
Language Primitives and Type
Discipline for Structured
Communication-Based

Programming

— Subject Reduction and Type Safety Theorems —

Vasco T. Vasconcelos Nobuko Yoshida

DI–FCUL TR–06–9

June 28, 2006

Departamento de Informática
Faculdade de Ciências da Universidade de Lisboa

Campo Grande, 1749–016 Lisboa
Portugal

Technical reports are available at http://www.di.fc.ul.pt/tech-reports. The files
are stored in PDF, with the report number as filename. Alternatively, reports are
available by post from the above address.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade de Lisboa: Repositório.UL

https://core.ac.uk/display/32330599?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Language Primitives and Type Discipline for

Structured Communication-Based Programming

— Subject Reduction and Type Safety Theorems —

Vasco T. Vasconcelos∗ Nobuko Yoshida†

June 28, 2006

Abstract

Session primitives and types provide a flexible programming style for
structural interaction, and are used to statically check the safe and consis-
tent composition of protocols in communication-centric distributed soft-
ware. Unfortunately authors working on session types have recently re-
alised that some of the previously published systems fail to satisfy the
basic theorems of Subject Reduction and Type Safety. This report dis-
cusses the issues involved in higher-order session communication, presents
a formulation of the recursive types as well as proofs of the Subject Re-
duction and Type Safety Theorems of the original session typing system
by Honda-Vasconcelos-Kubo in ESOP’98. It also proposes a new session
typing system which allows a more liberal higher-order session communi-
cation based on an idea of Gay and Hole.

1 Introduction

Session primitives and types provide a flexible programming style for structural
interaction, and are used to statically check the safe and consistent composition
of protocols in communication-centric distributed software. They have been
studied for the π-calculus [3, 10, 11, 12, 13, 17, 20], Ambients [5], CORBA
interfaces [18], multi-threaded functional languages [20, 21], Web Description
Languages [4], and distributed [7] and multi-threaded Java [6] and, at the
industry level, WC3-CDL [22] and pi4Tech [16].

This paper reports on recent active discussions on the two fundamental the-
orems, Subject Reduction and Type Safety, among the authors of session types.
In the presence of higher-order session communication, session instantiation dy-
namically changes the structure of sessions, so that it becomes non-trivial to
preserve typability.

Unfortunately authors working on session types have recently realised that
some of the previous systems fail to satisfy these basic theorems. Interestingly,
the subtlety of type preservation is related to a treatment of communication

∗Department of Informatics, University of Lisbon
†Department of Computing, Imperial College London

1

channels in the rewriting rules of the π-calculus. After discussing the issues
involved in higher-order session communication, this report also proposes a new
session typing system which allows a more liberal higher-order session commu-
nication based on an idea of Gay and Hole [11].

The full proofs of the two theorems are firstly given in this report, which
also clarifies some definitions absent in [12]. The motivation to why the present
authors should redo the proofs nine years after is the discovery of a subtle
counterexample to the results in some works on session types published after
the work under consideration, although not to results of this original system.
We explain the problem in detail in Section 3.

The new technical contributions of this report include: the formulation of
recursive types, proofs for the Subject Reduction and Type Safety Theorems in
the original session typing system by Honda-Vasconcelos-Kubo in ESOP’98, as
well as the introduction of a new session typing system and proofs of the two
theorems for this system.

The outline of the paper is simple. The next section revisites the ESOP’98
system, presenting proofs for the above mentioned results. Section 3 presents
the more liberal system. Section 4 concludes the paper.

2 The Honda-Vasconcelos-Kubo Session Typing
System in [12]

Honda-Vasconcelos-Kubo’s session typing system in ESOP’98 is an extension of
the first session typing system in [17] that allows higher-order session commu-
nication. We first review the syntax, operational semantics and typing system
in [12] informally. We then state and prove the main theorems, Subject Reduc-
tion and Type Safety. Detailed examples and explanations of the language and
typing system can be found in [12].

2.1 Syntax and Operational Semantics

A session is a series of reciprocal interactions between two parties, possibly
with branching and recursion, and serves as a unit of abstraction for describing
interaction. Communications belonging to a session are performed via a port
specific to that session, called a channel. A fresh channel is generated when
initiating each session, for the use in safe communications.

We use the following base sets: names, ranged over by a, b, x, y, z . . . ; chan-
nels, ranged over by k, k′; constants (including names, integers and booleans),
ranged over by c, c′, . . . ; labels, ranged over by l, l′, . . . ; and process variables,
ranged over by X, Y, . . . Letters u, u′, . . . denote names and channels together.
Then processes, ranged over by P,Q . . . , and expressions, ranged over by e, e′, . . .
are given by the grammar in Figure 1.

The bindings for names are k?(x̃) in P and (νa)P ; those for channels are
request a(k) in P, accept a(k) in P and (νk)P ; and that for process variables
are def D in P . The derived notions of bound and free identifiers, alpha
equivalence and substitution are standard. For P a process, fpv(P) denotes the
set of free process variables, fn(P) denotes the set of free names, and fc(P) the
set of free channels. We also need to talk about the set of process variables

2

P ::= request a(k) in P session request
| accept a(k) in P session acceptance
| k![ẽ];P data sending
| k?(x̃) in P data reception
| k � l;P label selection
| k � {l1 : P1[] · · · []ln : Pn} label branching
| throw k[k′];P channel sending
| catch k(k′) in P channel reception
| if e then P else Q conditional branch
| P | Q parallel composition
| inact inaction
| (νu)P name/channel hiding
| def D in P recursion

| X[ẽk̃] process variables
e ::= c constant

| e + e′ | e− e′ | e× e | not(e) | . . . operators

D ::= X1(x̃1k̃1) = P1 and · · · and Xn(x̃nk̃n) = Pn declaration for recursion

Figure 1: Syntax

P | inact ≡ P P | Q ≡ Q | P (P | Q) | R ≡ P | (Q | R)
(νu)P | Q ≡ (νu)(P | Q) if u 6∈ fu(Q)

(νu)inact ≡ inact

def D in inact ≡ inact

(νu)def D in P ≡ def D in (νu)P if u 6∈ fu(D)
(def D in P) | Q ≡ def D in (P | Q) if dv(D) ∩ fpv(Q) = ∅

def D in (def D′ in P) ≡ def D and D′ in P if dv(D) ∩ dv(D′) = ∅.

Figure 2: Structural Congruence

introduced in declarations dv(X1(x̃1k̃1) = P1 and · · · and Xn(x̃nk̃n) = Pn) =
{X1, . . . , Xn}.

