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Abstract—For improving the energy efficiency of railway sys-
tems, on-board energy storage devices (OESDs) have been applied
to assist the traction and recover the regenerative energy. This
paper aims to address the optimal sizing problem of OESDs to
minimize the catenary energy consumption for practical train
operations. By employing a mixed integer linear programming
(MILP) model based on energy flow and the law of conservation
of energy, three types of widely used OESD: supercapacitors,
Li-ion batteries and flywheels have been studied in a real-world
case of Beijing Changping line. Results show that without the
constraints of capital cost and volume, the supercapacitor, Li-ion
battery and flywheel with optimized capacity can save the catenary
energy consumption by 23.6%, 22.9% and 23.7% compared to the
cases without OESDs respectively. The minimum catenary energy
consumption for each type of OESD has also been found with the
constraints of capital cost and volume. The study shows that with
a volume constraint less than 0.6 m> and a higher allowed capital
cost more than 20 k$, flywheel tends to achieve the least catenary
energy consumption. When the volume is relaxed to go beyond
0.6 m®, supercapacitors always achieve the minimum catenary
energy consumption disregarding the constraint of capital cost.

Index Terms—On-board energy storage device (OESD), optimal
sizing, electrified railway systems, mixed integer linear program-
ming (MILP), energy-saving

I. INTRODUCTION

For improving the energy efficiency of railway systems, as an
emerging application, on-board energy devices (OESDs) have
been used in many existing urban rail transit systems nowadays
to help recover more regenerative energy as well as power the
train by using the stored energy [1]. When compared with other
energy-saving measures including energy-efficient driving, sta-
tionary energy storage utilization, improving traction efficiency
and so on, energy saving rate of OESD is claimed to be the
highest, which can reach up to 25% at a system level [2].

There are three types of OESD commonly utilized in modern
electrified railway systems around the world: supercapacitors,
electrochemical batteries and flywheels. Supercapacitors are
widely utilized in urban rail transit systems due to its relatively
higher power density, short discharging/charging time, low
maintenance cost and long life time [3]. Many urban rail
transit systems have been equipped with supercapacitors, such
as Brussels tram line, Brussels metro line, Madrid metro line,
Blackpool tramway, Mannheim tramway and Paris tram line.
The energy saving rate by using supercapacitors ranges from
16% to 35.8% in theoretical assessments [4]-[9]. Electrochemi-
cal batteries, such as lead-acid batteries, Ni-Cd batteries, NIMH
batteries, Li-ion batteries and so on, are with relatively high
energy density leading to large energy-storage capability [1].

Due to this characteristic, electrochemical batteries, referred
short to as “batteries”, are widely used as stationary energy
storage to absorb the regenerative energy from different trains
in specific electrified section. It is also used and tested as
OESD in some urban rail transit systems, e.g. Sapporo Li-ion
battery-driven light rail [10] and Ni-MH battery-driven Catadis
tramway in Nice, France [11], and it has brought up to 30%
energy saving in industry. Flywheels are featured with a fast
charging/discharging time, a virtually infinite number of cycles
and offer high energy and power densities [1]. Though flywheel
as OESD is still at the early development stage [12], they have
been studied in heavy haul trains [13] and also in light rail
vehicles [14], achieving an energy saving rate ranging from
9.83% to 31.21%. Based on the above discussion, it can be
seen that supercapacitors are the most popular OESD utilized
in railway systems, batteries are preferred to be applied as
stationary energy storage and embedded flywheels as OESD
are still at the early development stage and demands further
explorations.

Since the OESDs have been put into use or tested in railway
industries, the academic research on the emerging integrated
system is becoming increasingly popular. One of the recent
research direction in these years is to find the optimal train
operation considering embedded OESD. Miyatake et al. [15],
[16] investigate the optimal train speed with supercapacitor
as OESD. In both papers, optimal train speed profiles are
found with the modeled circuits of supercapacitor. Huang et al.
[17] explore the energy-saving potential of supercapacitor by
optimizing the train speed profiles from the viewpoint of energy
flow. For the battery-driven trains, the optimal solution for train
operation with Li-ion battery are also studied by Ghaviha et al.
[18]. A general integrated optimization model for train with a
general model of OESD is proposed by Wu ez al. [19] with high
energy-saving rate and computational efficiency. The work is
extended in [20] and the management of OESD at stations
and train speed profiles are investigated, which shows that
appropriate charging/discharging management in inter-station
journeys and dwelling are both important. One common feature
of the above studies is that the train operation and control of
OESD is optimized together for achieving the minimum energy
consumption. However, in these papers the OESD capacity is
only given as a parameter without considering its suitability for
a given railway system.

