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Abstract

Building secure, inviolable systems using traditional mechanisms is becoming increasingly an
unattainable goal. The recognition of this fact has fostered the interest in alternative approaches to
security such as intrusion tolerance, which applies fault tolerance concepts and techniques to security
problems. Albeit this area is quite promising, intrusion-tolerant distributed systems typically rely on
the assumption that the system components fail or are compromised independently. This is a strong
assumption that has been repeatedly questioned. In this paper we discuss how this assumption can
be implemented in practice using diversity of system components. We present a taxonomy of axes
of diversity and discuss how they provide failure independence. Furthermore, we provide a practical
example of an intrusion-tolerant system built using diversity.
Keywords: intrusion tolerance, diversity, security, fault tolerance

1 Introduction

The security of computer systems is constantly challenged by several kinds of attacks, including ac-

tions by intruders and various types of malware, such as worms, viruses, and Trojan horses.1 The defense

against these attacks is usually based on preventing intrusions, using methods such as authentication and

access control, and appliances like firewalls. However, reality shows that these measures are not entirely

effective, and that intrusions are permanently happening. The causes of this situation are complex, but

the sheer complexity of current software and the low quality of its development process are conspicuous

[26], leaving little hope of effectively preventing intrusions.

An alternative to this preventive approach is intrusion tolerance [20], which aims to guarantee that a

system works correctly even when some of its parts are compromised [1; 29; 51]2. The idea is to apply

∗This work was partially supported by the EU through project IST-4-027513-STP (CRUTIAL).
1See, e.g., the security advisories in the CERT/CC site: http://www.cert.org.
2Other expressions have been used in a similar sense, e.g., resilience, survivability and distributed trust.
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the fault tolerance paradigm — successfully used in critical systems for many years — to the security

domain.

Intrusion tolerance usually presumes a distributed system, and underlying this distribution there is an

assumption of failure independence, that is, that the different system components are not all compromised

during a certain window of time. This assumption is quite reasonable when one deals with accidental

failures, whether in hardware or in software, since the frequency of such failures is statistically low

when the components have a certain quality. In other words, this assumption has a high coverage [40].

However, when one wants to tolerate intrusions, it cannot be assumed that a coordinated attack will not

be launched against several components, i.e., that there will be no common mode failures. For instance,

most proposals for intrusion-tolerant systems are based on replication, either using the state machine

approach [44; 6; 5; 12] or quorum systems [33; 56] — see Figure 1. Both approaches replicate services

on a number of servers, and the system as a whole is guaranteed to remain correct and operational even

if there are intrusions in some of those servers. However, if all replicas are identical and have the same

vulnerabilities, then an attack that is effective against one replica is effective against all of them. The

solution for guaranteeing failure independence is to use diversity: replicas are different — or diverse —

thus they do not have the same vulnerabilities3.
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Figure 1: A service replicated to tolerate intrusions in some of the servers.

Prior work dealing with intrusion tolerance usually assumes implementation diversity so that compo-

nents fail independently [42; 33; 5; 56; 6; 12]. Although this is a common assumption, and a reasonable

one from the standpoint of studying intrusion-tolerant protocols and mechanisms, to our knowledge there

is little research on the feasibility of this assumption for implementing practical systems.

3Interestingly, this issue has to do not only with intrusion tolerance but also with the current debate on the importance of
diversity to mitigate the problem of worms in the Internet [22]. The problem derives from the current (almost) monoculture of
Windows and Microsoft applications in the Internet.
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This paper aims to fill this gap, investigating the existing types of diversity and assessing their appli-

cability to the implementation of intrusion-tolerant systems. The contributions of this paper include the

introduction of the concepts of axis and degree of diversity, as well as a taxonomy and an examination of

various axes of diversity that can be used for implementing intrusion-tolerant systems. We also provide

an example of how these axes can be applied to the design and construction of such a system.

Failure independence is clearly not the only obstacle for building intrusion-tolerant systems. Another

important factor is performance, since techniques used in intrusion tolerance are often computationally

expensive. However, this issue has been being addressed in other places [6; 35], so we will not expand

on this subject in this paper. Other factors are cost and determinism. Both are also out of the scope of

this paper, although we briefly discuss the latter when we present the example.

Related Work Design diversity is a classical mechanism for fault tolerance introduced in the 1970s

[41]. N-version programming is a technique for creating diverse software components introduced also in

those early years [2]. The main idea behind this mechanism is to use N different implementations of the

same component, implemented by N different teams of programmers, ideally using different languages

and methodologies, to achieve fault tolerance, assuming that designs and implementations developed

independently will also fail independently. A good survey of the area can be found in [31]. All these

works consider only accidental faults, not attacks/intrusions.

