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Abstract
The UK health service sees around 160,000 total hip or knee replacements every year
and this number is expected to rise with an ageing population. Expectations of sur-
gical outcomes are changing alongside demographic trends, whilst aftercare may be
fractured as a result of resource limitations. Conventional assessments of health out-
comes must evolve to keep up with these changing trends. Health outcomes may be
assessed largely by self-report using Patient Reported Outcome Measures (PROMs),
such as the Oxford Hip or Oxford Knee Score, in the months up to and following
surgery. Though widely used, many PROMs have methodological limitations and
there is debate about how to interpret results and definitions of clinically meaning-
ful change. With the development of a home-monitoring system, there is opportunity
to characterise the relationship between PROMs and behaviour in a natural setting
and to develop methods of passive monitoring of outcome and recovery after surgery.
In this paper, we discuss the motivation and technology used in long-term continu-
ous observation of movement, sleep and domestic routine for healthcare applications,
such as the HEmiSPHERE project for hip and knee replacement patients. In this case
study, we evaluate trends evident in data of two patients, collected over a 3-month
observation period post-surgery, by comparison with scores from PROMs for sleep
and movement quality, and by comparison with a third control home. We find that
accelerometer and indoor localisation data correctly highlight long-term trends in
sleep and movement quality and can be used to predict sleep and wake times and
measure sleep and wake routine variance over time, whilst indoor localisation pro-
vides context for the domestic routine and mobility of the patient. Finally, we discuss
a visual method of sharing findings with healthcare professionals.
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1 Introduction

The UK health service sees around 160,000 primary total hip and knee joint replace-
ments performed every year within the National Health Service [18]. This number is
expected to increase with a growing more active population in the UK [21].

Surgical intervention is, however, only part of a patient’s journey. After a hip or
knee replacement, up to 30% of patients experience long-term pain after surgery [4].
In a European collaborative study of 1327 patients with total hip replacement, results
suggest between 14 and 36% of patients did not improve symptoms or were worse
12 months after surgery [15].

Poor outcomes include continuing pain and functional problems and a longer term
impact on increased healthcare utilisation [4]. With changing expectations of surgical
outcome and demographic trends [19], conventional assessments of health outcomes
must evolve to keep up with these changing trends.

After surgery, patients routinely receive a follow-up appointment which can
frequently be carried out by a different surgeon or registrar, creating a fractured expe-
rience of aftercare for the patient. Various strategies have been proposed to increase
efficiency whilst maintaining quality and patient acceptability, such as the use of ‘vir-
tual clinics’ [34]. Other than the consultation itself, assessment of health outcomes
generally relies on self-reported outcome measures such as the Oxford Hip Score [9].
These can assess various health outcomes including pain, function, and aspects of
quality of life but can be limited by self-report, with many lacking a theoretical
basis [27, 29].

Previously, research has explored the relationship between PROMs and objec-
tive measures, notably performance-based tests such as timed walks or sit-to-stand
tests [6]. Such objective measures are administered in controlled, laboratory style
settings and may not reflect levels of activity in daily life. Multimodal sensor sys-
tems present in the domestic settings, such as those used in ambient-assisted living
scenarios [24], allow assessment of behaviour and activity in a natural setting.

Establishing a relationship between PROMS and multimodal sensor data permits
us to develop effective methods of passive monitoring and recovery after surgery.
Providing a further data source, alongside PROMS, may allow for relatively timely
intervention in the event of complications and thus potentially improving patient
outcomes.

In this paper, we introduce two cases from the HEmiSPHERE study [12], the
first clinical application of the SPHERE IoT sensor network [10, 36]. This paper
presents an initial analysis of long-term observational data from three participant
homes (Section 4) to evaluate whether IoT sensor data can be used to produce
informative trends of patient behaviour during recovery from total hip replacement
surgery, using statistical analysis and machine learning techniques. Long-term trends
in movement, location and posture activity are visualised to show distinct patterns of
patient domestic behaviour (Fig. 10). Finally, generated classifications are compared
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with PROMs for validation of trends evident in predictions (Section 5). We show that
trends in domestic behavioural data can be reliably and accurately generated using
the SPHERE sensor network and that these trends are indicative of patient recovery
from hip replacement surgery.

In this study, data from three participants are presented for comparison between
patients in recovery from surgery and for evaluation in reference to Patient Reported
Outcome Measures. Participant A is used as a control, having not undergone surgery.
Both Patients B and C are in recovery from total Hip replacement surgery.

