
Towards Compositional Hierarchical
Scheduling Frameworks on Uniform

Multiprocessors

João Pedro Craveiro and José Rufino

DI–FCUL–TR–2012–08

DOI:10455/6891

(http://hdl.handle.net/10455/6891)

December 2012

Published at Docs.DI (http://docs.di.fc.ul.pt/), the repository of the
Department of Informatics of the University of Lisbon, Faculty of Sciences.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade de Lisboa: Repositório.UL

https://core.ac.uk/display/32330581?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

REVISION HISTORY

Date Revision no. Summary of changes

28 Dec. 2012 1 — (first version)

31 Jan. 2013 2 More compact IEEE layout; corrected proofs; more de-
tailed explanations with more figures; extended experi-
ments and results; moved some details to appendix.

Towards Compositional Hierarchical Scheduling Frameworks
on Uniform Multiprocessors

João Pedro Craveiro and José Rufino
University of Lisbon, Faculty of Sciences, LaSIGE — Lisbon, Portugal

Email: { jcraveiro, ruf }@di.fc.ul.pt

Abstract

In this report, we approach the problem of defining and analysing compositional hierarchical scheduling
frameworks (HSF) upon uniform multiprocessor platforms. For this we propose the uniform multiprocessor
periodic resource (UMPR) model for a component interface. We extend previous results (for dedicated
uniform multiprocessors, and for compositional HSFs on identical multiprocessors), providing a sufficient
test for local schedulability of sporadic task sets under global EDF (GEDF) and guidelines for the complex
problem of selecting the virtual platform when abstracting a component. Finally, we present simulation
results that provide evidence for the need of future developments within the realm of compositional HSFs
on uniform multiprocessors.

Keywords

Compositional analysis; Global EDF; ARINC 653; real-time scheduling; schedulability analysis; hierar-
chical scheduling frameworks; uniform multiprocessors.

I. INTRODUCTION

Hierarchical scheduling is a current topic in the mature real-time scheduling theory discipline.
In one of the first works on the topic [1], a hierarchical scheduling framework (HSF) is used
to allow coexistence of hard real-time tasks and aperiodic soft real-time requests in multimedia
applications. Hierarchical scheduling is also used in mixed-criticality systems — systems providing
multiple functionalities who differ in how critical they are for the overall welfare of the system,
and in the level of assurance of each one’s mandatory certification [2]. A common approach to
this certification issue of mixed-criticality systems is enforcing isolation through time and space
partitioning (TSP) [3], such as in the ARINC 653 specification [4] used in the aerospace industry:
tasks are separated into partitions, which are scheduled by a cyclic executive (according to a
predefined schedule); when each partition is active, the respective tasks compete for scheduling
based on a priority-based scheduling policy; this is a particular case of an HSF [5].

While traditional approaches focused mainly on two-level hierarchies, hierarchical scheduling also
sees application in the virtualization field [6], [7], with nested virtualization for advanced security
purposes evidencing the need to support more than two hierarchy levels [8]. This highlights the
need for an analysis that is independent of the number of hierarchy levels and supports an arbitrary
number thereof: compositional analysis; compositionality is the property of a complex system which
can be analysed by recursively analysing its components and the way they are composed. In this
sense, a component comprises a workload, a scheduler, and a resource supply. Figure 1 illustrates a
compositional HSF; component C0 is the root component, with subcomponents C1 and C2. Component
C0 sees the component interfaces of C1 and C2, which abstract to C0 the resource demand by
each of the subcomponents, hiding how it is composed (tasks and/or subsubcomponents and their
characteristics). For each respective C1 and C2, the same interface also serves as its resource interface,

Work partially supported by FCT and Égide (PESSOA programme), through the transnational cooperation project SAPIENT; by the
EC, through project KARYON (IST-FP7-STREP-288195); and by FCT, through the LaSIGE research unit strategic project (UI 408), the
CMU|Portugal program, the Individual Doctoral Grant SFRH/BD/60193/2009, and project READAPT (PTDC/EEI-SCR/3200/2012).

1

Task

scheduler

Task

Interface

Interface Interface

scheduler scheduler

Task Task Task Task

Component C0

Component C1 Component C2

Figure 1. Compositional hierarchical scheduling framework

which expresses the resource supply it is provided, hiding who provides it and how (physical platform
vs. parent component).

Compositional analysis comprises three main points [9]:
1) Local schedulability analysis Analysing the schedulability of a component’s workload upon

its scheduler and resource supply.
2) Component abstraction Obtaining the component’s interface from its inner characteristics.
3) Interface composition Transforming a set of component interfaces abstracting the real-time

requirements of individual subcomponents into an abstraction of the same type expressing the
global requirements of its parent component.

Problem: In some domains of application of HSFs, multiprocessors are already being deployed,
but routinely not exploited, because of a lack of support thereto in terms of verification and cer-
tification [10], [11]. In [12], we discussed the open problem of extending virtual cluster-based
scheduling [13], [14] to uniform multiprocessors (those whose processors differ only in terms
of speed), and presented preliminary intuitions. In this report, we advance the state of the art in
compositional analysis of HSFs towards the realm of uniform multiprocessors. This is the first paper
explicitly dealing with compositional analysis of HSFs on uniform multiprocessor platforms.

Contributions: Besides the uniform multiprocessor resource (UMPR) model to serve as a compo-
nent interface for compositional analysis (Section III), our contributions w.r.t. the three main points
in compositional analysis of HSFs are:

1) Local schedulability analysis A sufficient test for sporadic task workloads using global EDF
(GEDF) on the UMPR resource model, based on Baruah & Goossens’s [15] test for dedicated
uniform multiprocessors (Section IV).

2) Component abstraction Guidelines for selecting the virtual platform for the UMPR, regarding
(for the same total capacity) how close to being identical it should be and its number of
processors; we show that simulation confirms these guidelines (Section V).

3) Interface composition Simulation results motivating the open questions regarding interface
composition and intercomponent scheduling (Section VI).

Due to the added complexity in dealing with uniform multiprocessors, our results on component
abstraction and interface composition do not constitute a complete solution thereto.

2

GEDF

U0 = (Π0,Θ0, {1, 0.5, 0.5})

U1 = (Π1,Θ1, {1, 0.5}) U2 = (Π2,Θ2, {0.5, 0.5})

GEDF

Component C0

Component C1 Component C2

Virtual platform

Physical platform Proc1 Proc2 Proc3

GEDF

... tasks ... tasks tasks ... tasks ...

τ
(U1)
1 τ

(U1)
2 τ

(U2)
1 τ

(U2)
2

Figure 2. Compositional hierarchical scheduling framework with the UMPR

II. RELATED WORK

A. Compositional analysis
Previous works on compositional analysis of multiprocessor HSFs assume a multiprocessor plat-

form with identical unit-capacity processors [13], [14], [16]–[18]. Our work extends to uniform
multiprocessors the multiprocessor periodic resource model (MPR) [13], [14]; a component interface
using the MPR Γ

def
= (Π,Θ,m) abstracts the provision of Θ processing units over every period with

Π time units length over a virtual platform consisting of m identical unit-speed processors.
We chose the MPR because of its simplicity and compositionality potential, and try to maintain

as much of these properties as possible by only including in the interface the schedulable utilization
of each processor in the virtual platform. The remaining works [16]–[18] present a less pessimistic
approach (i.e. incur in less overhead), at the expense of abstractions which:
• on the one hand, express the individual contribution of each processor;
• on the other hand, hide to the subcomponents’ schedulers details of the platform which, in the

case of uniform multiprocessors, are needed to guarantee a work-conserving local scheduler
(see Section III-A).

