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Abstract

The paper starts by introducing a new dimension along which distributed systems resilience may be
evaluated — exhaustion-safety. A node-exhaustion-safe intrusion-tolerant distributed system is a sys-
tem that assuredly does not suffer more than the assumed number of node failures (e.g., crash, Byzan-
tine). We show that it is not possible to build this kind of systems under the asynchronous model.
This result follows from the fact that in an asynchronous environment one cannot guarantee that the
system terminates its execution before the occurrence of more than the assumed number of faults.
After introducing exhaustion-safety, the paper proposes a new paradigm — proactive resilience — to
build intrusion-tolerant distributed systems. Proactive resilience is based on architectural hybridiza-
tion and hybrid distributed system modeling. The Proactive Resilience MB&RN) is presented

and shown to be a way of building node-exhaustion-safe intrusion-tolerant systems. Finally, the pa-
per describes the design of a secret sharing system built accordingR&MeA proof-of-concept
prototype of this system is shown to be highly resilient under different attack scenarios.

Key words: Intrusion tolerance, timing assumptions, proactive recovery, wormholes, secret shar-

ing

1 Introduction

A distributed system built under the asynchronous model makes no timing assumptions about the oper-
ating environment: local processing and message deliveries may suffer arbitrary delays, and local clocks
may present unbounded drift rates [17, 9]. In other words, in a (purely) asynchronous system it is not

possible to guarantee that something will happen before a certain time. Therefore, if the goal is to build

*This work was partially supported by the EC, through project IST-2004-27513 (CRUTIAL), and by the FCT, through the
Large-Scale Informatic Systems Laboratory (LaSIGE) and project POSC/EIA/60334/2004 (RITAS).



dependable systems, the asynchronous model should only be used when system correctness does not
depend on timing assumptions. At first sight, this conclusion only impacts the way algorithms are speci-
fied, by disallowing their dependence on time (e.g., timeouts) in asynchronous environments. However,
recently it was found that other types of timing dependencies exist in a more broader context orthogonal

to algorithm specification [24]. In brief, every system depends on a set of resource assumptions (e.g.,

a minimum number of correct replicas), which must be met in order to guarantee correct behavior. If a
resource degrades more than assumed during system execution, i.e., if the time until the violation of a
resource assumption is bounded, then it is not safe to use the asynchronous model because one cannot
ensure that the system will terminate before the assumption is violated.

Consider now that we want to build a dependable intrusion-tolerant distributed system, i.e., a dis-
tributed system able to tolerate arbitrary faults, including malicious ones. In what conditions can one
build such a system? Is it possible to build it under the asynchronous model?

This question was partially answered, twenty years ago, by Fischer, Lynch and Paterson [10], who
proved that there is no deterministic protocol that solves the consensus problem is an asynchronous
distributed system prone to even a single crash failure. This impossibility result (commonly known as
FLP) has been extremely important, given that consensus lies at the heart of many practical problems,
including membership, atomic commitment, leader election, and atomic broadcast. Considerable amount
of research addressed solutions to this problem, trying to preserve the desirable independence from
timing assumptions at algorithmic level. One could say that the question asked above was well on its
way of being answered. However, as mentioned before, a new and surprising dependence on timing was
found recently [24]. The present paper builds on this previous result.

In the first part of the paper, we show that assuming a maximum numbfefaafity nodes under
the asynchronous model is dangerous. Given that an asynchronous system may have a potentially long
execution time, there is no way of assuring that no more fHanlts will occur, specially in malicious en-
vironments. This intuition is formalized through the introductioewtfiaustion-safety a new dimension
over which distributed systems resilience may be evaluated. A node-exhaustion-safe intrusion-tolerant
distributed system is a system that assuredly does not suffer more than the assumed number of node
failures: depending on the system, nodes may fail by crash, or start behaving in a Byzantine way, or dis-
close some secret information, and all these types of failures may be caused by accidents (e.g., a system
bug), or may be provoked by malicious actions (e.g., an intrusion perpetrated by a hacker). We show
that it is not possible to buildny type of node-exhaustion-safe distributédnhtrusion-tolerant system

under the asynchronous model. In fact, we achieve a more general result, and show that it is impossible,



under the asynchronous model, to avoid the exhaustion of any resource with bounded exhaustion time.
Despite this general result, the focus on this paper is on fault/intrusion-tolerant distributed systems and
on node-exhaustion-safety.

Our result is orthogonal to FLP. Whereas FLP shows that a class of problems has no deterministic
solution in asynchronous systems subjected to failures, our result applies to all types of asynchronous
distributed systems, independently of the specific goal/protocols of the system.

What are then the minimum synchrony requirements in order to build a dependable intrusion-tolerant
distributed system?

If the system needs consensus (or equivalent primitives), then Chandra and Toueg [7] showed that
consensus can be solved in asynchronous systems augmented with failure detectors (FDs). The main
idea is that FDs operate under a more synchronous environment and can therefore offer a service (the
failure detection service) with sufficient properties to allow consensus to be solved.

But what can one say about intrusion-tolerant asynchronous systems that do not need consensus?
Obviously, they are not affected by the FLP result, but are they dependable?

Notice that, with regard to exhaustion-safety, an asynchronous consensus-free system is the same
as an asynchronous consensus-based system enhanced with synchronous failure detectors. So, the
guestion remains: What are the minimum synchrony requirements to build a dependable (exhaustion-
safe) intrusion-tolerant distributed system? In this paper such minimum requirements are not pursued,
but instead we describe a set of (sufficient) conditions that enable the construction of certain types of
exhaustion-safe systems.

To achieve exhaustion-safety, the goal is to guarantee that the assumed number of faults is never
exceeded. In this context, proactive recovery seems to be a very interesting approach [19]. The aim
of proactive recovery is conceptually simple — components are periodically rejuvenated to remove the
effects of malicious attacks/faults. If the rejuvenation is performed frequently often, then an adversary is
unable to corrupt enough resources to break the system. Therefore, proactive recovery has the potential to
support the construction of resilient intrusion-tolerant distributed systems. However, in order to achieve
this, proactive recovery needs to be architected under a sufficiently strong model that allows regular
rejuvenation of the system. In fact, proactive recovery protocols (like FDs) typically require stronger
environment assumptions (e.g., synchrony, security) than the rest of the system (i.e., the part that is
proactively recovered).

In the second part of the paper, we proppgeactive resilience- a new and more resilient approach

to proactive recovery based on hybrid distributed system modeling [26] and architectural hybridiza-



tion [25]. It is argued that the architecture of a system enhanced with proactive recovery should be
hybrid, i.e., divided in two parts: the “normal” payload system and the proactive recovery subsystem,
the former being proactively recovered by the latter. Each of these two parts should be built under differ-
ent timing and fault assumptions: the payload system may be asynchronous and vulnerable to arbitrary
faults, and the proactive recovery subsystem should be constructed in order to assure a more synchronous
and secure behavior.

We describe a generic Proactive Resilience Mo8&N), which proposes to model the proactive
recovery subsystem as an abstract component — the Proactive Recovery Wormhole (PRW). The PRW
may have many instantiations depending on the application/protocol proactive recovery needs (e.g., re-
juvenation of cryptographic keys, restoration of system code). Then, it is shown tHaRtflecan be
used to build node-exhaustion-safe intrusion-tolerant distributed systems.