Structural congruence is the smallest congruence relation on processes that
include the equations in Figure 2. The operational semantics is given by the
reduction relation, denoted P → Q, the smallest relation on processes gener-
ated by the rules in Figure 3, where e ↓ c says that expression e evaluates to
constant c.

Rule [Link] establishes a new session between the server accept a(k) in P1

and the client request a(k) in P2 via shared name a. Rule [Com] transmits val-
ues between the client and the server at the private channel so that determinacy

3

(accept a(k) in P1) | (request a(k) in P2) → (νk)(P1 | P2) [Link]
(k![ẽ];P1) | (k?(x̃) in P2) → P1 | P2[c̃/x̃] (ẽ ↓ c̃) [Com]

(k � li;P) | (k � {l1 : P1[] · · · []ln : Pn}) → P | Pi (1 ≤ i ≤ n) [Label]
(throw k[k′];P1) | (catch k(k′) in P2) → P1 | P2 [Pass]

if e then P1 else P2 → P1 (e ↓ true) [If1]
if e then P1 else P2 → P2 (e ↓ false) [If2]

def D in (X[ẽk̃] | Q) → def D in (P [c̃/x̃] | Q) (ẽ ↓ c̃, X(x̃k̃) = P ∈ D)
[Def]

P → P ′ ⇒ (νu)P → (νu)P ′ [Scop]
P → P ′ ⇒ P | Q → P ′ | Q [Par]

P ≡ P ′ and P ′ → Q′ and Q′ ≡ Q ⇒ P → Q [Str]

Figure 3: Reduction

of value delivery is ensured among two parties. Rule [Pass] is the key rule to
allow higher-order session communication, i.e. session channel send and receive,
with which various protocols are expressed, allowing complex nested structured
communications. To show the difference between channels and names, for ex-
ample,

accept a(k) in P1 | accept a(k) in P2 | request a(k) in Q

is accepted by the type system, while

throw k[k′];P1 | throw k[k′];P2 | catch k(k′) in Q

is prohibited since the two senders at k appear in context at the same time.

Relationship with the Rewriting Rules of the π-Calculus. The essence
of rule [Pass] is related to a “trick” in a rule of the operational semantics of
a variant of the π-calculus, called the πI-calculus in the literature [15]. This
calculus restricts name passing to bound (private) name passing. Syntactically
it restricts outputs to processes to the form:

(νỹ)(x〈ỹ〉 | P) with ỹ pairwise distinct (1)

where ỹ = y1 . . . yn denotes a potentially empty vector, | denotes parallel compo-
sition, and x〈ṽ〉 is an asynchronous output (or a message). We write the process
in (1) as x(ỹ).P . The dynamics has the following form by the restriction to the
bound output.

x(ỹ).P | x(ỹ).Q → (νỹ)(P | Q) (2)

Note that ỹ, present both in the input and in the output, indicates that α-
conversion is implicitly performed ahead of communication. One can easily
observe a similarity between this rule, and rules [Link] and [Pass]: channel k is
always freshly generated in rule [Link] and channel k′ in rule [Pass] is already
created and bound at a previous interaction. Hence no substitution is performed
in (2), [Link] or [Pass].

4

Sort S ::= nat | bool | 〈α, α〉
Type α ::= ?[S̃];α | ?[α];β | &{l1 : α1, . . . , ln : αn} | end | ⊥ |

![S̃];α | ![α];β | ⊕{l1 : α1, . . . , ln : αn} | t | µt.α

Figure 4: The syntax of types

![S̃];α =?[S̃];α ⊕{li : αi}i∈I = &{li : αi}i∈I ![α];β =?[α];β

?[S̃];α =![S̃];α &{li : αi}i∈I = ⊕{li : αi}i∈I ?[α];β =![α];β
end = end µt.α = µt.α t = t

Figure 5: The co-type of a type

2.2 Type Discipline

Structured communication-based programming allows a clear description of
complex interaction structures beyond conventional communication primitives.
The more complex the interaction becomes, the more difficult it would be to
capture the whole interactive behaviour and to write correct programs. The
session type discipline offers a simple static checking framework to guarantee
the correctness of communication patterns in such situations. It guarantees that
well-typed programs are exempt from incompatibility in interaction patterns.

Types. Given a set of type variables ranged over by t, t′, . . . , the set S of sorts
ranged over by S, S′, . . ., and the set T of types ranged over by α, β, . . . are
defined by the grammar in Figure 4.

The type ?[S̃];α represents the behaviour of first inputting values of sorts
S̃, then performing the actions prescribed by type α; type ?[α];β represents a
similar behaviour, which starts with channel input (catch) instead; types ![S̃];α
and ![α];β are the dual of ?[S̃];α and ![α];β, sending values instead of receiving.
Type &{l1 : α1, . . . , ln : αn} describes a branching behaviour: it waits with n
options, and behave as type αi if i-th action is selected (external choice); type
⊕{l1 : α1, . . . , ln : αn} then represents the behaviour which would select one of li
and then behaves as αi, according to the selected li (internal choice). Type end
represents inaction, acting as the unit of sequential composition; µt.α denotes a
recursive behaviour, representing the behaviour that starts by doing α and, when
t is encountered, recurs to α again; and finally ⊥ is a specific type indicating
that no further interaction is possible at a given name.

For a type α in which ⊥ does not occur, we define α, the co-type (or dual)
of α, by exchanging ! and ?, and & and ⊕. The inductive definition is in Figure 5.

Recursive Types. One of the new contributions of the present abstract is
a precise definition and the fixed point theorem on recursive types which were
omitted from the original paper. The µ operator is a binder, giving rise, in
the standard way, to notions of bound and free variables and alpha-equivalence.

5

Similarly to processes, we do not distinguish between alpha-convertible types.
Furthermore, we take an equi-recursive view of types [14], not distinguishing
between a type µt.α and its unfolding α[µt.α/t]. We are interested on contractive
types only.

Definition 2.1 (Contractive) A type is contractive if for each of its sub-
expressions µt.µt1 . . . µtn.α, the body α is not t.

Henceforth we assume all types to be contractive.