B. GEDF on dedicated uniform multiprocessors
In [19], Funk et al. provide an exact feasibility test and a sufficient GEDF-schedulability test for

implicit-deadline periodic task sets on uniform multiprocessors. Baruah & Goossens [15] provide a
sufficient GEDF-schedulability test for constrained-deadline sporadic task sets of uniform multipro-
cessors. Baruah [20] improves the latter in a way that allows it to be quantitatively evaluated using
the processor speedup factor metric.

III. SYSTEM MODEL

The system we analyze is modeled as a compositional HSF, as pictured in Figure 2. Root
component C0 receives a virtual resource provision directly from the physical platform, whereas
the remaining components receive their virtual resource provision from C0. The tasks in C0 abstract
the resource requirements of the subcomponents for use with classical schedulers and analysis (we

3

describe these tasks in Section VI). We now define the different parts of our system model, including
the resource model we introduce (UMPR).

A. Task and platform models
Task model: A component C comprises a workload (taskset) τ , with n constrained-deadline

sporadic tasks τi
def
= (Ti, Ci, Di), Ci ≤ Di ≤ Ti, for all τi ∈ τ . Each task τi generates an infinite

sequence of instances (jobs) of execution requirement Ci, with two consecutively released jobs
separated by at least Ti time units; each job must receive Ci units of processor capacity within Di

time units, with no intrajob or intratask parallelism.
We denote by ui

def
= Ci/Ti the utilization of task τi. The total utilization of taskset τ is defined as

usum(τ)
def
=
∑n
i=1 ui. We denote by δi

def
= Ci/Di the density of task τi. The total density and maximum

of density of taskset τ are defined as δsum(τ)
def
=
∑n
i=1 δi and δmax(τ)

def
= maxni=1 δi, respectively.

An upper bound to the maximum cumulative execution requirement by jobs of sporadic task τi
which have both their arrival and deadline times within any time interval with length t is given by
the demand bound function [21]:

dbf(τi, t)
def
= max

{
0,
(⌊
t−Di

Ti
+ 1

⌋)
· Ci

}
.

Platform and scheduling model: We assume a uniform multiprocessor platform with m syn-
chronized processors, defined and represented as

π
def
= {si}mi=1 , 1.0 ≥ si ≥ si+1 > 0.0, for all 1 ≤ i < m . (1)

Each si is a non-negative real number representing a processor’s normalized relative speed, or
schedulable utilization; this value corresponds to the amount of processor capacity units it provides
within one time unit.

For convenience, we will use S`(π), with ` ≤ m, to represent the sum of the capacities of the `
fastest processors in π: S`(π)

def
=
∑`
i=1 si. Hence, Sm(π) represents the total capacity of π. We will

also make use of the lambda parameter, which is defined as

λ(π)
def
=

m
max
`=1

Sm(π)− S`(π)

s`
(2)

and abstracts how different π is from an identical multiprocessor platform. For the extreme case
when π is an identical multiprocessor platform, λ(π) = m− 1.

We also assume a global EDF scheduling strategy with unrestricted migration, which means a job
may be preempted from one processor and resume execution on another processor with negligible
migration costs. This scheduling strategy is work-conserving, as it operates as follows on a uniform
multiprocessor platform: (i) if there is an active job waiting to execute, no processor is idle; (ii) when
the number of active jobs is less than the number of processors, the jobs execute on the fastest
processors (and only the slowest ones are idle); (iii) greater-priority (e.g., earlier-deadline) jobs
execute on the faster processors [15]. Without loss of generality, we refer to global EDF scheduling
strategy with unrestricted migration simply as “global EDF” (GEDF).

B. Resource model: the UMPR
To solve the described problem, we propose the uniform multiprocessor periodic resource model.

Definition 1. A uniform multiprocessor periodic resource (UMPR) model U def
= (Π,Θ, π) specifies the

provision of Θ units of resource over every period of length Π over a virtual uniform multiprocessor
platform π (defined as shown in (1)) — with Θ ∈ R+ and Π ∈ N. The ratio Θ/Π is termed bandwidth.

In previous works on compositional analysis of HSFs, a supply bound function [22] is used in
schedulability conditions and to generate component interfaces. The supply bound function of a

4

Sm(π)

β

α
ΠΠ

2
(
Π−
⌈

Θ
Sm(π)

⌉)

β′

2
(
Π−
⌈

Θ
Sm(π′)

⌉)
α′

Sm(π′)

time

time

Figure 3. Minimum supply schedule (excerpt) for two UMPRs: U = (Π,Θ, π) (top, blue) and U ′ = (Π,Θ, π′) (bottom, red), where
Sm(π) > Sm(π′) (both with m processors)

resource model is a lower bound on the amount of resource supply guaranteed to be given by it in
any time interval of a given length.

With the MPR, both the number of processors and the total capacity of the virtual platform are
expressed in one single abstraction —m— and the role of m in the definition of the supply bound
function for the MPR is expressing the total capacity of the platform. In the UMPR, these are
separate notions. Figure 3 represents (for two UMPRs with the same bandwidth and number of
processors but different total capacity), an excerpt of the schedule which yields the minimum supply
in a time interval of length t (as defined in [14]), with the total capacity explicitly denoted as such.
The portrayed schedule for U (resp. U ′) can be described as an exclusive supply of π (resp. π′) for
b Θ
Sm(π)

c (resp. b Θ
Sm(π′)

c) time units, up to one time unit with partial availability (β, resp. β′, makes
up for the eventual difference to Θ), and no supply for the rest of the period. When this extreme
schedule is provided the furthest apart possible on two consecutive periods, we have the schedule
which yields the minimum possible supply over any time interval length. Since π′ has less capacity
than π, U ′ corresponds to a greater share of π′ than U . Consequently, the maximum interval with
no supply is shorter. Hence, with only one minor adaptation, we apply the supply bound function
for the MPR [14] to the UMPR; it is defined as

sbf(U , t) def
=


0, t′ < 0

w, t′ ≥ 0 ∧ x ∈ [1, y]

w − (Sm(π)− β), t′ ≥ 0 ∧ x 6∈ [1, y]

(3)

5

sbf(U , t)

Max. slope: Sm(π)

Max. slope: Sm(π′)

lsbf(U ′, t)

sbf(U ′, t)

lsbf(U , t)

2Θ

Θ

Slope (both): Θ
Π

Π Π
t (time interval length)

Figure 4. Plot of sbf and lsbf for U = (Π,Θ, π) (blue) and U ′ = (Π,Θ, π′) (red), where Sm(π) > Sm(π′) (both with m
processors)

where

w =

⌊
t′

Π

⌋
·Θ + max {0, Sm(π) · x− (Sm(π) · Π−Θ)} ,

t′ = t−
(

Π−
⌈

Θ

Sm(π)

⌉)
,

x =

(
t′ − Π ·

⌊
t′

Π

⌋)
,

y = Π−
⌊

Θ

Sm(π)

⌋
,

and β = Θ−
⌊

Θ

Sm(π)

⌋
· Sm(π) .

When π is an identical multiprocessor platform, m = Sm(π), and the supply bound function becomes
identical to that of the equivalent MPR.

