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Abstract18

We study the existence of approximate pure Nash equilibria (α-PNE) in weighted atomic conges-19

tion games with polynomial cost functions of maximum degree d. Previously it was known that20

d-approximate equilibria always exist, while nonexistence was established only for small constants,21

namely for 1.153-PNE. We improve significantly upon this gap, proving that such games in general22

do not have Θ̃(
√
d)-approximate PNE, which provides the first super-constant lower bound.23

Furthermore, we provide a black-box gap-introducing method of combining such nonexistence24

results with a specific circuit gadget, in order to derive NP-completeness of the decision version25

of the problem. In particular, deploying this technique we are able to show that deciding whether26

a weighted congestion game has an Õ(
√
d)-PNE is NP-complete. Previous hardness results were27

known only for the special case of exact equilibria and arbitrary cost functions.28

The circuit gadget is of independent interest and it allows us to also prove hardness for a variety29

of problems related to the complexity of PNE in congestion games. For example, we demonstrate30

that the question of existence of α-PNE in which a certain set of players plays a specific strategy31

profile is NP-hard for any α < 3d/2, even for unweighted congestion games.32

Finally, we study the existence of approximate equilibria in weighted congestion games with33

general (nondecreasing) costs, as a function of the number of players n. We show that n-PNE always34

exist, matched by an almost tight nonexistence bound of Θ̃(n) which we can again transform into35

an NP-completeness proof for the decision problem.36
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1 Introduction51

Congestion games constitute the standard framework to study settings where selfish players52

compete over common resources. They are one of the most well-studied classes of games53

within the field of algorithmic game theory [32, 27], covering a wide range of applications,54

including, e.g., traffic routing and load balancing. In their most general form, each player55

has her own weight and the latency on each resource is a nondecreasing function of the total56

weight of players that occupy it. The cost of a player on a given outcome is just the total57

latency that she is experiencing, summed over all the resources she is using.58

The canonical approach to analysing such systems and predicting the behaviour of the59

participants is the ubiquitous game-theoretic tool of equilibrium analysis. More specifically, we60

are interested in the pure Nash equilibria (PNE) of those games; these are stable configurations61

from which no player would benefit from unilaterally deviating. However, it is a well-known62

fact that such desirable outcomes might not always exist, even in very simple weighted63

congestion games. A natural response, especially from a computer science perspective, is to64

relax the solution notion itself by considering approximate pure Nash equilibria (α-PNE);65

these are states from which, even if a player could improve her cost by deviating, this66

improvement could not be by more than a (multiplicative) factor of α ≥ 1. Allowing the67

parameter α to grow sufficiently large, existence of α-PNE is restored. But how large does α68

really need to be? And, perhaps more importantly from a computational perspective, how69

hard is it to check whether a specific game has indeed an α-PNE?70

1.1 Related Work71

The origins of the systematic study of (atomic) congestion games can be traced back to the72

influential work of Rosenthal [30, 31]. Although Rosenthal showed the existence of congestion73

games without PNE, he also proved that unweighted congestion games always possess such74

equilibria. His proof is based on a simple but ingenious potential function argument, which75

up to this day is essentially still the only general tool for establishing existence of pure76

equilibria.77

In follow-up work [20, 26, 17], the nonexistence of PNE was demonstrated even for special78

simple classes of (weighted) games, including network congestion games with quadratic cost79

functions and games where the player weights are either 1 or 2. On the other hand, we know80

that equilibria do exist for affine or exponential latencies [17, 28, 22], as well as for the class81

of singleton1 games [16, 23]. Dunkel and Schulz [13] were able to extend the nonexistence82

instance of Fotakis et al. [17] to a gadget in order to show that deciding whether a congestion83

game with step cost functions has a PNE is a (strongly) NP-hard problem, via a reduction84

from 3-Partition.85

Regarding approximate equilibria, Hansknecht et al. [21] gave instances of very simple,86

two-player polynomial congestion games that do not have α-PNE, for α ≈ 1.153. This87

1 These are congestion games where the players can only occupy single resources.
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lower bound is achieved by numerically solving an optimization program, using polynomial88

latencies of maximum degree d = 4. On the positive side, Caragiannis et al. [4] proved that89

d!-PNE always exist; this upper bound on the existence of α-PNE was later improved to90

α = d+ 1 [21, 9] and α = d [3].91

1.2 Our Results and Techniques92

After formalizing our model in Section 2, in Section 3 we show the nonexistence of Θ(
√
d

ln d )-93

approximate equilibria for polynomial congestion games of degree d. This is the first94

super-constant lower bound on the nonexistence of α-PNE, significantly improving upon the95

previous constant of α ≈ 1.153 and reducing the gap with the currently best upper bound96

of d. More specifically (Theorem 1), for any integer d we construct congestion games with97

polynomial cost functions of maximum degree d (and nonnegative coefficients) that do not98

have α-PNE, for any α < α(d) where α(d) is a function that grows as α(d) = Ω
(√

d
ln d

)
. To99

derive this bound, we had to use a novel construction with a number of players growing100

unboundedly as a function of d.101

Next, in Section 4 we turn our attention to computational hardness constructions.102

Starting from a Boolean circuit, we create a gadget that transfers hard instances of the103

classic Circuit Satisfiability problem to (even unweighted) polynomial congestion games.104

Our construction is inspired by the work of Skopalik and Vöcking [34], who used a similar105

family of lockable circuit games in their PLS-hardness result. Using this gadget we can106

immediately establish computational hardness for various computational questions of interest107

involving congestion games (Theorem 3). For example, we show that deciding whether a108

d-degree polynomial congestion game has an α-PNE in which a specific set of players play a109

specific strategy profile is NP-hard, even up to exponentially-approximate equilibria; more110

specifically, the hardness holds for any α < 3d/2. Our investigation of the hardness questions111

presented in Theorem 3 (and later on in Corollary 7 as well) was inspired by some similar112

results presented before by Conitzer and Sandholm [11] (and even earlier in [19]) for mixed113