The seminal work on using diversity to improve security is due to Joseph and Avizienis [27], to the

best of our knowledge. The paper, however, does not focus so much on diversity but on using diverse

components to detect the presence of viruses. Later, Forrest and colleagues applied notions from biologic

systems to computer security and argued that diversity is an important natural mechanism to reduce the

effects of attacks [19; 25]. Randomized compilation techniques to automatically create diversity in

applications were proposed but not developed.

The work most similar to the present paper is the taxonomy of diversity techniques presented by

Deswarte et al. [16]. Their taxonomy is defined in terms of the level at which diversity is defined:

users and operators, human-computer interfaces, application software, execution, hardware and operating

system. The taxonomy presented in the current paper is defined in terms of the component in which

diversity can exist or be created. This taxonomy is more detailed, since we want to clearly identify where

and how diversity can be obtained. More recently, an important study on diversity in the security domain

was presented by Littlewood and Strigini [32]. The paper discusses the reasonability of using diversity
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for security and provides an analysis of the probability of failure. The paper takes a quite different

approach from ours, since it looks at diversity of components (servers in our architecture), while we

investigate in which components of those servers diversity can be created, and how.

Contributions The contributions of the paper are twofold. On the one hand, it proposes a taxono-

my that allows designers to identify where and how they should — or must — introduce diversity in

intrusion-tolerant distributed systems. On the other hand, it uses an example application to show that

diversity can indeed be used on intrusion-tolerant systems.

Paper Organization The rest of this paper is organized as follows: Section 2 presents some aspects

of intrusion tolerance. Section 3 introduces the notions of axis and degree of diversity, and presents the

taxonomy. Section 4 shows a case study that illustrates a critical web service designed with diversity in

mind. Finally, Section 5 presents conclusions and perspectives for further work.

2 Intrusion Tolerance

An intrusion-tolerant system is one that is capable of providing a secure service in a continuous

manner in spite of intrusions in a given number of its components [20; 51]. This concept admits a

degradation in the functionality offered by the system provided that its security is maintained. Intrusion

tolerance is a broad concept that is not restricted to distributed systems, although in practice much of the

more interesting work done in the area is precisely on solutions for intrusion-tolerant distributed services

[1; 29]. The security properties envisaged are usually availability and integrity, but sometimes also data

confidentiality.

The starting point for building an intrusion-tolerant system is eliminating single points of failure,

that is, components that may compromise the entire system if their security is broken. This implies the

distribution of the system’s information and functionality. Coordination across different system compo-

nents can be accomplished using Byzantine fault-tolerant protocols [30], which are capable of dealing

with components subject to arbitrary failures. As already discussed in the introduction, such protocols

generally assume that these components fail or are compromised independently. These protocols can be

used to handle malicious events, such as attacks and intrusions, since these events have been shown to

be malicious faults that aim to activate vulnerabilities, which are in turn design faults [1; 51].
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Cryptographic keys, which are central to several security mechanisms, can also constitute single

points of failure, with respect both to confidentiality (when a secret or private key is disclosed to an

unauthorized party) and to integrity (when a secret or private key is destroyed without proper autho-

rization). Threshold cryptography [23; 14] alleviates this problem, enabling a secret datum (such as a

private or secret key) to be securely shared, increasing its availability without necessarily compromis-

ing its confidentiality. In a threshold cryptographic scheme, a secret is divided into a number of parts

(called shadows) that are subsequently distributed; access to a subset (with a given minimum size) of

these shadows provides the functionality of the original secret. Threshold cryptography has two basic

variants. One is secret sharing, where a secret is split into a number of shadows that are distributed across

the system; the original secret is later reconstructed from a subset of these shadows. The other variant

is secure multi-party computation or function sharing, where the original secret is never reconstructed.

Instead, a cryptographically secure function f is computed in a distributed manner: each system com-

ponent computes f using its own shadow and the results of (a subset of) the various computations are

combined to obtain the intended result (e.g., a digital signature).

3 Diversity

The next subsections examine different forms of implementing design diversity in real systems. Our

emphasis is on how to obtain failure independence of the components of a distributed system with the

goal of making this system more resilient to intrusions. For each individual technique we present its

relevance and main benefits together with its eventual drawbacks and how it impacts a system in terms

of cost. The discussion is based on two important concepts:

Axis of diversity: a component of a system that may be diversified, i.e., that admits several different

instances.

Degree of diversity: the number of choices available for a specific axis of diversity.

For instance, if a system requires the use of a database management system (DBMS), the DBMS is

an axis of diversity in the system design. If there are three different DBMSs that satisfy the system’s

requirements, we say that the degree of diversity of this axis for the system is three. The taxonomy of

axes of diversity is presented in Figure 2.
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Figure 2: A taxonomy of axes of diversity.

