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Abstract 

In this study, a NASICON-structured Li1.3Al0.3Ti1.7(PO4)3 (LATP) powder is prepared by 

hydrothermal methods followed by calcination, cold pressing and post-sintering processes. The 

white, solid product is characterized thoroughly using powder X-ray diffraction (XRD) and field 

emission scanning electron microscopy (FE-SEM) equipped with Energy Dispersive X-ray 

Spectroscopy (EDS). The conductivity of the material is measured by a impedance spectroscopy 

as a function of temperature. Initially, hydrothermal synthesis yields a material isostructural with 

the orthorhombic oxyphosphate, LiTiOPO4. EDS analysis shows that the distribution of aluminum 

throughout this material is uniform. A systematic study is then performed to investigate how 

altering the sintering parameters (such as powder pre-sintering temperature and pellet sintering 
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temperature) affect the formation of LATP. The structure is determined by Rietveld refinement 

against XRD data and the effects of sintering temperature on porosity, microstructure and electrical 

conductivity were resolved. The experimental results show that the optimum pre-sintering and 

sintering temperatures of LATP powders and pellets respectively are 900 ℃ and 1100 ℃. These 

conditions produce materials with the highest density (99.07% of theoretical), superior 

conductivity (grain-, grain boundary- and total lithium-ion conductivities of 6.5710-4, 4.5910-4 

and 2.7010-4 S cm-1, respectively) and with an activation energy for Li motion of 0.17 eV.  

Keywords: NASICON; Li1.3Al0.3Ti1.7(PO4)3; solid electrolyte; ionic conductivity; sintering process; 

lithium-ion batteries 

1. Introduction 

Since the commercialization of lithium ion batteries (LIBs), LIBs have been widely used as 

power sources for portable electronic devices due to their high energy density, light weight and 

long cycle life. However, LIBs containing organic liquid electrolytes have problems with leakage 

and flammability, which particularly limits large-scale applications. Use of solid-state electrolytes 

(SSEs) in all-solid-state-batteries (ASSBs) is expected to counteract many of the present safety 

problems of lithium-ion batteries due to the minimization of unwanted reactivity at the electrode 

interfaces. 

Many kinds of inorganic solid state electrolytes, such as garnet-type Li7La3Zr2O12[1-5], 

perovskite-type Li3xLa2/3−xTiO3[6-10], and Na-superionic conductor (NASICON)-type 

systems[11-15] are being actively investigated. Among them, the NASICON-type material, 

lithium titanium phosphate, LiTi2(PO4)3 (LTP) is considered one of the most promising solid-state 

electrolytes given its inherent safety, low cost, high thermal and air stability at room temperature. 

In addition, LTP has proved to be an adaptable material, with use as an effective electrolyte not 
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only in all-solid-state lithium-ion batteries (ASSLBs)[16-18], but also in lithium-air [19, 20] and 

lithium-sulfide systems[21]. 

NASICON-type LiTi2(PO4)3 forms with a rhombohedral structure composed of octahedral TiO6 

which corner-share with tetrahedral PO4. Two types of Li cation vacancies exist in the structure; 

M1 vacancies, which are formed between tetrahedral PO4 and M2 vacancies, which are formed 

between adjoining octahedral TiO6. In a 3-D NASICON network[22, 23], Li+ ions diffuse along 

the pathways which interconnect the M1–M2 vacancies. 

The disadvantage with LiTi2(PO4)3, however, is lower ionic conductivity at room 

temperature[24]. In LTP, the contribution of the grain boundary resistance to the total resistance 

is much larger than that contributed by the bulk. In other words, the grain boundary resistance is 

the major factor that governs the total conductivity of LiTi2(PO4)3. Therefore, controlling the 

density of an LTP electrolyte becomes a key factor towards optimizing the total conductivity. In 

order to increase the density, many researchers have begun to study the effects of adding fluxes or 

employing new sintering techniques, for example, some of which are discussed briefly below[25].  