The same applies to the linear lower bound on the supply bound function, lsbf(U , t):

lsbf(U , t) def
=

Θ

Π

(
t−

(
2 ·
(

Π− Θ

Sm(π)

)
+ 2

))
. (4)

An important property of lsbf is that lsbf(U , t) ≤ sbf(U , t), for all t > 0 [14]. Figure 4 shows the
plots of sbf and lsbf for the same two UMPRs. Naturally, the range of lengths t for which there is
no minimum guaranteed supply is greater for U than for U ′.

IV. LOCAL SCHEDULABILITY ANALYSIS

To derive a sufficient schedulability condition, we use the framework introduced in [23] and used
in many works thereafter [14], [15], [20], [24]. Our approach extends the one followed for dedicated
uniform multiprocessors in [15]

Figure 5 shows the considered execution pattern. We consider a job of a task τk, and suppose it
is the first job to miss a deadline when component C schedules taskset τ under GEDF using the
UMPR model — which corresponds to a time-shared availability of a uniform multiprocessor π.

6

time
ti t0 ta td

Di

φi Ak Dk

τi τk

deadline miss

Figure 5. Considered execution pattern, where a job of task τk, arriving at instant ta, is the first to miss a deadline (at instant td)

We now follow the strategy used in [15], with the due adaptation to the fact that we are dealing with
a potentially non-dedicated resource supply. For this, let us introduce a function su(C, t1, t2), which
denotes the effective resource supply that component C receives over the specific time interval [t1, t2[.
This is different from the supply bound function, which denotes the minimum guaranteed resource
supply the component receives over any time interval with a given length, according to its resource
interface. Although we do not have a tractable way to compute this quantity, we acknowledge its
existence and will take advantage of its following properties:
• su(C, t1, t2) + su(C, t2, t3) = su(C, t1, t3), for all values of t1, t2, t3 such that t1 < t2 < t3;
• sbf(U , t2 − t1) ≤ su(C, t1, t2), for all values of t1, t2 such that t1 < t2; we will call upon this

property when deriving our schedulability condition.

A. Interference interval
The time interval we need to consider using this execution pattern is [t0, td[. Instant td is the

absolute deadline that τk misses. We now determine which specific instant is t0. For this, let W (t)
(with t ≤ td) denote the cumulative job execution requirement for time interval [t, td[; this is different
from the demand bound function, which is an upper bound on one of the source of this job execution
requirement, as we will see in Section IV-B.

Let I`,c denote the total duration, over [ta, td[, for which exactly ` processors, the slowest of which
is sc, are busy scheduling jobs of component C (with 0 ≤ ` ≤ c ≤ m). By definition of GEDF, τi’s
job must be executing on one of the processors whenever there is an idle processor. Unlike when
π is a dedicated platform, we cannot guarantee that τi is executing on one of the fastest processors
in π, but only that it is executing on one of the fastest processors available. So, for each duration
I`,c, the job is guaranteed to be executing on a processor of speed, at least, sc. Therefore,

Ck >
m−1∑
`=1

m∑
c=`

sc ·I`,c . (5)

The total amount of execution completed on C over the interval [ta, td[is given by the difference
between the resource supply it receives — su(C, ta, td) — and the total capacity that was idled al-
though available. For each duration I`,c, the available capacity that is idled is upper bounded by the
capacity of the m − c slowest processors; this results by definition: regardless of `, no processor
in {s1, . . . , sc} can be available but idle. Since this amount is not sufficient for τk’s job to meet its

7

deadline at td, we have

W (ta) > su(C, ta, td)−
m−1∑
`=1

m∑
c=`

(Sm(π)− Sc(π))·I`,c

= su(C, ta, td)−
m−1∑
`=1

m∑
c=`

Sm(π)− Sc(π)

sc
· sc ·I`,c

(by (2))

≥ su(C, ta, td)− λ(π) ·
m−1∑
`=1

m∑
c=`

sc · I`,c

(by (5))
> su(C, ta, td)− λ(π) · Ck

(by definition of δk)
= su(C, ta, td)− λ(π) · δk ·Dk

(by definition of δmax(τ))
≥ su(C, ta, td)− λ(π) · δmax(τ) ·Dk . (6)

Now let us consider a particular instant t0, which is formally defined as the smallest value t ≤ ta
such that W (t) ≥ su(C, t, td) − λ(π) · δmax(τ) · (td − t). This means that t0 is the earliest instant t
so that, in the time interval [t, ta[, no resource capacity available to C was idled. As a consequence,
we can say that, for an arbitrarily small positive number ε, some processor was available to C but
idle in the time interval [t0 − ε, t0[.

B. Component demand
We have defined the interval we need to consider — [t0, td[. Next, we determine the cumulative

execution that GEDF needs (but fails) to execute over that interval, denoted by W (t0). As we have
seen, two sources contribute to W (t0):
• jobs with arrival and deadline times within [t0, td[; this contribution includes the execution

requirement of τk’s deadline-missing job, and is upper-bounded by
∑n
i=1 dbf(τi, Ak +Dk);

• jobs that arrive before instant t0 and carry in some execution to time interval [t0, td[; by
construction of the execution pattern and by definition of the GEDF algorithm, all the considered
carry-in jobs have their deadlines at or before td and do not miss them.

Let us then consider the carry-in jobs. We start by proving that Lemmas 1 and 2 from [15] apply,
with due adaptation, to our case. Let Ak = ta − t0.

Lemma 1. Each carry-in job has strictly less than (Ak +Dk) · δmax(τ) remaining execution require-
ment at instant t0.

Proof: Let us consider a carry-in job of a task τi ∈ τ , which arrives at instant ti < t0 and has
not completed its execution by instant t0 (Figure 5). By definition of instant t0, it must be true that

W (ti) < su(C, ti, td)− λ(π) · δmax(τ) · (Ak +Dk + φi) ,

where φi = t0 − ti. On the other hand,

W (t0) ≥ su(C, t0, td)− λ(π) · δmax(τ) · (Ak +Dk) .

Hence, by definition, the amount of work done by GEDF on this component’s schedule over [ti, t0[
is strictly less than su(C, ti, t0) − λ(π) · δmax(τ) · φi. Now let C ′i denote the amount of execution
received by the carry-in job of τi over the time interval [ti, t0[; thus, Ci − C ′i denotes the carry-in
execution time of this job at instant t0. Let J`,c denote the total duration, over [ti, t0[, for which
exactly ` processors, the slowest of which is sc, are busy scheduling jobs of this component (with

8

0 ≤ ` ≤ c ≤ m). By definition of GEDF, τi’s job must be executing on one of the processors
whenever there is an idle processor. Therefore,

C ′i ≥
m−1∑
`=1

m∑
c=`

sc · J`,c . (7)

The total amount of execution completed on C over the interval [ti, t0[is given by the difference
between the resource supply it receives — su(C, ti, t0) — and the total capacity that was idled although
available. For each duration J`,c, the available capacity that is idled is upper bounded by the capacity
of the m− c slowest processors. Since this amount is not sufficient for τk’s job to meet its deadline
at td:

W (ti)−W (t0) > su(C, ti, t0)−
m−1∑
`=1

m∑
c=`

(Sm(π)− Sc(π)) · J`,c

So we have

su(C, ti, t0)− λ(π) · δmax(τ) · φi > su(C, ti, t0)−
m−1∑
`=1

m∑
c=`

(Sm(π)− Sc(π)) · J`,c

−λ(π) · δmax(τ) · φi >−
m−1∑
`=1

m∑
c=`

Sm(π)− S`(π)

sc
· sc · J`,c

(by (2))

−λ(π) · δmax(τ) · φi >− λ(π) ·
m−1∑
`=1

m∑
c=`

sc · J`,c

(by (7))
−λ(π) · δmax(τ) · φi >− λ(π) · C ′i

(rearranging)
C ′i > δmax(τ) · φi

Since Ci = δi ·Di ≤ δmax(τ) ·Di, we have that

Ci − C ′i < δmax(τ) ·Di − δmax(τ) · φi
= δmax(τ) · (Di − φi) . (8)

By construction of the considered execution pattern, we have that the absolute deadline of this τi’s
job (ti +Di) is not greater than td, so

ti +Di − t0 ≤ td − t0
Di − φi ≤ Ak +Dk

Replacing this in (8) we prove the lemma.

