Finally, the constraint (8) is there to make sure that
decision variable ai,j can take on the integer value 0 and
1 only. The above optimization formulation is essentially
a integer linear programming (ILP) problem and can be
readily solved by either exact or approximate algorithms
[28], [29].

This finishes our SCAN algorithm. Note that, SCAN
bypasses the requirement of knowing the number of non-
SOI speakers but only depends on the number of SOI to
associate. Furthermore, joint clustering and association pre-
vent associating impure clusters. SCAN early selects pure
clusters before they merge with wrong samples that con-
taminate their context vectors for association. In Sec. 7, we
will see the significant performance gain of SCAN compared
to the baseline approach.

5 ITERATIVE CURATION

So far we have seen how to automatically label speaker
utterances with co-located device ID information. However,
determining a co-located event is non-trivial and can be
error-prone. In SCAN, the colocation is determined by
comparing a device’s average RSS index with a geofence
threshold to determine a binary presence/absence indicator.
Naturally, any device with an RSS index lower than the
threshold is regarded to be outside the room and vice versa.
However, as illustrated in Fig. 5, due to device heterogeneity
and diversity in WiFi NICs, different devices have different
signal strengths even if they are placed in the same place.
As such, it is difficult to distinguish in-room devices and
out-of-room devices by using a global geofence threshold.
In this section, we present SCAN+, an iterative approach
to automatically customize individual geofence models that
tackles the challenge of device heterogeneity, which we refer
to as iterative curation. Through iterative curation, not only
can labelling errors be reduced in subsequent iterations, but
also geofence models are personalized for better localization
accuracy.

5.1 Geofence Initialization

We start by initializing a common geofence value, ζinit for
all devices. Then in any session, SCAN+ sniffs WiFi packets
and group RSS readings together if they share the same
source MAC addresses, i.e. they are emitted by the same de-
vice. However, due to environmental dynamics, RSS values
can vary significantly even if the device is physically still. In
order to reduce the effect of RSS variations [30], [31], we use
the median RSS index ojk to summarize the RSS readings of
device lj collected in the session sk. Finally, by comparing
ojk to the initialized geofence value ζinit, we can distinguish
whether device lj is present at a particular session sk and
construct its context vector rlj and device attendance vector
uk for subsequent cross-modality labeling.

5.2 Device Presence Update

After cross-modality labeling with the common initial ge-
ofence threshold, we can update the device context vector
of both modalities. Due to uncertainty in the initial ge-
ofence value, the resulted device context vector is noisy.
Fortunately, we note that the attenuation of sound is much
faster, e.g., if a door is closed. This leads to a more precise
relationship between the recorded utterance and sessions.
Therefore, once a device is associated with an utterance
cluster (see Sec. 4.2), we can use the utterance context
vector to update the presence information of associated
devices. We present two different approaches to determine a
threshold value, one hard and one soft (probabilistic), which
are discussed below.
Hard Geofence: We firstly introduce a deterministic tech-
nique to update the context vector. Given an associated pair
of device lj and cluster ti, we re-group the RSS readings of
a device lj based on all participating sessions inferred from
the cluster context vector rti . The median of the collection
of RSS indices is selected as the new geofence value ζj .
Then for a session sk, we then update the device attendance
vector uk based on the new geofence value.
Soft Geofence: Due to lack of model adaptation, utterance
clusters can be impure, especially in early iterations. Con-
sequently, the context vector of associated clusters might
be inaccurate, which significantly affects the deterministic
geofence update. To reduce the risks incurred by using
impure utterance clusters, we propose to use a probabilistic
geofence, under the Gaussian noise model for RSS as sug-
gested by [32], [33]. Similarly, we examine the associated
utterance context vector to group the RSS readings of a
device lj across all participated sessions and fit these in-
room RSS readings to a normal distribution, denoted by
Dj
in ∼ N (µin, σ