Locating the suitable capacity for energy storage systems
has been a popular research topic in the field of electrical
engineering, and it has been investigated in the microgrid
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(MG) [21]-[23] and electric vehicle (EV) applications [24]-
[26]. The main focuses of these papers are to determine the
appropriate size of the energy storage systems to reduce or
minimize the system’s operating cost and investment cost of
the energy storage devices. On the other hand, sizing problem
of the energy storage in electrified railway systems is still a new
research direction for both stationary energy storage and OESD
[3]. Optimal sizing problem for stationary and substation-based
energy storage has been studied with no constraints on weight
and volume of the energy storage devices. In [27], energy
storage technologies for Auxiliary-Battery-Based Substations
are investigated, in which a Techno-economic model for battery
sizing, locating and controlling are proposed to minimize the
system’s operating cost. For recuperation of the regenerative
energy, study on the optimal sizing problem of a stationary
hybrid energy storage system combining the batteries and su-
percapacitors is conducted [28], where the train power profiles,
battery cycles and depth of discharge (DOD) are considered.
To minimize the trade-off between stationary energy storage
capacity and charging power, a sizing methodology is proposed
and a barrier method combined with a Newtons method is
applied to find the optimal solution [29].

Along with the stationary energy storage systems, OESDs
on the other hand are also fast developing and widely applied
in railway transportation. It has been argued that oversizing
of the OESD might unnecessarily increase mass and volume
of the system, whereas undersizing might lead to considerable
energy waste [1], [19]. By developing a specific simulation tool
to simulate the train vehicle movements, power profiles and
OESD control, the OESD sizing problem taking into account
the railway traffic volumes is studied in [5], which helps shave
peak power, reduce voltage drop and line losses. In [30], the
numerical simulations and experimental tests are conducted to
investigate the problem, where the size of the OESD is reduced
to help shave the voltage peak of the overhead contact line as
well as to save the energy consumption. In [31], the optimal
sizing problem for a light railway vehicle with an OESD com-
bining batteries and supercapacitors are studied by applying
genetic algorithms (GA). The target of it is to minimize the cost
of the energy from catenary as well as the initial investment
and cycling cost of OESD. It is noted that the above optimal
sizing studies are conducted by using simulations, hardware
experiments and heuristic algorithms, which would result into
an issue of sub-optimality and undermine the energy-saving
potential of OESD.

From the literature review above, it can be found that
further studies are still needed on the optimization method
to address the OESD’s optimal sizing problem considering
both characteristics of OESD and train operations. This paper
aims to develop a new mixed integer linear programming
(MILP) model to be solved to determine the optimal capacity
of different types of OESD which will minimize the catenary
energy consumption for practical electrified railway operations.
The contributions of the paper are outlined as follows:

o Three types of popular energy storage, supercapacitors,
Li-ion batteries and flywheels, are investigated. The char-

acteristics of OESD e.g. power density and energy density,
and the industry-concerned factors e.g. capital cost and
volume, are all taken into account in the model.

o By modeling the energy flow of the traction system, the
charge/discharge process of the OESD, train operation sta-
tus, complex route conditions and engineering properties
of OESD are formulated into a mathematical programming
model, in which the global optimal capacity of OESD can
be obtained.

o The real-world train operation data from Beijing Chang-
ping line is adopted in the research, which shows the
effectiveness of the proposed method in real application.
Comprehensive compare and contrast studies are per-
formed between different types and different size of OESD
based on the results of the model, offering an inside view
on their influences on energy-saving effect to the train
operation.

The remainder of the paper is organized as follows: Section
II elaborates details of the propose method, where the collection
of practical train speed data, energy flow modeling, constraints
and objective of the model are shown. Section III covers a real-
world case study and a detailed comparative study on optimal
sizing problem between different OESDs. Section IV draws the
conclusion and discusses the future research directions.

II. MATHEMATICAL MODELING

In this section, the formulation of optimal sizing problem of
OESD according to practical train speed trajectory data based
on MILP approach is elaborated.

A. Modeling Scope

As shown in Figure 1, both the energy from the catenary
and the energy stored in the OESD are able to jointly supply
the energy needed by the train motor for traction. On the other
hand, when the train is conducting regenerative braking, the
regenerative energy can be recovered by OESD from the motor.
In the proposed model, the energy is not permitted to be fed
back to the grid for the sake of simplicity and practicality in
view of the power control devices. Due to the limited capacity
of the OESD, a proportion of the regenerative energy will be
dissipated by the braking resistor. Note that the micro circuit
modeling of OESD is not within the scope of this paper.

B. Distance-based Discretization

The inter-station sections in railway line are separated by dif-
ferent stations along with the whole track. The track length D,
for i*" inter-station section is first discretized and divided into
several distance segments with the value Ad; ; respectively, the
sum of which satisfies (1).