Lemma 2. There are, at most, ν = m− 1 carry-in jobs.

Proof: We use the same principle as Baruah & Goossens [15], but are not able to reach an
equally tight bound. Let ε denote an arbitrarily small positive number; by definition, W (t0 − ε) <
su(C, t0−ε, td)−λ(π)·δmax(τ)·(Ak+Dk+ε), whereas W (t0) ≥ su(C, t0, td)−λ(π)·δmax(τ)·(Ak+Dk);
hence:

W (t0 − ε)−W (t0) < su(C, t0 − ε, t0)− λ(π) · δmax(τ) · ε,
which shows some processor was idled (although available to C) in [t0 − ε, t0[. By definition of
GEDF, this means all active jobs were executing; hence, the number of carry-in jobs is, at most,
one less than the number of available processors. Since we do not possess a way to know exactly
how many processors were available to C in [t0 − ε, t0[, we are not able to tighten this bound further
than the worst case (m processors available, m− 1 carry-in jobs).

9

C. Sufficient local schedulability test
With the conditions proven in Lemmas 1 and 2 we are able to formulate a necessary condition

for unschedulability of C, from which we will then derive the sufficient schedulability condition.

Lemma 3. If a component C, comprising a virtual uniform multiprocessor platform π and a sporadic
task set τ , is not schedulable under GEDF using UMPR model U = (Π,Θ, π), then for some τk ∈ τ
and some Ak ≥ 0

n∑
i=1

dbf(τi, Ak +Dk) + (ν + λ(π)) · (Ak +Dk) · δmax(τ) > sbf(U , Ak +Dk) , (9)

Proof: We are now able to establish a strict upper bound on W (t0), based on the two sources
that contribute to such execution requirement. Jobs that have arrival and deadline times inside the
interference interval contribute with at most

∑n
i=1 dbf(τi, Ak + Dk), while jobs that arrive before

instant t0 and carry in some execution contribute with strictly less than m · (Ak +Dk) · δmax(τ). So
we have that

W (t0) <
n∑
i=1

dbf(τi, Ak +Dk) + ν · (Ak +Dk) · δmax(τ) .

From the definition of t0, we have that W (t0) ≥ su(C, t0, td)− λ(π) · (Ak +Dk) · δmax(τ). Applying
that and rearranging we obtain the following inequation:

n∑
i=1

dbf(τi, Ak +Dk) + (ν + λ(π)) · (Ak +Dk) · δmax(τ) > su(C, t0, td) .

Since we have no tractable way to compute su(C, t0, td), we take advantage from the fact that
su(C, t0, td) ≥ sbf(U , Ak +Dk) and prove the lemma.

By taking the contrapositive of Lemma 3, we have the following sufficient schedulability condition.

Theorem 1. A component C comprising a virtual uniform multiprocessor platform π and n sporadic
tasks τ def

= {τi
def
= (Ti, Ci, Di)}ni=1 is schedulable under GEDF using UMPR model U = (Π,Θ, π), if

for all tasks τk ∈ τ and all Ak ≥ 0,
n∑
i=1

dbf(τi, Ak +Dk) + (ν + λ(π)) · (Ak +Dk) · δmax(τ) ≤ sbf(U , Ak +Dk) . (10)

From Lemma 3 we can also derive a maximum value of Ak we have to consider when verifying
the condition.

Corollary 1. If the necessary condition in (9) holds for some τk ∈ τ and some Ak ≥ 0, then it also
holds for a value of Ak such that

Ak <
U +B −Dk ·

(
Θ
Π
− usum(τ)− 2·(m−1) · δmax(τ)

)
Θ
Π
− usum(τ)− 2·(m−1) · δmax(τ)

(11)

where

U
def
=

n∑
i=1

(Ti −Di) ·
Ci
Ti

, and B
def
=

Θ

Π
·
(

2 + 2 ·
(

Π− Θ

Sm(π)

))
.

Proof: From (i) the necessary condition for unschedulability in (9), (ii) the definitions of
dbf(τi, t), ν and λ(π), and (iii) the fact that sbf(U , t) ≥ lsbf(U , t) (for all t), we can derive a
necessary condition on Ak as follows.

n∑
i=1

dbf(τi, Ak +Dk) + (ν + λ(π)) · (Ak +Dk) · δmax(τ) > sbf(U , Ak +Dk)

⇒ (Ak +Dk) · usum(τ) + U + 2·(m−1) · (Ak +Dk) >
Θ

Π
(Ak +Dk)−B .

10

Rearranging we obtain the inequality in (11).
Due to the pessimism introduced in bounding the number of carry-in jobs (Lemma 2), our test

does not generalize the test in [15] for the dedicated uniform multiprocessor case. However, when
in the presence of a UMPR which corresponds to a dedicated supply (Θ = Sm(π) · Π), the latter
may be employed instead.

V. COMPONENT ABSTRACTION (GUIDELINES AND EXPERIMENTS)
The technique presented in [14] to generate the MPR for C consists of: (i) assuming Π is

specified by the system designer; (ii) computing Θ and m so that C is schedulable with the least
possible bandwidth (Θ/Π); component interfaces where bandwidth exceeds the platform capacity are
infeasible. For the computation of the schedulability test to become tractable, sbf(U , t) is replaced
by lsbf(U , t).

For the UMPR, component abstraction is not this simple, because the notions of number of
processors and total capacity are no longer represented together as only m. Even restricting to
uniform platforms which are in fact identical, each number of processors m > 0 corresponds to an
infinite amount of uniform multiprocessor platforms with different total capacities Sm(π) ≤ m, and
each total capacity Sm(π) may be achieved through any number of identical processors m ≥ Sm(π).
Furthermore, the available physical platform may impose restrictions on this. Because of the evident
added complexity, we do not present yet a complete solution for it in this report; we will assume
both Π and π are specified, and only Θ is computed to guarantee schedulability. We nevertheless
provide important guidelines towards its solution. For this, let us introduce one additional definition.

Definition 2. If a UMPR U guarantees schedulability of C (comprising taskset τ) with its smallest
possible bandwidth, then, for some τk ∈ τ and some Ak ≥ 0,

n∑
i=1

dbf(τi, Ak +Dk) + (ν + λ(π)) · (Ak +Dk) · δmax(τ) = lsbf(U , Ak +Dk) .

