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Abstract: Polyphenols are often ingested alongside dietary fibres. They are both catabolised by, and 

may influence, the intestinal microbiota; yet, interactions between them and the impact on their 

resultant microbial products are poorly understood. Dietary fibres (inulin, pectin, psyllium, 

pyrodextrin, wheat bran, cellulose—three doses) were fermented in vitro with human faeces (n = 

10) with and without rutin (20 µg/mL), a common dietary flavonol glycoside. Twenty-eight phenolic 

metabolites and short chain fatty acids (SCFA) were measured over 24 h. Several phenolic 

metabolites were produced during fibre fermentation, without rutin. With rutin, 3,4-

dihydroxyphenylacetic acid (3,4diOHPAA), 3-hydroxyphenylacetic acid (3OHPAA), 3-(3 

hydroxyphenyl)propionic acid (3OHPPA) and 3-(3,4-dihydroxyphenyl)propionic acid 

(3,4diOHPPA; DOPAC) were produced, with 3,4diOHPAA the most abundant, confirmed by 

fermentation of 13C labelled quercetin. The addition of inulin, wheat bran or pyrodextrin increased 

3,4diOHPAA 2 2.5-fold over 24 h (p < 0.05). Rutin affected SCFA production, but this depended on 

fibre, fibre concentration and timepoint. With inulin, rutin increased pH at 6 h from 4.9 to 5.6 (p = 

0.01) but increased propionic, butyric and isovaleric acid (1.9, 1.6 and 5-fold, p < 0.05 at 24 h). 

Interactions between fibre and phenolics modify production of phenolic acids and SCFA and may 

be key in enhancing health benefits. 

Keywords: colonic metabolism; flavonols; gas chromatography mass spectrometry; gut 

microbiome; phenolic acids: dietary fibre 

 

1. Introduction 

Intake of plant phenolics is estimated to be ~1 g per day [1–3] in most populations, a small 

proportion of which are flavonols [3,4]. Daily flavonol intake varies between populations and dietary 

intake patterns: from ~5.4 mg per day in Finland [5], 19 mg per day Spain [6] and 34 mg per day in 

France [1], with 59%–79% of daily flavonol intake represented by quercetin glycosides [1,6]. Rutin is 
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an abundant glycosidic form of quercetin, found in significant quantities in capers, black olives and 

buckwheat (332, 45 and 36 mg/100 g fresh food weight, respectively) [7]. Drupe fruits such as 

blackcurrants and raspberries may also provide up to 11 mg of rutin per 100 g [7,8]. Research on 

flavonols as plant food bioactives with proposed health benefits has expanded in the last two 

decades, with major focus on cancers and cardiovascular diseases [9–12]. 

The metabolism of rutin has been extensively studied ex vivo [13–15], in rodents [16–18] and in 

human intervention studies: after ingestion, only 14%–17% of rutin is absorbed in the small intestine 

[19,20]. Most ingested rutin therefore enters the colon, where it is catabolised by the gut microbiota 

via a pathway starting with the hydrolytic cleavage of the disaccharide moiety [19–21]. This, 

combined with fission of the C-ring of the aglycone, results in the formation of a series of phenolic 

acids and phloroglucinol derivatives from either of the two remaining rings [15]. There is a high 

degree of inter-individual variability in the metabolites produced [15,21], with age [21] and ethnicity 

[22], two factors shown to modify the metabolite fingerprint excreted in urine. Although 

3,4diOHPAA is usually the dominant early metabolite, some individuals appear to shift metabolism 

towards different phenolic products [15]. Phenolic acids are absorbed from the colon and released 

into the circulation alongside other metabolites and are therefore speculated to be responsible for 

some of the biological effects of rutin [15,23]. The main metabolite, 3,4diOHPAA, has been shown to 

possess high biological activities in vitro with some advantages over its parent compound, such as 

low toxicity and solubility [24], antiplatelet aggregation properties [25], suppression of 

lipopolysaccharide induced pro-inflammatory cytokines TNF-α, IL-1β and IL-6 in peripheral blood 

mononuclear cells [26] and inhibition of protein glycation [23,27]. 

Much of the evidence for gut-microbiota-mediated metabolism of polyphenols to date has been 

assessed using in vitro batch cultures with human stool samples. The studies differ in media used. 

Some cultures did not contain any fermentable carbohydrates [13,15,28,29], while others did [14,30]. 

The presence of fermentable carbohydrates in media, however, might be an important factor 

changing the pattern of polyphenol catabolism, yet the results are contrasting. More rapid 

fermentation of rutin was seen in the presence of glucose [15] resulting in greater production of 

metabolites, while less total phenolic acids and 3,4diOHPAA were seen in the presence of complex 

carbohydrates in the medium [31]. There are several potential mechanisms by which additional 

fermentable carbohydrate impacts upon bacterial polyphenol catabolism. Firstly, fermentation of 

carbohydrates to short chain fatty acids (SCFA) results in a decrease in colonic pH [32] promoting 

changes in bacterial enzyme activity [33]. Secondly, some fibres may be selective in promoting growth 

of specific bacterial groups within the intestinal microbiota [34], thus altering polyphenol 

metabolism. Thirdly, dietary fibres could decrease or delay colonic polyphenol availability by 

altering small intestinal absorption and transit time [35]. Finally, dietary fibre may be a rich source of 

non-extractable polyphenols and release associated metabolites when they are fermented by the 

bacteria [36], which trigger antimicrobial action or inhibit bacterial hydrolases. 

The evidence suggests that the polyphenol metabolites produced by the gut microbiota change 

(in terms of quality and quantity) in the presence of fibre. In this study, we undertook a systematic 

investigation of the impact of dietary fibres (pectin, inulin, psyllium, pyrodextrin, wheat bran and 

cellulose) on the catabolism of rutin in human faecal batch cultures, to inform food product 

formulation (e.g., soups, juices), towards improved products with higher health impact. 