Finally, the paper describes the design of a distributedtrusion-tolerant secret sharing system,
which makes use of a specific instantiation of the PRW targeting the secret sharing scenario [22]. This
system is shown to be node-exhaustion-safe under certain conditions mainly related to the adversary
power, and we built a proof-of-concept prototype in which it is showed that exhaustion-safety is ensured

even in the presence of fierce adversaries.

2 Exhaustion-Safety

Typically, the correctness of a protocol depends on a set of assumptions regarding aspects like the type
and number of faults that can happen, the synchrony of the execution, etc. These assumptions are in
fact an abstraction of the actual resources the protocol needs to work correctly (e.g., when a protocol
assumes that messages are delivered within a known bound, it is in fact assuming that the network will
have certain characteristics such as bandwidth and latency). The violation of these resource assumptions
may affect the safety and/or liveness of the protocol. If the protocol is vital for the operation of some
system, then the system liveness and/or safety may also be affected.

To formally define and reason about exhaustion-safety of systems with regard to a given resource
assumption, it is necessary to adopt a suitable model.oL&e a resource assumption on a resource
r. We consider models which define (i) for every syst8nthe set of its executionfS] = {& : & is a
S—executior}, which is a subset of the se&tXECthat contains all possible executions of any system
(i.e., [§ € EXEQ, and (ii) a set= ¢r, s.t. = ¢ C EXECis the subset of all possible executions that
satisfy the assumptiop,. We shall use” = ¢ to represent that the assumptignis not violated during



the executions’.

In the context of such models, exhaustion-safety is defined straightforwardly.
Definition 2.1. A system S is r-exhaustion-safe wytif and only ifv&€ € [ : & = ¢.

Notice that this formulation allows one to study the exhaustion-safety of a system for different types

of assumptiong, on a given resource

2.1 The Resource Exhaustion Model

Our main goal is to formally reason about how exhaustion-safety may be affected by different combi-
nations of timing and fault assumptions. So, we need to conceive a model in which the impact of those
assumptions can be analyzed. We call this model the Resource EXhaustion Rieg! (

Our model considers systems that have a certain mission. Thus, the execution of this type of sys-
tems is composed of various processing steps needed for fulfilling the system mission (e.g., protocol
executions). We define two intervals regarding the system execution and the time necessary to exhaust
a resource, defined byexecution timeand exhaustion time The exhaustion time concerns a specific
resource assumptiop, on a specific resource Therefore, in what follows[S] denotes the set of

executions of a syste@under REX for a fixed assumptign on a specific resourae
Definition 2.2. A system executiofi is a pair (Texec Texh), Where
o TexecE Dg and represents the total execution time;

e Texn€ 04 and represents the time necessary, since the beginning of the execution, for assumption

¢r to be violated.

The proposed notion of system execution captures the execution time of the system and the time
necessary for assumptiagn to be violated in a specific run. Notice that, in this way, one captures the
fact that the time needed to violate a resource assumption may vary from execution to execution. For
instance, if a system suffers upgrades between executions, its exhaustion time may be, consequently,

increased or decreased.

Definition 2.3. The assumptionp, is not violated during a system executiéih which we denote by

& = ¢r, ifand only if Thee< TS,

exh

By combining Definitions 2.1 and 2.3, we can derive the definition of-arhaustion-safe system

underREX
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Figure 1: (a) An execution not violating; (b) An execution violatingp;.

Proposition 2.4. A system S is r-exhaustion-safe wrt a given assumpgidhand only ifvV& € [g) :

& &
Texec< Texh'

This corollary states that a systenrigxhaustion-safe if and only if resource exhaustion (i.e., the
violation of ¢;) does not occur during any execution. Notice that, even if the system is not exhaustion-
safe, it does not mean that the system fails immediately after resource exhaustion. In fact, a system
may even present a correct behavior between the exhaustion and the termination eventa. nbhus,
exhaustion-safe system may execute correctly during its entire lifetimeHowever, after resource
exhaustion there iao guaranteethat an exhaustion-failure will not happen. Figure 1 illustrates the
differences between an execution of a (potentially) exhaustion-safe system and a “bad” execution of
a non exhaustion-safe system. An exhaustion-safe system is always assuredly immune to exhaustion-
failures. A non exhaustion-safe system has at least one execution (such as the one depicted in Figure 1b)
with a period of vulnerability to exhaustion-failures (the shaded part of the timeline) where the resource
is exhausted and thus correctness may be compromised.

In a distributed fault-tolerant system, nodes are important resources, so important that one typically
makes the assumption that a maximum numbef nodes can fail during its execution, and the system
is designed in order to resist up fmode failures. This type of systems can be analyzed under the REX
model, nodes being the resource considered, and the assurpgtiibeing equal tonsy; < f, where
N¢ay represents the maximum number of nodes which, during an execution, are failed at any time. In
other words, this assumption means that no more thaodes can be failed simultaneously. Notice that

in a system in which failed nodes do not recover, this assumption is equivalent to assuming that no more



thanf node failures can occur during the system execution.

According to Proposition 2.4, a system whose failed nodes do not recovedésexhaustion-safe
if and only if every execution terminates before the time needed fold node failures to be produced.
In order to build a node-exhaustion-safe fault-tolerant system, one would like to forecast the maximum
number of failures bound to occur during any execution, cdllif;, so that the system is designed to
handlef = N, failures.

As Section 3 will show, the key aspect of the study of this model is that conditigp< Tf)‘(h can
be evaluated, that is, that we can determine whether it is maintained, or not, depending on the type of
system assumptions. Note that the idea is not to know the exact valig,0and TS, but rather
to reason about constraints that may be imposed on them, derived from environment and/or algorithmic
assumptions. So, when we analyze a given syS8ander the REX model, we may happen to know a set
of (TSeo T Values for some already finished executions, and evaluate these known values, which may
indicate that the system is non exhaustion-safe. However, much more important than that would be to
predict, at system or even at algorithm design time, if the system is (always) exhaustion-safe according
to the environment assumptions. This would allow us, as we shall show, to make propositions about
exhaustion-safety for categories of algorithms and system fault and synchrony models. With this goal

in mind, we start by defining two crucial properties of the model, which follow immediately from the

previous definitions.

Property 2.5. A sufficient conditiorfor S to be r-exhaustion-safe wpt is

TTexewa € 03 (VE € [T Téxee< Texeqma) A (VE € [T 1 Ton> Texetna)

Property 2.6. A necessary conditiofor S to be r-exhaustion-safe wpt is

EITethax € |](—)i_(vg € Hﬂ} : Tefo(h < Texhnax) = (V& € [[Sﬂ : Te(iec< Tethax)

Property 2.5 states that a syst&is r-exhaustion-safe wip, if there exists an upper-bou@yeg,,,
on the system execution time, and if the exhaustion time of every execution is great@sthan
Property 2.6 states that a syst&wan only ber-exhaustion-safe wip; if, given an upper-bound

Texhye ON the system exhaustion time, the execution time of every execution is low€eFdan

3 Exhaustion-Safety vs Synchrony Assumptions

This section analyzes the impact of synchrony assumptions on the design of exhaustion-safe systems.



3.1 Synchronous Systems

Systems developed under the synchronous model are relatively straightforward to reason about and to
describe. This model has three distinguishing properties that help us understand better the system be-
havior: there is a known time bound for the local processing of any operation, message deliveries are
performed within a well-known maximum delay, and components have access to local clocks with a
known bounded drift rate with respect to real time [14, 27].

If one considers a synchronous syst8mith a bounded lifetime unddRE X, then it is possible to
use the worst-case bounds defined during the design phase to assess the condigghaudtion-safety,

for givenr and¢;.