Definition 2.2 (Type equivalence) Two types α and β are said to be equiv-
alent if the pair (α, β) is in the largest fix point of the monotone function
F : P(T × T) → P(T × T) defined by:

F (R) = {(end, end), (⊥,⊥)}
∪ {(?[S̃];α, ?[S̃];β) | (α, β) ∈ R}
∪ {(![S̃];α, ![S̃];β) | (α, β) ∈ R}
∪ {(?[α];β, ?[α′];β′) | (α, α′), (β, β′) ∈ R}
∪ {(![α];β, ![α′];β′) | (α, α′), (β, β′) ∈ R}
∪ {(⊕{li : αi}i∈I ,⊕{li : βi}i∈I) | (αi, βi) ∈ R,∀i ∈ I}
∪ {(&{li : αi}i∈I ,&{li : βi}i∈I) | (αi, βi) ∈ R,∀i ∈ I}
∪ {(µt.α, β) | (α[µt.α/t], β) ∈ R}
∪ {(α, µt.β) | (α, β[µt.β/t]) ∈ R}

Theorem 2.3 The largest fix point of function F is an equivalence relation.

Proof. For each of the three cases (reflexivity, symmetry, transitivity) we fol-
low [14], Theorems 21.3.6–7. Take symmetry. A relation R is symmetric if it is
closed under the monotone function Sym(R) = {(α, β}) | (β, α) ∈ R}. We start
by noting that (cf. [14], Theorem 21.3.6):

Sym(F (R)) ⊆ F (Sym(R)) implies that the largest fixed point of F
is symmetric.

We then show that Sym(F (R)) ⊆ F (Sym(R)). Let (α, β) ∈ Sym(F (R)). By
definition of Sym, there exists (β, α) ∈ F (R). Our goal is to show that (β, α) ∈
F (Sym(R)). Consider all possible shapes of α. We focus on two cases; the
remaining are similar.
Case α = end. Since (β, α) ∈ F (R), the definition of F implies that β = end or
β = µt.γ with (α, γ[β/t]) ∈ R. In the first case, notice that (end, end) ∈ F (R)
for any R, in particular for F (Sym(R)). In the second case, we know that
(γ[β/t], α) ∈ Sym(R) (by the definition of Sym), hence that (β, α) ∈ F (Sym(R))
(by the definition of F).
Case α = &{li : αi}i∈I . Since (β, α) ∈ F (R), the definition of F implies
that β = &{li : βi}i∈I or β = µt.γ with (α, γ[β/t]) ∈ R. In the first case,
by the definition of Sym, we have (βi, αi) ∈ Sym(R) for all i ∈ I, hence
(&{li : βi}i∈I ,&{li : αi}i∈I) ∈ F (Sym(R)). In the second case proceed as above.

2

6

Henceforth types are understood up to type equivalence, so that, for ex-
ample, in a typing derivation, types µt.α and α[µt.α/t] are be used inter-
changeably. Due to the presence of record structures in the syntax of types
(⊕{l1 : α1, . . . , ln : αn}, &{l1 : α1, . . . , ln : αn}), we do not pursue an interpreta-
tion of types as regular infinite trees (the interested reader may refer to [19] for
such an interpretation).

Γ · a : S ` a . S Γ ` 1 . nat Γ ` true, false . bool
Γ ` ei . nat

Γ ` e1 + e2 . nat
[NameI],[Nat],[Bool],[Sum]

Θ; Γ ` P . ∆ · k : end
Θ;Γ ` P . ∆ · k : ⊥

Θ;Γ ` inact . ∆ [Bot],[Inact]

Γ ` a . 〈α, α〉 Θ;Γ ` P . ∆ · k : α

Θ;Γ ` accept a(k) in P . ∆
[Acc]

Γ ` a . 〈α, α〉 Θ;Γ ` P . ∆ · k : α

Θ;Γ ` request a(k) in P . ∆
[Req]

Γ ` ẽ . S̃ Θ;Γ ` P . ∆ · k : α

Θ;Γ ` k![ẽ];P . ∆ · k : ![S̃];α
[Send]

Θ; Γ · x̃ : S̃ ` P . ∆ · k : α

Θ;Γ ` k?(x̃) in P . ∆ · k : ?[S̃];α
[Rcv]

Θ; Γ ` P1 . ∆ · k : α1 · · · Θ;Γ ` Pn . ∆ · k : αn

Θ;Γ ` k � {l1 : P1[] · · · []ln : Pn} . ∆ · k : &{l1 : α1, . . . , ln : αn}
[Br]

Θ; Γ ` P . ∆ · k : αj

Θ;Γ ` k � lj ;P . ∆ · k : ⊕ {l1 : α1, . . . , ln : αn}
(1 ≤ j ≤ n) [Sel]

Θ; Γ ` P . ∆ · k : β

Θ;Γ ` throw k[k′];P . ∆ · k : ![α];β · k′ : α
[Thr]

Θ; Γ ` P . ∆ · k : β · k′ : α

Θ;Γ ` catch k(k′) in P . ∆ · k : ?[α];β
[Cat]

Θ; Γ ` P . ∆ Θ;Γ ` Q . ∆′

Θ;Γ ` P | Q . ∆ ◦∆′ (∆ � ∆′) [Conc]

Γ ` e . bool Θ;Γ ` P . ∆ Θ;Γ ` Q . ∆
Θ;Γ ` if e then P else Q . ∆

[If]

Θ; Γ · a : S ` P . ∆
Θ;Γ ` (νa)P . ∆

Θ;Γ ` P . ∆ · k : ⊥
Θ;Γ ` (νk)P . ∆

[NRes],[CRes]

Γ ` ẽ . S̃

Θ ·X : S̃α̃; Γ ` X[ẽk̃] . ∆ · k̃ : α̃
[Var]

Θ ·X : S̃α̃; Γ · x̃ : S̃ ` P . k̃ : α̃ Θ ·X : S̃α̃; Γ ` Q . ∆
Θ;Γ ` def X(x̃k̃) = P in Q . ∆

[Def]

Figure 6: Typing System

Typing System. A sorting (resp. a typing, resp. a basis) is a finite partial
map from names to sorts (resp. from channels to types, resp. from variables to

7

sequences of sorts and types). We let Γ,Γ′, . . . (resp. ∆,∆′, . . ., resp. Θ,Θ′, . . .)
range over sortings (resp. typings, resp. bases).

Definition 2.4 (Type algebra) Typings ∆0 and ∆1 are compatible, written
∆0 � ∆1, if ∆0(k) = ∆1(k) for all k ∈ dom(∆0) ∩ dom(∆1). When ∆0 � ∆1,
the composition of ∆0 and ∆1, written ∆0 ◦ ∆1, is given as a typing such
that (∆0 ◦ ∆1)(k) is (1) ⊥, if k ∈ dom(∆0) ∩ dom(∆1); (2) ∆i(k), if k ∈
dom(∆i) \ dom(∆i+1 mod 2) for i ∈ {0, 1}; and (3) undefined otherwise.