Nash equilibria in general (normal-form) games. To the best of our knowledge, our paper is114

the first to study these questions for pure equilibria in the context of congestion games. It is115

of interest to also note here that our hardness gadget is gap-introducing, in the sense that116

the α-PNE and exact PNE of the game coincide.117

In Section 5 we demonstrate how one can combine the hardness gadget of Section 4, in a118

black-box way, with any nonexistence instance for α-PNE, in order to derive hardness for the119

decision version of the existence of α-PNE (Lemma 4, Theorem 5). As a consequence, using the120

previous Ω
(√

d
ln d

)
lower bound construction of Section 3, we can show that deciding whether121

a (weighted) polynomial congestion has an α-PNE is NP-hard, for any α < α(d), where122

α(d) = Ω
(√

d
ln d

)
(Corollary 6). Since our hardness is established via a rather transparent,123

“master” reduction from Circuit Satisfiability, which in particular is parsimonious, one124

can derive hardness for a family of related computation problems; for example, we show125

that computing the number of α-approximate equilibria of a weighted polynomial congestion126

game is #P-hard (Corollary 7).127

In Section 6 we drop the assumption on polynomial cost functions, and study the existence128

of approximate equilibria under arbitrary (nondecreasing) latencies as a function of the129

number of players n. We prove that n-player congestion games always have n-approximate130

PNE (Theorem 8). As a consequence, one cannot hope to derive super-constant nonexistence131

lower bounds by using just simple instances with a fixed number of players (similar to, e.g.,132

Hansknecht et al. [21]). In particular, this shows that the super-constant number of players133

ICALP 2020
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in our construction in Theorem 1 is necessary. Furthermore, we pair this positive result134

with an almost matching lower bound (Theorem 9): we give examples of n-player congestion135

games (where latencies are simple step functions with a single breakpoint) that do not have136

α-PNE for all α < α(n), where α(n) grows according to α(n) = Ω
(
n

lnn
)
. Finally, inspired137

by our hardness construction for the polynomial case, we also give a new reduction that138

establishes NP-hardness for deciding whether an α-PNE exists, for any α < α(n) = Ω
(
n

lnn
)
.139

Notice that now the number of players n is part of the description of the game (i.e., part of140

the input) as opposed to the maximum degree d for the polynomial case (which was assumed141

to be fixed). On the other hand though, we have more flexibility on designing our gadget142

latencies, since they can be arbitrary functions.143

Concluding, we would like to elaborate on a couple of points. First, the reader would144

have already noticed that in all our hardness results the (in)approximability parameter α145

ranges freely within an entire interval of the form [1, α̃), where α̃ is a function of the degree d146

(for polynomial congestion games) or of the number of players n; and that α, α̃ are not part147

of the problem’s input. It is easy to see that these features only make our results stronger,148

with respect to computational hardness, but also more robust. Secondly, although in this149

introductory section all our hardness results were presented in terms of NP-hardness, they150

immediately translate to NP-completeness under standard assumptions on the parameter α;151

e.g., if α is rational (for a more detailed discussion of this, see also the end of Section 2).152

Due to space constraints we had to either fully omit, or just give very short sketches of,153

the proofs of our results. All proofs can be found in the full version of this paper [8].154

2 Model and Notation155

A (weighted, atomic) congestion game is defined by: a finite (nonempty) set of resources156

E, each e ∈ E having a nondecreasing cost (or latency) function ce : R>0 −→ R≥0; and a157

finite (nonempty) set of players N , |N | = n, each i ∈ N having a weight wi > 0 and a set158

of strategies Si ⊆ 2E . If all players have the same weight, wi = 1 for all i ∈ N , the game is159

called unweighted. A polynomial congestion game of degree d, for d a nonnegative integer, is160

a congestion game such that all its cost functions are polynomials of degree at most d with161

nonnegative coefficients.162

A strategy profile (or outcome) s = (s1, s2, . . . , sn) is a collection of strategies, one for163

each player, i.e. s ∈ S = S1 × S2 × · · · × Sn. Each strategy profile s induces a cost of164

Ci(s) =
∑
e∈si

ce(xe(s)) to every player i ∈ N , where xe(s) =
∑
i:e∈si

wi is the induced load165

on resource e. An outcome s will be called α-approximate (pure Nash) equilibrium (α-PNE),166

where α ≥ 1, if no player can unilaterally improve her cost by more than a factor of α.167

Formally:168

Ci(s) ≤ α · Ci(s′i, s−i) for all i ∈ N and all s′i ∈ Si. (1)169

Here we have used the standard game-theoretic notation of s−i to denote the vector of170

strategies resulting from s if we remove its i-th coordinate; in that way, one can write171

s = (si, s−i). Notice that for the special case of α = 1, (1) is equivalent to the classical172

definition of pure Nash equilibria; for emphasis, we will sometimes refer to such 1-PNE as173

exact equilibria.174

If (1) does not hold, it means that player i could improve her cost by more than α by175

moving from si to some other strategy s′i. We call such a move α-improving. Finally, strategy176

si is said to be α-dominating for player i (with respect to a fixed profile s−i) if177

Ci(s′i, s−i) > α · Ci(s) for all s′i 6= si. (2)178
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In other words, if a strategy si is α-dominating, every move from some other strategy s′i to179

si is α-improving. Notice that each player i can have at most one α-dominating strategy180

(for s−i fixed). In our proofs, we will employ a gap-introducing technique by constructing181

games with the property that, for any player i and any strategy profile s−i, there is always a182

(unique) α-dominating strategy for player i. As a consequence, the sets of α-PNE and exact183

PNE coincide.184

Finally, for a positive integer n, we will use Φn to denote the unique positive solution185

of equation (x + 1)n = xn+1. Then, Φn is strictly increasing with respect to n, with186

Φ1 = φ ≈ 1.618 (golden ratio) and asymptotically Φn ∼ n
lnn (see [9, Lemma A.3]).187