Corollary 3.1. If S is a synchronous system with a bounded lifetigygsT. (i.e., V& € [T : Tgec <

Texegn) ANAVE € [ : TS > Texeqae then S is r-exhaustion-safe vt.
Proof. See Property 2.5. O

Therefore, if one wants to design an exhaustion-safe synchronous system with a bounded lifetime,
then one has to guarantee that no exhaustion is possible during the limited period of time delimited by
Texeqne FOr instance, and getting back to our previous example, in a distriduf@at-tolerant system
this would mean that no more thdmode failures should occur withifexeg, -

Note that Corollary 3.1 only applies to synchronous systems with a bounded lifetime. A synchro-
nous system may however have an unbounded lifetime. This seems contradictory at first sight and thus
deserves a more detailed explanation. A synchronous system is typically composed by a set of (synchro-
nous) rounds with bounded execution time (e.g., a synchronous server replying to requests from clients,
each pair request-reply being a round). However, the number of rounds is not necessarily bounded. We
consider that a synchronous system has a bounded lifetime if the number of rounds is bounded. Other-
wise, the system has unbounded lifetime. If the system lifespan is unboundeld,giscdounded, then

we can prove the following.

Corollary 3.2. If S is a synchronous system with an unbounded lifetime g, € O, V& € [T

Téee< Texean) @NdITexn . € 04, VE € [T 1 TS < Textnae then S is not r-exhaustion-safe it

Proof. If the set{ Te.: & € [J)} does not have a bound, it is impossible to guarante€liat< Texn, ..o

exec-

for every& € [§] and, therefore, by Property 2.8js notr-exhaustion-safe. O

In fact, synchronous systems may suffer accidental or malicious faults. These faults may have

two bad effects: provoking timing failures that increase the expected execution time; causing resource

8



degradation, e.g., node failures, which decrelge Notice that both these effects force the conditions

of Corollary 3.2. Thus, in a synchronous system, an adversary can not only perform attacks to exhaust
resources, but also violate the timing assumptions, even if during a limited interval. For this reason, there
is currently among the research community a common belief that synchronous systems are fragile, and

that secure systems should be built under the asynchronous model.

3.2 Asynchronous Systems

The distinguishing feature of an asynchronous system is the absence of timing assumptions, which means
arbitrary delays for the execution of operations and message deliveries, and unbounded drift rates for the
local clocks [10, 17, 9]. This model is quite attractive because it leads to the design of programs and
components that are easier to port or include in different environments.

If one considers a distributed asynchronous syssemderRE X, thenS can be built in such a way
that termination is eventually guaranteed (sometimes only if certain conditions become true). However,
it is impossible to determine exactly when termination will occur. In other words, the execution time is
unbounded. Therefore, all we are left with is the relation betwiggrandTey, in order to assess 8is
r-exhaustion-safe, for givenande.

Can a distributed asynchronous syst8rne r-exhaustion-safe? Despite the arbitrarines3«uf,

the conditionTge.< TS, must always be maintained. Given thEt.. may have an arbitrary value,

exh
impossible to know through aprioristic calculations, the system should be constructed in order to ensure
that, in all executionsT S, is greater thamMg,. This is very hard to achieve for some typesraind
¢r. An example is assuring that no more thianodes ever fail. We provide a solution to this particular
case in the next section based on a hybrid system architecture that guarantees exhaustion-safety through
a synchronous subsystem that executes periodic rejuvenations.

If one assumes that the system is homogeneously asynchronous, and tha{Tg,set € [J]} is

bounded, one can prove the following corollary of Property 2.6, similar to Corollary 3.2:

Corollary 3.3. If S is an asynchronous system (and, hed3@xeg,,, € Og V& € [F : Taec< Texean)

and 3Texh,., € 0¢,VE € [T 1 T < Textnae then S is not r-exhaustion-safe it
Proof. See Corollary 3.2. O

This corollary is generic, in the sense that it applies to any type of system with a bolidéat
some assumptiop,. However, its implications on distributefdfault-tolerant systems deserve a special

look, given that in the remaining of the paper, we concentrate on the exhaustion-safety of such systems.



Even though real distributed systems working under the asynchronous model have a btygnded
in terms of node failures, they have been used with success for many years. This happens because, until
recently, only accidental faults (e.g., crash or omission) were a threat to systems. This type of faults,
being accidental by nature, occur in a random manner. Therefore, by studying the environment in detalil
and by appropriately conceiving the system (e.g., estimate an upper bolggghat applies to a large
number of executions), one can achieve an asynchronous system that behaves as if it were exhaustion-
safe, with a high probability. That is, despite having the failure syndrome as it was proved, it would be
very difficult to observe it in practice.

However, when one starts to consider malicious faults, a different reasoning must be made. This
type of faults is intentional (not accidental) and therefore their distribution is not random: the actual
distribution may be shaped at will by an adversary whose main purpose is to break the system (e.g., force
the system to execute during more time than any estimated upper bouRg.&nin these conditions,
having a bounded, (€.9., stationary maximum bound for node failures) may turn out to be catastrophic
for the safety of the system. That is, the comments above regarding accidental faults do not apply to
intrusion-tolerant systems working under the asynchronous model.

ConsequentlyTexn should not have a bounded value in an asynchronous distributed fault-tolerant
system operating in a environment prone to anything more severe than accidental faults. The goal should

then be to maintaifiey, aboveTexeo in all executions.

4  An Architectural Hybrid Model for Proactive Recovery

4.1 Proactive Recovery

One of the most interesting approaches to avoid resource exhaustion due to accidental or malicious cor-
ruption of components is through proactive recovery [19], which can be seen as a form of dynamic
redundancy [23]. The aim of this mechanism is conceptually simple — components are periodically re-
juvenated to remove the effects of malicious attacks/faults. If the rejuvenation is performed frequently
often, then an adversary is unable to corrupt enough resources to break the system. Proactive recovery
has been suggested in several contexts. For instance, it can be used to refresh cryptographic keys in
order to prevent the disclosure of too many secrets [16, 15, 12, 30, 4, 29, 18]. It may also be utilized
to restore the system code from a secure source to eliminate potential transformations carried out by
an adversary [19, 6]. Moreover, it may encompass the substitution of software components to remove

vulnerabilities existent in previous versions (e.g., software bugs that could crash the system or errors

10



exploitable by outside attackers). Vulnerability removal can also be done through address space random-
ization [3, 2, 11, 20, 28], which could be used to periodically randomize the memory location of all code
and data objects.

Thus, intuitively, by using a well-planned strategy of proactive recovigy, can be recurrently
increased in order that it is always greater tigrcin all executions. However, this intuition is rather
difficult to substantiate if the system is asynchronous. The simple task of timely triggering a periodic
recovery procedure is impossible to attain under the pure asynchronous model, namely if it is subject
to malicious faults. From this reasoning, and according to Corollary 3.3, one can conclude that it is
not possible to ensure the exhaustion-safety of an asynchronous system with bounded exhaustion time
through asynchronous proactive recovery. For a detailed discussion on this topic, see [24].

The impossibility of building an exhaustion-safdault/intrusion-tolerant distributed asynchronous
system, namely in the presence of malicious faults, and even if enhanced with asynchronous proactive

recovery, lead us to investigate hybrid models for proactive recovery.