We now provide and prove guidelines regarding the relationship between resource bandwidth and
(i) how close to being identical the virtual platform is, and; (ii) the number of processors. In the
second comparison, we vary the number of processors with a fixed total capacity; in the similar
considerations done in [14] for the MPR, from which we draw inspiration, this was not possible.

A. Uniform vs. identical multiprocessor platform
We start by showing that platforms with lower values of λ(π) allow UMPRs with lower resource

bandwidth, which leads to a more particular consideration about the relation between (non-identical)
uniform multiprocessor platforms and identical ones.

Lemma 4. Consider UMPR interfaces U1 = (Π,Θ1, π1) and U2 = (Π,Θ2, π2), such that m1 =
m2(= m), Sm(π1) = Sm(π2), and λ(π1) < λ(π2). Suppose each interface guarantees schedulability
of the same component C with its respective smallest possible bandwidth. Then, U2 has a higher
resource bandwidth than U1, i.e. Θ1 < Θ2.

Proof: For this lemma and the following ones, we follow the structure of the proof by contra-
diction of Lemma 2 in [14]. Let us then consider U ′2 = (Π,Θ′2, π2) such that Θ′2 ≤ Θ1, and suppose
U ′2 guarantees schedulability of C according to Theorem 1.

Let ∆d denote the difference in processor requirements of C on π1 and π2 for some interval of

11

length Ak +Dk — i.e., the difference between the left sides of (10) for each case:

∆d =

(
n∑
i=1

dbf(τi, Ak +Dk) + (ν2 + λ(π2)) · (Ak +Dk) · δmax(τ)

)

+

(
n∑
i=1

dbf(τi, Ak +Dk)− (ν1 + λ(π1)) · (Ak +Dk) · δmax(τ)

)
= (ν2 + λ(π2)− ν1 − λ(π1)) · (Ak +Dk) · δmax(τ) .

By our definition of ν, ν1 = ν2; since λ1 < λ2, we have that ∆d > 0. Let us now obtain the
counterpart ∆s, denoting the difference between the linear supply bound functions for U1 and U ′2,
for some interval of length Ak +Dk:

∆s = lsbf(U ′2, Ak +Dk)− lsbf(U1, Ak +Dk)

=
Θ′2
Π

(
(Ak +Dk)−

(
2 ·
(

Π− Θ′2
Sm(π2)

)
+ 2

))
− Θ1

Π

(
(Ak +Dk)−

(
2 ·
(

Π− Θ1

Sm(π1)

)
+ 2

))

≤ Θ1

Π

(
(Ak +Dk)−

(
2 ·
(

Π− Θ1

Sm(π2)

)
+ 2

))
− Θ1

Π

(
(Ak +Dk)−

(
2 ·
(

Π− Θ1

Sm(π1)

)
+ 2

))

≤ 2 ·Θ1
2

Π
·
(

1

Sm(π2)
− 1

Sm(π1)

)
= 0 .

Thus, ∆s ≤ 0. Since U1 guarantees C to be schedulable with its smallest possible bandwidth,∑n
i=1 dbf(τi, Ak+Dk) +(ν1 + λ(π1))·(Ak+Dk)·δmax(τ) = lsbf(U1, Ak+Dk) for some Ak+Dk.

Thus, for the same Ak + Dk,
∑n
i=1 dbf(τi, Ak + Dk) + (ν2 + λ(π2)) · (Ak + Dk) · δmax(τ) >

lsbf(U ′2, Ak+Dk). This means that U ′2 does not guarantee schedulability of C according to Theorem 1,
which contradicts our initial assumption.

Theorem 2. For the same number of processors and total capacity, UMPRs with (non-identical)
uniform multiprocessor virtual platforms are better than those with identical multiprocessor virtual
platforms.

Proof: An identical multiprocessor platform π1 is a particular case of a uniform multiprocessor
platforms where all m1 processors have the same speed, and λ(π1) = m1 − 1. For any other (non-
identical) uniform multiprocessor platform π2, λ(π2) < λ(π1). Then, the theorem follows from
Lemma 4 and its proof.

Lemma 4 and Theorem 2 are coherent with previous findings in the literature, which state the
superiority of “less identical” uniform multiprocessor platforms to scheduling sporadic task sets [15].

B. Number of processors
We now compare platforms which provide the same total capacity through different number of

processors. Since we only want to observe the effect of the number of processors, we need to compare
platforms which are equally identical — and for this it does not suffice that they have identical values
of λ(π). We perform two comparations, using one extreme case in each comparison: (i) both platforms
are identical multiprocessor platforms; (ii) both platforms are the furthest possible from being an
identical multiprocessor platform (λ(π1) = λ(π2) = 0).

Lemma 5. Consider UMPR interfaces U1 = (Π,Θ1, π1) and U2 = (Π,Θ2, π2), such that m2 =
m1 + 1, Sm1(π1) = Sm2(π2), m1− 1 = λ(π1) < λ(π2) = m2− 1. Suppose each interface guarantees
schedulability of the same component C with its respective smallest possible bandwidth. Then, U2

has a higher resource bandwidth than U1, i.e. Θ1 < Θ2.

Proof: The proof is similar to that of Lemma 4, so let us consider again U ′2 = (Π,Θ′2, π2) such
that Θ′2 ≤ Θ1, and suppose U ′2 guarantees schedulability of C according to Theorem 1. The premises

12

Table I
EXAMPLE COMPONENTS: C1 AND C2

Taskset usum δsum

C1 {(60, 5, 60), (60, 5, 60), (60, 5, 60), (60, 5, 60),
(70, 5, 70), (70, 5, 70), (80, 5, 80), (80, 5, 80),
(80, 10, 80), (90, 5, 90), (90, 10, 90), (90, 10, 90),
(100, 10, 100), (100, 10, 100), (100, 10, 100)}

1.304 1.304

C2 {(45, 2, 40), (45, 2, 45), (45, 3, 40), (45, 3, 45),
(50, 5, 45), (50, 5, 50), (50, 5, 50), (50, 5, 50),
(70, 5, 60), (70, 5, 60), (70, 5, 65), (70, 5, 65),
(70, 5, 65), (70, 5, 65), (70, 5, 70)}

1.122 1.193

for the computation of necessary conditions on the values of ∆d and ∆s are maintained and we
thus have that ∆d > 0 and ∆s ≤ 0. We are then able to reach the same contradiction and prove
Lemma 5.

Lemma 6. Consider UMPR interfaces U1 = (Π,Θ1, π1) and U2 = (Π,Θ2, π2), such that m2 > m1,
Sm1(π1) = Sm2(π2), λ(π1) = λ(π2) = 0. Suppose each interface guarantees schedulability of the
same component C with its respective smallest possible bandwidth. Then, U2 has a higher resource
bandwidth than U1, i.e. Θ1 < Θ2.

Proof: The proof is also similar to that of Lemma 4; let us have U ′2 = (Π,Θ′2, π2) such that
Θ′2 ≤ Θ1, and we suppose U ′2 guarantees schedulability of C according to Theorem 1. The platforms
for λ(π1) = λ(π2) = 0 correspond to the extreme cases where [19]:

π1 = {Sm1(π1), 0, . . . , 0︸ ︷︷ ︸
m1−1 processors

}, π2 = {Sm2(π2), 0, . . . , 0︸ ︷︷ ︸
m2−1 processors

}.