Computational Complexity188

Most of the results in this paper involve complexity questions, regarding the existence189

of (approximate) equilibria. Whenever we deal with such statements, we will implicitly190

assume that the congestion game instances given as inputs to our problems can be succinctly191

represented in the following way:192

all player have rational weights;193

the resource cost functions are “efficiently computable”; for polynomial latencies in194

particular, we will assume that the coefficients are rationals; and for step functions we195

assume that their values and breakpoints are rationals;196

the strategy sets are given explicitly.2197

There are also computational considerations to be made about the number α appearing198

in the definition of α-PNE. For simplicity, throughout this paper we will assume that α is a199

rational number. However, all our hardness results are still valid for any real α, while for our200

completeness results one needs to assume that α is actually a polynomial-time computable201

real. For more details we refer to the full version of our paper [8].202

3 The Nonexistence Gadget203

In this section we give examples of polynomial congestion games of degree d, that do not have204

α(d)-approximate equilibria; α(d) grows as Ω
(√

d
ln d

)
. Fixing a degree d ≥ 2, we construct205

a family of games Gd(n,k,w,β), specified by parameters n ∈ N, k ∈ {1, . . . , d}, w ∈ [0, 1], and206

β ∈ [0, 1]. In Gd(n,k,w,β) there are n+ 1 players: a heavy player of weight 1 and n light players207

1, . . . , n of equal weights w. There are 2(n+ 1) resources a0, a1, . . . , an, b0, b1, . . . , bn where208

a0 and b0 have the same cost function c0 and all other resources a1, . . . , an, b1, . . . , bn have209

the same cost function c1 given by210

c0(x) = xk and c1(x) = βxd.211

Each player has exactly two strategies, and the strategy sets are given by212

S0 = {{a0, . . . , an}, {b0, . . . , bn}} and Si = {{a0, bi}, {b0, ai}} for i = 1, . . . , n.213

The structure of the strategies is visualized in Figure 1.214

2 Alternatively, we could have simply assumed succinct representability of the strategies. A prominent
such case is that of network congestion games, where each player’s strategies are all feasible paths
between two specific nodes of an underlying graph. Notice however that, since in this paper we are
proving hardness results, insisting on explicit representation only makes our results even stronger.

ICALP 2020
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a0 a1 · · · ai · · · an

bn · · · bi · · · b1 b0

Figure 1 Strategies of the game Gd(n,k,w,β). Resources contained in the two ellipses of the same
colour correspond to the two strategies of a player. The strategies of the heavy player and light
players n and i are depicted in black, grey and light grey, respectively.

20 40 60 80 100

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

1.05

d

α
(d

)

Figure 2 Nonexistence of α(d)-PNE for weighted polynomial congestion games of degree d, as
given by (3) in Theorem 1, for d = 2, 3, . . . , 100. In particular, for small values of d, α(2) ≈ 1.054,
α(3) ≈ 1.107 and α(4) ≈ 1.153.

In the following theorem we give a lower bound on α, depending on parameters (n, k, w, β),215

such that games Gd(n,k,w,β) do not admit an α-PNE. Maximizing this lower bound over all216

games in the family, we obtain a general lower bound α(d) on the inapproximability for217

polynomial congestion games of degree d (see (3) and its plot in Figure 2). Finally, choosing218

specific values for the parameters (n, k, w, β), we prove that α(d) is asymptotically lower219

bounded by Ω(
√
d

ln d ).220

I Theorem 1. For any integer d ≥ 2, there exist (weighted) polynomial congestion games of221

degree d that do not have α-approximate PNE for any α < α(d), where222

α(d) = sup
n,k,w,β

min
{

1 + nβ(1 + w)d

(1 + nw)k + nβ
,

(1 + w)k + βwd

(nw)k + β(1 + w)d

}
(3)223

s.t. n ∈ N, k ∈ {1, . . . , d}, w ∈ [0, 1], β ∈ [0, 1].224
225

In particular, we have the asymptotics α(d) = Ω
(√

d
ln d

)
and the bound α(d) ≥

√
d

2 ln d , valid for226

large enough d. A plot of the exact values of α(d) (given by (3)) for small degrees can be227

found in Figure 2.228

Interestingly, for the special case of d = 2, 3, 4, the values of α(d) (see Figure 2) yield229

exactly the same lower bounds with Hansknecht et al. [21]. This is a direct consequence of230

the fact that n = 1 turns out to be an optimal choice in (3) for d ≤ 4, corresponding to an231
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g5
x1

g4
x2

g3 g2

g1

inputs C output

(a) valid circuit C

g5
x1

1

g4
x2

1

g3 g2

1 g1

(b) canonical form of C

1

x1

x2

g5

g4

g3 g2
g1

(c) directed acyclic graph

Figure 3 Example of a valid circuit C (having both NOT and NAND gates), its canonical form
(having only NAND gates), and the directed acyclic graph corresponding to C.

instance with only n+1 = 2 players (which is the regime of the construction in [21]); however,232

this is not the case for larger values of d, where more players are now needed in order to233

derive the best possible value in (3). Furthermore, as we discussed also in Section 1.2, no234

construction with only 2 players can result in bounds larger than 2 (Theorem 8).235

4 The Hardness Gadget236

In this section we construct an unweighted polynomial congestion game from a Boolean237

circuit. In the α-PNE of this game the players emulate the computation of the circuit. This238

gadget will be used in reductions from Circuit Satisfiability to show NP-hardness of239

several problems related to the existence of approximate equilibria with some additional240

properties. For example, deciding whether a congestion game has an α-PNE where a certain241

set of players choose a specific strategy profile (Theorem 3).242

Circuit Model243

We consider Boolean circuits consisting of NOT gates and 2-input NAND gates only. We244

assume that the two inputs to every NAND gate are different. Otherwise we replace the245

NAND gate by a NOT gate, without changing the semantics of the circuit. We further246

assume that every input bit is connected to exactly one gate and this gate is a NOT gate. See247