2. Materials and Methods 

2.1. Chemicals 

Oxygen free nitrogen (OFN) was from BOC-Linde (UK). Chemicals used as standards 

(Supplementary materials, Table S1), 3-(3-hydroxyphenyl)propionic acid [3,3OHPPA], 3-3,4-

dihydroxyphenyl)propionic acid [3,3,4diOHPPA], 4-hydroxy 3-methoxyphenylacetic acid 

[4OH3MPAA] and 4-hydroxymandelic acid [4OH-mandelic acid] were from Alfa Aesar (Thermo 

Fisher Scientific, MA, US), 2,4,5-trimethoxycinnamic acid [TMCA], 3-(3-hydroxy 4-

methoxyphenyl)propionic acid [3,3OH4MPPA], 3-(4-hydroxy 3-methoxyphenyl)propionic acid 
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[3,4OH3MPPA], 3-(4-hydroxyphenyl)propionic acid [3,4OHPPA], 3,4-dihydroxybenzoic acid 

[3,4OHBA], 3,4-dihydroxyphenylacetic acid [3,4DiOHPAA], 3-hydroxy-4-methoxycinnamic acid 

[isoferulic acid], 3-hydroxy-4-methoxyphenylacetic acid [3OH4MPAA], 3-hydroxybenzoic acid 

[3OHBA], 3-hydroxyphenylacetic acid [3OHPAA], phenylacetic acid [PAA], 3-phenyllactic [3PLA], 

3-phenylpropionic acid [3PPA], 4-hydroxy 3-methoxybenzoic acid [VAN], 4-hydroxybenzoic acid 

[4OHBA], 4-hydroxyphenyl acetic acid [4OHPAA], benzoic acid [BA], caffeic acid, ferulic acid, 

mandelic acid, p-coumaric acid, phloroglucinol, pyrocatechol, quercetin, resorcinol and trans-

cinnamic acid were purchased from Sigma Aldrich. The uniformly labelled 13C quercetin (>98.5% C 

atom labelled) was obtained from Isolife (NL). The fibres used in the study were as follows: inulin 

HP ([INU]; Beneo-Orafti, BE), pectin [PEC] from citrus peel and α-cellulose ([CEL]; Sigma Aldrich), 

wheat bran Organic ([WB]; Infinity Foods, UK), powdered psyllium husks ([ISP]; Myprotein, UK), 

pyrodextrin or else resistant maltodextrin [RM] was Fibersol-2 (Matsutani Chemical Industry, JP). 

Other solvents, buffer constituents, and reagents were from Sigma-Aldrich and were of highest 

available purity. 

2.2. In Vitro Fermentation Model 

2.2.1. Donors, Sampling and Faecal Slurry Preparation 

Faecal samples were obtained from healthy donors aged 20 to 41 years (mean age 27), with a 

mean BMI 26.3 kg/m2 (ranging 22.8–35.1). Donors were mostly male (72%), all Caucasian, had not 

undergone antibiotic treatment in the previous 6 months, had no history of gastrointestinal disease, 

and were not vegetarian or vegan. All subjects followed a low polyphenol-low fibre diet (for details, 

see Supplementary Materials, Figure S3) for 48 h before providing a faecal sample. The study was 

approved by the College of Medical, Veterinary and Life Sciences Ethics Committee, University of 

Glasgow (no. 2011023) and donors gave written informed consent. 

Stool samples were collected using in-house collection kits consisting of a sealed 0.7 L plastic 

container sealed within a plastic bag with the addition AnaeroGen™ 3.5 L Sachet (Oxoid, UK) after 

sample collection. The samples were processed in the laboratory within 2 h of sampling. A faecal 

slurry (25% wt/wt) was prepared by mixing 50 g of faeces with 150 mL of sterile OFN-purged 

phosphate buffer, pH 7.0 using a blender and the particulate material was removed by straining 

through nylon mesh. 

2.2.2. Fibres 

Fibres were pre-weighed (0.8, 1.7 and 3.3 g) into 100 mL gas-tight, crimp-top sealed fermentation 

bottles, to represent assay concentrations corresponding to a physiologically representative bolus 

intake of 5, 10 and 20 g of fibre potentially diluted in 300 mL of colonic contents [37]. INU, WB, RM 

and CEL were tested at all three concentrations. Only fermentations containing 0.8 and 1.7 g fibre 

were used for PEC and just 0.8 g for ISP due to the high viscosity. Vials containing no fibre were also 

included (no fibre blanks). The fermentations were carried out with and without rutin to account for 

any phenolics intrinsically present in the fibres. 

2.2.3. Faecal Incubations 

Each vial contained 42 mL of fermentation medium at pH 7.0, 2 mL of reducing solution and 1 

mL of rutin aqueous solution (1 mg/mL) or water for blanks [38]. In some cases, the size of the 

fermentation model was scaled-down by half due to low donor faecal sample weight. The rutin 

concentration used in the fermentations in this study was selected based on 86% rutin recovery in 

ileostomy subjects [19] assuming a postprandial ileal output of 162 mL within 2 h after consuming a 

300 mL meal [39] and additional estimated two-fold dilution in the proximal colon by colonic 

secretions. Under these conditions, a moderate intake of fruit, e.g., 200 g of blackberries containing 

3.89 mg/100 g [8] may result in approximately 20 µg/mL of rutin in the proximal colon. 

After full decolouration of the medium, we inoculated with 5 mL of faecal slurry (total volume 

50 mL) and incubated in a shaking bath at 37 °C, 60 strokes/min and sampled at 0 h, 6 h and 24 h. 
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Aliquots (5 × 1 mL) were collected with a syringe and needle through the self-sealing septa at each 

timepoint and stored at –80 °C. One aliquot was used for pH determination with a calibrated pH 

meter (Hannah pH20 instruments, USA). Aliquots for SCFA analysis were alkalized to pH > 9 prior 

to storage [38,40]. 

2.2.4. 13C Labelled Quercetin Study 

13C quercetin (10 µg/mL) was fermented in parallel with native quercetin (12C) and 

corresponding controls. No fibre was added. The experiment was carried out as two independent 

replicates with the stool of a single donor donated within 1 month. The conditions were the same as 

above apart from being scaled-down to 1.5 mL of the fermentation fluid in each of the 5 mL vials. 