In this case, λ(π1) = λ(π2), but ν2 > ν1, so we still have ∆d > 0. In a similar vein as before, we
find that ∆s ≤ 0. We are then able to reach the same type of contradiction regarding the assumptions
on U ′2, and prove Lemma 6.

The following theorem then follows from Lemmas 5 and 6, and their proofs.

Theorem 3. UMPRs with virtual platforms providing the same total capacity with a lower number
of faster processors are better than those with a greater number of slower processors, provided none
of the platforms being compared is “less identical” than the other one.

This is coherent with Lemma 2 in [14] for the (identical) multiprocessor periodic resource model.

C. Experiments with example components
Let us consider components C1 and C2, described in Table I. To allow some comparisons, these

samples are taken from [14], and we will select the same values of Π as the authors did there (Π = 6
for C1, Π = 5 for C2).

1) Component abstraction guidelines: To show the effects of the guidelines in Theorems 2
and 3, we generate the minimum UMPR interfaces for three sets of virtual platforms with 2 ≤ m ≤ 8
processors, all with total capacity Sm(π) = 2.0 (unlike with the MPR, we are able to vary the number
of processors and the total capacity of the platform independently). In each set, the virtual platform
is defined as follows:
• Identical set: si = 2.0/m, for all 1 ≤ i ≤ m.
• Uniform 1 set: s1 = 1.0, si = 1.0/(m− 1), for all 2 ≤ i ≤ m.
• Uniform 2 set: si = 2.0/(2min{i,m−1}), for all 1 ≤ i ≤ m.

Figure 6 shows the plots of the obtained results, in terms of the bandwidth (Θ/Π) of the computed
interfaces. We see that, for within each set of platforms, increasing the number of processors causes an

13

2 3 4 5 6 7 8 9 10
1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

3.25
Identical

Uniform 1

Uniform 2

m (number of processors)

Θ
/Π

 (
b

a
n

d
w

id
th

)

(a) Component C1 (Π = 6)

2 3 4 5 6 7 8 9 10
1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

3.25
Identical

Uniform 1

Uniform 2

m (number of processors)

Θ
/Π

 (
b

a
n

d
w

id
th

)

(b) Component C2 (Π = 5)

Figure 6. Comparison between minimal bandwidth for UMPRs based on identical and non-identical uniform multiprocessors. In all
samples, Sm(π) = 2.0; points above the dashed line (at Θ/Π = 2.0) correspond to infeasible UMPRs)

1 3 5 7 9 11 13 15 17 19
0.95

1

1.05

1.1

1.15

1.2
m=2
m=3
m=4

Π (interface period)

B
a

n
d

w
id

th
 r

a
tio

 (
U

M
P

R
/M

P
R

)

(a) Component C1

1 3 5 7 9 11 13 15 17 19
0.95

1

1.05

1.1

1.15

1.2
m=2
m=3
m=4

Π (interface period)

B
a

n
d

w
id

th
 r

a
tio

 (
U

M
P

R
/M

P
R

)

(b) Component C2

Figure 7. Ratio between the minimum bandwidth required by a UMPR with an identical multiprocessor platform and by the
equivalent MPR (according to each respective schedulability test)

increase in the resource bandwidth of the UMPR interface. This confirms the guideline in Theorem 3,
which states that, between two platforms with the same capacity and which are not less identical
than one another, virtual platforms with less faster processors are better than those with more slower
processors. We also see that, for the same capacity and number of processors, the platforms in the
Uniform 1 and Uniform 2 sets yield less resource bandwidth that the one in Identical. This confirms
the guideline in Theorem 2, which states that less identical platforms (those with lower values of
λ(π)) perform better. It should be noted that, of the resulting UMPRs, those with Θ/Π > 2.0 are
not feasible.

2) UMPR vs. MPR: In another experiment with the same components, we used only identical
unit-capacity multiprocessor platforms (Sm(π) = m). For platforms with 2, 3 and 4 processors,
and for each value of Π between 1 and 20, we derived the minimum bandwidth UMPR and MPR
interfaces, using, respectively, the schedulability tests in Section IV and in [14]. The plots in Fig. 7
show, for each case, the ratio between the obtained minimum bandwidths (a ratio greater than 1
means the UMPR required more bandwidth than the MPR). We can see that none of the tests is
tighter than the other one all of the time, but the MPR test is generally tighter; this arises as a
consequence of transitioning from identical to uniform, since we have to incur some pessimism
when deriving Eqs. (5) and (7); this is also the case on dedicated uniform multiprocessors [15].
Furthermore, we introduce additional pessimism in the number of carry-in jobs (Lemma 2).

14

VI. INTERFACE COMPOSITION AND INTERCOMPONENT SCHEDULING
(SIMULATION AND OPEN QUESTION)

There are no known scheduling algorithms for component interfaces such as the MPR [14] and
the UMPR. Then, we need to transform them to tasks than can be scheduled by traditional scheduler
(such as GEDF) and analysed with classical results. We now present a method of transforming a
UMPR U into a set of m periodic tasks. A periodic task τi is a particular case of a sporadic task
whose jobs have their arrival times separated by exactly Ti time units.

Definition 3. Consider a UMPR model U = (Π,Θ, π). Let us have β def
= Θ − Sm(π) ·

⌊
Θ

Sm(π)

⌋
and

k
def
= max {` : S`(π) ≤ β}. We define the transformation from U to a periodic task set τ (U) with m

tasks τ (U)
i

def
= (T

(U)
i , C

(U)
i , D

(U)
i) such that:

• if i ≤ k, τ (U)
i =

(
Π,
(⌊

Θ
Sm(π)

⌋
+ 1

)
· si,Π

)
;

• if i = k+1, τ (U)
i =

(
Π,
⌊

Θ
Sm(π)

⌋
·si + β − Sk(π),Π

)
;

• otherwise, τ (U)
i =

(
Π,
⌊

Θ
Sm(π)

⌋
· si,Π

)
.

Detailed proofs that (i)
∑m
i=1 C

(U)
i =Θ, (ii) schedulability of a taskset τ (U) is a sufficient condition

for the supply to C to be lower bounded by sbf(U , t), and (iii) if π is in fact an identical multiprocessor
platform, this transformation becomes equivalent to that in [14] for the MPR can be found in the
Appendix.

Using this transformation, we have performed simulation experiments which reveal the extent of
the open problem of intercomponet scheduling in UMPR-based HSFs, whose solution is out of the
scope of this report.

A. hsSim and implementation overview
Few real implementations of compositional HSFs exist and they only support uniprocessor [6], [7],

[25]. For this reason, we perform simulation using hsSim, an object-oriented hierarchical scheduling
simulator, implemented in Java, supporting an arbitrary number of levels [26]. hsSim records a trace
of the simulated execution, for visualization with Grasp [27]. To the best of our knowledge, hsSim is
the first tool allowing scheduling simulation of compositional HSFs on multiprocessors. In addition
to the work described in [26], we have implemented support for uniform multiprocessors in general,
and compositional HSFs based on the UMPR in particular. Since the intercomponent scheduling and
component–task transformation we consider for now are identical to the ones in [14], hsSim also
supports the simulation of compositional HSFs based on the MPR.