Figure 3a for a valid circuit. In a valid circuit we replace every NOT gate by an equivalent248

NAND gate, where one of the inputs is fixed to 1. See the replacement of gates g5, g4 and g2249

in the example in Figure 3b. Thus, we look at circuits of 2-input NAND gates where both250

inputs to a NAND gate are different and every input bit of the circuit is connected to exactly251

one NAND gate where the other input is fixed to 1. A circuit of this form is said to be in252

canonical form. For a circuit C and a vector x ∈ {0, 1}n we denote by C(x) the output of253

the circuit on input x.254

We model a circuit C in canonical form as a directed acyclic graph. The nodes of this255

graph correspond to the input bits x1, . . . , xn, the gates g1, . . . , gK and a node 1 for all256

fixed inputs. There is an arc from a gate g to a gate g′ if the output of g is input to257

gate g′ and there are arcs from the fixed input and all input bits to the connected gates.258

We index the gates in reverse topological order, so that all successors of a gate gk have a259

smaller index and the output of gate g1 is the output of the circuit. Denote by δ+(v) the260

set of the direct successors of node v. Then we have |δ+(xi)| = 1 for all input bits xi and261

δ+(gk) ⊆ {gk′ | k′ < k} for every gate gk. See Figure 3 for an example of a valid circuit, its262

canonical form and the corresponding directed acyclic graph.263

ICALP 2020



32:8 Existence and Complexity of Approximate Equilibria in Weighted Congestion Games

Translation to Congestion Game264

Fix some integer d ≥ 1 and a parameter µ ≥ 1 + 2 · 3d+d/2. From a valid circuit in canonical265

form with input bits x1, . . . , xn, gates g1, . . . , gK and the extra input fixed to 1, we construct266

a polynomial congestion game Gdµ of degree d. There are n input players X1, . . . , Xn for267

every input bit, a static player P for the input fixed to 1, and K gate players G1, . . . , GK268

for the output bit of every gate. G1 is sometimes called output player as g1 corresponds to269

the output C(x).270

The idea is that every input and every gate player has a zero and a one strategy,271

corresponding to the respective bit being 0 or 1. In every α-PNE we want the players to272

emulate the computation of the circuit, i.e. the NAND semantics of the gates should be273

respected. For every gate gk, we introduce two resources 0k and 1k. The zero (one) strategy274

of a player consists of the 0k′ (1k′) resources of the direct successors in the directed acyclic275

graph corresponding to the circuit and its own 0k (1k) resource (for gate players). The static276

player has only one strategy playing all 1k resources of the gates where one input is fixed to277

1: sP = {1k | gk ∈ δ+(1)}. Formally, we have278

s0
Xi

=
{

0k | gk ∈ δ+(xi)
}
and s1

Xi
=
{

1k | gk ∈ δ+(xi)
}

279

for the zero and one strategy of an input player Xi. Recall that δ+(xi) is the set of direct280

successors of xi, thus every strategy of an input player consists of exactly one resource. For281

a gate player Gk we have the two strategies282

s0
Gk

= {0k} ∪
{

0k′ | gk′ ∈ δ+(gk)
}
and s1

Gk
= {1k} ∪

{
1k′ | gk′ ∈ δ+(gk)

}
283

consisting of at most k resources each. Notice that all 3 players related to a gate gk (gate284

player Gk and the two players corresponding to the input bits) are different and observe that285

every resource 0k and 1k can be played by exactly those 3 players.286

We define the cost functions of the resources using parameter µ. The cost functions for287

resources 1k are given by c1k
and for resources 0k by c0k

, where288

c1k
(x) = µkxd and c0k

(x) = λµkxd, with λ = 3d/2. (4)289

Our construction here is inspired by the lockable circuit games of Skopalik and Vöcking [34].290

The key technical differences are that our gadgets use polynomial cost functions (instead of291

general cost functions) and only 2 resources per gate (instead of 3). Moreover, while in [34]292

these games are used as part of a PLS-reduction from Circuit/FLIP, we are also interested293

in constructing a gadget to be studied on its own, since this can give rise to additional results294

of independent interest (see Theorem 3).295

Properties of the Gadget296

For a valid circuit C in canonical form consider the game Gdµ as defined above. We interpret297

any strategy profile s of the input players as a bit vector x ∈ {0, 1}n by setting xi = 0 if298

sXi
= s0

Xi
and xi = 1 otherwise. The gate players are said to follow the NAND semantics in299

a strategy profile, if for every gate gk the following holds:300

if both players corresponding to the input bits of gk play their one strategy, then the gate301

player Gk plays her zero strategy;302

if at least one of the players corresponding to the input bits of gk plays her zero strategy,303

then the gate player Gk plays her one strategy.304
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We show that for the right choice of α, the set of α-PNE in Gdµ is the same as the set of all305

strategy profiles where the gate players follow the NAND semantics.306

Define307

ε(µ) = 3d+d/2

µ− 1 . (5)308

From our choice of µ, we obtain 3d/2 − ε(µ) ≥ 3d/2 − 1
2 > 1. For any valid circuit C in309

canonical form and a valid choice of µ the following lemma holds for Gdµ.310

I Lemma 2. Let sX be any strategy profile for the input players X1, . . . , Xn and let x ∈311

{0, 1}n be the bit vector represented by sX . For any µ ≥ 1 + 2 · 3d+d/2 and any 1 ≤ α <312