N;
> Ad;; = D; ey
j=1

where N; is the total amount of the divided distance segments
for 4" inter-station section.
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Fig. 1. A schematic diagram of energy flow for operating trains equipped with
OESDs

Ad,; , can be modified with different value according to prac-
tical track conditions e.g. different track length and gradients so
that the track length can be fitted. Within one distance segment,
there is no change of the gradient. For example, as shown in
Figure 2, the whole track length for the i*”* inter-station journey
is 1960 m and the gradient changes occur at 47 m, 380 m, 1510
m and 1805 m. D; is first divided into 20 distance segments
with 19 100-meter segments and 1 60-meter segment without
considering the gradient information, shown as the black dash
lines in Figure 2. This means that Ad;; for j = 1...19 is
100 meters and Ad,; o9 is 60 meters in length. Followed by
this, we insert the division lines in gradient switching points
mentioned above to do the reconfiguration of Ad; ;, shown as
the red dash lines in Figure 2. After the reconfiguration, the
number of Ad; j increases from 20 to 24 with Ad; 1, Ad, o,
Ad; 3 ~ Ad; 4, Ad; 5, Ad, g, Ady 7 ~ Ady 17, Ady s, Ad 1o,
Adi’go ~ Adi’gl, Adi’gg, Adi’ggg and Ad2'724 assigned with 47
m, 53 m, 100 m, 80 m, 20 m, 100 m, 10 m, 90 m, 100 m,
5 m, 95 m, 60 m respectively. Both D; and Ad; ; have no
minimum or maximum limits as they are determined by the
studied railway systems and field data of the speed profiles.
Also, the shorter the Ad;; is, the more speed data to be
collected, and the more precise result it will be.

After the discretization of the route, the practical train speed
of both ends of each Ad;; can be collected, shown as the
circles in Figure 2. As there are [V; distance segment Adj ;,
there will be N; + 1 collected train speed points V; 1, V;2...
Vij- Vi ni+1. Therefore, the average speed V; ; .0e Of each
Ad; ; can be calculated by using the collected V; ; as shown
in (2).

Vi + Vijt+1

‘/i j,ave —
3 2

2)

After having the average speed for each Ad; ;, the elapsed
time At;,j for each Ad, ; for the inter-station journey can be
calculated by using (3).

Aty ;= —2
! ‘/i,j,ave

3)

The drag force F; j4rqq for each Ad, ; can be calculated
by Davis equation as shown in (4), where A, B and C are the
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Fig. 2. Schematic illustration of discretization process of the one typical inter-
station section. Black solid line is the practical train speed trajectory, black dash
lines are the basic division without considering the gradients information, red
dash lines are the division imposed by specific gradient change and circles are
the corresponding speed points.

Davis coefficients.
FZ]drag—A""BV;]ave"'C i,j,ave (4)

As we can see, through collecting the practical train running
speed based on route discretization, the related parameters of
this speed trajectory including running time and drag force
can be obtained as well by simple calculation, which are
the important inputs of the later modeling and optimization
process.

C. Energy Flow Modeling of the Train and OESD

The energy flow is transferred between energy sources (cate-
nary and OESD) and train motor. In each Adj ;, the train will
consume the energy from catenary and OESD or regenerate the
energy during braking then feed it back to OESD. Supposing
E; j.m is the traction energy in Ad, ;. When the train conducts
motoring, in each Ad; ; the motor consumes the energy from
catenary F; ; . with an efficiency 1, and the energy discharged
by the OESD E; ; 4cr, With an efficiency 7, thus E; ;,, can
be expressed by the equation shown in (19).

Eijm=FEijc-m+E;jdch 12 (5)

When the train conducts regenerative braking, in each Ad; ;
the regenerative energy F; ; ., would be recovered by OESD
with an efficiency 7,. E; ;, is the energy generated by the
motor and transmitted to OESD, which can be expressed by
using (6).

—Ei jch

2

In this study, it should be noted that 7; is to specify
the total efficiency for motors with the driving system and
energy transmission of the power network; similarly, 7y is to

Eijr= (6)



specify the total efficiency for motors with the driving system
and energy conversion from the OESD. An average constant
efficiency is adopted in this paper to present a long-term effect.

The state of energy (SOE) defines the amount of stored
energy relative to the capacity F.,, of the OESD, it is
accumulated with the train’s running from the first station. It
can be expressed based on the proposed model in the study in
the equation (7).

J J
Eini = 351 Eijden + 351 Eijen
Ecap

SOEZ'J' = X 100%

(N
where FE;,; is the initial available energy in the OESD when
the train departs from the first station. In addition, J = j,
when 7 = 1 for the running at the first inter-station journey;
J=Ni+ No+ ..+ N;_1+j, when ¢ > 2 since the status
of the OESD in previous inter-station journeys needs to be
accumulated together.

It can be found in [1], [32] and [33] that the performance of
the energy storage is commonly expressed by using energy
density, power density, capital cost in the unit of “energy
per unit mass”, energy per unit volume” and “power per unit
mass”. In this case, the linear relationships among the capacity,
mass, maximum discharge/charge power, volume of each type
of OESD can be established. As result, Different capacity of
the OESD FE.,, leads to different mass of the OESD M,,
the relationship between the capacity and the mass can be
represented in (8).

Ecap
Xm

M, = ®)
where X, is the energy density with respect to the mass and
it is a constant determined by the feature of different types of
OESD.

__Additionally, the maximum discharging and charging power

P, of OESD is related to the mass of it, thus we have the
relationship as shown in (9).

Ecup

P=YxM,=Y
X X,

€))

where Y is the power density with respect to the mass and it
is a constant determined by the feature of different types of
OESD.