Quercetin (5 mg/mL, 3 µL in 100% methanol, 10 µg/mL in the assay) was injected into the incubation 

vials with a glass syringe. At each timepoint (0 h, 3 h, 6 h and 24 h), vials were taken and frozen at –

80 °C. Blank cultures not containing quercetin and samples containing quercetin but not stool 

inoculum (labelled as INI for timepoint 0 h) were prepared in parallel. They were thawed just before 

extraction and spun at 6000× g to remove particulate material from the supernatant. 

2.3. Fibre-Phenolic Sequestration Experiment 

To investigate the effect of fibres on recovery of phenolics from fermentation samples, fibres 

were pre-weighed in 5 mL tubes in amounts of 8, 17 and 33 µg and subsequently hydrated with 500 

µL of distilled water (pH 5.5), so that the final concentration corresponded to equivalent of 0.8, 1.7 

and 3.3 g/50 mL After spiking with mixed standards, (5 µg each), solutions were incubated for 6 h at 

37 °C and extracted using the same procedure as for fermentation samples. 

2.4. Phenolic Acids Extraction 

A gas chromatography-mass spectrometry (GC/MS) analysis of phenolic compounds in 

fermentation fluid was performed as previously described [41] with modifications. Fermentation 

aliquots were thawed and volumes of 500 µL transferred to 5 mL glass tubes. Internal standard 

solution (ISTD; 30 µL of 0.2 mg/mL 2,4,5-trimethoxycinnamic acid) was added, the mixture vortexed, 

acidified with 60 µL of 1M HCl, vortexed again, and left at 4 °C for 10 min. The mixture was then 

extracted twice with 1.5 mL of ethyl acetate. After each extraction step, the upper organic layer was 

removed after centrifugation at 1600 × g and transferred to 1.5 mL amber vials. Samples were 

evaporated at 45 °C until dryness (approx. 40 min) on Savant SpeedVac SPD131DDA concentrator 

(Thermo Fisher Scientific, MA, US), with repetitive extractions being pooled in the same 

corresponding vial. After the second evaporation, vial walls were rinsed with 200 µL of 

dichloromethane and evaporated again for 10 min. Dry residues were derivatised under OFN, using 

50 µL of N,O-Bis(trimethylsilyl)trifluoroacetamide (BSTFA) with 1% chlorotrimethylsilane (TMCS) 

for 4 h at 65 °C. 

2.5. Phenolic Acid Analysis 

Anhydrous hexane (99%, 400 µL) was added to each vial before analysis. A set of 13 calibration 

solutions, containing 28 phenolic acids, hydroxybenzenes and quercetin ranging from 1 µg to 80 

µg/mL, was extracted and analysed alongside all faecal samples. The analysis was performed on a 

Trace GC equipped with a split/splitless injector interfaced to a DSQ mass spectrometer and an 

AI3000 autosampler (Thermo Fisher Scientific, MA, US) using the following conditions: inlet 

temperature 250 °C, split injection (1:25), 1 µL sample volume. A ZebronTM ZB-5 capillary column (30 

m × 0.25 mm i.d., df = 0.25 µm) was used for separation. The carrier gas flow (He) was constant at 1.2 

mL/min. The oven programme started at 140 °C (held 0.5 min), rose to 160 °C at 6 °C/min to 270 °C 

and was increased then at 30 °C/min to a final temperature of 320 °C (held for 4 min). The transfer 

line was maintained at 310 °C and ion source temperature at 270 °C. Acquisition was performed in 

positive electron ionization mode in full scan (m/z 50–450) with an ionization energy of 70 eV, from 

1.7 to 20 min. Quercetin and 13C-quercetin were monitored using single ion monitoring (SIM) for ion 
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m/z 647, 662 and 595 respectively, from 21–25 min. Identification of phenolics and quercetin was 

achieved by comparison with the retention times and mass spectra of authentic standards. 

Acquisition and analyses of GC-MS data were performed on Xcalibur version 2.1 (Thermo Fisher 

Scientific, MA, US). The 13C-quercetin and its products were quantified using calibration curves based 

on quantifier ions of the corresponding non-labelled compounds in MS Excel. Differences between 

controls and treatments were thoroughly checked for unknown metabolites using AMDIS ver. 2.1, 

Compare Files Postanalysis feature. A detailed GC-MS method including conditions and basic 

validation is shown in Supplementary Materials, Table S2. 

2.6. Short Chain Fatty Acid Extraction and Analysis 

Short chain fatty acids (SCFA) were measured by GC-FID of acidified ether extracts of the 

fermentation fluid as previously described [31]. 

2.7. Statistical Analysis 

Data were expressed as mean values and visualised in IBM SPSS Statistics ver. 22 (International 

Business Machines, NY, US). Normality was assessed using the Shapiro-Wilk test. Due to non-normal 

distribution in some subsets, skewness was reduced by log10 transformation. Potential differences 

between controls and treatments were analysed using 3-way repeated measures analysis of 

covariance (MANOVA), one-way ANOVA with Dunnett’s or Tukey’s post hoc test for factors fibre 

(INU, PEC, ISP, RM, WB, CEL), concentration (0, 0.8, 3.3 g/50 mL of fibre), rutin (including rutin, R+; 

excluding rutin R-) or Time (0 h, 6 h, 24 h) on the 28 phenolic metabolites used as variables as 

indicated in the method section. 

Areas under 24 h curve (AUC24) were established for compounds of interest, reflecting their total 

production in solution. If the solution initially contains 10 µg/mL of a compound which remains 

unmetabolised over time, the AUC24 value will be 240 µg/mL/24 h; analogously, if same compound 

is linearly metabolised to 0 within 24 h, it produces an AUC24 of 120 µg/mL/24 h. 

The effects of rutin on SCFA and pH were analysed using independent samples t-test (2-tailed) 

for each factor with a Benjamini-Hochberg multiple testing correction. No data transformation was 

applied. Levene’s test was used to assess equality of variances. Results were expressed as means ± 

S.E.M or S.D. and were considered significant at p < 0.05. 