3d/2−ε(µ), there is a unique α-approximate PNE3 in Gdµ where the input players play according313

to sX . In particular, in this α-PNE the gate players follow the NAND semantics, and the314

output player G1 plays according to C(x).315

Proof sketch. We first fix the input players to the strategies given by sX and show that316

then all gate players follow the NAND semantics (switching to the strategy corresponding to317

the NAND of their input bits is an α-improving move). Secondly, we argue that the input318

players have no incentive to change their strategy in any α-PNE where all gate players follow319

the NAND semantics. Hence, every strategy profile for the input players can be extended to320

an α-PNE in Gdµ that is uniquely defined by the NAND semantics. J321

We are now ready to show our main result of this section; using the circuit game described322

above, we show NP-hardness of deciding whether approximate equilibria with additional323

properties exist.324

I Theorem 3. The following problems are NP-hard, even for unweighted polynomial con-325

gestion games of degree d ≥ 1, for all α ∈ [1, 3d/2) and all z > 0:326

“Does there exist an α-approximate PNE in which a certain subset of players are playing327

a specific strategy profile?”328

“Does there exist an α-approximate PNE in which a certain resource is used by at least329

one player?”330

“Does there exist an α-approximate PNE in which a certain player has cost at most z?”331

Proof sketch. We use reductions from the NP-hard problem Circuit Satisfiability. For332

a circuit C we consider the game Gdµ as described above and focus on the output player G1.333

Using Lemma 2 we get a one-to-one correspondence between satisfying assignments for C334

and α-PNE in Gdµ where G1 plays her one strategy. J335

5 Hardness of Existence336

In this section we show that it is NP-hard to decide whether a polynomial congestion game337

has an α-PNE. For this we use a black-box reduction: our hard instance is obtained by338

combining any (weighted) polynomial congestion game G without α-PNE (i.e., the game339

from Section 3) with the circuit gadget of the previous section. To achieve this, it would be340

convenient to make some assumptions on the game G, which however do not influence the341

existence or nonexistence of approximate equilibria.342

3 Which, as a matter of fact, is actually also an exact PNE.
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Structural Properties of G343

Without loss of generality, we assume that a weighted polynomial congestion game of degree344

d has the following structural properties.345

No player has an empty strategy. If, for some player i, ∅ ∈ Si, then this strategy would346

be α-dominating for i. Removing i from the game description would not affect the347

(non)existence of (approximate) equilibria4.348

No player has zero weight. If a player i had zero weight, her strategy would not influence349

the costs of the strategies of the other players. Again, removing i from the game description350

would not affect the (non)existence of equilibria.351

Each resource e has a monomial cost function with a strictly positive coefficient, i.e.352

ce(x) = aex
ke where ae > 0 and ke ∈ {0, . . . , d}. If a resource had a more general cost353

function ce(x) = ae,0 + ae,1x+ . . .+ ae,dx
d, we could split it into at most d+ 1 resources354

with (positive) monomial costs, ce,0(x) = ae,0, ce,1(x) = ae,1x, . . . , ce,d(x) = ae,dx
d.355

These monomial cost resources replace the original resource, appearing on every strategy356

that included e.357

No resource e has a constant cost function. If a resource e had a constant cost function358

ce(x) = ae,0, we could replace it by new resources having monomial cost. For each player359

i of weight wi, replace resource e by a resource ei with monomial cost cei
(x) = ae,0

wi
x, that360

is used exclusively by player i on her strategies that originally had resource e. Note that361

cei(wi) = ae,0, so that this modification does not change the player’s costs, neither has362

an effect on the (non)existence of approximate equilibria. If a resource has cost function363

constantly equal to zero, we can simply remove it from the description of the game.364

For a game having the above properties, we define the (strictly positive) quantities365

amin = min
e∈E

ae, W =
∑
i∈N

wi, cmax =
∑
e∈E

ce(W ). (6)366

Note that cmax is an upper bound on the cost of any player on any strategy profile.367

Rescaling of G368

In our construction of the combined game we have to make sure that the weights of the369

players in G are smaller than the weights of the players in the circuit gadget. We introduce370

the following rescaling argument.371

For any γ ∈ (0, 1] define the game G̃γ , where we rescale the player weights and resource372

cost coefficients in G as373

ãe = γd+1−keae, w̃i = γwi, c̃e(x) = ãex
ke . (7)374

This changes the quantities in (6) for G̃γ to (recall that ke ≥ 1)375

ãmin = min
e∈E

ãe = min
e∈E

γd+1−keae ≥ γd min
e∈E

ae = γdamin,376

W̃ =
∑
i∈N

w̃i =
∑
i∈N

γwi = γW,377

c̃max =
∑
e∈E

c̃e(W̃ ) =
∑
e∈E

ãe(γW )ke =
∑
e∈E

γd+1aeW
ke = γd+1

∑
e∈E

ce(W ) = γd+1cmax.378

379

4 By this we mean, if G has (resp. does not have) α-PNE, then G̃, obtained by removing player i from the
game, still has (resp. still does not have) α-PNE.
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Xn

G1

Gdµ

01

11
• •
• •

G̃γ

i j

dummy

Figure 4 Combination of a circuit game (on the left) and a game without approximate equilibria
(on the right). Changes to the subgames are indicated by solid arrows. The new one strategy of G1

consists of 11 and all resources in G̃γ , while the zero strategy stays unchanged. The players of G̃γ
get a new strategy (the dummy resource), and keep their old strategies playing in G̃γ .

In G̃γ the player costs are all uniformly scaled as C̃i(s) = γd+1Ci(s), so that the Nash380

dynamics and the (non)existence of equilibria are preserved.381

The next lemma formalizes the combination of both game gadgets and, furthermore,382

establishes the gap-introduction in the equilibrium factor. Using it, we will derive our key383

hardness tool of Theorem 5.384

I Lemma 4. Fix any integer d ≥ 2 and rational α ≥ 1. Suppose there exists a weighted385

polynomial congestion game G of degree d that does not have an α-approximate PNE. Then,386

for any circuit C there exists a game G̃C with the following property: the sets of α-approximate387

PNE and exact PNE of G̃C coincide and are in one-to-one correspondence with the set of388

satisfying assignments of C. In particular, one of the following holds: either389