3.1 Application

Diversity of application software is the most usual manifestation of design diversity. The reason

is that application software is often the only component over which an organization has total control,

possibly having access to its specification and design details. This type of diversity can be obtained using

the previously mentioned N-version programming methodology [2]. The techniques suggested by Forrest

et al. [19] are also mostly to be used on applications: reordering of application code; reorganization of

the memory layout of applications; modifications to process initialization.

A drawback of application implementation diversity is the cost of implementing different variants of

a software. However, this cost does not grow in a linear fashion: studies have shown that implementing

a variant costs around 70–80% of the cost of the initial variant [16]. This reduction is expected, since

requirements elicitation and analysis, a costly phase of the software development process, can be reused

for all variants. The black-box tests of the application can be used for all variants as well. There have been

several studies on N-version programming, including a (somewhat controversial) study that concluded

that there is some correlation among bugs found in different variants, so failure independence is not

necessarily guaranteed by this technique [28].

3.2 Administrative

It is a well-known fact that many security compromises are perpetrated through social engineering

[54]. Distributing the components of an intrusion-tolerant service across several administrative domains

seeks to reduce that problem and to hinder the use of social engineering by an intruder.

This axis of diversity puts different systems under the responsibility of different administrators,

which may apply different security management policies. Such policies encompass several issues: soft-

ware used for protecting the local security domain, configuration and placement of firewalls and intrusion

detection systems, as well as how these domains are organized and which security policies apply to their
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users. The importance of having different administrators was already pointed out for systems based on

Fragmentation-Redundancy-Scattering in [15].

3.3 Location

Location diversity consists of placing several physical components of a system in different sites.

That distribution is an important defense against physical threats, either of a malicious nature (theft or

destruction of hardware or electrical infrastructure, for instance) or an accidental one (the so-called “acts

of God”, such as floods, earthquakes, fires, dangerous animals4 or even a maid that pulls the power

plug of a server to connect a vacuum-cleaner. . . 5). Natural disasters are, in the vast majority of cases,

isolated events, which ensures failure independence. On the other hand, systems that are so important

that coordinated attacks against several installation sites must be considered, require stringent physical

security policies. This axis of diversity has been acknowledged to be a requirement for the DNS service

[9].

It is evident that maintaining a number of adequate physical facilities to accommodate computing

systems has a cost. However, often an organization that has multiple administrative units already has such

facilities, or it can adapt existing facilities without excessive expenses. Furthermore, location diversity

can be combined in a synergetic manner with administrative diversity (Section 3.2). Components located

in different places and administered by different people tend to present greater failure independence, and

the conjugation of these measures helps to rationalize the costs of adopting these two axes of diversity.

3.4 COTS Software

For a few decades now, systems are rarely built from scratch: nearly every one of them uses some

kind of commercial off-the-shelf (COTS) software components6, whether in the development process (as

in the case of compilers and routine libraries) or for implementing large subsystems (such as database

management systems or middleware).

The use of COTS components offers a good opportunity for applying diversity, since there are often

several components available that implement a certain set of functionalities. Among the numerous types

of COTS components commonly used we can consider the following:7

4One of authors once witnessed a server lost its hard disk after a cockroach laid its eggs on the disk controller.
5Also a true story.
6In this context, free and open-source software can be considered to be COTS components, even if not strictly commercial.
7Operating systems can also be considered COTS components, but they are discussed separately in Section 3.5 due to their

importance.
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DBMSs Several DBMSs support standardized application programming interfaces (APIs) and connec-

tivity plugins. For instance, the JAVA platform supports the Java Database Connectivity (JDBC) API,

which allows the transparent integration of any database that accepts SQL commands (provided that this

database has a driver available). Nearly all of the most popular databases have JDBC drivers (some have

even more than one, providing diversity also at this level), and they can be used by applications based on

that technology as long as the queries and updates to the database follow the SQL-92 standard (supported

by all modern relational databases);

Middleware Distributed systems often use middleware platforms to hide the complexity of the inter-

actions among their parts. Some of the most currently used middleware platforms are Web services,

the Common Object Request Broker Architecture (CORBA) and Remote Procedure Calls (RPC). These

platforms are based on standardized specifications that guarantee interoperability across implementa-

tions from different vendors. As middleware mediates all communication among the parts of a system,

vulnerabilities in this component effectively compromise the integrity of applications. Therefore, using

diverse middleware implementations in the components of a system allow this system to tolerate faults

in some of them. A representative example of how this axis of diversity can be easily obtained is the

CORBA platform. The Object Management Group (OMG) defines a series of CORBA specifications

which are independently implemented by several organizations. Considering only the Java and C++ pro-

gramming languages, there are at least four high quality, free implementations of this standard (JacORB,

OpenORB, TAO, and MICO).