We write ∆ ·k : α when k 6∈ dom(∆), and ∆, k : α when k may be in dom(∆).
This notation is then extended to ∆ ·∆′. Also, Θ\x denotes the result of taking
off x : Θ(x) from Θ. Similarly for Γ \ a and for ∆ \ k.

Typing judgement are of the form Θ; Γ ` P . ∆ which reads: “under the
environment Θ; Γ, process P has typing ∆”. The typing system is defined by the
axioms and rules in Figure 6, where we assume that the range of ∆ in [Inact]
and [Var] contains end and ⊥ only. We also simplify the recursive definition to
the single case; the extension to the multiple recursion is obvious.

2.3 Changes from the ESOP’98 system

For the syntax, we added x, y, z, . . . to the category of names, thus incorporating
the set of variables into that of names. We have made clear the notions of
bindings for the various identifiers in the calculus. For the structural congruence
relation, we have replaced fpv(D) by dv(D), the set of variables introduced in
declaration D, and we added rule def D in inact ≡ inact for flexibility. For
types, we changed the syntax from 1 to end, from ↑ to !, and from ↓ to ?,
following [11]. We have also added more accurate definitions for recursive types
(Definitions 2.1 and 2.2) for clarification. For the typing system, we added
[NameI], [Nat], [Bool], [Sum] and revised [Acc], [Req], [Var], [Def]. All of
these changes are improvements and do not imply any technical difference with
respect to [12].

However there is one important addition with respect to the typing system
in [12]: the [Bot]-rule. Without the [Bot]-rule, subject congruence (Lemma 2.9)
does not hold. Take for example process throw k[k′]; inact | inact structural
congruent to throw k[k′]; inact. We have

` throw k[k′]; inact | inact . k : ![end]; end · k′ : ⊥

but process throw k[k′]; inact is not typable under the same typing [2]. In [3],
the authors fixed the problem by adding the condition β 6= end in the [Thr]-
rule. We believe the solution herein presented offers extra flexibility.

2.4 Subject Reduction and Type Safety

To simplify the statement of our results and their proofs, we make use of the
variable convention [1], allowing, for example, to assume that in sequent Θ; Γ `
P . ∆ · k : α, channel k is not bound in P .

We start with a few auxiliary results; Subject-Reduction is in page 10, and
Type Safety in page 12.

Lemma 2.5 (Weakening Lemma) Let Θ;Γ ` P . ∆.

8

1. If X 6∈ dom(Θ), then Θ, X : S̃α̃; Γ ` P . ∆.

2. If a 6∈ dom(Γ), then Θ;Γ, a : S ` P . ∆.

3. If k 6∈ dom(∆) and α = ⊥ or α = end, then Θ;Γ ` P . ∆ · k : α.

Proof. A simple induction on the derivation tree of each sequent. For (3), we
note in [Inact] and [Var], ∆ contains only end and ⊥. 2

Lemma 2.6 (Strengthening Lemma) Let Θ;Γ ` P . ∆.

1. If X 6∈ fpv(P), then Θ \X; Γ ` P . ∆.

2. If a 6∈ fn(P), then Θ;Γ \ a ` P . ∆.

3. If k 6∈ fc(P), then Θ;Γ ` P . ∆ \ k.

Proof. Standard. 2

Lemma 2.7 (Channel Lemma) 1. Θ;Γ ` P . ∆ · k : α and k 6∈ fc(P)
implies α = ⊥, end.

2. Θ;Γ ` P . ∆ and k ∈ fc(P) implies k ∈ dom(∆).

Proof. A simple induction on the derivation tree for each sequent. 2

We omit the standard renaming properties of variables and channels, but
present the Substitution Lemma for names. Note that we do not require a
substitution lemma for channels or process variables.

Lemma 2.8 (Substitution Lemma) Θ;Γ, x : S ` P . ∆ and Θ;Γ ` c : S im-
plies Θ;Γ ` P [c/x] . ∆

Proof. Standard. 2

We write ∆ ≺ ∆′ if we obtain ∆′ from ∆ by replacing k1 : end, ..., kn : end
(n ≥ 0) in ∆ by k1 : ⊥, ..., kn : ⊥. If ∆ ≺ ∆′, we can obtain ∆′ from ∆ by
applying the [Bot]-rule zero or more.

Lemma 2.9 (Subject Congruence) Θ;Γ ` P . ∆ and P ≡ Q imply Θ;Γ `
Q . ∆.

Proof. Case P | inact ≡ P . We show that if Θ; Γ ` P | inact . ∆, then
Θ; Γ ` P . ∆. Suppose

Θ; Γ ` P . ∆1 and Θ; Γ ` inact . ∆2.

with ∆1 ◦ ∆2 = ∆. Note that ∆2 only contains end or ⊥, hence we can set:
∆1 = ∆′

1 ◦ {k̃ : ˜end} and ∆2 = ∆′
2 · {k̃ : ˜end} with ∆′

1 ◦ ∆′
2 = ∆′

1 · ∆′
2 and

∆ = ∆′
1 ·∆′

2 · {k̃ : ⊥̃}. Then by the [Bot]-rule, we have:

Θ; Γ ` P . ∆′
1 · {k̃ : ⊥̃}

9

Note that by the variable convention, the names in ∆2 are not bound in P ,
for they cannot be free (in ∆2) and bound (in P) at the same time. Hence by
applying Weakening, we have:

Θ; Γ ` P . ∆′
1 ·∆′

2 · {k̃ : ⊥̃}

as required.
For the other direction, we set ∆ = ∅ in [Inact].
Case P | Q ≡ Q | P , (P | Q) | R ≡ P | (Q | R). By commutativity and
associativity of �.
Case (νu)P | Q ≡ (νu)(P | Q) if u 6∈ fu(Q). The case when u is a name is
standard. Suppose u is channel k and assume Θ; Γ ` (νk)(P | Q) . ∆. We have

Θ; Γ ` P . ∆′
1 Θ;Γ ` Q . ∆′

2

Θ;Γ ` P | Q . ∆′ · k : ⊥

with ∆′ · k : ⊥ = ∆′
1 ◦ ∆′

2, and ∆′ ≺ ∆ by [Bot]. First notice that k can be
in either ∆′

i or in both. The interesting case is when it occurs in both; from
Lemma 2.7(1) and the fact that k 6∈ fc(Q) we know that ∆′

1 = ∆1 · k : end
and ∆′

2 = ∆2 · k : end. Then, by applying the [Bot]-rule to k in P , we have
Θ; Γ ` P . ∆1 · k : ⊥, and by applying [CRes] we obtain Θ; Γ ` (νk)P . ∆1. On
the other hand, by Strengthening, we have Θ; Γ ` Q.∆2. Then, the application
of [Par] yields Θ; Γ ` (νk)P | Q . ∆′. Then by applying the [Bot]-rule, we
obtain Θ; Γ ` (νk)P | Q . ∆, as required. The other direction is easy.
Case (νu)inact ≡ inact. Standard by Weakening and Strengthening.
Case def D in inact ≡ inact. Similar to the first case using Weakening and
Strengthening.
Case (νu)def D in P ≡ def D in (νu)P if u 6∈ fu(D). Similar to the scope
opening case using Weakening and Strengthening.
Case (def D in P) | Q ≡ def D in (P | Q) if dv(D) ∩ fpv(Q) = ∅. Similar
with the scope opening case using Weakening and Strengthening. 2

Theorem 2.10 (Subject Reduction) Θ;Γ ` P.∆ and P →∗ Q imply Θ;Γ `
Q . ∆.