Since in the Section II-B the V; ; are collected, the kinetic
energy change F; ;j of the train in each Ad; ; can be calcu-
lated by using (10).

1
Eijr= 5(M,g + Mo)(Vi,zj-s-l - ij)
1 Ecq
= 5 (M4 25 (Vi — Vi) (10)

where M; is the mass of the train.
The work done by the drag force E; ;  in each Ad; ; can
also be obtained as shown in (11).

Eijr = FijdragQAd;j (1D

The potential energy change of the train E; ; ,, resulted from
the gradient change of the route is calculated by using (12).

Ei7.7'7p = (Mt + MO)gAdi,jQi’j

EC‘”’)gAdi,je,,j (12)

Xm

where g is the gravitational constant and 6; ; is the gradient
for the interval of Ad; ;.

:(Mt_|_

D. Constraints and Objective of the Proposed MILP Problem

Mixed integer linear programming (MILP) problem are
problems with an objective function and constraints that all
linear in the decision variables [34]. Different from the linear
optimization problems, at least some of the variables in MILP
problems are constrained to take on integer values. The general
form of a MILP problem is shown in (13).

n
min co—l—g CiT;
i=1

n
st Y ASw; =1, Vi=1, .l
i=1
n
DA U V=1 e
i=1
x; € 7,
r; € R,

for some x;=1,...,n

for the remaining z; =1,...,n,
(13)

where 1, ..., x, are the decision variables to be optimized. [
and [;,,. are the numbers of equality and inequality constraints.
Thus, l.+l;,. is the total number of constraints. The coeffi-
cients, A;, A;"e, l. and lm_e, the terms on the right-hand sides
of the constraints, bj and b;-m and the coefficients, c,, ..., ¢,, in
the objective function are all constants. Since the optimal sizing
of OESD for electrified railway systems is formulated into a
MILP problem, the constraints and objective of the model need
to be adjusted accordingly with consideration of this specific
problem.
According to the law of conservation of the energy, the
conversion of the energy can be expressed in (14).
Eijm+Eijr—FEijk—Eijf—FEijp>0

(14)

When the train is in traction mode, F; ; ,, > 0, the electrical
energy from both the catenary and the OESD are consumed by
the motor and converted into the kinetic energy, heat and the
potential energy; when the train conducts regenerative braking,
E; ;. < 0, the kinetic energy is converted into heat, the
potential energy and electrical energy which is recovered by
the OESD.

Since motoring and braking cannot occur at the same time, to
distinguish different train operation modes, the integer variables
As,; are introduced and (15), (16), (17) and (18) need to be
imposed.

Eije-m <ALy (15)

Eijden -m2 < AijLa (16)

s



Ei j,C
Zdeh < (1= N ;) Lo a7
T2

)\i,j:O or 1 (18)

These constraints ensure that when there are E; ; . and E; ; gch,
there is no E; ; ., existing at the same time, and vice versa.
L; and Lo are two sufficiently large numbers to ensure a valid
range of these variables.

In addition to the energy restriction, the power limit of
the motor and OESD should be added as the constraints
respectively. For the motor, (19) and (20) is used to ensure
the power that the motor supplies in both traction mode and
braking mode does not exceed the maximum traction power P;
and maximum regenerative braking power P.

Eije M+ Eijach -n2 < PAt; ; (19)

Ei j,C 5
Zhdeh < Py At; (20)

T2
For the OESD, the power for the discharged and charged
energy cannot exceed the maximum charge and discharge
power.
5 Ecap
Eijach < PoAt; j = YTAQ,]‘

m

2y

— E
Eijen < PoAt ;=Y Xfap At; (22)

Additionally, the work done by the motor need to be re-
stricted by the maximum traction force provided by the motor
F; and the maximum braking force F} as well. (23) and (24):

Eijc m+ Eijacn-n2 < FyAd; (23)
Eijch =
Zigch < FyAd; ; (24)
712

The stored energy in the OESD cannot lower than O and
higher then 100%, thus constraint (25) needs to be added into
the model.

0 < SOE; ; <100% (25)

In addition, the initial SOE of the OESD when the train de-
parts from the first station should be 0 thus we have constraint
(26).

Eini =0 (26)

It can be seen above that the continuous variables are ),
Einis Fi j.e> Ei jdcen and Ej j op, the integer variables are A, ;,
the equality constraints of the model are (18) and (26), and the
inequality constraints are (14)-(17) and (19)-(25). The objective
function of the entire model is the net energy consumption
which is the difference of the total traction energy consumption
(The sum of total catenary energy consumption and total
discharged energy from OESD) and the total regenerative
energy received by OESD, as shown in (27). By conducting this
optimization to minimize the net energy consumption, catenary
energy consumption is also minimized.