2 RelatedWork

Key indicators relevant to PROMS include movement patterns (such as room to
room transfers), patterns of improvement (establishment or divergence from rou-
tine), high-level activities undertaken (such as cooking or cleaning) and sleep (e.g.
hours sleeping, quality of sleep). This study focuses on sleep, movement and domes-
tic routine by analysing and classifying three attributes of patient behaviour—indoor
location, movement and activity class. In this section of the paper, the authors briefly
introduce literature on the methods selected to perform the analysis.

2.1 SPHERE: a Sensor Platform for HealthCare in a Residential Environment

SPHERE is an interdisciplinary research project which aims to develop sensor tech-
nologies capable of supporting a variety of practical use cases, including healthcare-
and ambient-assisted living outcomes. An additional goal of SPHERE is to build sys-
tems that are considered acceptable by the public and which are flexible and powerful
enough to function well in a broad variety of domestic environments [35, 36].

‘Smart home’ systems development has primarily taken place in laboratory set-
tings [1], or, as in the SPHERE project, in a customised home [30]. In 2017, the
SPHERE project began to deploy a multimodal sensor network (Fig. 1) into dozens
of homes in the South West of England. In 2018, the HEmiSphere project began
deploying the SPHERE sensor network in the homes of patients as they underwent
total hip or knee replacement surgery.

As shown in Fig. 1, the SPHERE sensor network provides an overlapping mesh of
sensors within a domestic environment. The network incorporates a number of sensor
subsystems, including video systems, environmental sensors, electricity and water
meters and wearable sensors communicating over Bluetooth Low-Energy (BLE) con-
nections. In this research, the authors focus on RSSI and accelerometer data collected
from the wearable subsystem.

2.2 Indoor Localisation

Indoor localisation [23, 33] is an important area of research for behavioural analy-
sis in residential healthcare. The ability to predict the location of a patient not only
gives insight into domestic routine and habitation but allows other information to be
physically contextualised.
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Fig. 1 The SPHERE sensor platform consists of multiple subnetworks of sensors including environmental
sensors, smart utility meters, cameras and wearable sensors. Sensors in the network communicate using
Bluetooth Low-Energy (BLE) gateways

The SPHERE network provides a mesh of Received Signal Strength Indicator
(RSSI) fields. As in literature [23, 33], RSSI has been used to fingerprint locations
within a space by learning the discriminant RSSI vectors from a moving average [23].

Initial testing of RSSI fingerprinting within the SPHERE sensor network [13],
using a multilayer perceptron network for location classification, yielded positive
results. On a single sample home, the network achieved above 80% classification
accuracy on a limited set of indoor locations.

2.3 MeasuringMovement withWearable Accelerometers

Accelerometers are sensors that measure the rate of change in velocity and can be
used to measure movement of a person [22, 37]. The accelerometers used in the
SPHERE sensor network (Fig. 1) are tri-axial, meaning they record acceleration in
three dimensions, x, y and z. In [22, 37], wrist-worn accelerometers are used to
monitor acceleration magnitude (Equation 1), which is the square root of the accel-
eration vector. The magnitude gives a single signal which describes the magnitude
of acceleration regardless of the axis, or direction, of acceleration. Magnitude is use-
ful in modelling the force of movement, when specific orientation information is not
necessary.
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A =
√

x2 + y2 + z2 (1)

The wrist-worn sensor will show spikes in magnitude indicative of movement such
as ambulation (e.g. walking or running), hand or arm movements (e.g. chopping veg-
etables) or posture change (e.g. rolling over in bed). In aggregate, movement data can
also be used to study activity levels over an extended period of time, such as sleep
quality and rhythm [2], using for example sleep quality and consistency measures
proposed and used in actigraphy.

2.4 Classifying Posture and Ambulation Activity

Activity recognition using wearable and mobile devices has been a major focus for
the recent years [3, 14, 17, 25, 28]. From a device prospective, mobile phones, smart
watches and wrist bands have the dominant source of data, which normally captures
the acceleration signal around the body of the users. In this paper, we also focus on
the 3-axis acceleration data obtained from a wrist band, which is one of the standard
approaches used in the field.

3 Case Study

The case study presented in this paper develops the analysis presented in prior work
by the authors [13]. The methods selected for analysing location, movement and
activity have been piloted in prior work using a single simple home over a short time
period. In this work, we present a study of three participant homes—two with patients
in recovery from total hip replacement surgery—over a 3-month time period. The
three participants are aged between 50 and 85 years of age. Whilst the homes of each
participant have different rooms and layouts, the commonalities such as bedroom,
kitchen, bathroom and living room may be informative in terms of Activities of Daily
Living such as cooking, bathing, sleeping and leisure.