Proof. We assume that

Θ; Γ ` e . S and e ↓ c implies Θ; Γ ` c . S (3)

and prove the result by induction on the last rule applied.
Case [Link] (accept a(k) in P1) | (request a(k) in P2) → (νk)(P1 | P2).
Suppose Θ; Γ ` (accept a(k) in P) | (request a(k) in Q) . ∆. Then the
assumption is derived from:

Γ ` a . 〈α, α〉 Θ;Γ ` P . ∆1 · k : α

Θ;Γ ` accept a(k) in P . ∆1
and

Γ ` a . 〈α, α〉 Θ;Γ ` Q . ∆2 · k : α

Θ;Γ ` request a(k) in Q . ∆2

and [Par] with ∆1 ◦ ∆2 = ∆′, and [Bot] with ∆′ ≺ ∆. Then applying [Par]
to P and Q, we have:

Θ; Γ ` P . ∆1 · k : α Θ;Γ ` Q . ∆2 · k : α

Θ;Γ ` P | Q . ∆′ · k : ⊥

10

Now applying [CRes] and [Bot], we are done.
Case [Com] (k![ẽ];P1) | (k?(x̃) in P2) → P1 | P2[c̃/x̃] with ẽ ↓ c̃. The
assumption is derived from:

Γ ` ẽ . S̃ Θ;Γ ` P1 . ∆1 · k : α

Θ;Γ ` k![ẽ];P . ∆1 · k : ![S̃];α
and

Θ; Γ · x̃ : S̃ ` P2 . ∆2 · k : α

Θ;Γ ` k?(x̃) in Q . ∆2 · k : ?[S̃];α

and [Par] with ∆1 ◦∆2 · k : ⊥ = ∆′ and [Bot] with ∆′ ≺ ∆. Then by (3), we
know Γ ` c̃ . S̃. By applying Substitution Lemma, we have:

Θ; Γ ` P2[c̃/x̃] . ∆2 · k : α

Now the application of [Par] to P1 and P2[c̃/x̃] completes this case.
Case [Label] (k � li;P1) | (k � {l1 : P1[] · · · []ln : Pn}) → P | Pi (1 ≤ i ≤ n).
Similar to the above case.
Case [Pass] (throw k[k′];P1) | (catch k(k′) in P2) → P1 | P2. The
assumption is derived from:

Θ; Γ ` P1 . ∆1 · k : β

Θ;Γ ` throw k[k′];P . ∆1 · k : ![α];β · k′ : α

and
Θ; Γ ` P2 . ∆2 · k : β · k′ : α

Θ;Γ ` catch k(k′) in Q . ∆2 · k : ?[α];β

and [Par] with ∆1 ◦∆2 · k : ⊥ · k′ : α = ∆′ and [Bot] with ∆′ ≺ ∆. Note that
k, k′ 6∈ dom(∆1,∆2). By applying [Par] to P1 and P2, and then by [Bot], we
obtain the required result.
Case [If1],[If2]. Trivial.
Case [Def] def D in (X[ẽk̃] | Q) → def D in (P1[c̃/x̃] | Q) with ẽ ↓ c̃ and
X(x̃k̃) = P1 ∈ D. Simplifying the recursive definition to the single case, we set
D = (X(x̃k̃) = P1). Then the assumption is derived from: c

Θ·X : S̃α̃; Γ·x̃ : S̃ ` P . k̃ : α̃

Θ·X : S̃α̃; Γ ` X[ẽk̃] . ∆′
1 ·k̃ : α̃ Θ·X : S̃α̃; Γ ` Q . ∆′

2

Θ·X : S̃α̃; Γ ` X[ẽk̃] | Q . ∆′ ·k̃ : α̃

Θ;Γ ` def X(x̃k̃) = P in (X[ẽk̃] | Q) . ∆′ ·k̃ : α̃

with ∆0 = ∆′ · k̃ : α̃, ∆′ = ∆′
1 ◦∆′

2 and ∆0 ≺ ∆. Note that ∆′
1 only contains ⊥

or end. Then applying Substitution Lemma to P , we have:

Θ ·X : S̃α̃; Γ ` P [c̃/x̃] . k̃ : α̃

Then by Weakening, we have:

Θ ·X : S̃α̃; Γ ` P [c̃/x̃] . ∆′
1 · k̃ : α̃

Now by [Par], we have

Θ ·X : S̃α̃; Γ ` P [c̃/x̃] | Q . ∆′ · k̃ : α̃

Finally by [Def], we obtain:

Θ; Γ ` def X(x̃k̃) = P in (P [c̃/x̃] | Q) . ∆′ · k̃ : α̃

11

Then we can apply [Bot] to obtain ∆, as desired.
Case [Str]. By Subject-Congruence. 2

To formalise Type Safety, we need the following notion: a k-process is a
prefixed process with subject k (such as k![ẽ];P and catch k(k′) in P). Next, a
k-redex is a pair of dual k-processes composed by |, i.e. either of forms (k![ẽ];P |
k?(x̃) in Q), (k � l;P | k � {l1 : Q1[] · · · []ln : Qn}), or (throw k[k′];P |
catch k(k′′) in Q). Then P is an error if P ≡ (νũ)(def D in (Q | R)) where
Q is, for some k, the |-composition of either two k-processes that do not form a
k-redex, or three or more k-processes. We then have:

Theorem 2.11 (Type Safety) A typable program never reduces into an er-
ror.

Proof. By Subject Reduction it suffices to show that typable programs are not
errors. The proof is by reductio ad absurdum, assuming error processes typable.
Suppose that Θ; Γ ` def D in (νũ)(P | Q) . ∆. Analyzing the derivation tree
for the process, we conclude that Θ; Γ ` P . ∆′, for some ∆′. We now analyze
the two classes of error processes.