I N;
min E E (Eijc+ Eijdeh — Eijcn),
i=1 j=1

st (14) — (26). Q7)
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Fig. 3. The route map for Beijing Changping line

TABLE I
THE INTER-STATION LENGTH AND THE DISTANCE INTERVAL USED IN
SPEED DATA COLLECTION FOR BEIJING CHANGPING LINE

Inter-station name  Length (m)  Distance interval (m)
XRQ-LP 5441 200
LP-ZXZ 2368 100

7XZ-GHC 3810 200
GHC-SH 2037 100
SH-SUP 1967 100
SUP-NS 5364 200

TABLE 11

THE ENERGY DENSITY PER UNIT MASS/VOLUME, POWER DENSITY PER
UNIT MASS AND CAPITAL COST PER UNIT ENERGY CAPACITY FOR THREE
TYPES OF OESD [1]

OESD Energy Power Capital
type density density cost
&Wh/ty  (KkWh/m?) (kW/t) ($/kWh)
Supercapacitor ~ 2.5-15 10-30 500-5000 300-2000
Li-ion battery 75-200 150-500 100-350 500-2500
Flywheel 5-100 20-80 1000-5000  1000-5000

where I is the total number of the investigated inter-station
sections.

The proposed MILP model can be solved by commercial
solver e.g. CPLEX® and Lingo®, etc. efficiently to determine
the optimal capacity of the OESD and to minimize the catenary
energy consumption.

III. CASE STUDIES AND RESULTS DISCUSSION

In this section, the effectiveness of the proposed approach
is demonstrated by using a real case study based on the data
from Beijing Changping line. The Changping line covers 21
kilometers distance and has 7 stations. The route map for the
Changping line is shown in Figure 3 and Figure 4 illustrates the
traction/braking characteristics, basic drag force of the train and
gradient information of the route [35]. The practical train speed
trajectory for each inter-station section of the Changping line
and corresponding distance interval for speed data collection
follow the literature [36]. These information has been integrated
and tabulated in Table I.

The case studies mainly focus on the three types of OESD,
namely supercapacitor, battery and flywheel due to their most
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Fig. 4. The traction/braking characteristics of the train motor, drag force,
gradient information and practical train speed trajectory of the Changping line

popular applications. In addition, Li-ion battery is selected
to represent the other types of chemical battery. The main
parameters for three types of OESD are from [1] and listed
in Table II. The data used in the case studies have been
checked by referring to literature [1], [32] and [33] of the en-
ergy storage technologies development and their applications.
In these three review articles, the values of each parameter
share large intersections. Additionally, [1] is the latest review
article of the energy storage technologies already utilized in
specifically railway systems, thus, the data from it are used in
case studies. It should be noted that for the purpose of a general
investigation, the halfway point of these ranges is selected e.g.
the power density for supercapacitor used in the case studies
is set to be (500 + 5000)/2 = 2750 kW/t. This halfway point
value is considered as one of the reasonable presentations of
the general characteristics of one type of energy storage. This
value needs to be updated to reflect the technical development
of energy storage technology and maintain a high level of
modeling accuracy. With the fast development of energy storage
technologies, the general performance of these three types of
OESD will see substantial progresses and this halfway point
will definitely change in the foreseeable future. The proposed
model still can be used to obtain the corresponding new optimal
size of the OESD based on the new values of these parameters.

The mass of the train in the Changping line is 194.3 ton
and the average energy efficiency 7; and 72 can be set based
on literature from long-term viewpoint. Specifically, the energy
transmission efficiency from grid to the motor is set as 90%
due to a 10% average energy loss and the energy conversion
efficiency of electric motor is set as 90% for most typical
engineering applications [2]. Therefore, the approximated value
for n; is 81% = 90% x 90% in this study. On the other
hand, energy can be directly transmitted between the motor
and OESD with a negligible transmission loss [1], thus, the
value for 73 is set as 90% considering only the discharge/charge
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Fig. 5. The reference train speed trajectories and discharge/charge curves for
different optimally sized OESD without constraints of capital cost and volume

TABLE III
OPTIMIZATION RESULTS OF CENTENARY ENERGY CONSUMPTION AND
OESD CAPACITY FOR CASE WITHOUT CONSTRAINTS OF CAPITAL COST
AND VOLUME

OESD Optimal ~ Minimum catenary ~ Energy-saving
type capacity  energy consumption rate™®
(kWh) (kWh) (%)
Supercapacitor 10.1 157.3 23.6
Li-ion battery 923.8 158.9 229
Flywheel 32.0 157.2 23.7

*The energy-saving rate of catenary energy consumption with optimally
sized OESD in reference to the scenario without OESD.

TABLE IV
THE VOLUME, CAPITAL COST, MAXIMUM POWER AND MASS OF THE
OPTIMALLY SIZED OESDS FOR CASE WITHOUT CONSTRAINTS OF CAPITAL
COST AND VOLUME

OESD type
Supercapacitor  Li-ion battery ~ Flywheel
Volume (m?) 0.5 2.8 0.6
Capital cost (k$) 11.6 1385.8 96.1
Maximum power (kW) 877.5 419.9 508.2
Mass (t) 0.32 1.87 0.17

efficiency resulted from the OESD’s own resistance. Both
values can be modified according to the field data collected
from different types of power supply system, different rolling
stocks and different types of OESD.