2
in). Additionally, we fit another normal

distribution of the RSS readings sniffed in absent sessions
inferred from the utterance context vector. We denote this
distribution by Dj

out ∼ N (µout, σ
2
out). Then, the presence

of a device lj in session sk is geofenced by a normalized
probability:

pjk =
p(ojk|D

j
in)

p(ojk|D
j
in) + p(ojk|D

j
out)

(9)
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The new context vector of device lj is a probabilistic vector,
where each element represents the presence probability in a
particular session:

rlj = (pj1, p
j
2, . . . , p

j
g) (10)

Similarly, the device attendance vector for session sk is
updated to a probabilistic vector as well:

uk = (p1
k, p

2
k, . . . , p

m
k ) (11)

5.3 Pipeline
We are now in a position to give the pipeline algorithm
of SCAN+. as shown in Algorithm. 1. The pipeline takes as
inputs vocal and device observations collected across a set
of sessions, as well as a voice representation model fθ pre-
trained on public datasets. It starts by initializing a global
geofence threshold ζinit for all devices, through empirical
observations. With a hard geofence model, the initial device
context vectors in terms of session attendance can be in-
ferred. Then the iterative process begins in line 5. First, we
extract the vocal features of utterances with speaker model
and construct the linkage tree based on the feature similar-
ity. Then, based on the tree structure and the compatibility of
device and node context vectors, we use SCAN (see Sec. 4.2)
to label the selectedm utterance clusters of SOI. The speaker
model can adapt its parameters by re-training or fine-tuning
with the labeled utterances (line 9). Finally, by referring to
the associated clusters context vectors, we can customize
the soft geofence model of individual devices and correct
their devices context vectors accordingly (line 11 and 12).
When the total changes of device context vectors between
consecutive iterations are small enough, SCAN+ finishes the
cross-modality curation. The speaker recognizer derived in
the last iteration are chosen as the adapted model, as well
as personalized geofence models for SOI’s devices.

6 IMPLEMENTATION

In this section, we provide implementation details of the
sensing module in SCAN+ and the pre-processing process
for conversations.

6.1 Sensing Front-end
The sensing front-end of SCAN+ collects both wireless iden-
tifiers and speech data in the same environment. This
module is implemented on a WiFi-enabled laptop running
Ubuntu 14.04. Our sniffer uses Aircrack-ng 3 and tshark 4

to opportunistically capture the WiFi packets in the vicinity.
The captured packet has unencrypted information such as
transmission time, source MAC address and the Received
Signal Strengths (RSS). As SCAN+ aims to label utterances
for POI, our WiFi sniffer only records the packets containing
POI’s device MAC addresses and discards them otherwise,
so as to not harvest addresses from people who have not
given consent. A channel hop mechanism is used in the
sniffing module to cope with cases where the POI’s device(s)
may connect to different WiFi networks, namely, on different
wireless channels. The channel hop mechanism forces the

3. https://www.aircrack-ng.org/
4. https://www.wireshark.org/docs/man-pages/tshark.html

Algorithm 1: SCAN+ Pipeline
Input: pre-trained voice feature extractor fθ , device

observations L, vocal observations X , Sessions S,
number of SOI m, threshold ε and mapping table
L ⇒ I

Output: adapted model f∗θ , personalized geofence
models Dout and Din

Initialize: a global geofence value ζinit
1 for j ← 1 to m do
2 r

(1)
lj
← Hard_Geofence(ζinit, lj , S)

3 end
4 for k ← 1 to g do
5 u

(1)
k ← Hard_Geofence(ζinit, sk, L)

6 end
7 τ = 1

8 while
√

1
|m|

∑m
j=1 ||r

(τ)
lj
− r

(τ−1)
lj

||2 > ε do
9 Z(τ) = fθ(X )