The ambition of this case study is to show, for the first time, that analysis of data
collected using the SPHERE sensor network (see Section 2.1) can produce outcomes
indicative of trends reported in their patient reported outcome measures for mobility,
sleep and routine. In this section of the paper, we describe the data collected, eth-
ical considerations and analytical methods used to learn and recognise behavioural
patterns expressed within the data.

3.1 Data Collection

Three case study homes have been selected from the cohort of participants. Each
selected case study home has one participant wearing a SPHERE wearable device.

Participant home A is selected from the overall SPHERE cohort. The home is used
as a control, where the participant is not in recovery from surgery. Participant home
A allows us to visualise a baseline routine of domestic activity. Participants in homes
B and C both underwent total hip replacement surgery within the first 2 weeks of
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observation. Participants in homes B and C were observed for 3 months following
surgery.

Participants in homes B and C rated their health outcomes over the recovery
period. Self-reported PROMS include a sleep quality survey [8] and the Oxford
Hip Score. [9] PROM data has been collected for participants in homes B and C
for comparison with analysis made from data collected using the SPHERE Sensor
network.

The SPHERE system has been installed in the residence for 5 months. In this
paper, we focus on analysis of the first week of installation, so as to give an overview
of the methods used for analysis and visualisation of data. Figure 1 shows the physical
architecture of the SPHERE platform, of which one subsystem is the wrist-worn
Bluetooth Low-Energy (BLE) wearable device. The wrist wearable harbours a tri-
axial accelerometer and broadcasts over Bluetooth at 25Hz.

3.2 Ethics: Data Collection and Publication

The data used in this study has been collected as part of the SPHERE [35, 36]
and HEmiSphere [12] projects. Ethical approval for HEmiSPHERE was granted on
22/06/2017, 17/SW/0121. The participants in this case study have provided con-
sent for data to be recorded within their home. Participation in both the SPHERE
and HEmiSPHERE projects is voluntary, and participants are at liberty to exit the
experiment at any time.

Due to the sensitive nature of data collected within a real-world residential envi-
ronment, data used in this study is not being made public alongside this paper. A
data set of activity and location annotated SPHERE sensor data, recorded during
short scripted experiments in the SPHERE House (The SPHERE Challenge) [31], is
available online.

3.3 Methods

In this section, we present an overview of methods used to generate the three
classification metrics: in-door localisation, movement and activity classification.

3.3.1 Classifying Location Using RSSI Fingerprints

To develop a localisation training set for the home, during installation of the SPHERE
sensor network, a technician performs an annotation procedure called a ‘technician
walk-around’. The technician carries the wearable device to each room in the home,
annotating the start and end times in each labelled location. The technician walk-
around was repeated prior to the sensor network being removed from the home.
Figure 2 visualises the technician walk around, showing annotated location labels
above a plot of the RSSI signals for the corresponding period.

RSSI levels between the wrist-worn wearable and each installed receiver within
the home have been recorded. Using a 1-s window, a vector of RSSI values is con-
structed to represent the position of the participant. For each gateway, the sum, mean,
minimum, maximum and variance in RSSI are calculated across the second. If the
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Fig. 2 Visualisation of technician walk around with annotated locations (top) and RSSI data (bottom) for
house A. The technician performed a set of two annotation experiments, going through every room in the
house. The bottom subplot shows the RSSI intensity from the wrist-band to 5 devices

wearable is out of range of all gateways, no data is produced. If the wearable is out
of range of one or more, but not all, gateways then values for those gateways are sub-
stituted with the constant rssi = −100db. This value was chosen as it is minimally
beyond the maximum dB threshold for connection.

A multilayer perceptron artificial neural network (MLP) with three hidden layers,
10 nodes per hidden layer, was trained to classify the location of the wearable based
on RSSI vectors. To train the classifier, the annotations taken during the technician
walk-around activity (Fig. 2) were used to label the training and test set of vectors.

In initial testing, training on data from the first technician walk-around and testing
on data from the second provided poor results in some important locations, such as
the bedroom in home A. This may be, in part, due to changes made within the home
during the observation period, such as movement or addition of furniture, which
change the RSSI signals. For this initial study, we train the classifier using a random
sample of data from both walk-arounds.

The set of labelled vectors were shuffled and split 60/40 between training and test-
ing sets. Parameters including momentum, learning rate and solver were tuned using
grid search, with the optimal configuration selected based on training set perfor-
mance ascertained using Sci-kit Learn’s MLPClassifier ‘score function’. A separate
classifier was tuned and trained for each participant data set. Classifiers were then
tested on an out-of-sample test set. The best performing solver was the ‘Adam’ [16]
algorithm. Results of training and testing are presented in Section 4.1.