Virtual Machines Languages such as Java, C#, Python, and LISP (among others) execute applications

inside a virtual machine (VM). A VM not only manages almost all operating system resources (memory,

files, sockets, etc.) used by applications written in those languages, but it also implements features

that are fundamental to the integrity of applications (e.g., security monitors). Therefore, VM-related

problems can also be considered critical to a system and once again intrusion-tolerant applications can

benefit from this axis of diversity. Using Java as an example, we have the Java Virtual Machine (JVM),

which (among other things) manages memory, translates bytecodes into native code, and implements

security policies using a sandbox. As with CORBA, several quality JVM implementations from different

vendors are available [21]. It is worthy noting that several vulnerabilities have been reported in JVMs

since Java was introduced.
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Compilers Compilers are not part of an intrusion-tolerant application per se, but they are fundamental

tools for building essentially every application. Due to their internal differences, distinct compilers may

produce different object or intermediary code from the same source. Therefore, using compiler diversity

provides at least two immediate benefits: (i.) it prevents an application from being completely com-

promised if a compiler generates object code with security vulnerabilities8, and (ii.) for a vulnerability

introduced by the programmer, code generated by different compilers might not be affected in the same

way by a single exploit9, as code generation defines, for instance, the order of parameters in the stack.

Another compiler-related threat is that of a Trojaned compiler which may insert trapdoors in the code it

compiles, an attack publicized by Ken Thompson in his 1984 Turing Award lecture [49]; recent work by

Wheeler [53] describes how diversity can help in thwarting this attack.

Libraries Large parts of applications nowadays are not implemented by their developers, who rely

on third-party routine libraries such as the standard C library. Therefore, using diverse libraries may

provide failure independence with respect to flaws in a particular library. There are many sorts of libraries

available, some of which are accessed via standardized interfaces and others through proprietary APIs.

The former can easily support diversity simply by using a different implementation of a given interface

— as in the case of the Java API for XML Processing (JAXP) and Java Cryptography Extension (JCE)

specifications for the JAVA platform — while the latter may be accessed through adapters.

Besides using different COTS components in different parts of an intrusion-tolerant system, one can

apply different configurations to these COTS components, for instance, using different options for Just-

In-Time (JIT) compilation or using different garbage collection algorithms in virtual machines.

Diversity of COTS components is probably the axis of diversity that has the better cost/benefit rela-

tion for a critical system. When compared to other axes, it is inexpensive because COTS components

commonly used in the applications, such as DBMSs and compilers, can be obtained with relative eas-

iness (what also makes possible to obtain a high degree of diversity), and it is efficient because too

often systems are compromised not through vulnerabilities in the applications themselves, but through

vulnerabilities in COTS components used by these applications.

8Although code generation with bugs is not so frequent, it is not unheard of, especially with some code optimizations.
An example is the -frename-registers optimization in the GNU Compiler Collection (GCC), disabled by default in recent
versions of the compiler exactly for generating buggy code [47, p. 80].

9An exploit is an automated tool that uses specific vulnerabilities with the intention of compromising the security of a
system.
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Using different variants of a component incurs in an administrative cost, since not all components

are administered in the same way. Another issue concerns the interoperability of COTS components.

Application developers must ensure that the features they need are available in all variants they expect

to use. For instance, if a system requires a DBMS which will be diversified, the developers have to use a

set of SQL commands that are available in all variants, avoiding proprietary extensions.

3.5 Operating System

The operating system (OS) plays a fundamental role in the security of a system. It controls all the

machine’s resources therefore if it has a vulnerability, even if the application has no design or implemen-

tation fault, all the system can be vulnerable. The rationale is that applications deal with abstractions

created and managed by the OS — files, processes, memory segments — so a vulnerability might allow

an attacker to manipulate these abstractions freely. For this reason, a vulnerable OS is the Achilles’

heel of a system, irrespectively of the robustness of the software running on top of it. Moreover, current

OSs are large and complex and the number of design faults is believed to be proportional to this com-

plexity10. Therefore, this axis of diversity is critical to guarantee the independence of machine failures.

We are aware of a single intrusion-tolerant system that really uses diversity, the Joint Battlespace Infos-

phere (JBI) [48]. This system uses four different operating systems: SELinux, Solaris, Windows XP and

Windows 2000.