Note that the case studies are conducted by using Matlab
R2018b® and CPLEX® 12.8.0 solver on a PC with Intel Core®
15-6500 processor (3.20 GHz) and 8.00 GB RAM.

A. Without the constraints of capital cost and volume

Regardless of the capital cost and volume of the OESD,
the reference train speed trajectories for the Changping line
and its optimal discharge/charge curves represented by OESDs’
SOE are shown in Figure 5. The optimal capacity of each
type of OESD and respective catenary energy consumption are
tabulated in Table III, and the corresponding resulted volume,
capital cost, maximum power and mass are also given in Table
IVv.

From the Table III it is observed that without any constraints
on capital cost and volume, with the same reference speed



M Supercapacitor M Li-ion battery M Flywheel

1.000
0.005

0.182

0.000 0.200 0.400 0.600 0.800

Ratio of ASOE;; max

1.000 1.200

Fig. 6. The ratio among ASOE; j ;maz of each type of OESD regarding
supercapacitor as base value for the case without the constraints of capital
cost and volume

TABLE V
THE ENERGY-SAVING RATE WITH RESPECT TO THE CAPACITY, VOLUME
AND CAPITAL COST OF OPTIMALLY SIZED OESDS FOR CASE WITHOUT
CONSTRAINTS OF CAPITAL COST AND VOLUME

OESD type
Supercapacitor ~ Li-ion battery ~ Flywheel
Energy-saving rate per
unit capacity (%/kWh) 2.35 0.02 0.74
Energy-saving rate per
unit capital cost (%/k$) 2.05 0.02 0.25
Energy-saving rate per 4707 3.04 3701

unit volume (%/m?)

trajectories, supercapacitor, Li-ion battery and flywheel with
respective optimal capacity can bring the similar energy-saving
effect, reducing catenary energy consumption by 23.6%, 22.9%
and 23.7% respectively. However, the optimal OESD capacity
sees substantial differences when compared among different
types of OESD. For achieving the minimum catenary energy
consumption, the optimal capacity for Li-ion battery is ex-
tremely high, which reaches 923.8 kWh, and for supercapacitor
is the lowest being 10.1 kWh. In addition, results shown in
Table IV also bring some valuable information about each
OESD under this optimal capacity. For example, among the
three the Li-ion battery is the heaviest and the most space-
consuming, which needs much space for installation even
though its division into several sets, and flywheel is the
lightest and supercapacitor is the most space-efficient in this
case. Though the optimal capacity of Li-ion battery is the
highest, maximum power of it is still the lowest among the
three, showing the low power support which is the commonly
recognized drawback of the chemical battery. The capital cost
for Li-ion battery becomes the most significant factor with an
extremely high value of 1385.8 k$, which is also impractical in
the real operation. In short, adoption of Li-ion battery demands
higher economic cost and larger space to achieve the optimal
capacity.

From Figure 5, it can also be seen that the discharge/charge
curves for these three types of OESDs are also different. The
maximum gradient of SOE curves for supercapacitor is much
higher than the other two types of OESDs, depicting a much
steeper curves than the other. The SOE curve for Li-ion battery

Energy-saving rate per
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100.00%

10.00%

Energy-saving rate per
unit capital cost

(%/kS$)

—e— Flywheel

Energy-saving rate per
unit volume (%/m3)
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Fig. 7. The radar chart for comparison among the energy saving rate with
respect to the optimal capacity, volume and capital cost for the case without
constraints of capital cost and volume.

is enlarged for a clear view in the figure since the change of it
is hard to be observed. The maximum increment or decrement
of SOE in each Ad; ;, notated as ASOFE; j maa, is determined
by the equation (28).

ASOEi,j,max = ?OAti,j/Ecap (28)

From Table IV it is seen that supercapacitor is with the highest
discharge/charge power, flywheel ranks the second and Li-ion
battery is with the lowest maximum power while the trend
for their respective capacity is exactly contrary. As a result,
this leads to the different ASOE; ; 1q, When different type of
OESD is investigated. If the ASOE; ; ;nq. for supercapacitor
is regarded as the base value, the ratio of ASOE; j mas for
supercapacitor, Li-ion battery and flywheel can be obtained as
1: 0.005: 0.182, as shown in Figure 6, clarifying the reason for
the significantly different discharge/charge curve for each type
of OESD. It also should be noted that due to the low power
density of the Li-ion battery, the obtained optimal solution
results in a relatively high maximum power for it while with
a extremely large capacity. In this case, though using Li-
ion battery can bring the similar energy-saving effect as the
supercapacitor and flywheel do, there is still more than 90%
of the capacity of it not being used.