3. Results 

3.1. GC-MS Method Optimisation and Validation 

The method was adapted from [42] and internally validated. Recoveries were determined by 

spiking a pooled faecal sample with phenolic acid standards at concentrations of 10 µg/mL. Average 

recoveries were 91%, typically ranging between 81% and 106%, however, for 4OH-mandelic acid, BA, 

3PPA, PAA and the polar hydroxybenzenes, such as resorcinol or phloroglucinol recoveries were low 

(10%–26%). Limits of detection (signal-to-noise ratio of 3:1) for four main rutin metabolites: 3OHPAA, 

3,3OHPPA, 3,4diOHPAA and 3,3,4diOHPPA were 0.2, 0.15, 0.08 and 0.25 µg/mL, respectively. Basic 

method validation data are shown in Supplementary Materials, Table S2. 

3.2. Phenolics and Their Metabolites Released from Fibres 

Fibres alone, even without addition of rutin released significant amounts of phenolics, which 

showed fibre-specific patterns (Figure 1, Table 1). 
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Figure 1. Relative profile of phenolic metabolites (rel% AUC24) released from fibres present in the 

medium in fermentation vials with rutin added (R+, 20 µg/mL) and without rutin (R-); INU, inulin, 

PEC, pectin, ISP, psyllium, RM, pyrodextrin, WB, wheat bran, CEL, cellulose; n = 10. The light pink 

bar refers to the main metabolite of rutin and shows its rather low proportion in the whole pool of 

phenolic acid metabolites present. For other abbreviations, see Materials and Methods section. 

Table 1. Area under the curve (AUC24) of phenolics found in fermentation slurries with fibres only 

(rutin not added) at 0.8 g/50 mL, AUC24 µg/mL/24 h. 

 
Fibre 

PEC INU ISP RM # WB CEL Blank ## 

Mean ± SEM Mean ± SEM Mean ± SEM Mean ± SEM Mean ± SEM Mean ± SEM Mean ± SEM 

BA 37.1 ± 4.4 49.7 ± 6.6 37.7 ± 5.3 * 78.4 ± 15.7 48.0 ± 4.6 35.1 ± 6.1 33.3 ± 3.7 

PAA 245.6 ± 20.9 ** 205.1 ± 15.4 ** 267.3 ± 19.1 ** 233.2 ± 16.7 ** 649.4 ± 53.6 510.7 ± 37.8 598.5 ± 40.9 

Pyrocatechol 20.6 ± 4.5 58.7 ± 8.6* 16.8 ± 3.2 43.3 ± 2.9 ** 38.3 ± 5.4 ** 23.4 ± 5.2 15.3 ± 3.8 

Resorcinol 8.0 ± 2.7 6.2 ± 2.5 7.2 ± 2.6 0.0 ± 0.0 9.2 ± 2.6 6.4 ± 2.2 5.1± 1.8 

3PPA 191.6 ± 21.6 139.6 ± 16.5 136.3 ± 11.8 129.3 ± 5.0 280.6 ± 32.8 139.6 ± 16.6 118.3 ± 12.4 

Mandelic acid 5.3 ± 1.4 4.4 ± 1.2 10.3 ± 1.8 ** 1.4 ± 0.6 10.4 ± 1.8 * 3.1 ± 0.8 2.5 ± 0.6 

Cinnamic acid 4.6 ± 1.7 * 2.8 ± 1.4 2.2 ± 1.3 0.0 ± 0.0 2.3 ± 1.2 1.8 ± 1.0 1.9 ± 1.0 

3HBA 3.2 ± 1.5 * 6.6 ± 3.3 6.3 ± 3.0 10.7 ± 2.3 5.9 ± 3.0 3.7 ± 1.6 3.9 ± 2.0 

3-Phenyllactic acid 34.5 ± 6.6 120.6 ± 15.5 ** 11.9 ± 5.1 22.1 ± 9.9 7.2 ± 1.7 2.4 ± 0.6 4.6 ± 1.5 

3OHPAA 7.0 ± 1.2 7.1 ± 1.3 10.7 ± 1.4 8.9 ± 2.4 7.6 ± 1.2 6.7 ± 1.2 4.5 ± 0.8 

4OHBA 3.7 ± 0.6 4.9 ± 1.0 6.8 ± 0.8 10.4 ± 1.8 * 12.8 ± 1.1 ** 6.1 ± 1.2 2.8 ± 0.6 

Phloroglucinol 3.8 ± 1.3 10.9 ± 3.1 7.3 ± 2.0 6.4 ± 2.8 7.1 ± 2.1 6.4 ± 2.1 7.9 ± 1.8 

4OHPAA 14.1 ± 1.4 ** 16.8 ± 2.3 ** 12.4 ± 1.5 ** 14.3 ± 3.1 ** 62.4 ± 4.1 52.2 ± 3.7 50.0 ± 4.0 

3,3OHPPA 115.3 ± 8.5 ** 26.2 ± 3.9 ** 37.3 ± 4.7 11.6 ± 3.4 ** 128.5 ± 17.7 ** 36.3 ± 4.3 40.9 ± 6.8 

VAN + iso-VAN 0.9 ± 0.3 1.2 ± 0.3 3.1 ± 0.6 2.4 ± 1.0 7.3 ± 0.7 * 1.2 ± 0.3 0.8 ± 0.2 

4-OHmandelic acid 2.6 ± 1.2 2.9 ± 1.1 1.6 ± 0.7 0.0 ± 0.0 1.8 ± 0.7 3.2 ± 1.0 0.6 ± 0.1 

3OH4MPAA + 4OH3MPAA 7.2 ± 2.3 5.2 ± 1.5 7.1 ± 2.6 15.5 ± 6.9 11.1 ± 2.9 11.6 ± 4.3 6.1 ± 2.6 

3,4OHPPA 23.2 ± 3.4 16.9 ± 3.5 18.5 ± 3.6 14.1 ± 4.8 26.0 ± 3.7 32.3 ± 5.9 27.6 ± 5.5 

3,4diOHBA 1.0 ± 0.2 2.3 ± 0.4 1.5 ± 0.2 3.3 ± 0.5 ** 5.3 ± 0.5 ** 1.0 ± 0.3 3.1 ± 1.5 

3,4diOHPAA 2.5 ± 0.5 1.3 ± 0.4 4.3 ± 0.6 ** 0.4 ± 0.2 2.8 ± 0.5 1.2 ± 0.3 4.0 ± 1.0 