4.2 The Proactive Resilience Model

Proactive recovery is useful to periodically rejuvenate components and remove the effects of malicious
attacks/failures, as long as it has timeliness guarantees. In fact, the rest of the system may even be
completely asynchronous — only the proactive recovery mechanism needs synchronous execution. This
type of requirement made us believe that one of the possible approaches to use proactive recovery in an
effective way, is to model and architect it under a hybrid distributed system model [26].

In this context, we propose the Proactive Resilience MoEBIN)) — a more resilient approach to
proactive recovery based on tiidormholes distributed system mof$]. The PRM defines a system
enhanced with proactive recovery through a model composed of two parts: the proactive recovery sub-
system and the payload system, the latter being proactively recovered by the former. Each of these two
parts obeys different timing assumptions and different fault models, and should be designed accordingly.

The payload system executes the “normal” applications and protocols. Thus, the payload synchrony
and fault model entirely depend on the applications/protocols executing in this part of the system. For
instance, the payload may operate in an asynchronous Byzantine environment.

The proactive recovery subsystem executes the proactive recovery protocols that rejuvenate the ap-
plications/protocols running in the payload part. This subsystem is more demanding in terms of timing
and fault assumptions, and it is modeled as an abstract distributed componenPoadletive Recovery

Wormhole(PRW). By abstract we mean that this component admits different instantiations. Typically, a

11
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Figure 2: The architecture of a system with a PRW.

specific instantiation is chosen according to the concrete application/protocol that needs to be proactively
recovered.

The architecture of a system with a PRW is suggested in Figure 2; there is a local module in every
host, called thédocal PRW These modules are organized in clusters, calBilV clustersand the local
PRWs in each cluster are interconnected by a synchronous and sectma network The set of all
PRW clusters is what is collectively callédde PRW The PRW is used to execute proactive recovery
procedures of protocols/applications running between participants in the hosts concerned, on any usual
distributed system architecture (e.g., the Internet).

Conceptually, a local PRW is a module inside a host and separated from the OS. In practice, this
conceptual separation between the local PRW and the OS can be achieved in either of two ways: (1) the
local PRW can be implemented in a separate, tamper-proof hardware module (e.g., PC appliance board)
and so the separation is physical; (2) the local PRW can be implemented on the native hardware, with a
virtual separation and shielding between the local PRW and the OS processes implemented in software.

The way clusters are organized is dependent on the rejuvenation requirements. Typically, a clus-
ter is composed of nodes that are somehow interdependent w.r.t. rejuvenating (e.g., heed to exchange

information during recovery). In this paper we focus on two specific cluster configurations:

PRW is composed of clusters, each one including a single local PRW. Therefore, every RRMter
is exactly like clustefs’z depicted in Figure 2, and, consequently, no control network exists in any

cluster;

12



PRW! is composed of a single cluster including all local PRWs. For instance, if the system was composed
of 3 nodes, then the (single) PRWIuster would be like clusteg’x depicted in Figure 2. In this

case every local PRW is interconnected through the same control network.

PRW should be used in scenarios where the recovery procedure only requires local information,
and therefore there is no need for distributed execution (e.g., rebooting a stateless replicated system
from clean media in order to remove malware programs). PRWéuld be used when the recovery is
done through a fully distributed recovery procedure in which every local PRW should participate (e.g.,
proactive secret sharing as explained in Section 5). Many more configurations are possible, namely
configurations composed of heterogeneous clusters (i.e., clusters with different sizes). We leave the

discussion of such configurations and their usefulness as future work.

4.2.1 Periodic Timely Rejuvenation

The PRW executes periodic rejuvenations through a periodic timely execution service. This section
defines the periodic timely execution service, proposes an algorithm to implement it, and specifies the
real-time guarantees required of the PRW. Then, assuming that the local PRWs do not fail, Section 4.2.2
proves that systems enhanced with a PRW executing an appropriate periodic timely rejuvenation service
are assuredly node-exhaustion-safe. Section 4.2.2 also discusses how this result can be generalized in
order to take into account potential crashes of local PRWSs.

Each PRW cluster runs its own instance of the periodic timely execution service, and there are no
constraints in terms of the coordination of the different instances. Albeit running independently, each
cluster offers the same set of properties dictated by four global paramEters; To andT,. Namely,
each cluster executes a rejuvenation proce&uirerounds, and each round is triggered witfighfrom
the last triggering. This triggering is done by at least one local PRW (in each cluster), and every other
local PRWs (of the same cluster) start executing the same round Vitlwheach other. Moreover, each
cluster guarantees that, once all local PRWs are in the same round, the executiorRirméofinded by
Tp. Therefore, the worst case execution time of each rourkdisfgiven byT; + Tp. Figure 3 illustrates
the relationship betweerp, Tp, andT,, in a cluster with three local PRWs. A formal definition of the
periodic timely execution service is presented next. The definition is generic, in the sense that it applies

to generic components and not only local PRWs.

Definition 4.1. Let F be a procedure andpTTp, T, € ¢, s.t. ©+ T, < Tp. A set of components

%, organized in s disjoint and non-empty clustefs, ..., s, offers aperiodic timely execution service
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Figure 3: Relationship betwedp,Tp and T in a clusteré’x with three local PRWSs.

(F,Tp, Tp, Tz), if and only if:

1. the components of the same clusfeiexecute F in rounds, and therefore F is a distributed proce-

dure within a cluster;

2. for every real time instant t & execution time, there exists a round of F triggered in each cluster
%; within Tp from t, i.e., one component C in each clustgrtriggers the execution of a round of

F within Tp from t;

3. every component in a clustef; triggers the execution of the same round of F withjnof each

other component in the same cluster;

4. each clustefg; ensures that, once all components are in the same round of F, the execution time
of F is bounded by, i.e., the difference between the real time instant when the last component
in a cluster®’; starts executing F and the real time instant when the last component of the same

cluster finishes executing is not greater than(both executions refer to the same round).

Corollary 4.2. If € is a set of components, organized in s clustéts...,%’s, that offers a periodic
timely execution servicd, Tp, Tp, Tz) then, for every real time instant t & execution time, there exists

a round of F triggered in each clustéf; within Tp from t that is terminated withing+ Tp + T, from t.

Definition 4.3. A system enhanced with a PR\, Tp, Tp, T;)) has a local PRW in every host. More-
over these are organized in clusters and in conjunction offer the periodic timely execution service

<F7 TD7TP7T71'>'

As mentioned before, the PRW admits two particular cluster configurations — RRUWPRW.

These are defined as follows.
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Definition 4.4. A system enhanced with a PRWF, Tp, Tp, T,;)) is a system enhanced with a
PRW((F, Tp, Tp, Tz)) S.t. there exists n clustefss, ..., ¢, and each cluste®’; is composed of a single

local PRW.

Definition 4.5. A system enhanced with a PRWF, Tp, Tp, T;)) is a system enhanced with a

PRW((F,Tp, Tp, Tz)) S.t. there exists a single clustet, comprising all local PRWs.

A periodic timely execution service can be built using, for instance, Algorithm 1, and a construction

process that ensures the following properties:

P1 There exists a known upper bound on the processing delays of every local PRW.
P2 There exists a known upper bound on the clock drift rate of every local PRW.

P3 There exists a known upper bound on the message delivery delays of every control network inter-

connecting the local PRWs of a same cluster.