Since the optimal capacity, volume and capital cost of three
types of OESD are obtained, the energy-saving efficiency from
the industry viewpoint related to these three important factors
can be studied. Here three terms, energy-saving rate per unit
capacity in %/kWh, energy-saving rate per unit capital cost in
%/k$ and energy-saving rate per unit volume in %/m3, are
proposed and obtained, as shown in Table V. Additionally,
the comparison among each value of them are made into a
radar chart illustrated in Figure 7. From the figure, it can be
observed that supercapacitor is the most efficient in reduction
of caternary energy consumption in terms of the above three
aspects while Li-ion battery seems to be with low efficiency
to save energy consumption. In terms of energy-saving rate
per unit volume, performance of flywheel is close to that of
supercapacitor.
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Fig. 8. The reference train speed trajectories and discharge/charge curves for
different optimally sized OESD with upper limit of capital cost being 10 k$

TABLE VI
OPTIMIZATION RESULTS OF CAPACITY, ENERGY SAVING RATE, VOLUME,
CAPITAL COST, MAXIMUM POWER AND MASS FOR DIFFERENT OESDs
WITH AN UPPER LIMIT OF CAPITAL COST OF 10 K$

OESD type
Supercapacitor ~ Li-ion battery ~ Flywheel
Optimal capacity (kWh) 8.7 6.7 33
Energy-saving rate (%) 22.5 0.5 8.3
Volume (m?) 0.44 0.02 0.07
Capital cost (k$) 10 10 9.9
Maximum power (kW) 758.7 3.0 52.9
Mass (t) 0.28 0.01 0.02
TABLE VII

OPTIMIZATION RESULTS OF CAPACITY, ENERGY SAVING RATE, VOLUME,
CAPITAL COST, MAXIMUM POWER AND MASS FOR DIFFERENT OESDs
WITH AN UPPER LIMIT OF VOLUME OF 0.25 m3

OESD type

Supercapacitor ~ Li-ion battery ~ Flywheel
Optimal capacity (kWh) 5.0 81.3 12.5
Energy-saving rate (%) 16.9 5.8 19.9
Volume (m3) 0.25 0.25 0.25
Capital cost (k$) 5.8 121.9 37.5
Maximum power (kW) 436.5 36.9 198.4
Mass (t) 0.16 0.16 0.07

B. With the constraints of capital cost and volume

In Section III-A, it can be found that without the constraint
of capital cost ad volume, Li-ion battery, supercapacitor and
flywheel can bring a very similar energy-saving effect through
the optimized capacity. However, this also leads to an im-
practical capital cost for Li-ion battery and even for flywheel
who reaches 96.1 k$. In addition, the resulted volume for Li-
ion battery is also with large value. In real business, railway
operators need to take into account the company budget and left
space on the rail vehicles when applying OESD, and normally
different companies have different requirements. As a result, in
this section the upper limits of the cost being 10 k$ and volume
being 0.25 m? are selected firstly for showing the practicality
and flexibility of the proposed method. This case study with the
constraints of capital cost and volume shows that the proposed
method can meet different needs of varies of operators with
different investment and installation requirements.
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different optimally sized OESD with upper limit of volume being 0.25 m3
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Fig. 10. Traction energy supply split between catenary and OESD in the
optimization results under different constraints. (a) No constraints of capital
cost and volume imposed; (b) With a capital cost upper limit of 10 k$; (c) With
a volume upper limit of 0.25 m? (The orange value in parentheses is the total
traction energy consumption which is the sum of catenary energy consumption
and discharged energy from OESD

The optimal results for both scenarios are tabulated in
Table VI and Table VII, and the discharge/charge curves are
demonstrated in Figure 8 and Figure 9. It can be observed
that when the upper limit of capital cost is set to be 10 k$,
the most energy-saving OESD is supercapacitor as it has the
highest optimal capacity and maximum discharging/charging
power in this case. Li-ion battery sees the highest catenary
energy consumption as well as with the low maximum power
which is only 3.0 kW. Flywheel is with least optimal capacity
since it is more expensive than other. When the upper limit
of volume is 0.25 m?®, the most energy-saving OESD becomes
flywheel which has the largest optimal capacity. Though Li-
ion battery is still with the worst energy-saving effect, the
optimal capacity is highest among the three, which indicates
a high energy density of its kind. Supercapacitor is with the
least optimal capacity, implying its low energy density with
respect to the volume constraint. Similar to the case without
the constraint of capital cost and volume, the change rate of
discharge/charge curves for Li-ion battery in both scenarios
here are not significant due to the relatively low maximum
power and capacity.



[ Tsupercapacitor
[ JLi-ion Battery
[ IFlywheel

220

210

= N
© o
o o
! L

180

170

160

Catenary Eenrgy Consumption (kWh)

=
u

oo
i

60 g og 06

Upper Limit of the Capital Cost (k$) Upper Limit of the Volume (m3)

Fig. 11. The catenary energy consumption for different types of OESD under
varying upper limits of capital cost and volume

90

70

4] [e2]
o o

IS
o

Supercapacitor

Upper limit of the capital Cost (k$)
w
o

20

0 0.2 0.4 0.6 0.8 1
Upper limit of the volume (m3)
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tion with respect to upper limits of volume and capital cost (The dominated
area of both supercapacitor and flywheel is demonstrated on a projected plane
of Figure 11 from the top with x-axis being the volume and y-axis being the
capacity cost. By dominating area, it means that adoption of the specific type
of OESD will consume the minimum catenary energy consumption among the
three).