The implementation of OS diversity is facilitated by the existence of standard APIs like IEEE POSIX

(Portable Operating System Interface). A standard API make porting an application to a different OS

easier, reducing costs and making viable a higher degree of diversity. However, if an API itself has

a semantic vulnerability, like allowing a race condition [4], it is probably exploitable in all OSs that

implement this API.

OS diversity has a cost in terms of administration personnel. Each different OS requires a specialized

administrator that can configure it to be as secure as possible. In fact, not having specialized personnel

is probably worse that not using diversity since the overall system may become more vulnerable instead

of less vulnerable (the same applies to other COTS components like DBMSs).

Some OSs provide a solution of compromise that guarantees a certain failure independence without

requiring different OSs. Available evidence tells that the most common type of attacks in the Internet

10Hoglund and McGraw say that Linux and Windows XP have respectively 1.5 and 40 million lines of code, while the bug
rates in this kinds of systems vary from 5 to 50 bugs per thousand lines of code [26].
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are buffer overflows [13; 8]. Most variations of buffer overflow attacks, including stack smashing and

heap smashing, require some knowledge of the memory organization to be successful, something that is

surprisingly easy in a conventional OS. However, this requirement of knowing the memory layout lead

to a recent approach that makes this type of attacks harder: to randomize the organization of the memory

[19; 55; 46]. This forces the attacker to tailor the attack to each target, using a brute force attack to

discover where is the memory location it has to overwrite. These attacks can be time consuming and can

call the attention to the ongoing attack. Memory randomization techniques are available for OpenBSD

[37] and for Linux [38; 55].

A similar technique randomizes the instruction set of the processor in order to prevent attacks that

try to inject binary code [3]. The idea is that if each machine had its own instruction set then it would

be very hard for an attacker to devise code that would run in that machine. Randomized instruction set

emulation (RISE) scrambles each byte of the program code using a function parameterized with a per-

program random key; before the program is executed, each instruction is descrambled using the inverse

function; an attacker would have to know the key to be able to insert code that executed correctly.

3.6 Security Methods

The diversity of security methods [24] is related to the principle of separation of privilege [43]11. The

idea is to use several security methods to enforce each security attribute, in such a way that the attribute

is not violated if a subset of these methods is compromised. For instance, to enforce the confidentiality

of a message it is possible to encrypt it twice, with two algorithms and two keys, guaranteeing that the

content of the message is not disclosed if one of the algorithms or one of the keys is compromised.

Another example is the use of two authentication methods, such as passwords and fingerprints.

The objective of this axis of diversity is to maximize the independence of the redundant methods, the

same as for any other axis of diversity. For instance, if two methods m1 and m2 are used for authentica-

tion, a compromise of m1 should not help compromising m2. This consideration is especially relevant for

cryptographic algorithms since encrypting the same data twice with two different algorithms sometimes

does not improve the security, but reduce it [45].

11“Where feasible, a protection mechanism that requires two keys to unlock is more robust and flexible than one that allows
access to the presenter of only a single key.” [43]
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3.7 Hardware

Traditionally, hardware redundancy has not been based on diversity probably because the failures of

identical hardware components tend to be independent (think, e.g., of Stratus servers12). However, re-

cent hardware bugs provide evidence that this axis of diversity can be important for intrusion tolerance.

Examples of hardware bugs with security implications are the F00F Pentium bug, which allows a user to

block the processor [11], and a bug in the hyper-threading of Intel processors, which allows the unautho-

rized disclosure of information by a user with low privileges (e.g., stealing private RSA keys used in the

machine) [39].

Besides these design faults, hardware diversity is also important for another reason. Exploits found

in the Internet are almost always targeted to a specific hardware. Therefore, if an attacker uses an exploit

to attack machines with different hardware architectures, the attack will probably be ineffective, or at

least will do no more harm than crash the software running in those machines. For the same reason,

hardware diversity can be useful against automated attacks using worms.

3.8 Discussion

Several issues related to the axes of diversity we have presented have to be considered. The first is

that there can be some dependence among different implementations of a certain component, something

that has an impact in the degree of diversity of that axis. Variants that have one (or more) common

components have a lower degree of diversity than completely independent components. For instance,

several Java Virtual Machines, all based on Sun’s code [21], or several mainboards that use the same

chips, have a lower degree of diversity than JVMs/mainboards with nothing in common. The degree of

diversity of a certain axis is also affected by factors like cost and availability: the higher the number of

variants of an axis that can be used with an acceptable acquisition and maintenance cost13, the higher the

degree of diversity of that axis.

Another aspect to be considered is that diversity can be helpful during the system test and validation

phases, since it is possible to compare the information obtained for all the variants. This comparison

process can help discovering bugs that otherwise would remain dormant, possibly until the system went

to production, and the identification of underspecified aspects, since different developers will probably

12http://www.stratus.com
13The meaning of “acceptable” depends on the application. For instance, what is acceptable for a financial application that

handles billions of euros every day is different from what is acceptable for an ISP in a small town.
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interpret these aspects in different ways.