10 Z̃(τ) = hybrid_features(Z(τ),U (τ))

11 T (τ) = linkage_tree(Z̃(τ))

12 A(τ) = SCAN(m, r(τ)l1,...,m
, T (τ))

13 for j ← 1 to m do
14 D

(τ),j
in , D

(τ),j
out ← Gaussian_model(A(τ), lj) ;

15 r
(τ+1)
lj

← Soft_Geofence(D(τ),j
in , D

(τ),j
out , lj , S)

16 end
17 for k ← 1 to g do
18 u

(τ+1)
k ← Soft_Geofence(D(τ),j

in , D
(τ),j
out , sk, L)

19 end
20 τ ← τ + 1
21 end
22 f∗θ ← speaker_model_update(A(τ), X , L ⇒ I)

sniffing channel to change by every second and monitor the
active channels periodically (1 second) in the environment.
The RSS value in the packet implies how far away the
sniffed device is from the sniffer. We put the laptop in the
center of the room to sniff the environment in an unbiased
manner. The speech data is recorded via the embedded
microphone on commercial smartphones, with the sampling
rate of 16KHz. Note that, the positions of smartphones were
different in various sessions which mimics the real-world
complexity.

6.2 Conversation Processing

Discriminative features are important for downstream tasks
in SCAN+. In this section, we describe our implementation
approach for speech data processing. During experiments,
a recorder is set up to log conversations that took place in
the monitored environment. Since SCAN+ operates on the
utterance-level, whereas the recorded audio file lasts the
entire session, speaker diarization hence comes prior to any
further steps. Ideally, with utterances of each speaker, con-
versation processing moves on to feature vector extraction,
or voice embedding extraction. The extracted features are
then used for linkage tree construction.
Utterance Segmentation: Utterance segmentation is a prod-
uct of speaker diarization. We adopted the speaker diariza-
tion pipeline implemented in Kaldi toolkit 5. The underlying

5. http://kaldi-asr.org/

https://www.aircrack-ng.org/
https://www.wireshark.org/docs/man-pages/tshark.html
http://kaldi-asr.org/
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(a) Pipeline of utterance segmentation.
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(b) Pipeline of X-vector (speaker embedding) extraction.

Fig. 6: Steps of conversation processing. The derived segmentations of (a) are input to (b). Acronyms. MFCC: Mel-frequency
cepstral coefficients; CMVN: cepstral mean and variance normalization; PLDA: probabilistic linear discriminant analysis.

speaker diarization system operates as a means of intra-
context clustering of overlapping sliding windows on the
session-wise audio clip. Sliding windows are processed the
same way as in speaker recognition pipeline, namely Mel-
Frequency Cepstral Coefficients (MFCC) feature extraction,
Cepstral mean and variance normalization (CMVN), fol-
lowed by speaker feature extraction (x-vector in our case).
Intuitively, given two consecutive sliding windows, if the
latter one contains a change point while the former window
is integral, their feature vectors should be significantly dis-
similar. In practice, this similarity is measured with a scoring
function (PLDA scoring in our case), and is compared with a
pre-defined threshold to determine whether or not a change
point should be placed.
Voice Embedding: As mentioned above, voice embedding
is critical for both speaker recognition and diarization
tasks. DNN-based X-vector architecture proposed in [3] was
adopted in our experiment, available in Kaldi [34]. The
system uses 24 MFCC banks as input features for a time-
delayed neural network. After five time-delay layers, a stats
pooling layer is used to aggregate frame-level knowledge
into segment-level features. The aggregated vector is then
passed through several fully-connected layers to generate
a high-level speaker embedding. This feature extractor is
trained with a softmax cross entropy loss function, and a
PLDA backend is adopted for good discriminative results.
In our experiment, we used the X-vector feature extractor
trained on the augmented VoxCeleb corpus [35] (augmented
with MUSAN [36]), and the PLDA backend initially trained
on purely VoxCeleb.

7 PERFORMANCE EVALUATION

7.1 Setup

Datasets. Experiments are conducted on both public
datasets and our own collected data, denoted as Public and
RealWorld in the following context.