It has been found that Ti4+ can be replaced by various trivalent elements (such as Al3+, Fe3+, Y3+,  

Cr3+, Ga3+ and Sc3+) while retaining the rhombohedral NASICON-type structure [17, 26-28]. 

Among these aliovalent substituents, Al3+ appears to modify the NASICON cell volume towards 

its optimum size for facile Li+ transport and significantly improves the conductivity in so-formed 

Li1+xAlxTi2-x(PO4)3 (LATP). Conversely, some studies have emphasized that a major role of the 

aluminum additive is to form the Al-rich second phase AlPO4, which improves the total ion 

conductivity by enhancing densification effectively forming a composite. However, the 

concentration of added Al is crucial since at high levels it acts so as to prevent Li-ion conduction 

across the LiTi2(PO4)3 grain boundaries. Thus, maintaining an overall control of the LTP 
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microstructure would appear to be vital in efforts to maximize overall conductivity; a balance 

needs to be struck between achieving high density and ensuring secondary phases do not impede 

ionic transport at the grain boundaries[29].  

An alternative approach to this microstructure problem is to employ low melting point 

fluxes[24, 30-32] to densify LTP and associated substituted solid electrolytes.. In early research of 

this type, Aono et al.[24] used inorganic binders, such as Li2O and Li4P2O7, as fluxes to increase 

the relative density of the sintered pellets and the Li+ concentration at the grain boundaries; the 

ionic conductivity was increased to 3.5 × 10-4 S cm-1 as a result. Aono et al.[30] went on to use 

other fluxes, including Li3PO4 and Li3BO3, to reduce the activation energy of Li+ grain boundary 

diffusion and to increase the contact area between the crystal grains. The LTP-0.2 Li3BO3 sample 

showed an ion conductivity of 3.0×10-4 S cm-1 at room temperature. In more recent research, Bai 

et al.[31], found that LiBO2 could act as a very effective sintering aid, which densifies LATP and 

improves the Li-ion conductivity as a consequence. The LATP-LiBO2 material forms a uniform 

microstructure with a relative density of up to 97.1% of the theoretical value and a total ionic 

conductivity of 3.5×10-4 S cm-1, the activation energy for Li+ motion was reduced to 0.39 eV. 

The focus of recent research has switched to employing different sintering techniques to 

prepare LTP and LATP without sintering aids. These include melt quenching[33, 34], sol-gel[11, 

13, 35], mechanical milling[36, 37], co-precipitation[38, 39] and spark plasma sintering (SPS)[40-

43] techniques. Kobayashi et al.[43] found out that the Li-ion conductivity in LTP at room 

temperature can be improved from 10-8 to 10-6 S cm-1 via the SPS process. In an alternative 

approach, Xu et al prepared high density LATP (x = 0.4) with ~ 100% of theoretical density by 

hydrothermal methods [41]. The resulting material possessed an exceptionally high ionic 



 5 

conductivity of 1.12 × 10-3 S cm-1 at room temperature and a corresponding low activation energy 

of 0.25 eV for Li-ion motion. 

2. Experimental 

2.1. LATP synthesis and pellet preparation 

Ti(OCH(CH3)2)4 (Acros, purity, 98%), Al(NO3)3·9H2O (Shimakyu’s pure chemical Co, Ltd., 

98%), H3PO4 (Echo chemical Co, Ltd., 86%) and LiOH·H2O (Acros, 98%) were used without 

further purification and simply mixed with a molar ratio of Li:Al:Ti:P = 1.3:0.3:1.7:3. 60 ml of the 

resulting mixture was transferred into a 100 ml stainless steel autoclave. The autoclave was sealed, 

and heated to 180 °C in a furnace (Thermo® , BF51314C) for 24 h before cooling to room 

temperature. The resulting product was filtered, washed with deionized water and ethanol (Echo 

chemical Co, Ltd., 95%). The LATP precursor cake was dried for 12 h at 80 °C and the solid 