1. C has a satisfying assignment, in which case G̃C has an exact PNE (and thus, also an390

α-approximate PNE); or391

2. C has no satisfying assignments, in which case G̃C has no α-approximate PNE (and thus,392

also no exact PNE).393

Proof. Let G be a congestion game as in the statement of the theorem having the above394

mentioned structural properties. Recalling that weighted polynomial congestion games of395

degree d have d-PNE [3], this implies that α < d < 3d/2. Fix some 0 < ε < 3d/2 − α and take396

µ ≥ 1 + 3d+d/2

min{ε,1} ; in this way α < 3d/2 − ε ≤ 3d/2 − ε(µ).397

Given a circuit C we construct the game G̃C as follows. We combine the game Gdµ whose398

Nash dynamics model the NAND semantics of C, as described in Section 4, with the game399

G̃γ obtained from G via the aforementioned rescaling. We choose γ ∈ (0, 1] sufficiently small400

such that the following three inequalities hold for the quantities in (6) for G:401

γW < 1, γ
∑
e∈E

ae <
µ

µ− 1

(
3
2

)d
, γα2 <

amin

cmax
. (8)402

Thus, the set of players in G̃C corresponds to the (disjoint) union of the static, input and403

gate players in Gdµ (which all have weights 1) and the players in G̃γ (with weights w̃i). We404

also consider a new dummy resource with constant cost cdummy(x) = ãmin
α . Thus, the set of405

resources corresponds to the (disjoint) union of the gate resources 0k, 1k in Gdµ, the resources406

in G̃γ , and the dummy resource. We augment the strategy space of the players as follows:407
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each input player or gate player of Gdµ that is not the output player G1 has the same408

strategies as in Gdµ (i.e. either the zero or the one strategy);409

the zero strategy of the output player G1 is the same as in Gdµ, but her one strategy is410

augmented with every resource in G̃γ ; that is, s1
G1

= {11} ∪ E(G̃γ);411

each player i in G̃γ keeps her original strategies as in G̃γ , and gets a new dummy strategy412

si,dummy = {dummy}.413

A graphical representation of the game G̃C can be seen in Figure 4.414

To finish the proof, we need to show that every α-PNE of G̃C is an exact PNE and415

corresponds to a satisfying assignment of C; and, conversely, that every satisfying assignment416

of C gives rise to an exact PNE of G̃C (and thus, an α-PNE as well).417

Suppose that s is an α-PNE of G̃C , and let sX denote the strategy profile restricted to418

the input players of Gdµ. Then, as in the proof of Lemma 2, every gate player that is not the419

output player must respect the NAND semantics, and this is an α-dominating strategy. For420

the output player, either sX is a non-satisfying assignment, in which case the zero strategy421

of G1 was α-dominating, and this remains α-dominating in the game G̃C (since only the cost422

of the one strategy increased for the output player); or sX is a satisfying assignment. In the423

second case, we now argue that the one strategy of G1 remains α-dominating. The cost of424

the output player on the zero strategy is at least c01(2) = λµ2d, and the cost on the one425

strategy is at most426

c11(2)+
∑
e∈E

c̃e(1+γW ) = µ2d+
∑
e∈E

γd+1−keae(1+γW )ke < µ2d+γ
∑
e∈E

ae2d < µ2d+ µ

µ− 13d,427

where we used the first and second bounds from (8). Thus, the ratio between the costs is at428

least429

λµ2d

µ2d + µ
µ−13d = λ

 1
1 + 1

µ−1
( 3

2
)d
 > 3d/2

(
1

1 + 1
µ−13d

)
> 3d/2 − ε(µ) > α.430

Given that the gate players must follow the NAND semantics, the input players are also431

locked to their strategies (i.e. they have no incentive to change) due to the proof of Lemma 2.432

The only players left to consider are the players from G̃γ . First we show that, since s is an433

α-PNE, the output player must be playing her one strategy. If this was not the case, then434

each dummy strategy of a player in G̃γ is α-dominated by any other strategy: the dummy435

strategy incurs a cost of ãmin
α ≥ γd amin

α , whereas any other strategy would give a cost of at436

most c̃max = γd+1cmax (this is because the output player is not playing any of the resources437

in G̃γ). The ratio between the costs is thus at least438

γdamin

γd+1cmaxα
= amin

γcmaxα
> α.439

Since the dummy strategies are α-dominated, the players in G̃γ must be playing on their440

original sets of strategies. The only way for s to be an α-PNE would be if G had an α-PNE441

to begin with, which yields a contradiction. Thus, the output player is playing the one442

strategy (and hence, is present in every resource in G̃γ). In such a case, we can conclude443

that each dummy strategy is now α-dominating. If a player i in G̃γ is not playing a dummy444

strategy, she is playing at least one resource in G̃γ , say resource e. Her cost is at least445

c̃e(1 + w̃i) = ãe(1 + w̃i)ke > ãe ≥ ãmin (the strict inequality holds since, by the structural446

properties of our game, all of ãe, w̃i and ke are strictly positive quantities). On the other447

hand, the cost of playing the dummy strategy is ãmin
α . Thus, the ratio between the costs is448

greater than α.449
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We have concluded that, if s is an α-PNE of G̃C , then sX corresponds to a satisfying450

assignment of C, all the gate players are playing according to the NAND semantics, the output451

player is playing the one strategy, and all players of G̃γ are playing the dummy strategies. In452

this case, we also have observed that each player’s current strategy is α-dominating, so the453

strategy profile is an exact PNE. To finish the proof, we need to argue that every satisfying454

assignment gives rise to a unique α-PNE. Let sX be the strategy profile corresponding to this455

assignment for the input players in Gdµ. Then, as before, there is one and exactly one α-PNE456

s in G̃C that agrees with sX ; namely, each gate player follows the NAND semantics, the457

output player plays the one strategy, and the players in G̃γ play the dummy strategies. J458

By approximating all numbers occurring in the construction of Lemma 4 (weights,459

coefficients, approximation factor) by rationals, we obtain a polynomial-time reduction from460

Circuit Satisfiability, and thus the following theorem.461

I Theorem 5. For any integer d ≥ 2 and rational α ≥ 1, suppose there exists a weighted462

polynomial congestion game which does not have an α-approximate PNE. Then it is NP-463

complete to decide whether (weighted) polynomial congestion games of degree d have an464