3.3.2 Classifying Movement and Sleep-Wake Routine

Movement is calculated by the magnitude of acceleration (1), as given by the mean
tri-axial accelerometer readings from the wrist-worn wearable, over a 1-min win-
dow. This approach has been successfully demonstrated in [37]. The wearable device
transmits acceleration in x, y and z dimensions at 25 Hz. Acceleration magnitude was
calculated for each 1-min of accelerometer data. For each 1-s window, the mean, min,
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Fig. 3 Visualisation of day in fast-forward experiment with the annotated activities (top) and the
accelerometer values (bottom) for house B. The activities are manually annotated by inspection of a video
recorded from a head-cam camera

max and standard deviation of magnitude were calculated. Using the nparACT Actig-
raphy package [5], the movement data is used to estimate a routine of the participant
including most and least active periods, and sleep-wake cycle. Results of training and
testing are presented in Section 4.2.

3.3.3 Classifying Posture Activities Using Tri-axial Acceleration

We now describe how to obtain the inference over certain activities using the accel-
eration signal from the wearable device. To train the classifier, we collect a set of
annotated datasets via performing scripted experiments in different homes. These
scripted experiments are designed as follows. We ask the participant to simulate their
daily life (e.g. wake from bed, go to the kitchen, stay in the living room, back to the
bedroom) whilst wearing a head-mounted camera (Fig. 3). The whole process nor-
mally takes from 5 to 10 min, after which the recorded videos are annotated with five
ambulation and postures: (1) lay down, (2) sit, (3) stair, (4) stand, (5) walk. Including
the three participant houses above, we use a total number of 10 scripted experiments
from different houses to train the activity classifier. Given the amount of available
training data, we selected to adopt existing feature engineering approaches to process
the wearable acceleration data. The features we considered in this paper are calcu-
lated according to the common sliding window approach [32]. We apply a sliding
window of the length of 6 s, with a step size of 3 s. Within each window, we first
generate a gravity-free signal by computing the L2 norm of the 3-axis acceleration
signal, then we calculate the mean and standard deviation from this norm together
with the existing acceleration from 3 axes. Additionally, for each window, we also
calculate a normalised histogram over the gravity-free signal (with 10 bins from − 4
to 4).

We split the generated features and the annotated activities using stratified 5-
fold cross-validation. We train a random forest with the default parameters from the
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Table 1 Location classifier test-set results for participants

Participant Accuracy (%) Precision Recall f1-score Support

A 81 0.81 0.81 0.81 163

B 74 0.76 0.74 0.75 897

C 71 0.73 0.71 0.72 464

Python library Scikit-learn; 100 decision trees, Gini index as a split criterion, a min-
imum of 2 samples per split and at least one sample per leaf, the number of features
of each tree is fixed to square root of the total number of features, and the number
of samples for the bootstrap is always the same as the original number of samples
but randomly selected with replacement. We test the training performance of random
forests with several random seeds and choose the one with the highest training accu-
racy. The out-of-sample test performance is then estimated from the validation folds.

4 Results

In this section, we present results for training of indoor localisation and activity clas-
sifiers using the methods described in Section 3.3 along side 3-month observational
data and classifications for location, movement and posture activity.

4.1 Indoor Localisation

Table 1 show the test set performance of the trained MLP indoor localisation
classifier (see Section 3.3.1) for each participant home, based on the technician
walk-around labels, as described in methodology Section 3.1.

The classifier test results show that for all three participant homes, the indoor
localisation model proposed achieved test-set accuracy between 74 and 81%. Partic-
ipant home B had the largest number of locations, with 11 annotated locations, and
achieved the lowest overall accuracy. Figure 4 show the confusion matrices for each
localisation model. The confusion matrices show the counts for each type of pre-
diction and highlight where models perform well or poorly. The confusion matrix B
shows that the classifier performed poorly in distinguishing between the kitchen and
the adjoining laundry room, and the hallways and the stair wells.

The trained classifiers have been applied to the 3-month observation period for
each participant home. Figure 5 shows the distribution of time spent, by each partic-
ipant, in each location of their home. The ‘unknown’ location label is added here to
denote time when the participant is not in range of the sensor network, or the sensor
network is turned off. Other data confirms that the sensor network is on during the
observed periods allowing ‘unknown’ to represent time spent outside of the home.