(named “LATP-pre”) characterized before further treatment. The dry powder was split into 5 

samples and heated in air for 3 h at 500 °C (named “LATP-500”), 600 °C (“LATP-600”), 700 °C 

(“LATP-700”), 800 °C (“LATP-800”) and 900 °C(“LATP-900”), respectively. After cooling, 

each of the LATP powders was cold pressed at 13000 psi to a pellet of a diameter and thickness 

of ca.10 mm and 1.5 mm, respectively. The pellets were sintered at 900 °C, 1000 °C, 1100 °C and 

1200 °C for 3 h in air, respectively. Each of these pellets are denoted herein in terms of their initial 

heating and final sintering temperatures (e.g. “LATP-500-900” etc.) 

2.2. Characterization 

The two faces of each pellet were polished and painted with silver paste as blocking electrodes. 

The AC impedance was measured using a Solartron (SI1287+1255B) Impedance Analyzer in the 

frequency range from 1 MHz - 0.01 Hz, with AC amplitude of 30 mV. The measurements were 

performed at temperatures from 25 °C - 125 °C. The dried precursor powders and the product 
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pellets were characterized by powder X-ray diffraction (XRD; Bruker D8 Advance Eco) with Cu 

Kα radiation (λ = 1.5418 Å). Rietveld structure refinement against XRD data was performed using 

the GSAS software[44]. The morphology and structure of the LATP sample was analyzed using 

Ultra-High Resolution Field Emission Scanning Electron Microscope (FE-SEM; JEOL/JSM-

7600F) equipped with energy dispersive X-ray spectroscopy (EDS). Thermogravimetric Analyzer 

(TGA; DuPont, TA Q50) was performed on the LATP-pre power at a heating rate of 10 °C min-1 

in a temperature range of 30–800 °C under air atmosphere.  

2.3. NCM-LATP/AG pouch cell construction   

Electrodes for the pouch cell were provided by Gold Carbon Corp, Ltd. The anode consisted 

of artificial graphite (AG) (93.8%) active material and polyvinylidene difluoride (PVdF) (Sigma-

Aldrich, purity 99%) binder on Cu foil (UBIQ Technology, purity 99%) current collector. The 

cathode consisted of LiNi0.5Co0.2Mn0.3O2 (NCM-523, NCM) (82%) (Provided from Gold Carbon 

Company) active material and PVdF binder on Al foil (UBIQ Technology, purity 99%) current 

collector. A slurry containing LATP and PVdF binder (96:4 wt.%) in NMP (N-methyl 

pyrrolidinone; UBIQ technology Co. Ltd., 99%) was used to prepare the LATP electrolyte. The 

LATP slurry was coated on the NCM electrode and dried at 80 °C, then marked as “NCM-LATP”. 

The NCM-LATP (193.3 mAh, density: 0.0175 g/mm2) and AG (254 mAh, density: 0.0072 g/mm2) 

electrodes were punched and dried at 120 °C for 8 h in vacuum to remove the residual water. The 

electrode sizes of anode and cathode are 25 mm x 25 mm.  After pouch cell assembly (A/C ratio 

is 1.31), the cell was run over 2 cycles at a very slow rate (0.5C). The voltage range of 2.8-4.3 V 

under 0.5C was used for cycling stability tests. Manufacture and testing of pouch cells were in a 

closed room with 25oC in a drying room with air-conditioning. 

3. Results and discussion 
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Fig. 1(a) shows the experimental X-ray diffraction pattern of the LATP-Pre powder prepared 

by the hydrothermal method after drying. As shown in the figure, the peaks in the diffraction 

pattern could be assigned to that from the orthorhombic structure of LiTiOPO4 (Lithium titanium 

oxyphosphate, ICSD#39534). 