Suppose that each local PRW executes Algorithm 1, where funchimk returns the current value
of the clock of the local PRWE is the recovery procedure that should be periodically timely executed,
andTp is the desired recovery periodicity. Valdedefines a safety time interval used to guarantee that
consecutive recoveries are triggered witfigpnfrom each other in the presence of the assumed upper
bounds on the processing delays (P1) and the clock drift rate (P2). Notice that betwesit thetruc-
tion in line 2 and the triggering df in line 7, there is a set of instructions that take (bounded) time to
execute. 6 should guarantee that consecutive recoveries are always triggered Witbineach other
independently of the actual execution time of those instructions, and taking into account the maximum
possible clock drift rate. Howeved, should also guarantee that every local PRW trigdesgithin T,
of each other. So§ should not be greater thalp — (Tp + T;) in order to ensure that the local PRW
%' in each clustef¢; does not start to execufe too early (i.e., when other local PRWs may still be
executing the previous round). In these conditions, the algorithm guaranteésithaltvays triggered,
in each clustef¢’;, by local PRWs%;! within Tp from the last triggering. Moreover, given that it is
assured that different rounds do not overlap, the triggering instant in the local PRWs of the same cluster
differs in at most the maximum message delivery delay (P3) plus the maximum processing delay, i.e.,
the time necessary for messdggger to be delivered and processed in all local PRWs. Thus, the value
of T, is defined by this sum. In this situation, each local PRW offers a periodic timely execution ser-
vice PRW((F, Tp, Tp, T) ) provided they ensure that, once all local PRWs are in the same rodndtsf

execution time is bounded Biy.
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Algorithm 1 : Periodic timely execution service run by each local PRW in cluster®’
initialization: tjz5 < clock

begin
while true do
Il local PRWs%';! with j = 1 in each cluste¥’; coordinate the recovering process

1 if j=1then
2 wait until clock=tjast+Tp — &
3 tjast < clock
4 multicast(trigger®’;)
5 else
6 receive(trigger)
7 executer

end

4.2.2 Building Node-Exhaustion-Safe Systems

A system enhanced withRRW((F, Tp, Tp, T;)) can be made node-exhaustion-safe under certain condi-
tions, as it will be shown in Theorem 4.6. This theorem states that if it is possible to lower-bound the
exhaustion time (i.e., the time needed to prodfieel node failures) of every system execution by a
known constanTexn,;,,, then node-exhaustion-safety is achieved by assuringhaflp + Tz < Texhy,-

In what follows, let[S] denote the set of executions of dnfault-tolerant distributed syster@
under the REX model for the conditiaphoge = Nail < f, Wherengy; represents the maximum number
of nodes which, during an execution, are failed simultaneously. Notice that the type of failure is not
specified, but only that nodes may fail in some way and that this failure can be recovered through the
execution of a rejuvenation procedure. A node failure may be for instance the disclosure of some secret
information (the type of failures considered in Section 5), or a hacker intrusion that compromises the
behavior of some parts of the system. Notice also that the rejuvenation procedure will depend on the
type of failure considered. For instance, whereas a hacker intrusion may require the reboot of the system
and the reloading of code and state from some trusted source, the disclosure of secret information may

be solved by simply turning that information obsolete.
Theorem 4.6. Suppose that

1. Sis a system composed of a total of n nodes which, once failed, do not recover, angl let T
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2. the time needed to producetfl (< n) node failures at any instant is independent of the number

of nodes that are currently failed;

3. Fis adistributed procedure that upon termination ensures that all nodes involved in its execution

are not failed.

Then, the system S, enhanced with a REBWIp, Tp, Tr)) S.t. o+ Tp + Tz < Texn,;, IS Node-exhaustion-

safe W.r.t.¢node

Proof. Assumption (1) entails that, in every executionSfrom a state withD failed nodes, it takes at
leastTexn,, for f +1 node failures to be produced. Lratbe a natural number such that- f +1 <n.
Then, using assumption (2), we may conclude that, in every executi@nibfakes at leasTexp,;, t0

reach a state witm+ f + 1 failed nodes from a state with failed node&. This also means that :

4. in every execution o§, the number of node failures during a time interffal + Texn,,,[ iS at most
f.

By contradiction, assume that there exists an execution of the sBtemhanced with a
PRW((F, Tp, Tp, Tz)) S.t. Tp + Tp + Tz < Texny,,» that violatesp,. This means that there is a time instant
tc when there are more thaihfailed nodes. Notice thag cannot occur in less thafkxy,,, from the
system initial start instant, because this would mean that morefthah node failures were produced
in less tharley,,;,, from a state witlD failed nodes, which is contradictory with assumption (1). Hence,
tc occurs in at leasteyy,,, from the system initial start instant. Then, by (4), because in lessThan,

is not possible that more thannodes become failed, th= tc — Texn,;,, there is at least one failed node.
Given that we assumed that the PRW never fails and given that the natbris ¢b recover the nodes
of the cluster wheré€ is executed (assumption (3)), the executiosohderPRW((F, Tp, Tp, T;) ) with
Tp+Tp + Tr < Texny,, €NSUres that any node that is failed,as recovered no later thapt-Tp + Tp + Ty
and, hence, is recovered earlier thian=t; 4+ Texy,;,. If one of the nodes that are failed inbecomes
recovered beforg and there are more thanfailed nodes irtc = t| + Texn,;,,» then more tharf nodes

become failed in the intervat, t; + Texn,;,[- But this is contradictory with (4) above. O

Linf() denotes the infimum of a set of real numbers, i.e., the greatest lower bound for the set.
2Notice that a node may fail, be recovered, fail again, and so on. Therefore, the total number of node failures does not

correspond necessarily to the number of currently failed nodes.
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From Theorem 4.6 it follows that, in order to build a node-exhaustion-safe intrusion-tolerant system,
the system architect should choose an appropriate degree of fault-toldremaeh thaflp + Tp + T, <
foh, for every system executiaofi. In other words, any interval with lengff + Tp + T, should not be
sufficient for f + 1 node failures to be produced, throughout the lifetime of the system.

As mentioned before, the results presented in this section depend on the assumption that local PRWs
never fail. This assumption allows to abstract from PRWSs crashes and, in this way, allows to focus on
what it is really important. However, Theorem 4.6 could be extended to the case where the number of
crashes is upper-bounded by some known condtanThe difference would be that one would need
to add sufficient redundancy to the system in order to resistdpessible crashes, and the protocol(s)
executed by the PRW would also have to take this into account. Section 5 explains how this could
be done in a concrete scenario. In order to minimize the probability of crashing mordthaoal
PRWs, and in this way guarantee the exhaustion-safety of the overall system, the system architect would
need to estimate the probability of crash according to environment conditions and/or apply techniques
of dynamic redundancy, where crashed PRWSs could be repaired or replaced before méy&drame
crashed.

In the next section, the Proactive Resilience Model is applied to a concrete algorithmic scenario as a
proof of concept. We present a proactive secret sharing wormhole, showing how the resilience of a secret

sharing protocol can be enhanced using our model.

5 The Proactive Secret Sharing Wormhole

Secret sharing schemes protect the secrecy and integrity of secrets by distributing them over different
locations. A secret sharing scheme transforms a se@né n sharess;, s, ..., S, which are distributed
to n share-holders. In this way, the adversary has to attack multiple share-holders in order to learn or
to destroy the secret. For instance, ifka- 1,n)-threshold scheme, an adversary needs to compromise
more thark share-holders to learn the secret, and corrupt atfteaktshares in order to destroy the same
secret.