α-approximate PNE.465

Proof. Let d ≥ 2 and α ≥ 1. Let G be a weighted polynomial congestion game of degree466

d that has no α-PNE; this means that for every strategy profile s there exists a player i467

and a strategy s′i 6= si such that Ci(si, s−i) > α · Ci(s′i, s−i). Note that the functions Ci are468

polynomials of degree d and hence they are continuous on the weights wi and the coefficients469

ae appearing on the cost functions. Hence, any arbitrarily small perturbation of the wi, ae470

does not change the sign of the above inequality. Thus, without loss of generality, we can471

assume that all wi, ae are rational numbers.472

Next, we consider the game G̃γ obtained from G by rescaling, as in the proof of Lemma 4.473

Notice that the rescaling is done via the choice of a sufficiently small γ, according to (8),474

and hence in particular we can take γ to be a sufficiently small rational. In this way, all475

the player weights and coefficients in the cost of resources are rational numbers scaled by a476

rational number and hence rationals.477

Finally, we are able to provide the desired NP reduction from Circuit Satisfiability.478

Given a Boolean circuit C ′ built with 2-input NAND gates, transform it into a valid circuit479

C in canonical form. From C we can construct in polynomial time the game G̃C as described480

in the proof of Lemma 4. The ‘circuit part’, i.e. the game Gdµ, is obtained in polynomial481

time from C, as in the proof of Theorem 3; the description of the game G̃γ involves only482

rational numbers, and hence the game can be represented by a constant number of bits (i.e.483

independent of the circuit C). Similarly, the additional dummy strategy has a constant delay484

of ãmin/α, and can be represented with a single rational number. Merging both Gdµ and G̃γ485

into a single game G̃C can be done in linear time. Since C has a satisfying assignment iff G̃C486

has an α-PNE (or α-PNE), this concludes that the problem described is NP-hard.487

The problem is clearly in NP: given a weighted polynomial congestion game of degree d488

and a strategy profile s, one can check if s is an α-PNE by computing the ratios between the489

cost of each player in s and their cost for each possible deviation, and comparing these ratios490

with α. J491

Combining the hardness result of Theorem 5 together with the nonexistence result of492

Theorem 1 we get the following corollary, which is the main result of this section.493
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I Corollary 6. For any integer d ≥ 2 and rational α ∈ [1, α(d)), it is NP-complete to decide494

whether (weighted) polynomial congestion games of degree d have an α-approximate PNE,495

where α(d) = Ω̃(
√
d) is the same as in Theorem 1.496

Notice that, in the proof of Lemma 4 and Theorem 5, we constructed a polynomial-time497

reduction from Circuit Satisfiability to the problem of determining whether a given498

congestion game has an α-PNE. Not only does this reduction map YES-instances of one499

problem to YES-instances of the other, but it also induces a bijection between the sets of500

satisfying assignments of a circuit C and α-PNE of the corresponding game G̃C . That is,501

this reduction is parsimonious. As a consequence, we can directly lift hardness of problems502

associated with counting satisfying assignments to Circuit Satisfiability into problems503

associated with counting equilibria in congestion games:504

I Corollary 7. Let k ≥ 1 and d ≥ 2 be integers and α ∈ [1, α(d)) where α(d) = Ω̃(
√
d) is the505

same as in Theorem 1. Then506

it is #P-hard to count the number of α-approximate PNE of (weighted) polynomial507

congestion games of degree d;508

it is NP-hard to decide whether a (weighted) polynomial congestion game of degree d has509

at least k distinct α-approximate PNE.510

Proof. The hardness of the first problem comes from the #P-hardness of the counting version511

of Circuit Satisfiability (see, e.g., [29, Ch. 18]). For the hardness of the second problem,512

it is immediate to see that the following problem is NP-complete, for any fixed integer k ≥ 1:513

given a circuit C, decide whether there are at least k distinct satisfying assignments for C514

(simply add “dummy” variables to the description of the circuit). J515

6 General Cost Functions516

In this final section we leave the domain of polynomial latencies and study the existence of517

approximate equilibria in general congestion games having arbitrary (nondecreasing) cost518

functions. Our parameter of interest, with respect to which both our positive and negative519

results are going to be stated, is the number of players n. We start by showing that n-PNE520

always exist:521

I Theorem 8. Every weighted congestion game with n players and arbitrary (nondecreasing)522

cost functions has an n-approximate PNE.523

Proof. Fix a weighted congestion game with n ≥ 2 players, some strategy profile s, and a524

possible deviation s′i of player i. First notice that we can write the change in the cost of any525

other player j 6= i as526

Cj(s′i, s−i)− Cj(s) =
∑
e∈sj

ce(xe(s′i, s−i))−
∑
e∈sj

ce(xe(s))527

=
∑

e∈sj∩(s′
i
\si)

[ce(xe(s′i, s−i))− ce(xe(s))]528

+
∑

e∈sj∩(si\s′i)

[ce(xe(s′i, s−i))− ce(xe(s))] (9)529

530
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Furthermore, we can upper bound this by531

Cj(s′i, s−i)− Cj(s) ≤
∑

e∈sj∩(s′
i
\si)

[ce(xe(s′i, s−i))− ce(xe(s))]532

≤
∑
e∈s′

i

ce(xe(s′i, s−i))533

= Ci(s′i, s−i), (10)534
535

the first inequality holding due to the fact that the second sum in (9) contains only nonpositive536

terms (since the latency functions are nondecreasing).537

Next, define the social cost C(s) =
∑
i∈N Ci(s). Adding the above inequality over all538

players j 6= i (of which there are n− 1) and rearranging, we successively derive:539 ∑
j 6=i