For a component abstracted with a UMPR U , we derive the periodic tasks τ (U) (Definition 3) and
add them to the root scheduler. These tasks are implemented as a special type of task (pseudotask)
which launches jobs of the component (and not the task itself). hsSim features only one implemen-
tation of the GEDF scheduler, which takes advantage of subtype polymorphism to schedule jobs
of all the supported schedulable entities (tasks, components) unaware of their differences. When a
job is scheduled on a processor with speed si, a binding is created between this processor and the
schedulable entity to which the job corresponds1. If it is a task, it decreases its remaining execution
requirement by si. If it is a component, a binding is created between the component’s virtual platform
and this processor, so that it becomes available to the component’s scheduler.

B. Simulation and open question
Now let us consider a compositional HSF with two components, C3 and C4, whose internal

characteristics we omit (due to paper length constraints and to its irrelevance for the point being
made):

1Currently, hsSim performs cycle-step execution simulation.

15

time

s1 = 1.0

s2 = 0.66

s3 = 0.5

s4 = 0.34

πphy

Figure 8. Grasp trace for the compositional HSF consisting of C3 (tasks traced in dark gray) and C4 (light gray)

• Component C3 Employs GEDF to schedule a sporadic task set on virtual multiprocessor platform
π3 = {1.0, 0.66, 0.34}; we abstract C3 using UMPR model U3, which we transform to a periodic
task set τ (U3).

• Component C4 Employs GEDF to schedule a sporadic task set on virtual multiprocessor platform
π4 = {1.0, 0.5}; we abstract C4 using UMPR model U4, which we transform to a periodic task
set τ (U4).

When we schedule the compositional HSF consisting of C3 and C4 over GEDF on a physical
platform πphy = {1.0, 0.66, 0.5, 0.34}, we observe an effect we had anticipated when we formulated
the problem in [12] (Fig. 8). We can see that tasks of both components are being scheduled on
processors in the physical platform which have no counterpart in the virtual platform for which
each of the components was analysed. The observed effect hints that the solution for the question of
intercomponent scheduling in compositional HSFs on uniform multiprocessors (based on the UMPR)
may require a specific algorithm to schedule UMPRs.

VII. CONCLUSION

We approached the problem of compositional hierarchical scheduling frameworks (HSF) upon uni-
form multiprocessor platforms, proposing the Uniform Multiprocessor Resource Model (UMPR) as a
component interface. We extended previous related works, providing results and intuitions which span
over the three main points of compositional analysis of HSFs: a sufficient local GEDF-schedulability
test for sporadic task sets in components with the UMPR as a resource interface; guidelines for the
complex problem of selecting the virtual platform when abstracting a component, and; simulation
results evidencing the open questions in interface composition/intercomponent scheduling.

Current work includes improving our schedulability test and solving, for the UMPR, the in-
tercomponent scheduling and interface composition questions of compositional analysis. We also
envision assessing the potential for other approaches for identical multiprocessors (e.g., [16], [17])
to be applied to uniform multiprocessor platforms (albeit with a different compromise between
simplicity/compositionality and resource bandwidth optimality). Finally, we are also working on
backporting some of the code of hsSim to add support to compositional analysis support of HSFs
to the Cheddar tool [10], [26].

ACKNOWLEDGMENT

The authors thank Insik Shin and Arvind Easwaran (for promptly answering our doubts about
specific aspects of the MPR), Pedro M. Ferreira (for comments which improved the readability of
this report), and the organizers and attendees of RTSOPS 2012 (for the fruitful discussions there).

16

REFERENCES
[1] L. Abeni and G. Buttazzo, “Integrating multimedia applications in hard real-time systems,” in RTSS ’98, Madrid, Spain, Dec.

1998.

[2] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela, N. Megow, and L. Stougie, “Scheduling real-time
mixed-criticality jobs,” IEEE Trans. Comput., vol. 61, no. 8, pp. 1140–1152, Aug. 2012.

[3] J. Windsor and K. Hjortnaes, “Time and space partitioning in spacecraft avionics,” in SMC-IT 2009, Jul. 2009, pp. 13–20.

[4] AEEC, “Avionics application software standard interface, part 1 - required services,” Aeronautical Radio, Inc., ARINC Spec.
653P1-2, Mar. 2006.

[5] J. Rufino, J. Craveiro, and P. Verissimo, “Architecting robustness and timeliness in a new generation of aerospace systems,”
in Architecting Dependable Systems VII (LNCS 6420), A. Casimiro, R. de Lemos, and C. Gacek, Eds. Springer, 2010, pp.
146–170.

[6] J. Yang, H. Kim, S. Park, C. Hong, and I. Shin, “Implementation of compositional scheduling framework on virtualization,” in
CRTS ’10, Nov. 2010.

[7] J. Lee, S. Xi, S. Chen, L. T. Phan, C. Gill, I. Lee, C. Lu, and O. Sokolsky, “Realizing compositional scheduling through
virtualization,” in RTAS ’12, Beijing, China, Apr. 2011.

[8] B. Kauer, P. Verissimo, and A. Bessani, “Recursive virtual machines for advanced security mechanisms,” in DSN ’11 Workshops,
Hong Kong, Jun. 2011.

[9] I. Shin and I. Lee, “Compositional real-time schedulability analysis,” in Handbook of Real-Time and Embedded Systems, I. Lee,
J. Y.-T. Leung, and S. H. Son, Eds. Chapman & Hall/CRC, 2007.

[10] J. Craveiro, J. Rufino, and F. Singhoff, “Architecture, mechanisms and scheduling analysis tool for multicore time- and space-
partitioned systems,” in ECRTS ’11 WiP, Jul. 2011.

[11] J. L. Herman, C. J. Kenna, M. S. Mollison, J. H. Anderson, and D. M. Johnson, “RTOS support for multicore mixed-criticality
systems,” in RTAS ’12, Beijing, China, Apr. 2011.

[12] J. P. Craveiro and J. Rufino, “Heterogeneous multiprocessor compositional real-time scheduling,” in RTSOPS 2012, Pisa, Italy,
Jul. 2012.

[13] I. Shin, A. Easwaran, and I. Lee, “Hierarchical scheduling framework for virtual clustering of multiprocessors,” in ECRTS ’08,
Prague, Czech Republic, Jul. 2008.

[14] A. Easwaran, I. Shin, and I. Lee, “Optimal virtual cluster-based multiprocessor scheduling,” Real-Time Syst., vol. 43, pp. 25–59,
2009.

[15] S. Baruah and J. Goossens, “The EDF scheduling of sporadic task systems on uniform multiprocessors,” in RTSS ’08, Barcelona,
Spain, Nov./Dec. 2008.

[16] E. Bini, M. Bertogna, and S. Baruah, “Virtual multiprocessor platforms: Specification and use,” in RTSS ’09, Washington, D.C.,
Dec. 2009.

[17] G. Lipari and E. Bini, “A framework for hierarchical scheduling on multiprocessors: From application requirements to run-time
allocation,” in RTSS ’10, Nov./Dec. 2010.

[18] A. Burmyakov, E. Bini, and E. Tovar, “The Generalized Multiprocessor Periodic Resource interface model for hierarchical
multiprocessor scheduling,” in RTNS ’12, Nov. 2012.

[19] S. Funk, J. Goossens, and S. Baruah, “On-line scheduling on uniform multiprocessors,” in RTSS ’01, London, UK, Dec. 2001.

[20] S. Baruah, “An improved global EDF schedulability test for uniform multiprocessors,” in RTAS ’10, Stockholm, Sweden, Apr.
2010.