Various secret sharing schemes have been developed to satisfy different requirements. This paper
uses the Shamir’s approach [22] to impleme(k & 1,n)-threshold scheme. This scheme can be defined
as follows: given an integer-valued secsgpick a primeg which is bigger than boteandn. Randomly
chooseay, ay, ..., a from [0,q[ and set polynomiaf (x) = (S+ ajx+ axx? + ... + ax¥) mod q Fori =

1,2,...,n, setthe sharg = f(i). The reconstruction of the secret can be done by hawing participants
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Figure 4: Shamir’s secret sharing schemelfer 1.

providing their shares and using polynomial interpolation to comput®oreover, giverk or fewer
shares, it is impossible to reconstrgct

A special case where= 1 (that is, two shares are required for reconstructing the secret), is given
in Figure 4. The polynomial is a line and the secret is the point where the line intersects with the y-axis
(i.e.,(0,f(0)) = (0,s)). Each share is a point on the line. Any two (ile+ 1) points determine the line
and hence the secret. With just a single point, the line can be any line that passes the point, and hence its
insufficient to determine the right y-axis cross point.

In many applications, a secrgimay be required to be held in a secret-sharing manner dhare-
holders for a long time. If at mod share-holders are corrupted throughout the entire lifetime of the
secret, anyk+ 1,n)-threshold scheme can be used. In certain environments, however, gradual break-ins
into a subset of locations over a long period of time may be feasible for the adversary. If mote than
share-holders are corruptegimay be stolen. An obvious defense is to periodically refig@dbut this
is not possible whes corresponds to inherently long-lived information (e.g., cryptographic root keys,
legal documents).

In consequence, what is actually required to protect the secrecy of the information is to be able to
periodically renew the shares without changing the secret. Proactive secret sharing (PSS) was introduced
in [16] in this context. In PSS, the lifetime of a secret is divided into multiple periods and shares are
renewed periodically. In this way, corrupted shares will not accumulate over the entire lifetime of the
secret since they are checked and corrected at the end of the period during which they have occurred.
A (k+ 1,n) proactive threshold scheme guarantees that the secret is not disclosed and can be recovered
as long as at most share-holders are corrupted during each period, while every share-holder may be
corrupted multiple times over several periods.

Let consistent sharedesignate shares which, when combined in a sufficient number, make possible
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the calculation ok. The goal of proactive secret sharing is to harden the difficulty of an adversary being
able to collect a set d€+ 1 consistent shares. This is done by periodically changing the shares, assuring
that the interval between consecutive share rejuvenations is not sufficient for an adversary t& ¢dllect
(consistent) shares.

In this section, we address the exhaustion-safety of distributed systems based on secret sharing, i.e.,
the assumptiomnogeis Ntajl < K, whereng,; represents the maximum number of consistent shares that,
during an execution, are disclosed simultaneously. A share is considered disclosed when it is known by
an adversary.

We propose the Proactive Secret Sharing Wormhole (PSSW) as an instantiation of the
PRV\F(F,TD,TP,T,t> presented in Section 4.2. Notice that this means that there exists a single cluster
composed of all local PSSWs and therefore all local PSSWs are interconnected by the same synchronous
and secure control network. The PSSW targets distributed systems which are based on secret sharing
and the goal of the PSSW is to periodically rejuvenate the secret share of each node, so that the overall
system is exhaustion-safe Wifode

The presentation of the PSSW is divided in two parts. The first part describes the proeedure
fresh.sharethat renews the shares without changing or disclosing the secret, and enumerates the assump-
tions that need to be ensured in the construction of the PSSW. The second part discusses how the values
of Tp, Tp and T, may be chosen in order to ensure that a secret sharing system enhanced with a PSSW
= PRV\F'( refreshshare, Tp, Tp, T) is exhaustion-safe wipoqe The choice of the value®, Tp, Ty is
conditioned by the PSSW assumptions, including the assumed adversary powetr.

The PSSW executes Algorithm 1 in order to periodically and timely execute the procedure
freshshare presented in Algorithm 2. This procedure is based on the share renewal scheme of [16].
In lines 1-2, local PSSW picks k random numbergdim me(1..ky in [0,9[. These numbers define the
polynomialdi(z) = &1zt + 8222 + ... + §kZ*. In lines 3-6, local PSSWsends the valug;; = &(j) mod
g to all other local PSSWg. Then, in lines 7-9, local PSSWeceives the valuas; from all other local
PSSWs. These values are used to calculate, in line 10, the new share. Notice that the calculation is done
by combining the previous share with a sum of the random numbers sent by each local PSSW, and that,
in the execution of the first refreshment, the previous share corresponds to the initial Share

In this paper it is not described how the payload applications obtain the share. We envisage that this
could be done in two different ways, either through a PSSW library composed by functions that could be
used to access the current value of the share, or by resorting to a multi-port memory periodically written

by the local PSSWs and with read-only access by the payload applications. In both approaches, it should

20



Algorithm 2 : refreshshareprocedure executed by each local PSBW
initialization: share— f(i)

begin
// Define the polynomiad; (z) = 8128 + 8222 + ... + S Z using{ &imme 1.k}

1 for m=1tokdo

2 L Oim < generataandomnumber(0, q)
/1 Sendg;(j) to eachP,

3 for j=1tondo

4 if j #ithen

5 Uij < &(j) modq

6 sendu;j to P

I Received; (i) from eachp;
7 for j=1tondo
8 if j #ithen

9 L receiveu;; from P,

/I Calculate the new share

10 share— (share+ ugj + Uy + ... + Uni) modq

end

be guaranteed that the payload applications are aware of the current version of the shares.

Note that, after the termination of the procedtafeeshsharein all local PSSWs, the time necessary
for condition ¢,04e t0 be violated is extended. The system is exhaustion-safe if the interval between
consecutive rejuvenations is not sufficient {ppgeto be violated. Next we present the assumptions that

the PSSW must satisfy in order to guarantee the correct and timely executidrestishare.

Al There exists a known upper boumigl,; . on local processing delays.
A2 There exists a known upper boufgis; _ on the drift rate of local clocks.
A3 Any network message is received within a maximum délayg, ., from the send request.

A4 The content of the network traffic cannot be read by unauthorized users.
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In what follows it is first proved that theefreshsharefunction has a bounded execution time when
executed under assumptions A1-A4. Then, it is shown that it is possible to build a PSSW and that
by choosing appropriate values s, Tp, T, andk, one can have an exhaustion-safe intrusion-tolerant

secret sharing system.

Theorem 5.1. If all local PSSWs execute Algorithm 1 with Fefreshshareunder assumptions A1-A4,

then:

Bounded execution time Once all nodes are in the same round, there is an upper bowgg,.J on the
execution time ofefreshshare, i.e., the difference between the real time instant when the last node
starts executingefreshshareand the real time instant when the last node finishes executing is not

greater than xeg,.,-

RobustnessAfter all nodes finish the execution of each roundedfeshshare, the new shares computed
correspond to the initial secret (i.e., any subset k of the new shares interpolate to the initial

secret).
Secrecy An adversary that at any time knows no more than k shares learns nothing about the secret.