Recently, both quorum systems and state machine replication started to be used in combination with

proactive recovery with the objective of increasing the resilience of intrusion-tolerant systems [56; 6].

The idea is to proactively recover the replicas periodically, removing possible intrusions, thus allowing

the system to tolerate more intrusions during its lifetime. More precisely, the usual bound on the number

of replicas that can be successfully attacked is improved since it no longer applies to the system lifetime

but only to a window of vulnerability. Proactive recovery is effective against several types of attacks, but

it only works against “fast” and reproducible attacks like buffer overflows if each replica is recovered

to a state with different vulnerabilities. This requires mechanisms to automatically generate diversity.

There are some currently available, like memory randomization [19; 13; 8; 38; 55; 46] and instruction

set randomization [3], but automatic generation of diversity at all axes of diversity is probably the Holy

Grail of the area.

Finally, it is important to understand the limitations of diversity. For example, application diversity

provides a safeguard against bugs and vulnerabilities in software; it simply cannot be effective if the

requirements used for developing this software are incomplete, inconsistent, insecure, or incorrect.

4 Case Study: Critical Web Service

In this section we consider the design of a critical intrusion-tolerant web service to illustrate the

application of diversity in implementing a real distributed system.

The objective here is to design a web service that maintains its availability and integrity even if some

of its components are compromised (due to faults, attacks and intrusions). A service with this quality of

service could be used, for example, for a flight company booking system, allowing its offices deployed

all over world to make reservations and bookings. It is important to note that the described architecture

could be employed in several other applications.

The architecture of the web service is presented in Figure 3. In this figure the service implementation

is distributed in four locations around the world (different company offices). Each one of these locations

is composed by an Web Service interface, that could be accessed through Simple Object Access Protocol

(SOAP) [52] and a replica of the flight reservations application. These application replicas synchronize

their states using active replication [44]. In this model of replication, all service replicas execute all

requests in the same order, thus ensuring that they are in the same state after executing each request. The
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implementation of this technique requires a total order multicast14 protocol. The distributed algorithms

literature presents several efficient Byzantine fault-tolerant protocols that could be used in this setting

[6; 34; 57].
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Figure 3: Intrusion-tolerant web services architecture.

A client that wants to access the flight booking system has to retrieve the service description, ex-

pressed in the Web Services Description Language (WSDL) [10], registered in some Universal Descrip-

tion, Discovery and Integration (UDDI) service [36] available on the Internet. In this description of the

service there is a list with the four web servers that can be used to have access to the booking system.

Clients can access the system using any of these servers.

The protocols used to implement active replication (total order multicast) in the Internet require that

less than a third of the system replicas be faulty at any instant of time. Therefore, the system depicted in

Figure 3 tolerates at most one compromised replica. In order to make faults and intrusions independent

in this system we have to employ diversity to implement it.

For this example, we consider six axes of diversity for the four system replicas (R1–R4): imple-

mentation, execution environment (COTS), database (COTS), operating system, hardware, and location.

Table 1 presents some possible choices for implementing this system, with every axis having degree of

diversity equal to four.

Some comments can be made about the Table 1. Firstly, to provide application diversity, four variants

of the service software are built: two using JAVA and two using C#. These variants have to be executed
14Also called atomic multicast.
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Axis of Diversity R1 R2 R3 R4
Application Java 1 Java 2 C# 1 C# 2

Execution Environment Sun Javaa Free Javab .NET Mono
Database MySQL PostgreSQL IBM DB2 Firebird

Operating System Solaris FreeBSD Windows Linux
Hardware Ultra SPARC Pentium Athlon Mac
Location USA Brazil Russia China

aJ2SRE + JWSDK (Java Web Services Development Kit).
bKaffe + GNU Classpath + Apache Axis.

Table 1: Example of usage of diversity for a critical Web service.

in different execution environments each comprising a virtual machine and a web services middleware.

Another interesting aspect of the presented example is that the location diversity in practice implies

administrative diversity, since it is unlikely that sites so far apart will be managed by the same personnel.

The application to be developed following the design proposed in this section will be intrusion-

tolerant and will maintain failure independence using mostly components already available. This is

possible because vulnerabilities in any of the components used in individual replicas of the system can

be exploited only in a single replica. A single social engineering-based attack cannot affect more than one

replica due to location/administration diversity. Location diversity also provides some resistance against

physical attacks to the computing and communications infrastructure in addition to limited resistance

against denial of service attacks.