Public dataset is synthesized from VoxCeleb2 [4]. In 7.2,
50 SOIs and 20 non-SOIs are sampled from VoxCeleb2 and
distributed into 100 meetings. For experiments in 7.3, the
number of non-SOIs varies from 0 to 100, and the amount
of sessions is altered from 50 to 150. On average, there
are 11 SOIs in each session while each session comprises
97 utterances from SOIs. To represent device heterogeneity,
two Gaussians are preset for each SOI (or SOI’s device),
corresponding to inside-‘geofence’ and outside-‘geofence’

RSSI distribution respectively. Then, for each session, RSS
values of each SOI (or SOI’s device) are sampled according
to their presence to reflect the typical characteristics of real
world IoT cross-modal data collection.

RealWorld dataset was collected from 49 meetings (i.e.,
sessions) from three different rooms, with the area of 60m2,
20m2 and 25m2 respectively. These rooms consist of two of-
fice and one meeting room located in a modern building. 29
meetings are recorded in the meeting room and the rest are
evenly recorded in the two offices. Our real-world dataset
contains conversations contributed by 21 distinct SOIs and
9 distinct non-SOIs attending meetings with between 3 to 5
participants per meeting. The average number of people per
session 3.22 , derived from

∑S
i=1 Pi

S , where S is the number
of recorded sessions and Pi represents the number of par-
ticipants in i-th session. Collected audio recordings were
segmented into 3,555 utterances via a diarization system
available in Kaldi [34] and ground truth attendance was
labeled manually. In particular, conversations were recorded
by three different mobile microphones at the sampling rate
of 16 kHz. A WiFi sniffer was deployed inside the environ-
ment to continuously scan the ambient WiFi identifiers in
the vicinity. Observation errors exist due to reasons such as
speakers leaving their devices behind, being disconnected
from WiFi, or being incorrectly detected when not actually
present, e.g., working in the office next to the meeting
room. The evaluation purpose of this dataset is to examine
the performance in real-world scenarios where speaker and
device observations are noisy.
Competing Approaches. The approaches being evaluated
are sequential clustering and association (denoted as Se-
quential), Simultaneous Clustering And Naming (denoted
as SCAN) and SCAN+, which augmented SCAN by iter-
ative curation. Depending on which model is adopted in
curation, SCAN+ can be further classified into HardSCAN+
and SoftSCAN+, corresponding to hard and soft geofence
modeling respectively. HardSequential and SoftSequential
are likewise denoted.
Evaluation Metrics. Our evaluation examines two types of
performance, in both offline utterance labeling and online
speaker identification. Specifically, we use precision, recall
and F1 score to evaluate the purity of utterance labeling,
which follows the convention in [37]. In order to find to
what extent the automatically labeled utterance can help
develop a speaker recognition system, we use equal error
rate (EER) to evaluate the developed system on a held-out
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Public RealWorld
Sequential SCAN Sequential SCAN

Algorithm KMeans Spectral Hierarchical - KMeans Spectral Hierarchical -
Precision 0.257 0.472 0.568 0.740 0.392 0.539 0.598 0.685

Recall 0.406 0.526 0.606 0.715 0.366 0.649 0.658 0.705
F1-score 0.315 0.498 0.587 0.727 0.379 0.589 0.626 0.695

TABLE 1: Comparing SCAN with the Sequential Clustering and Naming methods using different clustering algorithms.

dataset. EER is the most widely adopted metric in speaker
verification and summarizes both false positive and false
negative errors [3].