3,3OH4MPPA 132.5 ± 12.0 ** 0.5 ± 0.1 ** 0.6 ± 0.2 0.0 ± 0.0 0.4 ± 0.2 0.4 ± 0.2 5.0 ± 2.1 

3,4OH3MPPA 2.1 ± 0.6 1.5 ± 0.6 1.8 ± 0.9 ** 0.0 ± 0.0 ** 26.3 ± 3.2 ** 2.1 ± 0.6 1.0 ± 0.4 

3,3,4diOHPPA 12.2 ± 3.7 4.0 ± 2.0 8.9 ± 2.6 2.2 ± 1.0 9.6 ± 1.6 ** 6.2 ± 2.3 5.8 ± 1.8 

p-Coumaric acid 0.2 ± 0.1 0.3 ± 0.1 0.4 ± 0.1 0.0 ± 0.0 0.5 ± 0.1 0.1 ± 0.0 0.4 ± 0.1 

3OH4M Cinnamic acid 0.5 ± 0.3 0.1 ± 0.1 0.4 ± 0.1 0.0 ± 0.0 0.5 ± 0.2 0.0 ± 0.0 0.1 ± 0.1 

Ferulic acid 0.2 ± 0.1 0.2 ± 0.1 0.6 ± 0.2 0.0 ± 0.0 5.2 ± 0.7 ** 0.4 ± 0.1 0.6 ± 0.2 

Caffeic acid 4.6 ± 2.0 4.2 ± 2.1 5.7 ± 1.9 0.8 ± 0.4 3.6 ± 1.0 2.9 ± 1.0 2.7 ± 1.3 

Quercetin 6.0 ± 3.3 7.0 ± 3.8 11.7 ± 2.9 ** 0.0 ± 0.0 7.8 ± 3.2 3.0 ± 1.6 4.4 ± 1.8 

* significantly different at p < 0.05 from CEL; ** significantly different at p < 0.01 from CEL using 

multivariate ANOVA with Dunnett’s post hoc test; n = 10 except (#, n = 2, ##, n = 17); S.E.M, standard 

error of mean; values in bold refer to a significant increase of the analyte in comparison to the blank; 

INU, inulin, PEC, pectin, ISP, psyllium, RM, pyrodextrin, WB, wheat bran, CEL, cellulose. 

Some of these (pyrocatechol; BA; PAA; 3PPA; 3,3OHPPA; 3,3,4diOHPPA or 3,3OH4MPPA) are 

potential rutin catabolites. In fermentations blank or CEL (no matter if rutin was present or not), 

phenolic profile was similarly represented by high AUC24 for PAA (510–600 µg/mL/24 h) and 3PPA 
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(118–140 µg/mL/24 h) (Figure 1, Table 1). The presence of fermentable carbohydrates except WB 

decreased PAA 2-fold, and increased selected phenolics in fibre-specific manner, e.g., 3PLA was 

highest in fermentations of INU and 3,3OHPPA and 3,3H4MPPA were more abundant when PEC 

was fermented. None of the fibres released 3,4diOHPAA – (the main rutin metabolite) in significant 

quantities except ISP which contained also very small significant amounts of quercetin (Table 1). 

3.3. Fibre-Phenolics Sequestration Interactions 

When spiking the fibre suspensions in aqueous solution (pH 5.0) with 5 µg of standards, we 

observed ~160% recoveries for all metabolites in the presence of PEC, as a consequence of ISTD 

sequestration. Recoveries of the four potential rutin metabolites (3OHPPA, 3,4diOHPAA, 

3,3,4diOHPPA) except 3,3OHPAA, were significantly lower in the presence of WB than that of BLA. 

WB also highly reduced the recovery of non-rutin metabolites mandelic acid, caffeic acid, p-coumaric 

acid but more importantly that of quercetin and moderately that of 4OHPAA, both potential rutin 

metabolites (for details, see Supplementary Materials, Table S3). At the highest concentration of WB, 

the majority of these compounds were trapped in the matrix, resulting in poor < 4% recoveries. The 

most prominent effect of WB was seen on 3,4diOHPAA and quercetin, even the lowest concentration 

present in the sample reduced their recoveries to 8 and 13%, respectively. However, other fibres did 

not interfere with the recovery of the spiked standards and these were 98%–107% compared to 

recoveries from blank samples (Supplementary Materials, Table S3). 

3.4. Colonic Catabolism of Rutin in a Human Batch Fermentation Model 

When no fibre was present in fermentations, rutin was catabolised to a limited set of products: 

quercetin, 3,4diOHPAA, 3OHPAA, 3,3OHPPA and traces of 3,3,4diOHPPA. The sum of the 

metabolites explained 52%, 23% and 21% of the original molecular mass of the quercetin aglycone at 

0, 6 and 24 h, respectively. Some of the catabolites were also found in incubations without rutin. The 

data are shown in Figure 2A. To reveal the origin of these, the isotope-labelled experiment with 13C-

quercetin was conducted and has shown, that approximately 40% of the phenolic acids observed in 

fermentations do not originate from the added compound but are formed from other substrates. 

While 100% of 3,4diOHPAA was carrying the label, 75% of 3OHPAA was labelled alongside 25% 

unlabelled at both timepoints. Of the 3,3OHPPA only 17%–25% of the metabolite found was labelled 

alongside the majority of unlabelled compound (Figure 2B). Only a small proportion (0.1%) of 

labelled 3,3,4diOHPPA was found alongside the omnipresent unlabelled 3,3,4diOHPPA (not shown 

in the graph). Most of the 3,3OHPPA but also a large proportion of 3OHPAA are thus formed from 

precursors present in medium. The mean sum of 13C products for all fermentation timepoints was 

5.38, 3.79 and 5.57 µg/mL of the 10 µg/mL added at 3 h, 6 h and 24 h, respectively. No other 13C 

products were found. 
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Figure 2. (A) Catabolic products of rutin in fermentations without fibres. R+, fermentation with rutin, 

R-, corresponding control without rutin; (B) Catabolic products of rutin aglycone –quercetin. CON, 

without inoculum and quercetin, Q, quercetin, 13Q, 13C all-labelled quercetin isotope. Error bars 

denote S.E.M., n = 10 (for A), n = 4 (for B). INI, initial concentration added to vials (measured in a 

parallel sample without faecal inoculum). 