4.1 The importance of number four

One must notice that the system proposed in this section is composed of four replicas and that for

each diversity axis, we consider a degree of diversity of four (four variants). This choice is not arbitrary:

Byzantine fault-tolerant agreement protocols (such as total order multicast) generally tolerate f faults if

the number of replicas is n ≥ 3 f + 1 [30; 50] (an exception is [12] that requires only 2 f + 1 replicas).

Therefore, the minimal number of replicas that a system must have is four (to tolerate one fault). In order

to maintain the maximum degree of failure independence, the architect of an intrusion-tolerant system

must define a degree of diversity of at least four for each axis of diversity, and ideally this degree must

be equal to the number of replicas n. For example, if in the example we had used two replicas running

Windows, some vulnerability in this system could compromise these two replicas. This situation could

destroy the whole service since its coordination protocol tolerates only a single failure.
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4.2 Determinism

Active replication requires that service replicas are deterministic, i.e., that the same command exe-

cuted in the same initial state generates the same final state irrespectively of the replica in which it is

executed. A recent experience in replicating a web service has shown how determinism is far from trivial

to obtain [17]. Only static HTML pages were considered (no PHP or ASPs) and the communication

protocol was only HTTP (no HTTP-S). All replicas were identical (Linux with Apache servers). Even

with such restrictions and such a nice environment, HTTP headers have several fields that impair deter-

minism [18]. Three fields were problematic: the timestamp with the date and time in which the page was

returned (it is not exactly the same in all servers); the field Etag that univocally identifies a reply to an

HTTP request; and the server identifier.

A partial solution to enforce determinism is provided in BASE [7]. An abstract specification of the

service, its state and of operations that manipulate the state is provided. Then a conformance wrapper

is defined that interfaces the requests with each (different) replica. If state transfers are necessary, then

a function that translates from the state of a replica to the abstract state and vice versa has also to be

defined. This scheme, however, cannot handle all sources of indeterminism, like timestamps, compressed

or encrypted data.

5 Conclusions

The study presented in this paper allow us to conclude that it is possible to implement intrusion-

tolerant systems in practice if diversity is applied correctly. Diversity comes at a cost, derived among

other factors from the extra complexity introduced, but many critical systems have security requirements

that may justify this cost.

A contribution of this work is the introduction of the concepts of axis and degree of diversity, and

the study of a taxonomy of axes that can be used to implement intrusion-tolerant services. A second

contribution is the proposal of a simple and effective architecture for implementing practical intrusion-

tolerant web services in the Internet using already available COTS.

The work presented in this paper opens interesting questions regarding the use of diversity in im-

plementing intrusion-tolerant systems. In particular, it seems fundamental to examine the systematic

use of diversity [7], especially when supported by tools and methods, in a way that it will be easier to

implement failure independence. Another possible future direction for the work presented here is the
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implementation of a system like the one presented in Section 4 trying to evaluate the practical difficulties

that emerge when implementing a real intrusion-tolerant system (some of these difficulties, like COTS

compatibility, we already discussed in this paper). In this context, an open question is what metrics and

methods will be more suited to evaluate how dependable this system would be, and what is the cost of

such dependability level. The study presented in [32] is a good starting point but it is unclear how the

decomposition of servers in several components (hardware, OS, application code, COTS components)

will impact the formulas presented.
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[18] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee. Hypertext Transfer Protocol –
HTTP/1.1. IETF Request for Comments: RFC 2068, Jan. 1997.

[19] S. Forrest, A. Somayaji, and D. H. Ackley. Building diverse computer systems. In Proceedings of
the 6th Workshop on Hot Topics in Operating Systems, pages 67–72, May 1997.

[20] J. S. Fraga and D. Powell. A fault- and intrusion-tolerant file system. In Proceedings of the 3rd In-
ternational Congress on Computer Security (IFIP/SEC’85), pages 203–218, Dublin, Ireland, Aug.
1985.

[21] D. K. Friedman and D. A. Wheeler. Java implementations. On-line at http://www.dwheeler.
com/java-imp.html, Aug. 2002. (Accessed 05 Apr. 2006).

[22] D. E. Geer, D. Aucsmith, and J. A. Whittaker. Monoculture. IEEE Security & Privacy, 1(6):14–19,
Nov./Dec. 2003.

[23] P. S. Gemmell. An introduction to threshold cryptography. Cryptobytes—The Technical
Newsletter of RSA Laboratories, 2(3):7–12, Winter 1997. ftp://ftp.rsasecurity.com/pub/
cryptobytes/crypto2n3.pdf.

[24] M. A. Hiltunen, R. D. Schlichting, and C. A. Ugarte. Building survivable services using redundancy
and adaptation. IEEE Transactions on Computers, 52(2):181–194, Feb. 2003.