Cj(s′i, s−i)−
∑
j 6=i

Cj(s) ≤ (n− 1)Ci(s′i, s−i)540

(C(s′i, s−i)− Ci(s′i, s−i))− (C(s)− Ci(s)) ≤ (n− 1)Ci(s′i, s−i)541

C(s′i, s−i)− C(s) ≤ nCi(s′i, s−i)− Ci(s). (11)542
543

We conclude that, if s′i is an n-improving deviation for player i (i.e., nCi(s′i, s−i) < Ci(s)), then544

the social cost must strictly decrease after this move. Thus, any (global or local) minimizer545

of the social cost must be an n-PNE (the existence of such a minimizer is guaranteed by the546

fact that the strategy spaces are finite). J547

The proof not only establishes the existence of n-approximate equilibria in general548

congestion games, but also highlights a few additional interesting features. First, due549

to the key inequality (11), n-PNE are reachable via sequences of n-improving moves, in550

addition to arising also as minimizers of the social cost function. These attributes give a551

nice “constructive” flavour to Theorem 8. Secondly, exactly because social cost optima are552

n-PNE, the Price of Stability5 of n-PNE is optimal (i.e., equal to 1) as well. Another, more553

succinct way, to interpret these observations is within the context of approximate potentials554

(see, e.g., [6, 10, 9]); (11) establishes that the social cost itself is always an n-approximate555

potential of any congestion game.556

Next, we design a family of games Gn that do not admit Θ
(
n

lnn
)
-PNE, thus nearly557

matching the upper bound Theorem 8. In the game Gn there are n = m + 1 play-558

ers 0, 1, . . . ,m, where player i has weight wi = 1/2i. In particular, this means that for559

any i ∈ {1, . . . ,m}:
∑m
k=i wk < wi−1 ≤ w0. Furthermore, there are 2(m + 1) resources560

a0, a1, . . . , am, b0, b1, . . . , bm, where resources ai and bi have the same cost function ci given561

by562

ca0(x) = cb0(x) = c0(x) =
{

1, if x ≥ w0,

0, otherwise;
563

and for all i ∈ {1, . . . ,m},564

cai
(x) = cbi

(x) = ci(x) =

 1
ξ

(
1 + 1

ξ

)i−1
, if x ≥ w0 + wi,

0, otherwise.
565

5 The Price of Stability (PoS) is a well-established and extensively studied notion in algorithmic game
theory, originally studied in [2, 12]. It captures the minimum approximation ratio of the social cost
between equilibria and the optimal solution (see, e.g., [7, 9]); in other words, it is the best-case analogue
of the the Price of Anarchy (PoA) notion of Koutsoupias and Papadimitriou [25].
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Where ξ = Φn−1 is the positive solution of (x+ 1)n−1 = xn.566

The strategy set of player 0 and of all players i ∈ {1, . . . ,m} are, respectively,567

S0 = {{a0, . . . , am}, {b0, . . . , bm}}, and Si = {{a0, . . . , ai−1, bi}, {b0, . . . , bi−1, ai}}.568

Analysing the costs of strategy profiles in Gn (see [8]) we get the following theorem.569

I Theorem 9. For any integer n ≥ 2, there exist weighted congestion games with n players570

and general cost functions that do not have α-approximate PNE for any α < Φn−1, where571

Φm ∼ m
lnm is the unique positive solution of (x+ 1)m = xm+1.572

Similar to the spirit of the rest of our paper so far, we’d like to show an NP-hardness573

result for deciding existence of α-PNE for general games as well. We do exactly that in574

the following theorem, where now α grows as Θ̃(n). Again, we use the circuit gadget and575

combine it with the game from the previous nonexistence Theorem 9. The main difference576

to the previous reductions is that now n is part of the input. On the other hand we are not577

restricted to polynomial latencies, so we use step functions having a single breakpoint.578

I Theorem 10. Let ε > 0, and let α̃ : N≥2 −→ Q be any (polynomial-time computable)579

sequence such that 1 ≤ α̃(n) < Φn−1
1+ε = Θ̃(n), where Φm ∼ m

lnm is the unique positive solution580

of (x + 1)m = xm+1. Then, it is NP-complete to decide whether a (weighted) congestion581

game with n players has an α̃(n)-approximate PNE.582

7 Discussion and Future Directions583

In this paper we showed that weighted congestion games with polynomial latencies of degree584

d do not have α-PNE for α < α(d) = Ω
(√

d
ln d

)
. For general cost functions, we proved that585

n-PNE always exist whereas α-PNE in general do not, where n is the number of players and586

α < Φn−1 = Θ
(
n

lnn
)
. We also transformed the nonexistence results into complexity-theoretic587

results, establishing that deciding whether such α-PNE exist is itself an NP-hard problem.588

We now identify two possible directions for follow-up work. A first obvious question would589

be to reduce the nonexistence gap between Ω
(√

d
ln d

)
(derived in Theorem 1 of this paper)590

and d (shown in [3]) for polynomials of degree d; similarly for the gap between Θ
(
n

lnn
)

591

(Theorem 9) and n (Theorem 8) for general cost functions and n players. Notice that all592

current methods for proving upper bounds (i.e., existence) are essentially based on potential593

function arguments; thus it might be necessary to come up with novel ideas and techniques594

to overcome the current gaps.595

A second direction would be to study the complexity of finding α-PNE, when they are596

guaranteed to exist. For example, for polynomials of degree d, we know that d-improving597

dynamics eventually reach a d-PNE [3], and so finding such an approximate equilibrium lies598

in the complexity class PLS of local search problems (see, e.g., [24, 33]). However, from599

a complexity theory perspective the only known lower bound is the PLS-completeness of600

finding an exact equilibrium for unweighted congestion games [14] (and this is true even for601

d = 1, i.e., affine cost functions; see [1]). On the other hand, we know that dO(d)-PNE can602

be computed in polynomial time (see, e.g., [5, 18, 15]). It would be then very interesting to603

establish a “gradation” in complexity (e.g., from NP-hardness to PLS-hardness to P) as the604

parameter α increases from 1 to dO(d).605
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