The localisation classification results (Fig. 5) for the observed 3-month post-
operative recovery period highlight some interesting differences between our healthy
control home, A, and patients in homes B and C. The participant in home A (Fig. 5a),
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(a) Participant home A (b) Participant home B

(c) Participant home C

Fig. 4 Confusion matrices for localisation classifiers for each house. Each confusion matrix shows high
values in the diagonal, denoting a strong true positive counts. In home B, the halls 1 and 2 are commonly
confused by the stairs 1, and the kitchen 1 and the laundry room 1 seem difficult to differentiate as well.
In home C, the bedroom 3 is confused with the hall 1, whilst the porch 1 and stars 1 are occasionally
predicted when the true location was living room 1, kitchen 1, dinning room1 or bedroom 1

our control participant, regularly spends time in each location of the home but occu-
pies an ‘unknown’ location, here representing time outside of the home, for some
period on each week day; less time is spent outside of the home on weekends. The
participant in home B (Fig. 5b), a post-operative patient, increases the frequency of
their time away from home in the final month of observed behaviour. The partici-
pant in home B decreases their time in the bedroom over the same period and slightly
increases time spent in the kitchen and study locations of the home. Dis-similarly, the
participant in home C (Fig. 5c), again a post-operative patient, shows an increase in
time spent in the bedroom across the observed recovery period and their time spent
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(a) Participant in home A

(b) Participant in home B

(c) Participant in home C

Fig. 5 Location classifications: percentage time in location per day. The control home A a shows long
time spent in an “Unknown” location meaning that the wearable was out of reach and denoting time spent
outside of home. Participant in home B b shows occasional time spent outside of home increasing over
time, whilst participant in home C c shows an increasing amount of time spent in bedroom 1

in the kitchen and living room decreases. These patterns of domestic behaviour indi-
cate potentially different outcomes for recovery from surgery, where location data
for the participant in home B shows an increase in mobility and activity outside of
the home, whilst for C, the range of locations in use decreases over time. However,
the longer term predictions do highlight intermittent problems. The error in location
predictions for home B, by which the participant appears to inhabit the bedroom for
several days (see Fig. 5b), is shown to be caused by several gateways failing to report
data. Figure 6 shows a stacked area chart of messages sent through each Bluetooth
low-energy gateway in the home. Between days 21 and 25, three sensors are absent
from the dataset.
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Fig. 6 Counts of Bluetooth low-energy gateway sensor messages for home B over 37 days

This error highlights a weakness in RSSI fingerprinting with supervised learning.
RSSI fingerprints learned during training cannot be representative of the network fin-
gerprints during periods where one or more gateways are temporarily offline, either
due to fault or disconnection. Whilst these problems are unlikely to occur in a labora-
tory setting, in the wild such conditions may occur due to hardware or power failure.
The erroneous location classifications will continue until the network is returned to a
fully operation state. One solution to this would be to train with synthetic data, incor-
porating synthetic failures, or to train with an ensemble of binary classifiers. Future
work to improve methods will incorporate research in to fault tolerant classifiers.

4.2 Movement and Routine

Raw accelerometer data is used to produce magnitude statistics, using the method
described in Section 3.3. Figure 7 shows the mean standard deviation of magnitude
per day, across the observed period. The standard deviations in acclerometer magni-
tude show how varied, per minute, acceleration magnitude is on average across each
day. The higher the average standard deviation, the more forceful acceleration has
occurred.

Movement data extracted from the wearable accelerometer (Fig. 7) shows a stark
difference in movement behaviour between patients B (Fig. 7b) and C (Fig. 7c).
Whilst the patient in home B shows a healthy pattern of movement and rest, similar to
our control in home A (Fig. 7a), the patient in home C (Fig. 7c) shows very low lev-
els of movement throughout the post-operative recovery period. Whilst the patient in
home B increases their movement across the period, the patient in home C decreases
their overall levels of movement.

Accelerometer data may be used as a data source for actigraphy, a family of
approaches used to support the study of sleep and circadian rhythms [2].

As the SPHERE wearable reports data only when the participant is in the home,
a comprehensive dataset is not available. Consequentially, it is necessary to impute
missing values before these methods can be applied. Using the simplest method,
we may impute missing values to zero. We have also explored the impact of using
alternative methods, such as the use of time-series analysis to interpolate missing
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(a) Participant in home A

(b) Participant in home B

(c) Participant in home C

Fig. 7 Mean standard deviations in accelerometer magnitude per day

values in a manner that takes into account the nature of the dataset, although a detailed
discussion of these is beyond the scope of this paper.