Fig. 1(b) displays the thermogravimetry analysis (TGA) profile and the profile from the 

differential of the thermogravimetry (DTG) signal for LATP-Pre. A weight loss of 7.76 wt.% was 

measured from the TGA curve across the temperature range of 30 – 800 ℃. Since the precursor 

powder of hydrothermal synthesis was a crystal phase of LiTiOPO4 with good crystallinity, the 

main reaction of the precursor powder in the heating process is the transformation of LiTiOPO4 

crystal phase into Li1.3Al0.3Ti1.7(PO4)3 crystal phase, so the weight loss was very small. From the 

DTG curve we observed six peaks of mass loss. The first broad peak occurred at 50 to 360℃ and 

was a slow endothermic process due to the decomposition of the adsorbed water in the sample. 

The second peak on the DSC curve was about 402℃. It was caused by the decomposition of 

organic matter in the precursor powder. As the temperature gradually increases, there was one at 

463, 550, 640, and 685℃. The endothermic peak was a process in which the orthorhombic phase 

of the orthorhombic LiTiOPO4 was gradually converted into a trigonal Li1.3Al0.3Ti1.7(PO4)3 phase. 

Fig. 2(a) shows an FE-SEM image of the LATP-pre powder obtained following its recovery 

after hydrothermal synthesis. It can be clearly observed from the micrograph that LATP-pre takes 

the form of irregular, approximately rectangular plates in the nanometer regime, where the edge 

of each plate is approximately 80-130 nm in size. In turn, each plate is composed of smaller 

nanoparticles which can be just discerned from the image at the magnification of 9000X. Figs. 

2(b-e) present the EDS mapping for each of the elements except Li from the image shown in Fig. 
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2(a). The distribution of each element across agglomerations of plates was uniform and 

homogeneous. 

The XRD patterns of the LATP-pre precursor after calcination at different temperatures (from 

500-900 ℃ for 3 hours) are shown in Fig. 3(a). The main peaks in the XRD patterns of LATP-

500, LATP-600 and LATP-700 could be indexed as LiTiOPO4 (ICSD#39534). As the 

temperature increases, the phase composition gradually changes, such that at high sintering 

temperatures, (LATP-800 and LATP-900,) the main peaks in the diffraction patterns could be 

indexed as the Li1.3Al0.3Ti1.7(PO4)3 NASICON-type structure (ICSD#257190) in rhombohedral 

space group of R3̅c. 

The effect of temperature on the phase composition of the LATP sample was investigated 

further by analyzing the diffraction data by Rietveld refinement. Table S1 lists the phase 

compositions of the various LATP samples after Rietveld refinement analysis. These phase 

composition data are plotted in Fig. 3(b). As the powder calcination temperature increases, 

orthorhombic LiTiOPO4 is gradually transformed into the rhombohedral Li1.3Al0.3Ti1.7(PO4)3 

NASICON-type phase and once a powder calcination temperature of 800 °C was reached, the 

content of the LiTiOPO4 phase dropped from the value of 90.2 wt% observed at the lowest 

calcination temperature (500 °C) to 14 wt%. On increasing the powder calcination temperature 

further to 900 °C, there was no further trace of the LiTiOPO4 phase and the content of 

Li1.3Al0.3Ti1.7(PO4)3 reaches a maximum (of 81 wt%). 

The total impedance was obtained by fitting the respective semicircles from spectra using an 

equivalent circuit model as shown in the inset of Fig 4. In the fitted circuit, Rb was interpreted as 

the circuit resistance external to the specimen, which originated from the intercept of the semicircle 
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with the Z’ axis in the high frequency region and was taken as representing the bulk resistance. 

Rgb was defined as the grain boundary resistance.  

Each of the calcined powders except LATP-1000 was pelletized and sintered at 900 ℃ for 3 h. 