When P = P1 | P2 is the |-composition of two k-processes that do not form
a redex, there are several cases to consider. They are all alike; take for example
the pair label-select/throw. Applying [Par] on P , we have Θ; Γ ` P1 . ∆′

1 and
Θ; Γ ` P2 . ∆′

2 with ∆′ ≺ ∆′
1 ◦∆′

2. Applying [Sel] on P1 and [Thr] on P2 we
conclude that k : ⊕ {l1 : α1, . . . , ln : αn} ∈ ∆′

1 and k : ![α];β ∈ ∆′
2. But then

∆′
1 ◦∆′

2 is not defined, hence def D in (νũ)(P | Q) is not typable.
When P is the the |-composition of three or more k-processes, we concen-

trate on the case of three processes, for the remaining cases reduce to this. So
let P = (P1 | P2) | P3. Applying [Par], we know that Θ; Γ ` P1 | P2 . Σ and
Θ; Γ ` P3 . Σ′ with ∆′ ≺ Σ ◦ Σ′. If P1 | P2 is not a k-redex, we use the case
above. Otherwise, it must be the case that k : ⊥ ∈ Σ. From Lemma 2.7(2), we
know that k ∈ dom Σ′, thus Σ ◦ Σ′ is not defined, hence def D in (νũ)(P | Q)
is not typable. 2

3 A More Liberal Session Passing Style

Rule [Pass] in the original ESOP’98 system:

(throw k[k′];P1) | (catch k(k′) in P2) → P1 | P2

does not allow the transmission of a channel the client is not expecting: it is
explicit in the code of accept that the channel “received” must be k′. Channel
passing, in this setting, reflects an agreement between the sender (throw) and
the receiver (catch) whereby the former ceases to use channel k′ and the latter
may start using the channel: a form of “token passing”, only he who holds the
token may read or write into the channel.

A more liberal rule would allow the transmission of an arbitrary channel,
implying a substitution on the client side.

(throw k[k′];P1) | (catch k(k′′) in P2) → P1 | P2[k′/k′′]

12

Unfortunately this rule breaks Subject Reduction (Theorem 2.10). A counter-
example is a process which, possessing one end of a channel, receives the second
end. The process:

throw k[k′] | catch k(k′′) in k′′?(y) in k′![1] (4)

is typable under typing k : ⊥, k′ : ⊥, but reduces to process

k′?(x) in k′![1]

which is not typable under the same typing [6].
The question arises as whether the contractum can be typed, in general, with

a different typing. In the above case and for the catch process in the redex, we
have k′ : ![nat].end, and k′′ : ?[nat].end. In the contract, channels k′ and k′′ are
aliased and it is not obvious how to build, from the premises, the correct type
?[nat].![nat].end for k′.

A solution, due to Gay and Hole, explicitly distinguishes between the two
ends of a channel [11]. For a channel κ, its two ends are denoted κ+ and κ−.
Channels are now runtime entities (they are not supposed to occur in programs)
created by rule [Link], which becomes:

(accept a(x) in P1) | (request a(x) in P2) → (νκ)(P1[κ+/x] | P2[κ−/x])

Rules that synchronize two processes on a given channel are updated so
that each process explicitly mentions one of the ends. For example rule [Thr]
becomes:

(throw κp[k′];P1) | (catch κp(x) in P2) → P1 | P2[k′/x]

where p denotes one end (one polarity) of κ and p the other.
A further change allows a typing ∆ to contain one type for κ+ and a dif-

ferent type (not necessarily dual) for κ−. Parallel composition juxtaposes the
typings of the two operands (provided they have disjoint domains), rather than
composing using ◦ (cf. Definition 2.4).

Θ; Γ ` P . ∆ Θ;Γ ` Q . ∆′

Θ;Γ ` P | Q . ∆ ·∆′ [Par]

An immediate consequence of the new rule is that we do not need the bottom ⊥
type anymore, or the notions of typing compatibility and composition. One the
other hand, the new rule for channel restriction requires the two ends of the
channel to be of dual types.

Θ; Γ ` P . ∆ · κ+ : α · k− : α

Θ;Γ ` (νκ)P . ∆
[CRes]

Notice the original rule (in Figure 6) requires an entry k : ⊥ in typing ∆.
To understand how the new system works, consider process (4) refined into

the new syntax:

throw k+[k′+] | catch k−(x) in x?(y) in k′−![1]

13

The process is typable under the typing k+ : ![α]; end, k− : ?[α]; end, k′+ : α, k′− : α
where α is the type ?[nat]; end. It now reduces to

k′+?(x) in k′−![1]

which is still typable (this time under typing k′+ : α, k′− : α).
Clearly, typability over arbitrary channel environments is not closed under

reduction any more. For example, the process

k+![true] | k−?(x) in k′−![x + 1] (5)

is typable under typing k+ : ![bool]; end, k− : ?[nat]; end, k′− : ![nat]; end, but re-
duces to

k′−![true + 1]

which is not typable. The last step is then to consider, for Subject Reduction
and Type Safety purposes only typings where the two ends of a channel are
of dual types. We call such typings balanced. This restriction rules out the
above typing (since ![bool]; end is not dual to ?[nat]; end), hence process (5) is
not guaranteed to preserve typability under reduction or to be type safe.

3.1 Syntax and Operational Semantics

With respect to the syntax in Figure 1, we let κ, rather than k, range over
channels. Identifier k now stands for polarized channels (κ+, κ−) or names
(a, x). As such k cannot occur in a binding position anymore; three process
constructors need to be updated: accept, request, and catch. The grammar
of the language is given by the rules in Figure 1, replacing the productions for
accept, request, and catch by the ones below.

P ::= request a(x) in P session request
| accept a(x) in P session acceptance
| catch k(x) in P channel reception
| . . .

k ::= x | κp channel variables and values
p ::= + | − channel polarities

Duality on polarities is defined as + = − and − = +. Variable x is now
bound in any of request a(x) in P , accept a(x) in P and catch k(x) in P .
This is in contrast to the original syntax, in which k is not bound in request
a(k) etc.

The new reduction relation adapts the four rules that directly work with
channels. Reduction is given by replacing, in Figure 3, rules [Link], [Com],
[Label], and [Pass], by the four rules below. Structural congruence (Figure 2)
remains unchanged.