We use version 0.8 of the nparACT package to analyse the data. This is a recently
published tool for non-parametric analysis of actigraphy data [5], able to calculate
start times and average activity values of the most active 10 h of the day (M10)
and of the least active 5 h of the day (L5). Additionally, interday stability and intra-
day variability are made available. These values can be compared against the sleep
PROMs for the purposes of data validation. Intraday variability in particular is used
as a marker for sleep-wake cycle disturbances, such as night-time activity and sleep
during the daytime [11], and is therefore relevant to the study of conditions or inter-
ventions that imply disturbed sleep. We expect that patients recovering poorly may
suffer more post-surgery pain or discomfort resulting in poor reported sleep.
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Table 2 Variation in measures of circadian rhythm, including ΔT - difference between start of L5 (lowest
5 h) and participant predicted start of sleep time

A B C

ΔT offset (onset of L5-participant prediction) +120m +60m −35m

IV during first 5 days 0.23 0.2 0.64

IV prior to follow-up 2 period NA 0.9 1.05

IV during final 6 weeks NA 0.87 1.15

Reduction in RA post-op NA −0.7 −0.9

Intraday variability across 3 months 0.23 0.2 1

RA (Relative amplitude) across 3m 0.59 0.3 0.14

L5 predictions and participant predicted start of sleep times are presented in
Table 2. It is worth noting that the time difference between the start of L5 and par-
ticipant predicted start of sleep time is, across the whole time period, reasonably
small for most participants. Whilst participant A has a well-established sleep routine,
their case presents some difficulty because the participant is away from the home for
extended periods, as well because the participant’s weekend routine, as can be visu-
ally established by reviewing the relevant graphs (Fig. 10), differs significantly from
their weekday routine. As they are more likely to be at home during this time, the
dataset as a whole is likely to be biased towards their weekend habits.

Intradaily variability (IV) is used to establish how regularly an individual switches
between rest and activity. From visual inspection of Fig. 10, in particular the
accelerometer data, we note that participant C is almost always somewhat active,

Fig. 8 The confusion matrix on activities obtained by 5-fold cross-validation. Shows a strong component
on the diagonal denoting correct predictions, whilst the activity stand is sometimes predicted as walk
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although there is a period of approximately 5 h per night in which they are some-
what less so. Additionally, they are seldom very active and there are signs of periods
of rest during the day. This suggests that IV is likely to be high for this participant.
The relative amplitude (RA) measure is reduced following the operation for both B
and C, implying that the participant’s circadian rhythm is disrupted. By comparison,
participant B eventually regains a pattern of low activity during the night, suggesting
that their final IV score should be reasonably low. A, similarly, has a clear pattern of
rest, with some slight variance.

Comparing this with PROMS, these findings coincide with participant B’s men-
tion of broken sleep, with slightly better gradual improvement than participant C.
Additionally, the evidence supports the conclusion that participant C’s sleep does not
improve significantly by the end of the study.

(a) Participant in home A

(b) Participant in home B

(c) Participant in home C

Fig. 9 Activity classifications: percentage time in posture-activity per day
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4.3 Activity Classification

The 5-fold cross-validation confusion matrix is given in Fig. 8. As indicated by the
confusion matrix, the classifier is able to distinguish most of the ambulation and
postures. One exception is that the activity walk is very likely to be mis-classified
as stand. Whilst quantitatively this shows a slower performance compared with other
activities, it should be aware that walk and stand are often exchanged rapidly in real
life, which creates a higher difficulty to distinguish them. On the other hand, given
the main purpose of the activity classifier is to evaluate the recovery progress of the
patient by checking the stationary and non-stationary activities, the classifier is hence
showing reasonable performance here. Figure 9 further shows the inferences over the
whole period for each of the participant, which captures the proportion of time spent
on each ambulation and posture.

Regrading the inferred activities, as shown by Fig. 9, the most significant differ-
ence among the participants can be found on the time spent with lay down and sit.
Whilst for participants A and B most time are spent on lying down, participant C is
inferred as spending most time on sitting. Since in the results above we have demon-
strated that the classifier is mostly correct on classifying sit and lay down, here we
can initially exclude the possibility that the classifier is wrong and shows different
results among the three participants. One possible explanation here is that participant
C did spend extra time sitting on the bed due to the poor recovery indicated by the
PROM information. Similarly, if we compare participants A and B, we can see there
is not a clear pattern on the lay down time for participant A whilst a clear reduction
of time is shown for participant B. Given that the PROM information from partici-
pant B indicates a good recovery, these results also demonstrate the effectiveness of
using the SPHERE system to monitor the recovery progress.