Proof. Robustness and Secrecy are proved in [16]. The proof of Secrecy uses assumption A4.
Bounded execution time:
We shall prove a stronger result: assuming that all nodes are ready to exdmsieshare, i.e.,
all nodes are in the same round, the difference between the real time instant wiiest thede starts
executingrefreshshareand the real time instant when the last node finishes executing is not greater
than Texeq, L€t | be the set of all instructions used in each execution roundfafshshare(i.e., all
instructions executed between lines 1 and 10).Teg{; be a bound on the execution time of instruction
i,Vi € I. Given that the execution time of any instruction, with the exceptiorecéive depends only
on the local processing delays, o, b€ an upper bound on the execution time of such instructions
(assumption Al). This entails th@ixes < Tproc,,, Vi € | \ {receivg. The execution time ofeceive
depends on the local processing and network delivery delays, suchighat,... < Tproc,., + Tsendna
(assumption A2). Therefore, one can upper bound the execution time of the algoritfigrely, =
(T4 2k—2) Tproc,,, + (N— 1) Tseng.ae This value results from the following calculations. The instructions
in lines 1 and 2 are within a cycle witk iterations. Thus, their total execution time is bounded by
2kTproc,,,- Then, the instructions in lines 3, 4, 5 and 6 are executed in the context of a cycle with

iterations. However, lines 5 and 6 are not executed in one of the iterations giventhiat(. This
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means that the total execution time of lines 3 and 4 is boundeaBy , and that the total execution
time of lines 5 and 6 is bounded byr?— 1) Ty . Following the same logic, the total execution time
of lines 7 and 8 is bounded byZoc, .. Regarding line 9, given that it includes the instructieeive

its maximum execution time is bounded fy— 1) (Tproc, . + Tsendna)- Finally, the execution time of line

10 is bounded b¥fproc, - O

According to Theorem 5.kefreshshareis a distributed procedure appropriate for rejuvenating the
secret shares of a distributed system: upon termination of a rourefrehshare, all the nodes have
new shares (and, hence, are not corrupted) and; once all nodes are in the same round, there exists a
known upper boundexeg,,, ON the execution time oéfreshshare. The following proposition shows that
is possible to use this rejuvenation procedefeeshshareto build a PSSW that offers a periodic timely

execution service.

Proposition 5.2. Let PSSW be a PRWbuilt under assumptions A1-A4 and triggering te&eshshare

procedure through the execution of Algorithm 1 with= 4Tpoc  + Tarift, . L€t T, Tp, Tr € Dg such

max

that
a) Tp>Tp+Tr+0
b) To > Texeqax
€) T = Tproge + Tsendnax
Then, the PSSW offers the periodic timely execution sefvifeeshshare, Tp, Tp, Tr) .

Proof. Given thatTp + T, < Tp due to a), we only need to show that conditions 1, 2, 3 and 4 of Defini-
tion 4.1 are satisfied by the PSSW under assumptions A1-A4. Consider the Algorithm 1 executed by the
PSSW.

Condition 1 This condition is trivially satisfied given that the PSSW is composed by a single cluster

and every local PSSW executegeshshare.

Condition 2 Without line 2, the local PSSW1 would executd= within ATproc, ., 1 Texegax from the

last triggering, given that the procedufeand four instructions would be executed between consecutive
triggering. Therefore, settin@p > 4Tproc,,, + Texeqa WOUld satisfy condition 2. The addition of the
wait instruction in line 2 potentially decreases the frequendy ekecution in order to enforce a certain
periodicity that is sufficient to guarantee exhaustion-safety. Notice that this addition is in fact weakening

the system, but it is necessary to minimize the potential overhead provoked by each rejuvenation, and in
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order to guarantee that consecutive rejuvenations do not overlap (in different local PSSWs). Regarding
the value ofé, if the local PSSW clocks were perfect, one could &et 4T in order to satisfy
condition 2, as long as the chosénwould be greater thallexeg,,, + 4Tproc, ., HOwever, according to
assumption A2, local PSSW clocks have a bounded driftTate . Therefore, given thaé has also

to cancel this drift rate, we have thatdf= 4Tproc  + Tarift,, @NATp > Texegq + 6, the PSSW satisfies

max

condition 2.

Condition 3 First of all, given thafls > Tp + T; + 8, consecutive executions edfreshsharedo not
overlap. This means that whenever the local PS&\Wfinishes waiting in line 2, all other local PSSWs

are already ready to receive the mesdagger and start a new round. Therefore, the difference between
the refreshsharetriggering instants on every local PSSW depends on the delivery delay and processing
of the messaggrigger sent by local PSSW11 in line 4 and received by every other local PSSW in line

6. This means that setting > Tproc, ., + Tsendnax @llOWs the PSSW to satisfy condition 3.

Condition 4 According to Theorem 5.1, the PSSW satisfies conditionTd it Texeg,.,- O

As a corollary of Theorem 4.6, we have that under some conditions, a secret sharing System
enhanced with an appropriate PSSW is exhaustion-safet As before, we us@S to denote the

set of executions of a secret sharing sysgumder the REX model for assumptigfoge
Corollary 5.3. Suppose that

1. S is a secret sharing system composed of a total of n nodes, each one with a share that never

changes, and lete,,, = inf({TS,: € € [I});

2. the time needed to discoverHl (< n) shares at any instant is independent of the number of shares

that are currently known.
Then, the system S enhanced with a PSSWs#.Th + T < Texn,;, IS €xhaustion-safe w.r.pnode

Proof. This result is a straightforward consequence of Theorem 4.6. Notice that assumption 3 of that

theorem is entailed by the robustness propertgfodéshshare, as stated in Theorem 5.1. O

All these results are based on the assumption that no local PSSW crashes during the lifetime of the
system. Section 4.2 described generically how one could build a fault-tolerant PRW able tdgesist
crashes. Here it is explained more concretely how could be that done in the context of the PSSW.

Consider a PSSW composed by a totahddcal PSSWSs, and assume that at migdbcal PSSWs

crash during the lifetime of the system, such that f; +k+ 1 (this condition guarantees that it is always
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possible to reconstruct the secret). In such a system and under assumptions A1 and A3 it is possible to
build a leader election protocol [13]. This protocol could be used in Algorithm 1 to tolerate the fault of
local PSSW#'1%. In each round, thieaderwould be the responsible for sending the messegeger. In

the case of a leader crash, the following leader would be then the responsible, and so on. The parameter
6 would have to take into consideration the worst case execution time of the leader election protocol.
Regarding theefreshshareprocedure presented in Algorithm 2, each local PSSW would have to resort

to a perfect failure detector [7] in order to detect the crash of the other PSSWs and avoid waiting forever
for messages from failed PSSWs. Under assumptions Al and A3, it is possible to build a perfect failure
detector with bounded detection time. This bound would then be used in the calculaliga;Qf. We

hope to have left clear that the fact that we do not handle PSSW crashes is not a limitation of this work
but a limitation of space in this paper. We leave as future work the presentation of the algorithms and the

(slightly different) new proofs that result from the modifications discussed above.

6 Experimental Results

We have implemented a prototypef the PSSW using RTAI [8], an operating system with real-time
capabilities, and a switched Fast-Ethernet control network. The feasibility of achieving timeliness guar-
antees using this type of operating system and network are discussed in [5]. RTAI allows the construction
of an architecturally-hybrid execution environment [26], with the PSSW executing as a set of real-time
tasks, and the normal applications executing at Linux user-level.

The PSSW prototype makes use of the GNU Multiple Precision Arithmetic Library (&\NaHjee
library for arbitrary precision arithmetic. The Linux version of the GMP library was ported to RTAI, and
it is available together with the PSSW prototype source code.