(accept a(x) in P1) | (request a(x) in P2) → (νκ)(P1[κ+/x] | P2[κ−/x])
[Link]

(κp![ẽ];P1) | (κp?(x̃) in P2) → P1 | P2[c̃/x̃] (ẽ ↓ c̃) [Com]

(κp � li;P) | (κp � {l1 : P1[] · · · []ln : Pn}) → P | Pi (1 ≤ i ≤ n) [Label]

(throw κp[κ′q];P1) | (catch κp(x) in P2) → P1 | P2[κ′q/x] [Pass]

14

3.2 Type Discipline

Types in Figure 4 remain unchanged, except that bottom ⊥ is no longer needed.
Typings still feature entries of the form k : α, only that k can now be a name x,
or a polarized channel κ+ or κ−. The type system needs adjustments in rules
[Acc], [Req], and [Cat] due to the change in syntax. Also, the absence of
rule [Bot] is compensated by a new rule [CRes’] for (νκ)P . The main change
however happens in rules [Conc] and [CRes]. The new type system is given by
replacing, in Figure 6, rules [Acc], [Req], [Cat], [Conc], [CRes], and [Bot]
by the rules below.

Θ; Γ ` P . ∆ · x : α

Θ;Γ, a : 〈α, α〉 ` accept a(x) in P . ∆
[Acc]

Θ; Γ ` P . ∆ · x : α

Θ;Γ, a : 〈α, α〉 ` request a(x) in P . ∆
[Req]

Θ; Γ ` P . ∆ · k : β · x : α

Θ;Γ ` catch k(x) in P . ∆ · k : ?[α];β
[Cat]

Θ; Γ ` P . ∆ Θ;Γ ` Q . ∆′

Θ;Γ ` P | Q . ∆ ·∆′ [Conc]

Θ; Γ ` P . ∆ · κ+ : α · k− : α

Θ;Γ ` (νκ)P . ∆
[CRes]

Θ; Γ ` P . ∆ κ not in ∆
Θ;Γ ` (νκ)P . ∆

[CRes’]

3.3 Subject Reduction and Type Safety

The absence of typing compatibility (in rule [Par]) is compensated by balanced
typings. We say that a typing ∆ is balanced if whenever κ+ : α, κ− : β ∈ ∆,
then α = β. Subject-Reduction (Theorem 3.3) and Type Safety (Theorem 3.4)
hold only in presence of balanced typings.

We rely on the Weakening, Strengthening, Channel and Substitution Lem-
mas of Section 2.4, adapted to the syntax and typing system of Section 2. Since
we now replace channels in processes, we need a Channel Replacement Lemma,
a result not needed for the ESOP’98 system [12].

Lemma 3.1 (Channel Replacement) Θ;Γ ` P . ∆ · x : α implies Θ;Γ `
P [κp/x] . ∆ · κp : α.

Proof. A straightforward induction on the derivation tree for P . 2

Lemma 3.2 (Subject Congruence) Θ;Γ ` P . ∆ and P ≡ Q imply Θ;Γ `
Q . ∆.

Proof. The proof follows the pattern of that of Lemma 2.9. We detail the two
most interesting cases.
Case P | inact ≡ P . We show that if Θ; Γ ` P | inact . ∆, then Θ; Γ ` P . ∆.
Suppose that

Θ; Γ ` P . ∆1 and Θ; Γ ` inact . ∆2

15

with ∆1 ·∆2 = ∆. Note that ∆2 only contains end. Applying Weakening to P ,
we have Θ; Γ ` P . ∆1 ·∆2 as required.
The other direction is similar.
Case (νu)P | Q ≡ (νu)(P | Q) if u 6∈ fu(Q). The case when u is a name is
standard. Suppose u is channel k and assume Θ; Γ ` (νκ)(P | Q) . ∆. We
consider the [CRes] case (the [CRes’] case is simpler):

Θ; Γ ` P . ∆1 Θ;Γ ` Q . ∆2

Θ;Γ ` P | Q . ∆ · κp : α · κp : α

First notice that κp and κp can be both in either ∆′
i or one in each. When they

are both in ∆1 we conclude the case by applying [CRes] and [Par]. When they
are both in ∆2, by the Channel Lemma we know that the types for κp and κp

in ∆2 are end. We conclude the case by applying Strengthening to Q before
applying [CRes’] and [Par]. Finally, when κp is in ∆′

1 and κp in ∆′
2, we apply

Strengthening to both P and Q before applying [CRes’] and [Par]. 2

Theorem 3.3 (Subject Reduction) Θ;Γ ` P .∆ with ∆ balanced and P →∗

Q imply Θ;Γ ` Q . ∆′ and ∆′ balanced.

Proof. The proof is similar to that of Theorem 2.10. We concentrate on the
four new reduction rules, and reuse the remaining cases.
Case [Link] (accept a(x) in P1) | (request a(x) in P2) → (νκ)(P1[κ+/x] |
P2[κ−/x]). The assumption is derived from

Θ;Γ ` P1 . ∆ · x : α

Θ;Γ, a : 〈α, α〉 ` accept a(x) in P1 . ∆

from
Θ;Γ ` P2 . ∆ · x : α

Θ;Γ, a : 〈α, α〉 ` request a(x) in P2 . ∆

and from [Par] with ∆1 ·∆2 = ∆. Applying the Channel Replacement Lemma
to P1 and also to P2, we have Θ; Γ ` P1[κ+/x].∆ ·κ+ : α, and Θ; Γ ` P2[κ−/x].
∆ · κ− : α. The case concludes with the application of rule [Par] followed by
rule [CRes].
Case [Com] (κp![ẽ];P1) | (κp?(x̃) in P2) → P1 | P2[c̃/x̃]. The assumption is
derived from:

Γ ` ẽ . S̃ Θ;Γ ` P . ∆1 · κp : α

Θ;Γ ` k![ẽ];P1 . ∆1 · κp : ![S̃];α
Θ;Γ · x̃ : S̃ ` P2 . ∆2 · κp : α

Θ;Γ ` k?(x̃) in P2 . ∆2 · κp : ?[S̃];α

and [Par] with ∆1 · κp : ![S̃];α ·∆2 · κp : ?[S̃];α = ∆. Notice that the types for
κp and for κp are dual since ∆ is balanced by hypothesis. Then by (3), page 10,
we know Γ ` c̃ . S̃. We conclude the case by applying Substitution Lemma to
P2, and the [Par]-rule to P1 and to P2[c̃/x̃].
Case [Label]. Similar to the homonymous case in the proof of Theorem 2.10,
relying, as above, on the fact that ∆ is balanced.
Case [Pass] (throw κp[κ′q];P1) | (catch κp(x) in P2) → P1 | P2[κ′q/x]. The
assumption is derived from

Θ;Γ ` P1 . ∆1 · κp : β

Θ;Γ ` throw κp[κ′q];P1 . ∆1 · κp : ![α];β · κ′q : α

16

from
Θ;Γ ` P2 . ∆2 · κp : β · x : α

Θ;Γ ` catch κp(x) in P2 . ∆2 · κp : ?[α];β

and from [Par] with ∆1 ·κp : ![α];β ·κ′q : α ·∆2 ·κp : ?[α];β = ∆. Once again, the
types for κp and for κp are dual since ∆ is balanced by hypothesis. Applying
the Channel Replacement Lemma to P2, we obtain

Θ; Γ ` P2[κ′q/x] . ∆2 · κp : β · κ′q : α

By applying [Par] to P1 and P2[κ′q/x], we obtain the required result. 2

Theorem 3.4 (Type Safety) A program typable under a balanced channel en-
vironment never reduces into an error.