5 Comparison with PROMS

Descriptive scores on one of the PROMs within HEmiSPHERE as shown in Table 3
demonstrate that participants B and C show improvement over time in pain and

Table 3 Descriptive scores on one of the PROMs scores within HEmiSPHERE

Measure Participant BL FU1 FU2 FU3

Oxford Hip B 18 23 35 42

Score* C 32 33 47 47

HOOS QOL B 37.50% 37.50% 62.50% 100%

subscale** C 68.75% 62.50% 75.00% 75%

0*The Oxford Hip Score is a value in the range [0 − 49], where 0 is the most severe pain and 48 indicates
the least symptoms. **The Hip disability and Osteoarthritis Outcome Score Quality of Live (HOOS QOL)
subscale is a normalised scale in percentage where 100% denotes no problems, and 0% denotes extreme
problems [20]. BL, baseline—pre-operative; FU1, follow-up one—4–9 days post-operative; FU2, follow-
up two—6 weeks post-operative; FU3, follow-up three—12 weeks post-operative
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function, measured by the Oxford Hip Score (OHS) and the Hip disability and
Osteoarthritis Outcome Quality of Life (HOOS QOL) subscale.

Participant B demonstrates a slightly better gradual improvement in pain and
function between baseline (pre-surgery) and follow-up 1 (within 2 weeks following
surgery) than participant C which remains the same, i.e., 32/33. Due to the limita-
tions in how much we can infer from single participant scores within the PROMs,
these findings have been triangulated with qualitative interviews conducted with the
patients in HEmiSPHERE.

Interviews were conducted by an experienced qualitative researcher with all
patients before surgery and approximately 2 weeks after surgery [26]. In-depth
interviews using probes and prompts provides understanding of lived experiences.

Interviews were transcribed, anonymised and imported into the qualitative data
management software QSR International’s NVivo 11. Interviews lasted between 45
and 60 min. A series of open-ended questions followed a topic guide.

• Pre-surgery

– Route to referral for surgery
– People living in the household
– Previous experience of health technology (home, wearable, apps)
– Current experience and future expectations of mobility and function
– Preparations in the household for surgery

• Post-surgery

– Experience of aftercare post-surgery
– Experience of living with SPHERE technology
– Ask about the adequacy of information received about SPHERE tech-

nology
– Explore how initial expectations of living with the SPHERE technology

compared to the experience

Pre-surgery interviews began with an introduction to the aims of the interview, and
a discussion of their route to referral, views about the SPHERE sensor system, house-
hold constitution and health technology usage. Post-surgery interviews explored care
after surgery and living with the SPHERE sensor system. Interviews were audio
recorded, transcribed and anonymised.

Using thematic analysis [7], the researcher read and re-read the data to ensure
familiarity, coding inductively before sorting coded data into themes [26]. Codes
were checked for consistency and validation by a second researcher familiar with the
topic area and verified by the clinical study team.

Qualitative evidence shows participant B accordingly reports a fairly good recov-
ery, albeit broken sleep expected for that stage of recovery.

Despite an uncomfortable expected first few days in the immediate post-operative
period, participants B and C perceive recovery very differently. Participant B
describes a fairly good recovery. We illustrate this with direct quotations below:

Researcher: Have your expectations from surgery been met since having the
surgery?
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Participant B: Yes, absolutely... I’m where I should be, I think, at two weeks.
The balance of better/uncomfortable is about what you’d expect.
So yes, I would say so.

Participant C on the other hand reports wounds complications in the days
immediately after surgery

Researcher: What is different about your life now compared to before surgery?
Participant C: Less active... Yeah, not as active... One day we [participant C and

wife] were able to walk up to the lamppost... That’s before all these
things [wound complications] started to happen... this was before
the bleeding... I get up and hits you a kick

PROMs are useful tools to evaluate the success of interventions and changes in
health outcomes based on large cohorts, but as we highlight above, PROMs are lim-
ited in characterising recovery on an individual level. We suggest that the continuous
data that can be captured therefore from sensor data seeks to strengthen the data
provided by PROMs.

6 Discussion

In general, the results illustrate that SPHERE system information are a useful adjunct
to descriptive information provided by the PROMs in characterising recovery on an
individual basis. To consider sleep regularity for instance, the variation in patterns of
sleep over the three cases can potentially assist a health professional to understand
the impact sleep may have on recovery. Another is movement within the home and
the amount of time that they spend outside the home, which, although not directly
reflected in metrics of patient recovery, do provide useful ‘actionable’ indicators to
the health professional of the extent to which the patient has resumed an everyday
routine.