These are hereafter denoted LATP-500-900, LATP-600-900, LATP-700-900, LATP-800-900 

andLATP-900-900. The bulk, grain boundary and total conductivities of all samples sintered at 

900 °C for 3h are listed in Table 1. As the calcination temperature (i.e. pre-sintering treatment 

temperature) increases, the impedance notably decreases. Consequently, LATP-900-900 exhibited 

the highest total ionic conductivity (σtotal) and relative density of 5.72*10-5 S cm-1 and 94.10%, 

respectively, at room temperature. 

Fig. 5(a)-(e) displays SEM images of samples of the LATP-500, LATP-600, LATP-700, 

LATP-800 and LATP-900 powders. The grain size was about 110-162 nm, 71-78 nm, 95-160 nm, 

230-370 nm, 150-225 nm. Although there is not a clear trend of increasing particle size with 

calcining temperature, it is evident from the SEM images that at lower calcining temperatures the 

samples were composed of particles that were more three-dimensional and less anisoptropic in 

nature. At 500 °C, for example, the irregular cuboid crystallites are stacked rather inefficiently, 

leaving relatively large interparticle voids and creating a macroporous microstructure. As the 

calcination temperature is raised, the particles themselves become more two-dimensional, 

anisotropic and plate-like. Further, the platelets agglomerate such that the interparticle porosity 

progressively decreases. By 900 ℃, the density of the material has visibly increased in the SEM 

images. Fig. 5(f) shows the EDS spectrum from LATP-900. The experimental values measured 

for LATP-900 are very close to the theoretical values and consistent with the ratios of starting 

materials used to make the desired LATP product. Combined, from the results of EDS elemental 

mapping, area scans and point scans, one can infer from the uniform distribution of elements in 
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the correct stoichiometric ratio, that the samples consist of agglomerated particles of 

Li1.3Al0.3Ti1.7(PO4)3. 

After confirming that 900 ℃ was the preferred calcination temperature for the powders (i.e. 

that the LATP-900-900 sample was the best of the sintered samples), further studies were pursued 

to explore the effect of the sintering temperature (i.e. second heat treatment temperature) on the 

microstructure and transport properties of the LATP samples. The LATP-900 powder was 

pelletized and sintered at 900 ℃, 1000 ℃, 1100 ℃, 1200 ℃ and 1300℃ for 3 h (and will be 

referred to as: LATP-900-900, LATP-900-1000, LATP-900-1100, LATP-900-1200 andLATP-

900-1300 respectively). The sample sintered at 1300 ℃, however, was discarded as the sintering 

temperature had evidently exceeded the melting point of the material. 

Fig. 6(a) compiles the Nyquist plots from the AC impedance analysis of all the LATP pellets 

measured at 25 °C and the bulk, grain boundary and total conductivities of all samples are 

displayed in Table 2. Results demonstrate that as the sintering temperature is increased so  the total 

Li-ion conductivity increases until a maximum of 2.7010-4 S cm-1 is reached at a sintering 

temperature of 1100 °C (LATP-900-1100) . Similarly, the grain boundary resistance decreases 

over the same temperature range and  LATP-900-1100 has the maximum grain boundary 

conductivity(4.5910-4 S cm-1) Both the grain boundary conductivity and total conductivity 

decrease (to 3.3210-4 S cm-1 and 2.2410-4 S cm-1, respectively) in the sample sintered at 1200 

°C (LATP-900-1200). Tellingly, these results follow a close correlation with the phase 

composition data obtained from Rietveld refinements against XRD data taken for the high 

temperature sintered samples (Table 3). LATP-900-1100 was found to contain more of the desired 

rhombohedral fast-ion conducting Li1.3Al0.3Ti1.7(PO4)3 phase than LATP-900-1200, which 

conversely contained more impurities. In fact, the major difference between the two samples in 
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this respect is the proliferation of AlPO4 at higher temperature. It is reasonable to assume that 

despite the improved bulk transport of Li+ in the LATP phase, the increased presence of the 

phosphate at the LATP grain boundaries is sufficient to block the diffusion of lithium ions, 

reducing not only the grain boundary conductivity but also the magnitude of the total conductivity. 