3.5. Effects of Fibres on Rutin Metabolites 

Despite the previous observations that rutin formed only a limited set of metabolites in 

fermentations without fibres, we investigated its effect on the whole profile of phenolic acids using a 

three-way MANOVA with fibre, concentration and rutin addition as factors. The between-subjects 

effects indicated a significant effect (p < 0.05) on six phenolic metabolites: mandelic acid, F(12,1174) = 

2.7, p = 0.001, vanillic+iso-vanillic acid, F(12,1174) = 3.258, p = 0.001; 3,4diOHPAA, F(12,1174) = 2.22, p 

= 0.009; 3,3,4diOHPPA F(12,1174) = 2.01, p = 0.020 and p-coumaric acid, F(12,1174) = 4.529, p = 0.001. 

The significant interaction for 3,4diOHPAA was investigated by simpler interaction analysis using 

independent samples t-test (2-tailed) between no fibre added and each fibre concentrations, 

separately for each timepoint. 

WB significantly increased the concentration of 3,4diOHPAA at 24 h, p = 0.006 compared to no 

fibre, with an 2.3-fold increase between blank and the highest concentration tested and INU presence 

at 24 h facilitated a 2.5-fold increase between blank and the highest concentration p = 0.018 and a 2.3-

fold increase for the concentration 1.7 g/50 mL (p = 0.056) (Figure 3). 
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Figure 3. Concentration of 3,4diOHPAA in fermentations in the presence of fibres at four 

concentrations (0, 0.8, 1.7 and 3.3 g/50 mL) in fermentations with rutin (R+; 20 µg/mL) and without 

rutin (R-); INU, inulin, PEC, pectin, ISP, ispaghula, RM, pyrodextrin, WB, wheat bran, CEL, cellulose; 

means ± S.E.M; independent samples t-test (2-tailed), n = 10. 

Additionally, there was a 1.6-fold increase for RM at the highest concentration (p = 0.066). 

Plotting the data of individual donors highlighted non-producers of the metabolite (4 of 10), 

producers (6 of 10 subjects, of which donors 1, 2, 3, 4 and 5 or 50% responded to the addition of fibre 

with an increased production of 3,4diOHPAA) (Supplementary Materials, Figure S1). The same t-test 

applied to AUC24 data was not significant for any fibre, however the trend for AUC24 was similar 

(Figure 4). 

 

Figure 4. Area under the curve over 24 h of main metabolite 3,4diOHPAA in fermentations with rutin 

added (R+, 20 µg/mL) and without rutin (R-) as influenced by presence of fibre at four concentrations 

(0, 0.8, 1.7 and 3.3 g/50 mL); INU, inulin, PEC, pectin, ISP, psyllium, RM, pyrodextrin, WB, wheat 

bran, CEL, cellulose; means ± S.E.M. 

3.6. Impact of Fibres and Rutin on pH and SCFA Production 

The addition of rutin had a small influence on pH and SCFA profiles and this effect was fibre-

specific. In order to provide a generalised and clear message of the influence of fibre in fermentations 

with the presence of absence of rutin, we carried out an independent samples t-test on AUC24 values 

for SCFA across all fibres and concentrations. The presence of rutin clearly increased propionic acid 

by 19% (p < 0.001), decreased isobutyric acid from 92.4 mmol/L/24 h to 3.8 mmol/L/24 h (p < 0.001), 

increased butyric acid by 12% (p = 0.032), valeric acid by 21% (p < 0.001) and caproic acid by 44% (p = 

0.005), for full results, see Table 2. 

Table 2. Effect of rutin on short chain fatty acid profile expressed as AUC24 irrespective of 

concentrations and type of fibre (ISP at concentration 0.8 g/50 mL, PEC at 0.8 and 1.7 g/50 mL, CEL, 

INU, RM at 0.8, 1.7 and 3.3 g/50 mL). 

AUC24 
Rutin not Added Rutin Added 

P-Value n (Total) 
Mean ± S.D. Mean ± S.D. 

pH 147.11 ± 19.42 148.68 ± 19.59 0.187 300 

C2 617.79 ± 351.04 618.37 ± 348.00 0.980 300 

C3 120.48 ± 66.61 143.05 ± 88.11 0.000 300 

IC4 92.24 ± 344.67 3.83 ± 3.83 0.000 300 

C4 202.45 ± 167.81 226.58 ± 177.94 0.032 300 

IC5 6.80 ± 6.57 6.87 ± 6.45 0.874 300 

C5 11.80 ± 8.15 14.35 ± 8.22 0.000 300 

IC6 0.01 ± 0.13 0.01 ± 0.11 0.574 300 

C6 2.50 ± 5.21 3.61 ± 6.64 0.005 300 
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C7 0.12 ± 0.62 0.16 ± 0.67 0.361 300 

Sum C2-C5 1051.56 ± 578.89 1013.04 ± 516.17 0.285 300 

Independent samples t-test (2-tailed) was used. For abbreviations and AUC24 explained, see Materials 

and methods section. Values except pH are expressed in mmol/L/24 h. Statistically significant values 

(p < 0.05) are in bold. 

The effect of rutin presence on SCFA fermentation profiles can be demonstrated in the case of 

INU (Figure 5). Rutin presence increased pH at timepoint 6 h (for 0.8 g/50 mL the pH changed from 

pH 4.94 to pH 5.63 (p = 0.010) and a similar, though not significant effect, was seen for other fibre 

concentrations. 

 

Figure 5. Effect of rutin on formation short chain fatty acid from inulin (3 concentrations) in faecal 

incubations; * significantly different (p < 0.05), ** (p < 0.01) between fermentation with rutin (red) and 

without rutin (blue) using independent samples t-test, adjusted for multiple comparisons, means ± 

SD for n = 10; C2, acetic acid, C3, propionic acid, C4, butyric acid, IC4, isobutyric acid, C5, valeric acid, 

IC5, isovaleric acid. 

