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Abstract

The paper starts by introducing a new dimension along which distributed systems resilience may be

evaluated – exhaustion-safety. A node-exhaustion-safe intrusion-tolerant distributed system is a sys-

tem that assuredly does not suffer more than the assumed number of node failures (e.g., crash, Byzan-

tine). We show that it is not possible to build this kind of systems under the asynchronous model.

This result follows from the fact that in an asynchronous environment one cannot guarantee that the

system terminates its execution before the occurrence of more than the assumed number of faults.

After introducing exhaustion-safety, the paper proposes a new paradigm – proactive resilience – to

build intrusion-tolerant distributed systems. Proactive resilience is based on architectural hybridiza-

tion and hybrid distributed system modeling. The Proactive Resilience Model (PRM) is presented

and shown to be a way of building node-exhaustion-safe intrusion-tolerant systems. Finally, the pa-

per describes the design of a secret sharing system built according to thePRM. A proof-of-concept

prototype of this system is shown to be highly resilient under different attack scenarios.

Key words: Intrusion tolerance, timing assumptions, proactive recovery, wormholes, secret shar-

ing

1 Introduction

A distributed system built under the asynchronous model makes no timing assumptions about the oper-

ating environment: local processing and message deliveries may suffer arbitrary delays, and local clocks

may present unbounded drift rates [17, 9]. In other words, in a (purely) asynchronous system it is not

possible to guarantee that something will happen before a certain time. Therefore, if the goal is to build

∗This work was partially supported by the EC, through project IST-2004-27513 (CRUTIAL), and by the FCT, through the

Large-Scale Informatic Systems Laboratory (LaSIGE) and project POSC/EIA/60334/2004 (RITAS).
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dependable systems, the asynchronous model should only be used when system correctness does not

depend on timing assumptions. At first sight, this conclusion only impacts the way algorithms are speci-

fied, by disallowing their dependence on time (e.g., timeouts) in asynchronous environments. However,

recently it was found that other types of timing dependencies exist in a more broader context orthogonal

to algorithm specification [24]. In brief, every system depends on a set of resource assumptions (e.g.,

a minimum number of correct replicas), which must be met in order to guarantee correct behavior. If a

resource degrades more than assumed during system execution, i.e., if the time until the violation of a

resource assumption is bounded, then it is not safe to use the asynchronous model because one cannot

ensure that the system will terminate before the assumption is violated.

Consider now that we want to build a dependable intrusion-tolerant distributed system, i.e., a dis-

tributed system able to tolerate arbitrary faults, including malicious ones. In what conditions can one

build such a system? Is it possible to build it under the asynchronous model?

This question was partially answered, twenty years ago, by Fischer, Lynch and Paterson [10], who

proved that there is no deterministic protocol that solves the consensus problem is an asynchronous

distributed system prone to even a single crash failure. This impossibility result (commonly known as

FLP) has been extremely important, given that consensus lies at the heart of many practical problems,

including membership, atomic commitment, leader election, and atomic broadcast. Considerable amount

of research addressed solutions to this problem, trying to preserve the desirable independence from

timing assumptions at algorithmic level. One could say that the question asked above was well on its

way of being answered. However, as mentioned before, a new and surprising dependence on timing was

found recently [24]. The present paper builds on this previous result.

In the first part of the paper, we show that assuming a maximum number off faulty nodes under

the asynchronous model is dangerous. Given that an asynchronous system may have a potentially long

execution time, there is no way of assuring that no more thanf faults will occur, specially in malicious en-

vironments. This intuition is formalized through the introduction ofexhaustion-safety– a new dimension

over which distributed systems resilience may be evaluated. A node-exhaustion-safe intrusion-tolerant

distributed system is a system that assuredly does not suffer more than the assumed number of node

failures: depending on the system, nodes may fail by crash, or start behaving in a Byzantine way, or dis-

close some secret information, and all these types of failures may be caused by accidents (e.g., a system

bug), or may be provoked by malicious actions (e.g., an intrusion perpetrated by a hacker). We show

that it is not possible to buildany type of node-exhaustion-safe distributedf intrusion-tolerant system

under the asynchronous model. In fact, we achieve a more general result, and show that it is impossible,
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under the asynchronous model, to avoid the exhaustion of any resource with bounded exhaustion time.