Proof. The proof follows the pattern of that of Theorem 2.11, only that the
contradiction happens not because typing composition (∆ ◦∆′) is not defined,
but because the resulting typing (∆ ·∆′) is not balanced. 2

4 Conclusion

The study of session typing system is now widespread due to the need for struc-
tured communications in various scenarios in distributed applications. They
have been studied, at the research levels, for the π-calculus [3, 10, 11, 12,
13, 17, 20], Ambients [5], CORBA interfaces [18], multi-threaded functional
languages [21], Web Description Languages [4], and distributed [7] and multi-
threaded Java [6] and, at the industry level, WC3-CDL [22] and pi4Tech [16].

In the presence of higher-order session communication, session instantiation
dynamically changes structures of sessions during execution, so that it becomes
non-trivial to preserve typability. Unfortunately the authors of the previous
session typing systems did not realise (or even forgot about) the key point of rule
[Pass], so that some of the session typing systems published after [12, 17] fail to
satisfy the Subject Reduction Theorem. As discussed in this report, the subtlety
of the type preservation is related to a treatment of communication channels in
the operational semantics of the π-calculus: aliasing of channels, structured safe
communications, types, new name creations and the α-conversions are tightly
related with this issue.

As a future work, it would be nice to investigate the relationship uniformly
using some Rewriting framework [8, 9].

References

[1] H.P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-
Holland, Amsterdam, 1984.

[2] Eduardo Bonelli, Adriana Compagnoni, and Elsa Gunter. Private commu-
nication, 2003.

17

[3] Eduardo Bonelli, Adriana Compagnoni, and Elsa Gunter. Correspondence
Assertions for Process Synchronization in Concurrent Communications.
Journal of Functional Programming, 15(2):219–248, 2005.

[4] Marco Carbone, Kohei Honda, and Nobuko Yoshida. A Theoretical Ba-
sis of Communication-centered Concurrent Programming. Web Services
Choreography Working Group mailing list, to appear as a WS-CDL work-
ing report.

[5] Adriana Compagnoni, Mariangiola Dezani-Ciancaglini, and Pablo Gar-
ralda. BASS:Boxed Ambients with Safe Sessions. In Proceedings of
PPDP’06. ACM Press, 2006.

[6] Mariangiola Dezani-Ciancaglini, Dimitris Mostrous, Nobuko Yoshida, and
Sophia Drossopoulou. Session types for object-oriented languages. In
The 20th European Conference on Object-Oriented Programming, LNCS.
Springer-Verlag, 2006.

[7] Mariangiola Dezani-Ciancaglini, Nobuko Yoshida, Alexander Ahern, and
Sophia Drossopoulou. A distributed object-oriented language with session
types. In Symposium on Trustworthy Global Computing, LNCS. Springer-
Verlag, 2005.

[8] Maribel Fernández and Murdoch J. Gabbay. Nominal rewriting with name
generation: abstraction vs. locality. In Proc. 7th ACM-SIGPLAN Sympo-
sium on Principles and Practice of Declarative Programming (PPDP’05).
ACM Press, 2005.

[9] Maribel Fernández, Murdoch J. Gabbay, and Ian Mackie. Nominal rewrit-
ing systems. In Proc. 6th ACM-SIGPLAN Symposium on Principles and
Practice of Declarative Programming (PPDP’04). ACM Press, 2004.

[10] Simon J. Gay and Malcolm J. Hole. Types and subtypes for client-server
interactions. In ESOP’99, LNCS, pages 74–90. Springer-Verlag, 1999.

[11] Simon J. Gay and Malcolm J. Hole. Subtyping for session types in the pi
calculus. Acta Informatica, 42(2–3):191–225, 2005.

[12] Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language prim-
itives and type disciplines for structured communication-based program-
ming. In ESOP’98, volume 1381 of LNCS, pages 22–138. Springer-Verlag,
1998.

[13] Karol Ostrovský. On modelling and analysing concurrent systems. PhD
thesis, Chalmers University of Technology, 2006.

[14] Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.

[15] Davide Sangiorgi. π-calculus, internal mobility and agent-passing calculi.
Theoretical Computer Science, 167(2):235–274, 1996.

[16] Conversation with Steve Ross-Talbot. ACM Queue, 4(2), March 2006.

18

[17] Kaku Takeuchi, Kohei Honda, and Makoto Kubo. An Interaction-based
Language and its Typing System. In PARLE’94, volume 817 of LNCS,
pages 398–413. Springer-Verlag, 1994.

[18] Antonio Vallecillo, Vasco T. Vasconcelos, and António Ravara. Typing
the Behavior of Objects and Components using Session Types. In FO-
CLASA’02, volume 68(3) of ENTCS. Elsevier, 2002.

[19] Vasco T. Vasconcelos. Recursive types in a calculus of objects. Transactions
of Information Processing Society of Japan, 35(9):1828–1836, September
1994.

[20] Vasco T. Vasconcelos, Simon Gay, and António Ravara. Typechecking a
multithreaded functional language with session types. Theoretical Com-
puter Science, 2006. To appear.

[21] Vasco T. Vasconcelos, António Ravara, and Simon Gay. Session Types for
Functional Multithreading. In CONCUR’04, volume 3170 of LNCS, pages
497–511. Springer-Verlag, 2004.

[22] Web Services Choreography Working Group. Web Services Choreography
Description Language. http://www.w3.org/2002/ws/chor/.

19

	Introduction
	The Honda-Vasconcelos-Kubo Session Typing System in honda.vasconcelos.kubo:language-primitives
	Syntax and Operational Semantics
	Type Discipline
	Changes from the ESOP'98 system
	Subject Reduction and Type Safety

	A More Liberal Session Passing Style
	Syntax and Operational Semantics
	Type Discipline
	Subject Reduction and Type Safety

	Conclusion