7.2 Core Experiments

Experiments in this section are conducted on both Public and
RealWorld datasets. Particularly, the Public dataset contains
100 sessions generated by 50 SOIs and 20 non-SOIs.
Cross-modality Labeling. To start with, we compared
SCAN with Sequential method where device heterogeneity
was not taken into consideration, i.e., without curation.
Different clustering algorithms were applied to perform
clustering step in Sequential method, namely K-Means,
spectral clustering and hierarchical clustering. Results were
presented in Table 1. It can be observed that on both Public
and RealWorld dataset, SCAN outperformed all sequential
approaches. Respectively, on Public dataset, the F1-score of
SCAN is at least 23.9% higher than the baseline sequential
method, while on RealWorld dataset, SCAN maintained its
advantage with over 7% gain in F1-score. Such differences
indicate that, when clustering and naming steps are inde-
pendent, the correctness of association depends greatly on
the chosen clustering method and the underlying number
of clusters in feature space. In our case, the compound fea-
ture is friendly to hierarchical clustering. More importantly,
because of noises like non-SOI’s and diarization error, uncer-
tainties are also introduced when determining the number
of clusters. In contrast, SCAN averts the decision of number
of clusters by incorporating the data association plan into
clustering. As a result, only clusters that maximize both the
linkage the association score are selected, whilst the majority
of the membership noise is discarded through optimization.
Among all three sequential methods, hierarchical clustering
appears to perform better with the hybrid features. There-
fore, for the rest of the experiments, the baseline sequential
method was chosen as the one with hierarchical clustering
algorithm.
Iterative Curation. In this section, experiments focus on iter-
ative curation in SCAN+. Two strategies of device geofence
threshold adaptation are evaluated, namely hard geofence
and soft geofence modeling. Baselines are set to the case
where device presence is not updated (e.g. Sequential and
SCAN). Results are shown in Fig. 7. From the chart we
can see that SCAN+ is always superior to the sequential
method when the same curation strategy is deployed in
each variant, indicating that SCAN’s advantage is preserved
when curation is incorporated. It is also clear that the hard
geofence is outperformed by soft geofence modeling on both
Public and RealWorld datasets. This is due to the fact that
representing a device’s presence discretely when deciding
a geofence can amplify the effect of erroneous clustering,
which is usually the case. On contrary, soft geofence man-

ages to alleviate the impact of incorrect decisions by treating
the presence of a device probabilistically. The probability
distribution is derived from the previous clustering results,
from which the distributions are approximated. These reflect
the characteristics of a device being inside a geofence or
outside a geofence. Hence, soft geofence modeling is more
tolerant of RSS values that lie on the junction.
Online Speaker Recognition. We are now in a position
to evaluate the effectiveness of SCAN+ for online speaker
recognition in a new domain. In particular, The association
results of SoftSCAN+ are utilized to update the feature
extractor as it got the best labelling performance among all
variants of SCAN+. To incorporate associated instances in
the feature extractor, we retrained the PLDA backend on the
mixture of VoxCeleb and the labelling result of SoftSCAN+.
The new feature extractor is evaluated by speaker verifi-
cation task and speaker identification task on the held-out
test set of Public and RealWorld datasets and we compare
it to the following three baselines: (1) non-adaptation, (2)
adapted by the limited in-domain labelled data only and
(3) unsupervised adaptation [38]. Table. 2 shows that for
speaker verification tasks, the feature extractor adapted
by SoftSCAN+ outperforms other baseline. Our proposed
method is able to achieve EERs of 3.32 and 6.96 on the
public and real-world datasets respectively. This accuracy
is over 20% better than non-adapted cases. Additionally, we
found that the mixture of VoxCeleb data in PLDA adaption
can bring a clear advantage (∼ 6% gain) over purely in-
domain data adaptation. This can be ascribed to PLDA’s re-
quirement on training data size, where a small-scale dataset
cannot be used to effectively estimate a discriminative fea-
ture subspace. This observation is also found in [39]. Last,
although the unsupervised method achieved the second-
best result on public dataset, it struggles on the real-world
dataset, due to more significant domain differences. The
speaker identification performance showed in Fig. 8 further
confirms the superiority of SoftSCAN+, where it consis-
tently outperforms other baselines in all levels of cumulative
accuracy. The above results indicate that a PLDA feature
extractor trained on a different domain can be adapted to
target domain in a weakly supervised manner via SCAN+.
Effectiveness of Geofence Personalization Finally, we eval-
uate the effectiveness of the personalized geofences on de-
termining whether a device is inside or outside the room.
In an additional experiment, 10 SOI were asked to stay