A significant challenge for the present study is transforming the data obtained
from the sensor system to meaningful data for health professionals to infer anything
from. Towards this end, we have developed a number of visualisations intended to
provide at-a-glance indication of change over a relatively large period of time. The
left-hand column of visualisations in Fig. 10 displays participant location within the
home, juxtaposing most and least active times, which provides the viewer with a
straightforward means to scan for anomalies, such as use of kitchen, study or bath-
room during the time of least activity, or lengthy time periods spent in the bedroom
during the day. The right-hand column displays acceleration magnitude, filtered to
the 75th percentile of standard deviation to facilitate visual review.

7 Conclusions and FutureWork

The case study has demonstrated that trends in patient movement, posture and loca-
tion can be reliably and accurately analysed using from RSSI and accelerometer data
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(a) Location participant A (b) Acceleration magnitude part. A

(c) Location participant B (d) Acceleration magnitude part. B

(e) Location participant C (f) Acceleration magnitude part. C

Fig. 10 Left: Hourly modal location and dominant activity. Average least active times (L5) and most active
(H10) throughout the study are highlighted by grey and yellow segments. Hours during which the dominant
component consists of an active activity (walking, stair climbing) are bordered in yellow, whilst standing
is bordered in pink. Right: Acceleration magnitude (75th percentile). Spirals are to be read clockwise from
inside (start of study) to outside
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gathered using the SPHERE sensor network over the time a patient is in recovery
from surgery.

RSSI fingerprints collected during the technician walk-around activity were suffi-
cient (Table 1) to model distinct locations within the home. The long-term trends in
location data provide a picture of diverging patterns of domestic behaviour between
patient homes B and C. Whilst B appears to use more locations over time, including
time outside the home, patient C is shown to withdraw from many locations in the
home, instead spending time in the bedroom.

Routine of activity and passivity is highlighted in movement estimates, with
accelerometer magnitude providing the clearest view of true movement levels. Move-
ment data highlights the difference in movement behaviour between patients B
(Fig. 7b) and C (Fig. 7c). Whilst B increases movement over time, the patient in home
C decreases their overall levels of movement.

Activity classifications, shown in Fig. 9, show distinct patterns of activity for each
patient. The results suggest that the method of classification has produced meaningful
activity classifications and should provide a basis for an expanded activity set in
future work.

Finally, our observations and classifications are partly validated by the self-
reported information provided through traditional PROMs and qualitative observa-
tions from patient interviews.

The future work of this paper can be divided into three directions: (1) to improve
the overall data processing pipeline, (2) to enhance the capability of the system
by advanced machine learning and artificial intelligence, (3) to investigate and
develop use-cases for systems and data interactions across both patient and clinical
stakeholders.

For the overall data processing pipeline, as discussed previously, one of the main
issues among the current system is the failure of sensors and hence the loss of certain
data. Whilst the direct solution is to detect the failed sensors and fix them during data
collection, it might dramatically increase the cost of the system in terms of human
resource. Hence, the one of the main areas of future work is, assuming that subsets
of certain types of data will be lost during the period of operation of a home-installed
sensor network, to develop a processing pipeline that is robust against each known
type of missing data.

The training data for location prediction has a uniform prior, as the technicians
spend around 50 s on each room that they visit. This means that the models are not
biased towards any room in particular. However, this approach may have limitations
in that rooms are used to different extents in the real world. In future work, there is a
need to investigate alternative location annotation methods, such as near field contact
(NFC) tags, for continuous or incremental label collection, which may provide a more
realistic distribution of locations. Online training may also help to overcome drift in
RSSI data caused by changes to the environment, such as furniture or electronics,
which interfere can with blue-tooth signals. Additionally, further parameter tuning
for any location classifier may improve upon accuracy reported in this study.

With respect to the machine learning and artificial intelligence techniques, the next
step is to further reduce the requirement on the amount of training data, and therefore
to build a improved approach to infer the recovery progress of the patients. At the
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current moment, the recovery of the patient is monitored with extensive reference to
the inferred activities and locations, for which a set of well-annotated ground truth
data is required to train the classifiers. For this purpose, means of self-annotation
have been identified that permit participants to electively contribute further ground
truth data. These are currently under evaluation within a healthy control population.
However, as such training data is generally difficult to obtain on a large scale, it
would be more valuable to further consider approaches that are more efficient on the
current available data, and ideally to directly infer the recovery progress without a
exact inference over activity and locations.

Finally, as the aim of the system is to provide certain information back to the
clinician, and hence to improve the recovery of the patients, we are working to iden-
tify potential methods that allow fruitful communication and interaction between the
clinician and the patients on the basis of SPHERE data. The visualisation methods
displayed in this paper are under evaluation with clinicians through a series of work-
shops, and we expect to evaluate further approaches to communication of key data to
clinicians and to the patient.
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