Despite this general result, the focus on this paper is on fault/intrusion-tolerant distributed systems and

on node-exhaustion-safety.

Our result is orthogonal to FLP. Whereas FLP shows that a class of problems has no deterministic

solution in asynchronous systems subjected to failures, our result applies to all types of asynchronous

distributed systems, independently of the specific goal/protocols of the system.

What are then the minimum synchrony requirements in order to build a dependable intrusion-tolerant

distributed system?

If the system needs consensus (or equivalent primitives), then Chandra and Toueg [7] showed that

consensus can be solved in asynchronous systems augmented with failure detectors (FDs). The main

idea is that FDs operate under a more synchronous environment and can therefore offer a service (the

failure detection service) with sufficient properties to allow consensus to be solved.

But what can one say about intrusion-tolerant asynchronous systems that do not need consensus?

Obviously, they are not affected by the FLP result, but are they dependable?

Notice that, with regard to exhaustion-safety, an asynchronous consensus-free system is the same

as an asynchronous consensus-based system enhanced with synchronous failure detectors. So, the

question remains: What are the minimum synchrony requirements to build a dependable (exhaustion-

safe) intrusion-tolerant distributed system? In this paper such minimum requirements are not pursued,

but instead we describe a set of (sufficient) conditions that enable the construction of certain types of

exhaustion-safe systems.

To achieve exhaustion-safety, the goal is to guarantee that the assumed number of faults is never

exceeded. In this context, proactive recovery seems to be a very interesting approach [19]. The aim

of proactive recovery is conceptually simple – components are periodically rejuvenated to remove the

effects of malicious attacks/faults. If the rejuvenation is performed frequently often, then an adversary is

unable to corrupt enough resources to break the system. Therefore, proactive recovery has the potential to

support the construction of resilient intrusion-tolerant distributed systems. However, in order to achieve

this, proactive recovery needs to be architected under a sufficiently strong model that allows regular

rejuvenation of the system. In fact, proactive recovery protocols (like FDs) typically require stronger

environment assumptions (e.g., synchrony, security) than the rest of the system (i.e., the part that is

proactively recovered).

In the second part of the paper, we proposeproactive resilience– a new and more resilient approach

to proactive recovery based on hybrid distributed system modeling [26] and architectural hybridiza-
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tion [25]. It is argued that the architecture of a system enhanced with proactive recovery should be

hybrid, i.e., divided in two parts: the “normal” payload system and the proactive recovery subsystem,

the former being proactively recovered by the latter. Each of these two parts should be built under differ-

ent timing and fault assumptions: the payload system may be asynchronous and vulnerable to arbitrary

faults, and the proactive recovery subsystem should be constructed in order to assure a more synchronous

and secure behavior.

We describe a generic Proactive Resilience Model (PRM), which proposes to model the proactive

recovery subsystem as an abstract component – the Proactive Recovery Wormhole (PRW). The PRW

may have many instantiations depending on the application/protocol proactive recovery needs (e.g., re-

juvenation of cryptographic keys, restoration of system code). Then, it is shown that thePRM can be

used to build node-exhaustion-safe intrusion-tolerant distributed systems.

Finally, the paper describes the design of a distributedf intrusion-tolerant secret sharing system,

which makes use of a specific instantiation of the PRW targeting the secret sharing scenario [22]. This

system is shown to be node-exhaustion-safe under certain conditions mainly related to the adversary

power, and we built a proof-of-concept prototype in which it is showed that exhaustion-safety is ensured

even in the presence of fierce adversaries.

2 Exhaustion-Safety

Typically, the correctness of a protocol depends on a set of assumptions regarding aspects like the type

and number of faults that can happen, the synchrony of the execution, etc. These assumptions are in

fact an abstraction of the actual resources the protocol needs to work correctly (e.g., when a protocol

assumes that messages are delivered within a known bound, it is in fact assuming that the network will

have certain characteristics such as bandwidth and latency). The violation of these resource assumptions

may affect the safety and/or liveness of the protocol. If the protocol is vital for the operation of some

system, then the system liveness and/or safety may also be affected.