There was no effect on acetic acid, but propionic acid was increased significantly at 24 h for the 

lowest fibre concentration from 6.47 to 12.01 mmol/L (p = 0.032), again, with a similar though not 

significant effect for both higher fibre concentrations. Rutin also caused an increase of butyric acid at 

24 h, from 16.86 to 27.20 mmol/L, (p = 0.020) and isovaleric acid at 24 h from 0.056 to 0.251 mmol/L, 

(p = 0.036). In contrast, in the presence of ISP, addition of rutin caused a decrease of acetic acid at 24 

h from 23.99 to 36.20 mmol/L (p = 0.034), increase of propionic acid from 16.26 to 11.63 mmol/L (p = 

0.044) and decrease of valeric acid at 24 h from 1.11 to 0.78 mmol/L (p = 0.026). Taken together, the 

data show that rutin slows down the fermentation of fermentable fibres and shifts the SCFA pattern 

towards production of propionic acid and branched short chain fatty acids. Full data on the effect of 

rutin on SCFA production of all fibres can be found in Supplementary Materials, Figure S2. 

4. Discussion 

This study aimed to determine if the catabolism of rutin to phenolic acids by the gut microbiota 

is affected by dietary fibre, We have shown that the type of dietary fibre alters the pattern of rutin 

catabolism in an in vitro gut fermentation model. Inulin, WB and RM significantly increased the 

concentrations of the main rutin metabolite, 3,4diOHPAA at 24 h. This may have important 

consequences on the bioavailability of 3,4diOHPAA and its biological activity. 3,4diOHPAA was 

previously shown to have a broad spectrum of potentially beneficial activities for mucosal health 

[15,26,43] and cardiometabolic outcomes [27]. The effect of fibre on phenolic acid production was 

confirmed using 13C isotopically labelled quercetin. Three possible mechanisms of action for this 
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interaction between the fibre and rutin catabolism are proposed: (i) sequestration by some fibres, (ii) 

changes in microbial communities driven by either substrate availability or antimicrobial action of 

released phenolics and (iii) saturation/competitive inhibition of microbial enzymes by fibres or their 

associated phenolic metabolites. 

Spiking with a standard compound mixture revealed selective sequestration of (poly)phenolics 

by some fibres. Quercetin recovery was significantly reduced in the presence of ISP and WB. The 

phenolic acids were selectively complexed by WB, those with two –OH substitutions of the benzene 

ring showed a higher affinity than those with one. Methylation reduced the affinity to WB (as seen 

for ferulic and caffeic acid) while reduction of the side chain increased the affinity (3,3,4diOHPPA vs. 

caffeic acid). Polyphenol binding capacity thus depends on their molecular weight, conformational 

mobility and flexibility, water solubility, and joint effects of these three factors [44]. Branched 

complex polysaccharides offer additional binding sites and together with the degree of the 

polyphenol B-ring substitution can play a major role in the extent of binding interactions. The high 

sequestration capacity of WB has been demonstrated for other organic compounds such as bile acids 

[45] and carcinogens [40]. Complex polysaccharides such as WB [46] and those that form viscous 

solutions (e.g., PEC) offer additional hydrophobic pockets sequestrating proanthocyanidins in 

comparison to filamentous or globular polysaccharides (xyloglucan or cellulose) [47]. 

It is well established that different fibres can selectively promote the populations and activities 

of individual bacterial species. and previous in vitro studies have suggested that the presence of 

glucose increases phenolic acid production from quercetin in fermentations [15,19], which is likely to 

be via its effect on the microbial catabolism or composition. We did not measure bacterial populations 

in this study but in studies by others, 16S rDNA profiling has previously that the static batch 

incubation model is useful to mimic colon microbial processes and is widely used to assess the impact 

of dietary factors on bacterial metabolism in a reproducible fashion for high throughput studies [48]. 

The abundance of lactobacilli increased in the presence of xylo-oligosaccharides and INU when 

compared to control without fibre or to the microcrystalline CEL, while resistant starch increased the 

Bacteroidaecae family. Moreover, in that study, these fibres decreased the relative abundance of the 

Lachnospiraceae family [48]. Inulin has a demonstrated effect on the growth of bifidobacteria both in 

vitro [49] and in vivo [50–52], highlighting the relevance of batch incubations for initial screening 

purposes. In another in vitro study, dietary fibres caused specific changes: resistant starch caused a 

6-13-fold increase in abundance of Ruminococcus bromii and increased the abundance of several 

species of bifidobacteria. PEC increased bifidobacteria and F. prausnitzii, while INU increased 

Anaerostipes hadrus and Coprococcus. eutactus; arabinoxylans, which presumably represent the highest 

fibre fraction of our WB sample increased the abundance of bifidobacteria, mainly of Bifidobacterum 

bifidum and B. longum up to 13-times [53]. 

Changes in microbial profile may play crucial role in phenolic catabolic profile. Microbial strains 

capable of complete catabolic breakdown of rutin to phloroglucinol, carbon dioxide, 3,4-dihydroxy-

benzaldehyde and 3,4diOHPAA include Butyrivibrio sp., lactobacilli and some other strains [54]. 

Clostridium perfringens, Bacteroides fragilis [55] Eubacterium ramulus and Flavonifractor plautii showed 

the ability to produce 3,4diOHPAA from quercetin [55]. Lactobacilli such as Lactobacillus brevis, L. 

fermentum and L. plantarum metabolize phenolic acids by decarboxylation and/or reduction, yielding 

dihydroderivatives or corresponding aldehydes [56]. L. fermentum was shown to reduce caffeic acid 

to dihydrocaffeic acid and similarly p-coumaric acid is metabolised by other Lactobacillus spp. [57,58]. 

Changes in abundance of these species and possibly many others, triggered by the presence of fibre, 

is likely to be responsible for the effect of dietary fibres on rutin catabolism seen in our study. The 

interplay between fibres, polyphenols and microbiota is very complex. Polyphenols are catabolised 

in the colon by specific microbial species, they n turn shape gut microbiota composition. This 

phenomenon has been recently reviewed [59,60]. 