This section presents the results of a set of experiments that were conducted using this prototype,
with the goal of observing the execution time of thfteshshareprocedure (Algorithm 2) when triggered
in the context of the PSSW periodic timely execution service (Algorithm 1). More precisely, the mea-
surements that will be presented represent the interval of time between the first local PSSW triggering
the procedure and the last PSSW finishing executing it. These measurements allow one to study: the
possible values ofp, Tp andT; in a real environment; predict the types of adversary it is possible to
resist; determine the cost of the rejuvenation overhead (i.e., rejuvenation time vs total execution time).

The experimental infrastructure was composed by 500 MHz single-processor Pentium |1l based PCs

3Available at http://sourceforge.net/projects/rt-pss/
“http://www.swox.com/gmp
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running RTAI, and interconnected by a 3COM SuperStack |l Baseline 100 Mbps switch. The experiences
presented below used 1024-bit shares. The share can be any type of data. It can be, for instance, a 1024-
bit RSA key, and in this case, the PSSW could be used as part of a proactive threshold RSA scheme [21].
The results of every configuration are based on the average of 65535 periodic executions triggered by the
PSSW.

The first experience tested configurations from 2 to 6 machinesknithl. Remember that the
exhaustion-safety condition g < k, wherenigj represents the maximum number of consistent shares
that, during an execution, are disclosed simultaneously. The goal was to evaluate the overhead introduced
by the algorithm when the number of machines increases. The results (mean, standard deviation, min-
imum and maximum execution time) are presented in Figure 5. One of the main conclusions is that
the mean execution time increases with the number of machines. This was expected given that more
machines require more messages to be exchanged and thus greater processing and network delays. The
maximum execution time, however, remains quite stable independently of the number of machines. This
is very important and shows in practice that there exists an upper bignd on the execution time
(notice thatTd,, corresponds to the interval between the first local PSSW triggering the refresh and
the last PSSW finishing it, whereas the bodagg,,, mentioned in section 5 does not include the interval
between the first and the last triggerings). Moreover, these measurements also allow us to conclude that
one could trigger a rejuvenation every 2 seconds with a maximum overhead of less than 2% (given that
Texeq < 30ms one could say thalp + T, = 30msand seflp = 2000mg. An adversary would have to
obtaink+ 1 = 2 shares in less than 2.1 secondsTe + Tp + T) in order to reconstruct the protected
secret. In Figure 6 it is possible to observe the distribution of the (65535) execution times of the experi-
ment in the configuration with 6 machines ang- 1. In terms of probability distribution it is clear that
the probability of execution time values above 24 msec is low.

The next step was to evaluate the impact of increakingotice that increasing means that one is
attempting to resist a stronger adversary, in other words, resisting the disclosure of a higher number of
shares. Therefore, in the second experiment, 6 machines were used to test the behavior of the system with
k varying between 1 and 5. The results are presented in Figure 7. One can see that there is an increment
in the mean and maximum execution wheimcreases. This increment is also visible in the execution
time distribution depicted in Figure 8 and it happens because the skzenplacts the processing delay.
Nevertheless, the maximum execution timeKet 5 remains still under 30 ms. This means that one can
extend the previous conclusions and say that an adversary would have to obtain 6 shares in less than 2.1

seconds in order to discover the secret.
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Figure 5: refreshshare execution time with  Figure 6: refreshshare execution time distribution

k=1 (n— number of machines). with 6 machines ankl = 1.
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machines. with 6 machines anid = 5.

Depending on the assumed adversary strength and on the desired overhead, the system architect can
use the above results to calculate the appropriate degree of fault-tol&rande¢he values ofp, Tp and
T.. To illustrate how can this be done, two different adversary types€ and Tortoise are presented
next, and it is described how to configure an appropriate PSSW in each scenario. In both scenarios the

system is deployed with 6 machines.

Hare This adversary is able to compromise any machine (i.e., disclose a single share) in one second.
Such an adversary can be envisaged in the context of ultra-resilient systems (e.g., national security

related) defending against fierce cyber-attacks.

Without proactive secret sharingiare would takek + 1 seconds to discovée+ 1 shares and
reconstruct the secret. With 6 machines &nd 5, this would mean that the system could be

compromised after 6 seconds.
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Figure 9: PSSW overhead in order to resisire. Figure 10: PSSW overhead in order to resist

Tortoise

In order to resisHare, one has to build a PSSW able to refrdsh 1 shares in less thak+

1 seconds. Figure 9 compares the resulting overhead of choosing different valuasathe
corresponding maximum value . The overhead is calculated using the formufa-Te—, with

Tp + T = 30. The conclusion is that independently of the valulg dfis possible to defend against
Hare with a negligible overhead. Therefore, one can say that the PSSW can be used efficiently to

secure secret sharing systems even in the presence of very powerful adversaries.

Tortoise This adversary is slower thafare, being able to compromise any machine (i.e., disclose a

single share) in one minut&ortoisemay be used to model typical cyber-attacks on the web.

Without proactive secret sharingprtoisewould takek + 1 minutes to discovek+ 1 shares and
reconstruct the secret. With 6 machines &nd 5, this would mean that the system could be

compromised after 6 minutes.

In order to resist ortoise one has to build a PSSW able to refrésh 1 shares in less thdo+ 1
minutes. Figure 10 compares the resulting overhead of choosing different valleandfthe
corresponding maximum value &f. The overhead is calculated using the same formula as above
with Tp + T, = 30. As expected, the overhead is significantly lower than when defending against
Hare. Therefore, the conclusion is that the PSSW can also increase the resilience of money-critical

secret sharing systems deployed on the web.

To the best of our knowledge, we are the first to present and evaluate a proactive secret sharing
implementation in a real time environment. In [1], a Java prototype of a proactive security toolkit (using
the same PSS protocol our PSSW is based on) is presented, but authors do not discuss the temporal

guarantees of their approach. The work presented in [30] describes APSS, a proactive secret sharing
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protocol for asynchronous systems. APSS is in theory a fine replacement of PSS protocols in asynchro-
nous environments. However, to be useful, APSS needs to be executed with guaranteed periodicity and,
by definition, this cannot be guaranteed in asynchronous conditions. More details on this subject can be
found in [24]. Nevertheless, one could envision a PSSW using APSS instead of the synchronous PSS it

currently uses. We leave this as future work.

7 Conclusions

This paper made two distinct but complementary contributions. The first part of the paper was devoted
to a discussion about the actual resilience of current intrusion-tolerant synchronous and asynchronous
systems. We proposed a model that takes in account the evolution of a specified resource along the
timeline of system execution. It was showed that it is feasible to build a node-exhaustion-safe intrusion-
tolerant synchronous system, as long as it has a bounded lifetime. We also showed that it is impossible to
build a node-exhaustion-safe intrusion-tolerant system under the pure asynchronous model, even using
proactive recovery.

In the second part of the paper, we explored the fact that proactive recovery protocols typically
require stronger environment assumptions (e.g., synchrony, security) than the rest of the system. Based
on this, we proposed proactive resilience as a novel approach to proactive recovery that is based on an
architectural hybrid distributed system model. the proactive recovery protocols are executed through a
subsystem with “better” properties than the rest of the system.

The Proactive Resilience Modd?RM) was presented and it was shown that it can be used to build
node-exhaustion-safe systems. As a proof of concept, this model was applied to the secret-sharing sce-
nario, in order to derive a node-exhaustion-safe distributed intrusion-tolerant secret-sharing system.

We furthered our proof of concept with some experimental results that confirm our theoretical pos-
tulates. Our experimental secret sharing prototype is intrusion-tolerant and a realistic configuration was
shown to tolerate any number of intrusions as long as the intrusion rate is not greater than 1 intrusion per

second.
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