To formally define and reason about exhaustion-safety of systems with regard to a given resource

assumption, it is necessary to adopt a suitable model. Letϕr be a resource assumption on a resource

r. We consider models which define (i) for every systemS, the set of its executionsJSK = {E : E is a

S−execution}, which is a subset of the setEXEC that contains all possible executions of any system

(i.e., JSK ⊆ EXEC), and (ii) a set|= ϕr , s.t. |= ϕr ⊆ EXEC is the subset of all possible executions that

satisfy the assumptionϕr . We shall useE |= ϕr to represent that the assumptionϕr is not violated during
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the executionE .

In the context of such models, exhaustion-safety is defined straightforwardly.

Definition 2.1. A system S is r-exhaustion-safe wrtϕr if and only if∀E ∈ JSK : E |= ϕr .

Notice that this formulation allows one to study the exhaustion-safety of a system for different types

of assumptionsϕr on a given resourcer.

2.1 The Resource Exhaustion Model

Our main goal is to formally reason about how exhaustion-safety may be affected by different combi-

nations of timing and fault assumptions. So, we need to conceive a model in which the impact of those

assumptions can be analyzed. We call this model the Resource EXhaustion model (REX).

Our model considers systems that have a certain mission. Thus, the execution of this type of sys-

tems is composed of various processing steps needed for fulfilling the system mission (e.g., protocol

executions). We define two intervals regarding the system execution and the time necessary to exhaust

a resource, defined by:execution timeandexhaustion time. The exhaustion time concerns a specific

resource assumptionϕr on a specific resourcer. Therefore, in what follows,JSK denotes the set of

executions of a systemSunder REX for a fixed assumptionϕr on a specific resourcer.

Definition 2.2. A system executionE is a pair 〈Texec,Texh〉, where

• Texec∈ℜ+
0 and represents the total execution time;

• Texh∈ℜ+
0 and represents the time necessary, since the beginning of the execution, for assumption

ϕr to be violated.

The proposed notion of system execution captures the execution time of the system and the time

necessary for assumptionϕr to be violated in a specific run. Notice that, in this way, one captures the

fact that the time needed to violate a resource assumption may vary from execution to execution. For

instance, if a system suffers upgrades between executions, its exhaustion time may be, consequently,

increased or decreased.

Definition 2.3. The assumptionϕr is not violated during a system executionE , which we denote by

E |= ϕr , if and only if TE
exec< TE

exh.

By combining Definitions 2.1 and 2.3, we can derive the definition of anr-exhaustion-safe system

underREX.
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time

Texec

Texh

not executing

immune to exhaustion-failures

vulnerable to exhaustion-failures

(a)

time

Texec

Texh

(b)

Figure 1: (a) An execution not violatingϕr ; (b) An execution violatingϕr .

Proposition 2.4. A system S is r-exhaustion-safe wrt a given assumptionϕr if and only if∀E ∈ JSK :

TE
exec< TE

exh.

This corollary states that a system isr-exhaustion-safe if and only if resource exhaustion (i.e., the

violation of ϕr ) does not occur during any execution. Notice that, even if the system is not exhaustion-

safe, it does not mean that the system fails immediately after resource exhaustion. In fact, a system

may even present a correct behavior between the exhaustion and the termination events. Thus,a non

exhaustion-safe system may execute correctly during its entire lifetime. However, after resource

exhaustion there isno guaranteethat an exhaustion-failure will not happen. Figure 1 illustrates the

differences between an execution of a (potentially) exhaustion-safe system and a “bad” execution of

a non exhaustion-safe system. An exhaustion-safe system is always assuredly immune to exhaustion-

failures. A non exhaustion-safe system has at least one execution (such as the one depicted in Figure 1b)

with a period of vulnerability to exhaustion-failures (the shaded part of the timeline) where the resource

is exhausted and thus correctness may be compromised.

In a distributed fault-tolerant system, nodes are important resources, so important that one typically

makes the assumption that a maximum numberf of nodes can fail during its execution, and the system

is designed in order to resist up tof node failures. This type of systems can be analyzed under the REX

model, nodes being the resource considered, and the assumptionϕnode being equal tonf ail ≤ f , where

nf ail represents the maximum number of nodes which, during an execution, are failed at any time. In

other words, this assumption means that no more thanf nodes can be failed simultaneously. Notice that

in a system in which failed nodes do not recover, this assumption is equivalent to assuming that no more
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than f node failures can occur during the system execution.

According to Proposition 2.4, a system whose failed nodes do not recover isnode-exhaustion-safe

if and only if every execution terminates before the time needed forf +1 node failures to be produced.