[21] S. K. Baruah, A. K. Mok, and L. E. Rosier, “Preemptively scheduling hard-real-time sporadic tasks on one processor,” in RTSS
’90, Lake Buena Vista, Florida, USA, Dec. 1990.

[22] A. K. Mok, X. A. Feng, and D. Chen, “Resource partition for real-time systems,” in RTAS ’01, Taipei, Taiwan, May/Jun. 2001.

[23] T. P. Baker, “Multiprocessor EDF and Deadline Monotonic schedulability analysis,” in RTSS ’03, Cancun, Mexico, Dec. 2003.

[24] S. Baruah, “Techniques for multiprocessor global schedulability analysis,” in RTSS ’07, Tucson, AZ, Dec. 2007.

[25] M. M. van den Heuvel, R. J. Bril, J. J. Lukkien, and M. Behnam, “Extending a HSF-enabled open-source real-time operating
system with resource sharing,” in OSPERT ’10, Brussels, Belgium, Jul. 2010.

[26] J. P. Craveiro, R. O. Silveira, and J. Rufino, “hsSim: an extensible interoperable object-oriented n-level hierarchical scheduling
simulator,” in WATERS 2012, Pisa, Italy, Jul. 2012.

[27] M. Holenderski, R. J. Bril, and J. J. Lukkien, “Grasp: Visualizing the behavior of hierarchical multiprocessor real-time systems,”
in WATERS 2011, Porto, Portugal, Jul. 2011.

17

APPENDIX

Theorem 4. Consider the UMPR U = (Π,Θ, π). If π is in fact an identical multiprocessor platform,
this transformation becomes equivalent to that in [14] for the MPR.

Proof: If π is an m-processor identical multiprocessor platform, then all processors have speed
1.0, and S`(π) = `, for all ` ≤ m. Hence, β def

= Θ − Sm(π) ·
⌊

Θ
Sm(π)

⌋
= Θ − m ·

⌊
Θ
m

⌋
and k

def
=

max {` : S`(π) ≤ β} = max {` ∈ N : ` ≤ β} = bβc. These match the definitions in [14]. When we
replace Sm(π) for m and all si’s by 1 in the definition of our transformation (Definition 3), we have
the following rules:
• if i ≤ k, τ (U)

i =
(
Π,
⌊

Θ
m

⌋
+ 1),Π

)
;

• if i = k + 1, τ (U)
i =

(
Π,
⌊

Θ
m

⌋
+ β − Sk(π),Π

)
=
(
Π,
⌊

Θ
m

⌋
+ β − k ·

⌊
β
k

⌋
,Π
)
;

• otherwise, τ (U)
i =

(
Π,
⌊

Θ
m

⌋
,Π
)
;

which match the rules of the transformation from MPR to tasks presented in [14].

Lemma 7. The sum of the execution requirements of all the tasks in τ (U) is equal to Θ.

Proof: To prove this lemma, we consider three separate cases:
1) Θ is exactly divisible by Sm(π);
2) Θ is not exactly divisible by Sm(π), and Sk(π) = β;
3) Θ is not exactly divisible by Sm(π), and Sk(π) < β.

Case 1. If Θ is exactly divisible by Sm(π), then β = 0 and k = 0. Hence, τ (U) will have:
• one task (τ (U)

1
def
= τ

(U)
k+1) with execution requirement

⌊
Θ

Sm(π)

⌋
· si + β − Sk(π) = Θ

Sm(π)
· si, with

i = 1, and;
• m− 1 tasks, each with execution requirement

⌊
Θ

Sm(π)

⌋
· si = Θ

Sm(π)
· si, with i ∈ [2..m].

m∑
i=1

C
(U)
i =

m∑
i=1

Θ

Sm(π)
· si

=
Θ

Sm(π)
·
m∑
i=1

si

=
Θ

Sm(π)
· Sm(π) = Θ .

Case 2. If Θ is not exactly divisible by Sm(π), then β > 0. Let us consider that k is such that
Sk(π) = β (therefore, k > 0). Hence, τ (U) will have:
• k tasks with execution requirement

(⌊
Θ

Sm(π)

⌋
+ 1

)
· si, with i ∈ [1..k];

• one task with execution requirement
⌊

Θ
Sm(π)

⌋
· si + β − Sk(π) =

⌊
Θ

Sm(π)

⌋
· si, with i = k + 1,

and;
• m− (k + 1) tasks with execution requirement

⌊
Θ

Sm(π)

⌋
· si, with i ∈ [k + 2 ..m].

m∑
i=1

C
(U)
i =

(
k∑
i=1

(⌊
Θ

Sm(π)

⌋
+ 1

)
· si
)

+

 m∑
i=k+1

⌊
Θ

Sm(π)

⌋
· si


=

(
k∑
i=1

⌊
Θ

Sm(π)

⌋
· si
)

+

(
k∑
i=1

si

)
+

 m∑
i=k+1

⌊
Θ

Sm(π)

⌋
· si


=

⌊
Θ

Sm(π)

⌋
· Sm(π) + Sk(π)︸ ︷︷ ︸

β

=

⌊
Θ

Sm(π)

⌋
· Sm(π) + Θ−

⌊
Θ

Sm(π)

⌋
· Sm(π) = Θ .

18

Case 3. If Θ is not exactly divisible by Sm(π), then β > 0. Let us consider that k is such that
Sk(π) < β (therefore, k ≥ 0). Hence, τ (U) will have:
• k tasks with execution requirement

(⌊
Θ

Sm(π)

⌋
+ 1

)
· si, with i ∈ [1..k];

• one task with execution requirement
⌊

Θ
Sm(π)

⌋
· si + β − Sk(π), with i = k + 1, and;

• m− (k + 1) tasks with execution requirement
⌊

Θ
Sm(π)

⌋
· si, with i ∈ [k + 2 ..m].

m∑
i=1

C
(U)
i =

(
k∑
i=1

(⌊
Θ

Sm(π)

⌋
+ 1

)
· si
)

+

⌊
Θ

Sm(π)

⌋
· sk+1 + β − Sk(π) +

 m∑
i=k+2

⌊
Θ

Sm(π)

⌋
· si


=

(
k∑
i=1

⌊
Θ

Sm(π)

⌋
· si
)

+

(
k∑
i=1

si

)
︸ ︷︷ ︸
Sk(π)

+

⌊
Θ

Sm(π)

⌋
· sk+1 + β − Sk(π) +

 m∑
i=k+2

⌊
Θ

Sm(π)

⌋
· si



=

⌊
Θ

Sm(π)

⌋
· Sm(π) + β

=

⌊
Θ

Sm(π)

⌋
· Sm(π) + Θ−

⌊
Θ

Sm(π)

⌋
· Sm(π) = Θ .

Having proven our statement for the three cases that have to be considered, we prove the lemma.

Theorem 5. If taskset τ (U) is schedulable by GEDF on π, then the supply to C is lower-bounded
by sbfU .

Proof: For each task τ (U)
i = (Π, C

(U)
i ,Π), not missing a deadline means that task τ (U)

i receives
at least Ci execution units from π within every period of length Π. Overall, we have that tasks in
taskset τ (U) receive at least

∑
τ

(U)
i ∈τ (U) C

(U)
i = Θ (Lemma 7) execution units from π within every

period of length Π. This is exactly the definition of the supply provided according to a UMPR
U = (Π,Θ, π).

19