Hence any densification benefits apparently imparted by AlPO4 are rendered counter-productive 

by the increased grain boundary resistance. 

Fig. 6(b) shows the temperature dependence of the conductivity for the high temperature 

sintered pellets LATP-900-900 – LATP-900-1200 from 25 – 125 °C. From the resulting Arrhenius 

plot, the data demonstrate that, the conductivity of all the samples increases with temperature as 

one would expect and that across the measured temperature range the conductivity improves as 

the sintering temperature increases.   

Fig. 7 collates the FE-SEM micrographs for the high temperature sintered samples (excluding 

LATP-900-1300). The microstructure not only does the size of the individual LATP particles tend 

to increase with elevated sintering temperature, but also as these particles fuse together, so the 

density once again increases and the macropores that remain following calcination diminish in 

number still further. 

Fig. 8(a) shows several discharging curves of the NMC-MCMB solid pouch cell between 2.8-

4.25V. All the testing procedures were charged with the constant current (CC) protocol at a rate of 

0.5C and discharged at different rates, i.e.: 0.5C, 1C, 1.5C, 2C and 2.5C. The capacity values under 

various C-rates is summarized in Fig. 8(b). The discharge capacity of the cell was 26.5 mAh, 24.9 

mAh, and 22.9 mAh at 0.5-, 1- and 1.5-C-rates, respectively. The capacity retention ratio of 1.5C-

discharging to 0.5C-discharging is 86%, indicating a stable ionic conductivity under small to 

medium c-rates. However, the capacity decreased rapidly with the C-rate over 1.5C and was 43% 
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capacity remain (comparing to 0.5C) at the rate of 2.5C. Obvious capacity decreasing with an 

increasing discharge C-rate may be explained in terms of the electrochemical polarization due to 

the increased IR drop.  Inset in Fig. 8(b) display cross-sectional SEM image of electrode on cathode 

side. As shown in this picture, the thickness of LATP layer on the top of NCM was ~100 m. 

NCM cathode layer is in between LATP layer and Al foil with a thickness of ~70 m. Fig. 8(c) 

shows the plot of charging-discharging capacity as a function of the cycle number for the NMC-

MCMB solid pouch cell during a long-term cycling test between 2.8-4.25V. The inset in Fig. 8(c) 

displays a scheme of the pouch cell in the size of 40mm*50mm to light LED lamp. Identically, the 

capacity decay of 1st to 100th cycle was only 7%, but the capacity decreasing of 100th to 200th cycle 

and 200th to 300th cycle was 10% and 13%, respectively. The final capacity at 360th cycle was 

16.7mAh, which was 63.2% of the first cycle. The 0.5C discharging curves show similar voltage 

plateau from 1st to 100th cycle but obvious decay of working voltage from 100th to 300th cycle as 

demonstrated in Fig. 8(d). Figure 9 displays the cross-sectional SEM image of electrode after 350 

cycles. From the observation of SEM image of electrode after cycling tests, the structure of NCM 

and LATP were integrated and the interface between NCM and LATP was still very clear, which 

was similar to that of fresh electrode shown in the inset in Fig. 8(b). The result further confirmed 

the outstanding cycle performance of as-assembled NCM-LATP/MCMB pouch cell.    

 

4. Conclusions 

In summary, through the discussion of two-stage sintering. The good contact between the grains 

and the lower amorphous content of the second phase between the grain boundaries are the key in 

obtaining high lithium-ion conductivity. The activation energy of LATP-900-1100℃ is 0.17 eV, 

and the relative density is 99.07%. Its grain conductivity, grain boundary conductivity and total 
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lithium-ion conductivity are 6.57*10-4, 4.59*10-4, 2.70*10-4 S cm-1, respectively. Moreover, we 

developed a coating method for assembling NCM-LATP/AG pouch cell. The NCM-LATP/AG 

pouch cell exhibited a high reversible capacity of 16.7 mAh at 0.5 C after 360 cycles with 63.2% 

capacity retention. The obtained results indicated that LATP is a potential solid electrolyte material 

could be applied to lithium ion batteries. 
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Figure Captions 

Fig. 1. (a) Experimental XRD pattern of the hydrothermal precursor powder, LATP-pre compared 

to a calculated XRD pattern of LiTiO(PO4) taken from crystal data in the Inorganic Crystal 

Structure Database (ICSD#39534); (b) TGA-DTG profile of the hydrothermal precursor, 

LATP-pre. 