non-adapted limited
Indomain Unsupervised Ours

Public 4.41 3.98 3.75 3.32
Real World 8.76 7.40 8.44 6.96

TABLE 2: EER(%) of speaker verification on Public and Real-
World datasets using different PLDA adaptation methods.
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Fig. 7: Overall performance comparison with different curation (none, hard, soft) methods on Public and RealWorld datasets.
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Fig. 8: Performance of speaker identification on Public and RealWorld datasets using different adaptation methods.

inside and then outside our experiment testbed. During
the experiment, our sniffing system continuously recorded
their device RSS values. By using different geofence models
curated in the testbed, we compare their performance on
this new data collection. The global geofence model is a
threshold calibrated by a single smartphone. As shown in
Fig. 9, the best overall accuracy (∼ 95%) can be achieved
when adopting a soft geofence model in SCAN+. Using the
hard-version of SCAN+ gives the second-best performance.
As expected, the global fence is biased to the calibrated
smartphone and generalizes poorly to other devices. Despite
its superiority in inside-room detection, the global geofence
failed to reliably detect outside-room events. Overall, the
baseline methods based on sequential clustering and as-
sociation are inferior, and can be worse than the global
threshold model when no personalised geofence is used.
This is because the sequential method can incur significant
association errors which will drive the geofence update in
the incorrect direction.

7.3 Sensitivity Analysis
The following experiments are carried out using SCAN+with
soft geofence model. Note that we fix the number of SOI in
all the sensitivity tests to ensure fair comparisons.
Impact of Initial Geofence Value. In this section, we varied
geofence initialization by using different RSS thresholds at
the beginning of curation. Results presented in Fig. 10 indi-
cate that when the initial geofence threshold is set too large.
e.g., −30dB for Public dataset, −25dB for RealWold dataset,
association accuracy drops drastically. Under such conserva-
tive initialization, multiple devices that were present in the
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Fig. 9: Effectiveness of Geofence Personalization. ’Global’
method means to use a pre-defined RSS value calibrated via
a certain device to globally fence all devices.

meeting room are falsely ruled out due to their weak signal
reception ability. As a result, a large portion of RSS statistics
that should be used to update the inside-geofence model
is excluded and were undesirably included for outside-
geofence model update. In contrast, using a very small
geofence threshold (e.g., −85dB) wrongly included absent
devices, though its impact is relatively mild. In summary,
the accuacy of SCAN+ is relatively insensitive to a sensible
initial geofence initialization, and is able to operate compa-
rably when initial values lie in the range of [−70,−45]dB.
Lastly, we also found that the number of iterations required
for convergence decreases when the initial value becomes
larger. This behaviour is the natural consequence of the
decreased number of SOIs’ devices present in sessions in-
curred by overly-conservative initialization.
Impact of Number of Non-SOIs. In this section, we varied
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Fig. 10: Impact of Geofence initializations on Public and
RealWorld datasets.
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Fig. 11: Impact of number of non-SOIs and sessions on
Public dataset.