Evidence from animal models has shown that pectin interacts with polyphenols in an as yet 

unknown way and that administration in combination (apple polyphenol fraction + fibre fraction) 

was more effective in preventing atherosclerosis in a mouse model than apple polyphenol fraction or 
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fibre fraction only [61] or that plasma levels of quercetin are higher in rats fed a rutin-pectin-diet than 

on a rutin-cellulose diet or basal diet with rutin [62,63]. 

Very few studies have investigated the fate of rutin or quercetin at physiological concentrations, 

[14,30] with other studies considering doses achievable only by supplements [15]. Our results differ 

from studies using higher doses of the parent compounds in that they report slower deglycosylation, 

[13] or observe 3,4diOHBA, 3,3OHPPA and 3,3,4diOHPPA and other metabolites alongside the four 

metabolites observed in the present study [13,15,64]. Studies with high doses also report higher 

recoveries of total metabolites to initial quercetin and longer lag time in decomposition of the parent 

compound, which may be due to saturation of microbial hydrolases and slower release of the 

aglycone or growth inhibition of selected intestinal bacterial species [65]. 

In our study, almost all initial rutin aglycone was degraded during the first 6 h, whereas in 

another study, most of the rutin (336 µg/mL) was still intact after 6 h fermentation [15]. This probably 

reflects the fact that in our study, the rutin dose was much lower, close to physiological intake. The 

fibres used here were themselves a good source of phenolic acids probably related to the non-

extractable polyphenols. Phenolic precursors of these metabolites are an inevitable component of cell 

wall structures, bridging and cross-linking structural carbohydrate polymers and may differ among 

plants [46]. 

Fibre intake in clinical trials is linked to the presence of phenolic metabolites in stool, such as 

ferulic acid, 3,4OH3MPPA and 3OHPPA [66]. These aromatic compounds can also derive from the 

phenylalanine, tyrosine and tryptophan degradation [67] forming in particular, PAA, 4OHPAA and 

indole-3-acetic acid [68]. These catabolic pathways exist in parallel and interact, suggesting a 

considerable role of the food matrix in polyphenol metabolism. For example, ferulic acid catabolism 

to 3OHPAA and 3,4OHPAA was reduced in vitro in subjects on a high-fat-high protein diet [69]. 

Our study showed which aromatic acids originated from protein catabolism, such as those 

occurring in blank-medium only and those present in vials with cellulose (mainly PAA, 3PPA and 

less 4OHPAA, 3,3OHPPA and 3,4OHPPA, those associated with the fibre and probably originating 

from plant-derived phenylpropanoids and amino acids (Figure 2). The presence of specific 

metabolites such as phenyllactic acid in INU fermentations is of interest and suggesting a specific 

precursor in the fibre. The 3-Phenyllactic acid is a potent antimicrobial agent used in the cheese 

industry and is produced by several strains of lactic acid bacteria, such as human colonic L. rhamnosus, 

from phenylalanine [70]. It promotes growth of some bacterial groups [71] and may act in quorum 

sensing [72,73]. The presence of this metabolite could contribute to the prebiotic effect of inulin. 

The presence of pectin led to production of 3,3OH4MPPA and 3,3OHPPA while WB was 

associated with high abundance of PAA and 3,3OHPPA, but also contained ferulic acid and 

3,4OH3MPPA (Table 1, Figure 2). This suggests different structural properties or different precursors. 

Interestingly, m-hydroxy dihydro-catabolites of rutin could be more resistant to further catabolism 

as microbial enzymes show preference towards faster removal of the hydroxyl or O-methoxy group 

in the para-position [74], explaining their higher proportion. 

The addition of rutin influences carbohydrate fermentation. Fermentation of fibres to SCFA is 

inhibited by rutin and the branched chain fatty acids increase in response to this, possibly originating 

from non-carbohydrate sources. Except for RM, rutin slightly increased pH in fermentations of all 

fibres including CEL, suggesting a slight effect on carbohydrate metabolism or microbiota profile 

even at the low, physiologically relevant concentrations used. Polyphenols have been shown to have 

potential to alter gut microecology by a prebiotic-like effect; selectively inhibiting the growth of 

certain bacterial species [65]. Isobutyric acid, for instance is produced by Odoribacter sp. [75] so such 

marked decrease may denote an effect on this or a similar microbial species. 

5. Conclusions 

In this study, dietary fibres showed differential interactions with dietary rutin which affected 

the pattern of phenolic acid and SCFA production. Wheat bran, pectin, psyllium, resistant 

maltodextrin, but not cellulose, were a rich source of phenolic acids producing a profile with some 

unique metabolites, characteristic for each fibre. Rutin at the physiological dose tested was 
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catabolised to four main phenolic acids. Addition of inulin, an analogue to 20 g bolus dietary intake 

increased the concentration of the main bioactive metabolite, 3,4diOHPAA in fermentations at 24 h 

2.3-fold and addition of wheat bran 2.5-fold. Moreover, the area under the curve of this metabolite 

tended to be higher in fermentations with fibre, suggesting higher bioaccessibility. Understanding 

these interactions is essential as fibre and polyphenols are often eaten together and the phenolic acids 

and SCFA produced may be important effectors for key health benefits. In vitro fermentation models 

have some limitations in closely modelling events in the human colon as they do not mimic 

absorption of bacterial products but they are useful for predicting microbial activity. The interactions 

between fibre, polyphenols and the gut microbiota need to be further studied in vivo. 

Supplementary Materials: The following are available online at www.mdpi.com/2072-6643/12/6/1577/s1, Table 

S1 Overview of the chemicals used in the study with their abbreviations Table S2: Basic method validation and 

GC-MS of the TMS derivatives of phenolic metabolites in batch incubations after spiking the sample with two 

concentrations of standards, Table S3: Recoveries of metabolites (µg/mL) spiked with 5 µg/mL of standard into 

aqueous suspensions of fibres (concentration equals that used in test) with an aim to investigate fibre 

sequestration properties, Figure S1: Inter-individual differences in the production of 3,4diOHPAA from rutin 

among donors and response to the presence of fibres, Figure S2: Effect of rutin on formation of short chain fatty 

acid from fibres (3 concentrations) in faecal incubations, Figure S3: Information sheet on the low polyphenol diet 

provided the stool donors. 
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