Fig. 2. (a) FE-SEM image of a sample of the hydrothermal precursor, LATP-pre, and (b-e) EDS 

elemental maps of the same sample; red, light green, cyan and dark blue maps show the 

presence of P (b), Ti (c), O (d) and Al (e), respectively. 

Fig. 3. (a) XRD patterns of LATP powders treated at different calcining temperatures (LATP-500 

to LATP-1000) and (b) the quantitative composition of each LATP sample shown as wt% 

fractions of each crystalline phase, as obtained from Rietveld refinements. 

Fig. 5. Nyquist plots from impedance spectroscopy experiments for LATP-500-900, LATP-600-

900, LATP-700-900, LATP-800-900 and LATP-900-900 pellets measured at 25 °C. The 

equivalent circuit that was used to fit the experimental data is show in the inset image.  

Fig. 4. FE-SEM images of the products from calcining the LATP-pre precursor powders at (a) 

500°C; (b) 600°C; (c) 700°C; (d) 800°C and (e) 900°C; (f) EDS spectrum for the LATP-

900 material. 

Fig. 6. (a) Nyquist plots and (b) Arrhenius plots from variable temperature impedance 

spectroscopy experiments on LATP-900-900, LATP-900-1000, LATP-900-1100 and 

LATP-900-1200 pellets. 
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Fig. 7. FE-SEM images of LATP-pre powder calcined at 900 °C and then sintered as pellets at 

temperatures between 900-1200 °C: (a) LATP-900-900, (b) LATP-900-1000, (c) LATP-

900-1100 and (d) LATP-900-1200 samples. 

Fig. 8. Electrochemical measurements of NCM-LATP/MCMB pouch cells:(a) Charge profile at 

0.5C and discharge profiles at 0.5, 1, 1.5, 2 and 2.5C; (b) Capacity versus C-rate. Inset: 

SEM cross-sectional image of electrode before cycling; (c) Cycling performance at 0.5C 

for 350 cycles; (d)Discharge curves of the NCM-LATP/MCMB pouch cell in different 

cycles at 0.5 C.  

Fig. 9. SEM cross-sectional images of electrode for NCM-LATP/MCMB pouch cell after 350 

cycling testes. Insets: Enlarge the magnitudes of NCM and LATP.  
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FIG. 1/9 Yen et al. 
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 FIG. 2/9 Yen et al. 
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FIG. 3/9 Yen et al. 
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FIG. 4/9 Yen et al. 
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FIG. 5/9 Yen et al. 
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FIG. 6/9 Yen et al. 
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FIG. 7/9 Yen et al. 
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FIG. 8/9 Yen et al. 
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FIG. 9/9 Yen et al. 
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Table. 1 The value of bulk conductivity (σbulk), grain boundary conductivity (σgb), total 

conductivity (σtotal) and relative density measured at 25 °C for pellets of LATP-500-900, LATP-

600-900, LATP-700-900, LATP-800-900 and LATP-900-900. 
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Table. 2. The value of bulk conductivity (σbulk), grain boundary conductivity (σgb), total 

conductivity (σtotal) and relative density measured at 25 °C for pellets of LATP-900-900, LATP-

900-1000, LATP-900-1100 and LATP-900-1200. 
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Table. 3. Phase composition of LATP powders calcined at 900 °C, pelletised and sintered at 

different temperatures (1000-1200 °C). 

 