[25] S. A. Hofmeyr and S. Forrest. Architecture for an artificial immune system. Evolutionary Compu-
tation, 8(4):443–473, Dec. 2000.

[26] G. Hoglund and G. McGraw. Exploiting Software: How to Break Code. Addison-Wesley, 2004.

[27] M. K. Joseph and A. Avizienis. A fault-tolerant approach to computer viruses. In Proceedings of
the 1988 IEEE Symposium on Research in Security and Privacy, pages 52–58, Apr. 1988.

18



[28] J. C. Knight and N. G. Leveson. An experimental evaluation of the assumption of independence
in multi-version programming. IEEE Transactions on Software Engineering, 12(1):96–109, Jan.
1986.

[29] J. H. Lala, editor. Foundations of Intrusion Tolerant Systems. IEEE Computer Society Press, 2003.

[30] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem. ACM Transactions on
Programming Languages and Systems, 4(3):382–401, July 1982.

[31] B. Littlewood, P. Popov, and L. Strigini. Modelling software design diversity – a review. ACM
Computing Surveys, 33(2):177–208, June 2001.

[32] B. Littlewood and L. Strigini. Redundancy and diversity in security. In P. Samarati, P. Rian, D. Goll-
mann, and R. Molva, editors, Computer Security – ESORICS 2004, 9th European Symposium on
Research Computer Security, LNCS 3193, pages 423–438. Springer, 2004.

[33] D. Malkhi and M. K. Reiter. Byzantine quorum systems. Distributed Computing, 11:203–213,
1998.

[34] J.-P. Martin and L. Alvisi. Fast Byzantine consensus. In Proceedings of the International Confer-
ence on Dependable Systems and Networks (DSN’2005), Yokohama, Japan, June 2005.

[35] H. Moniz, M. Correia, N. F. Neves, and P. Verı́ssimo. Randomized intrusion-tolerant asynchronous
services. In Proceedings of the International Conference on Dependable Systems and Networks
(DSN’2006), Philadelphia, PA, USA, June 2006. Accepted for publication, to appear.

[36] OASIS. Universal Description, Discovery and Integration v3.0.2 (UDDI). Organization for the
Advancement of Structured Information Standards (OASIS), Oct. 2004.

[37] The OpenBSD project. http://www.openbsd.org/. (Accessed 05 Apr. 2006).

[38] Homepage of the PaX team. http://pax.grsecurity.net/. (Accessed 05 Apr. 2006).

[39] C. Percival. Cache missing for fun and profit, May 2005. On-line at http://www.daemonology.
net/papers/htt.pdf. (Accessed 05 Apr. 2006).

[40] D. Powell. Fault assumptions and assumption coverage. In Proceedings of the 22nd IEEE Interna-
tional Symposium on Fault-Tolerant Computing, July 1992.

[41] B. Randell. System structure for software fault tolerance. IEEE Transactions on Software Engi-
neering, SE-1:220–232, June 1975.

[42] M. K. Reiter. The Rampart toolkit for building high-integrity services. In Theory and Practice in
Distributed Systems, LNCS 938, pages 99–110. Springer-Verlag, 1995.

[43] J. H. Saltzer and M. D. Schroeder. The protection of information in computer systems. Proceedings
of the IEEE, 63(9):1278–1308, Sept. 1975.

[44] F. B. Schneider. Implementing fault-tolerant services using the state-machine approach: A tuto-
rial. ACM Computing Surveys, 22(4):299–319, Dec. 1990. Reprinted in S. J. Mullender (ed.),
Distributed Systems, Second Edition. New York, NY, USA: ACM Press, 1993.

[45] B. Schneier. Applied Cryptography: Protocols, Algorithms and Source Code in C. John Wiley &
Sons, New York, NY, USA, 2nd edition, 1996.

19



[46] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh. On the effectiveness
of address-space randomization. In Proceedings of the 11th ACM Conference on Computer and
Communications Security (CCS’04), pages 298–307, Washington, DC, USA, Oct. 2004.

[47] R. Stallman. Using the GNU Compiler Collection (version 4.0.3). Free Software Foundation,
Boston, MA, 2005. On-line at http://gcc.gnu.org/onlinedocs/. (Accessed 05 Apr. 2006).

[48] F. Stevens, T. Courtney, S. Singh, A. Agbaria, J. F. Meyer, W. H. Sanders, and P. Pal. Model-based
validation of an intrusion-tolerant information system. In Proceedings of the 23rd IEEE Symposium
on Reliable Distributed Systems, pages 184–194, Florianópolis, Brazil, Sept. 2004.
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