The energy supply split for each type of OESD is shown
in Figure 10, in which the scenarios investigated above are
all compared and contrasted. From the figure, it is shown that
in different scenario, the energy supply split varies. For the
scenario without the constraints of capital cost and volume
(Figure 10-(a)), it can be found that though the train equipped
with Li-ion battery uses the most catenary energy consumption,
Li-ion battery supplies the most energy. From Figure 10-(b)
for scenario with an upper limit of capital cost being 10 k$,
it is clear that supercapacitor supplies the most energy to train

while Li-ion battery hardly support the train due to the low
discharging/charging power. The performance of flywheel is
also influenced passively by its low capacity. When given the
upper limit of volume at 0.25 m3, flywheel brings the most
energy-saving effect and supply the most energy for traction,
as shown in Figure 10-(c). The orange values in parentheses
are their corresponding total traction energy consumption and
it can be seen that in terms of one specific type of OESD, the
more energy supplied by OESD, the less total traction energy
consumed. This is due to the higher efficiency of using the
energy supplied by OESD than using the energy from catenary,
which also cuts the catenary energy consumption in turn.

Based on the proposed model, Figure 11 depicts further on
the relationship between the catenary energy consumption and
capital cost and space of OESD, which are industry-concerned
factors. In Figure 11, the range of the upper limit for capital
cost is from O to 90 k$ with an increment step of 3 k$ and
the range of the upper limit for volume is from 0 m? to 1 m3
with an increment step of 0.2 m3. From the figure, it should
be noted that Li-ion battery always gives the highest catenary
energy consumption among the three. As for the supercapacitor,
the catenary energy consumption for it is the most sensitive
with respect to the upper limit of capital cost among the three
since it can be noted from the figure that the catenary energy
consumption of it drops faster than others when upper limit
of capital cost rises. The catenary energy consumption for
flywheel is more sensitive and in some space it brings the
least catenary energy consumption. The dominated area for
minimum catenary energy consumption of supercapacitor and
flywheel with respect to capital cost and volume is illustrated
in Figure 12 which is a projected plane of Figure 11 from
the top. It can be told that with capital cost limited below 20
k$ and volume limitation relaxed to be higher than 0.6 m3,
supercapacitor with optimized capacity brings the minimum
catenary energy consumption. When the upper limit of volume
is set below 0.6 m® and maximum capital cost is allowed to
go higher, flywheel with the optimized capacity saves the most
catenary energy consumption among the three types of OESD.
This result clearly shows that when the installation room is
limited, flywheel will be the better choice and if the limitation
of the capital cost is tight, supercapacitor is more economic
and able to achieve less catenary energy consumption. The
result provides a clear guide on how appropriate OESD can
be selected for real engineering applications.

IV. CONCLUSION AND FUTURE WORK

With the rapid development of energy storage technologies,
more and more energy storage has been utilized in railway
systems to save energy cost. As a result, on-board energy
storage device (OESD), due to its low energy loss, has been
used by industry. However, the optimal size of the OESD is
still yet to be investigated in the previous research. This paper
proposes a mixed integer linear programming (MILP) model to
optimize the capacity of the OESD to minimize the catenary
energy consumption. Three types of OESD, supercapacitor,
Li-ion battery and flywheel, are investigated with different



engineering characteristics including energy density, power
density and capital cost.

From the results of the real-world case study, it is found
that supercapacitor, Li-ion battery and flywheel can bring
similar energy-saving effect, with a reduction rate of catenary
energy consumption by 23.6%, 22.9% and 23.7% respectively,
without the constraint of capital cost and volume. In cases
with constraints on the capital cost and volume, it is found
that the energy saving rate for Li-ion battery is significantly
reduced compared with supercapacitor and flywheel. When the
volume is limited below 0.6 m> and capital cost is allowed
to be higher than 20 k$, optimally sized flywheel can bring
the minimum catenary energy consumption. If the capital cost
is constrained below 20 k$ while the volume can be relaxed
beyond 0.6 m?>, supercapacitor with optimal capacity brings
the most reduction of catenary energy consumption. All in all,
based on the proposed method, the optimal capacity of the
OESD can be obtained to achieve the minimum catenary energy
consumption, the industry-concerned factors that influence the
reduction of energy consumption can also be studied, which
reveals the impact of different types and different size of OESD
on energy-saving effect in electrified railway systems.

In this paper, it is observed that different characteristics of
various types of OESD leads to varying energy saving rates
and optimal capacities. However, more specific properties e.g.
discharge/charge cycle or self-discharge rate of different types
of energy storage, which are two important parameters for
their strong influence on the overall system costs [1], are not
considered in this paper. In the future, the integration of both
parameters and train operation should be conducted from a
long-term view to make a more comprehensive evaluation.
Also, the optimal size of hybrid energy storage system can be
further studied based on the model and results proposed in this
study. By coordinating each component in the hybrid energy
storage system, it is expected to exploit the advantages of
different OESD and further enhance its energy saving capability
in electrified railway systems.
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