the number of non-SOIs in Public dataset with each non-
SOI contributing 63.75 utterances on average, while the
number of sessions remains the same. Results in Fig. 11a
show that along with the increase of non-SOIs as well as
their utterances, the association accuracy of SCAN+ with
soft geofence model slowly degrades. The system achieved
a high F1-score at 98% when there are no non-SOI presented,
and managed to maintain such performance up to 40 non-
SOI. Even though the performance decreased by 1.3% when
the amount of non-SOIs increased to 60 and 4.1% when
scaled up to 100, SCAN+ managed to discard most of
the non-SOI noise and maintain an acceptable association.
This can be ascribed to the fact that when the number of
non-SOIs grows, the possibility of confusing a SOI with
some non-SOI raises. As a result, when the vocal feature of
non-SOIs cannot be effectively separated from SOIs, device
presence vectors will be erroneous and will in turn affect the
similarity between clusters and SOIs. Furthermore, it is also
possible that a non-SOI will share the same attendance with
some SOI from the beginning or during curation. Hence,
these two speakers become indistinguishable. With respect
to convergence efficiency, Fig. 11a indicates that the number
of iterations until convergence tends to increase with the
number of non-SOIs, which is related to data volume and
complexity.
Impact of Number of Sessions. In this section, we kept
the number of non-SOIs unchanged and varied the number
of sessions, simulating the growing number of sessions
being recorded in real-life. As depicted in Fig. 11b, the
increase in sessions benefits the association result. For Public
dataset with 50 SOIs and 20 non-SOIs, when 50 sessions are
provided, soft SCAN+ achieved about 95.5% F1-score. The
performance was improved by 2.6% when twice the number
of sessions are provided; and improved by 4.0% when there
are 150 sessions. The improvement in performance is easy
to comprehend in that with more sessions recorded, the
speakers become more distinguishable since more variations
are introduced into device presence. On the other hand,
more sessions imply a rise in the number of iterations
required for convergence as indicated by Fig. 11b.

8 DISCUSSION AND FUTURE WORK

Privacy Concerns: In practice, SCAN+ requires voice features
and device IDs of users to operate, which may impact user
privacy, if used without consent. For example, a user may
be able to be identified without explicit consent in a new
environment, if the owner has the access to the voice or WiFi
sniffing data of this user. In this work, we do not explicitly
study the attack model in this context. However we note

that potential privacy concerns are worth exploring in future
work.
Extensibility: Biometric recognition has gained increasing
popularity in ubiquitous computing, and applications range
from personalized service to secure ubiquitous devices. Un-
fortunately, an accurate recognition system usually relies on
a large amount of labeled biometric data to train a classifier,
which is often costly to attain. In this work, we only consid-
ered autonomous speaker identification, although there are
an increasing number of biometrics, such as gait, height and
visual features that are targeted towards widespread passive
observations of users in buildings. However, the framework
and philosophy of SCAN+ can readily generalize to other
biometric features (e.g., facial images and gaits) in smart
spaces, by utilizing other co-located digital IDs (e.g., WiFi
MAC addresses, email accounts and etc.). Combinations of
the above are interesting future research directions.
Utterance Segmentation: Segmented utterances are the
smallest units in SCAN+, and the performance of SCAN+
relies on the segmentation quality. An ideal segmentation
should only contain the voice data of a single person. In
this work, we adopted the segmentation module from the
speaker diarization system proposed in [40], which is the
state-of-the-art technique in DIHARD 2018 competition 6.
As DIHARD is a challenging contest to evaluate the per-
formance of diarization systems in the wild, it is worth
exploring the segmentation modules of other diarization
systems with top scores in this competition, such as [41],
[42], [43].

9 CONCLUSION

In this paper, we proposed SCAN+, a system that auto-
matically learns speaker identity and adapts WiFi geofence
model via cross-modal labelling. We show that co-located
microphones and WiFi sniffers can complement the knowl-
edge base for each other, and lead to speaker recognition
systems with zero user effort. In particular, a novel method is
proposed that simultaneously clusters voices and associates
device IDs, which addresses the issue of disturbing non-
SOI. In addition, an iterative optimization framework is
proposed to automatically customize geofence and tackle
the device heterogeneity issue. Experimental results in dif-
ferent scenarios indicate that SCAN+ is able to achieve 2-
fold improvement compared with conventional methods
and can achieve reliable speaker recognition in the wild.

6. https://coml.lscp.ens.fr/dihard/2018/results.php
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