In order to build a node-exhaustion-safe fault-tolerant system, one would like to forecast the maximum

number of failures bound to occur during any execution, call itNf ail , so that the system is designed to

handlef = Nf ail failures.

As Section 3 will show, the key aspect of the study of this model is that conditionTE
exec< TE

exh can

be evaluated, that is, that we can determine whether it is maintained, or not, depending on the type of

system assumptions. Note that the idea is not to know the exact values ofTE
exec and TE

exh, but rather

to reason about constraints that may be imposed on them, derived from environment and/or algorithmic

assumptions. So, when we analyze a given systemSunder the REX model, we may happen to know a set

of 〈TE
exec,T

E
exh〉 values for some already finished executions, and evaluate these known values, which may

indicate that the system is non exhaustion-safe. However, much more important than that would be to

predict, at system or even at algorithm design time, if the system is (always) exhaustion-safe according

to the environment assumptions. This would allow us, as we shall show, to make propositions about

exhaustion-safety for categories of algorithms and system fault and synchrony models. With this goal

in mind, we start by defining two crucial properties of the model, which follow immediately from the

previous definitions.

Property 2.5. A sufficient conditionfor S to be r-exhaustion-safe wrtϕr is

∃Texecmax∈ℜ+
0 (∀E ∈ JSK : TE

exec≤ Texecmax)∧ (∀E ∈ JSK : TE
exh> Texecmax)

Property 2.6. A necessary conditionfor S to be r-exhaustion-safe wrtϕr is

∃Texhmax∈ℜ+
0 (∀E ∈ JSK : TE

exh≤ Texhmax)⇒ (∀E ∈ JSK : TE
exec< Texhmax)

Property 2.5 states that a systemS is r-exhaustion-safe wrtϕr if there exists an upper-boundTexecmax

on the system execution time, and if the exhaustion time of every execution is greater thanTexecmax.

Property 2.6 states that a systemS can only ber-exhaustion-safe wrtϕr if, given an upper-bound

Texhmax on the system exhaustion time, the execution time of every execution is lower thanTexhmax.

3 Exhaustion-Safety vs Synchrony Assumptions

This section analyzes the impact of synchrony assumptions on the design of exhaustion-safe systems.
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3.1 Synchronous Systems

Systems developed under the synchronous model are relatively straightforward to reason about and to

describe. This model has three distinguishing properties that help us understand better the system be-

havior: there is a known time bound for the local processing of any operation, message deliveries are

performed within a well-known maximum delay, and components have access to local clocks with a

known bounded drift rate with respect to real time [14, 27].

If one considers a synchronous systemSwith a bounded lifetime underREX, then it is possible to

use the worst-case bounds defined during the design phase to assess the conditions ofr-exhaustion-safety,

for givenr andϕr .

Corollary 3.1. If S is a synchronous system with a bounded lifetime Texecmax (i.e., ∀E ∈ JSK : TE
exec≤

Texecmax) and∀E ∈ JSK : TE
exh> Texecmax, then S is r-exhaustion-safe wrtϕr .

Proof. See Property 2.5.

Therefore, if one wants to design an exhaustion-safe synchronous system with a bounded lifetime,

then one has to guarantee that no exhaustion is possible during the limited period of time delimited by

Texecmax. For instance, and getting back to our previous example, in a distributedf fault-tolerant system

this would mean that no more thanf node failures should occur withinTexecmax.

Note that Corollary 3.1 only applies to synchronous systems with a bounded lifetime. A synchro-

nous system may however have an unbounded lifetime. This seems contradictory at first sight and thus

deserves a more detailed explanation. A synchronous system is typically composed by a set of (synchro-

nous) rounds with bounded execution time (e.g., a synchronous server replying to requests from clients,

each pair request-reply being a round). However, the number of rounds is not necessarily bounded. We

consider that a synchronous system has a bounded lifetime if the number of rounds is bounded. Other-

wise, the system has unbounded lifetime. If the system lifespan is unbounded, andTexh is bounded, then

we can prove the following.

Corollary 3.2. If S is a synchronous system with an unbounded lifetime (i.e.,@Texecmax∈ℜ+
0 ,∀E ∈ JSK :

TE
exec≤ Texecmax) and∃Texhmax∈ℜ+

0 ,∀E ∈ JSK : TE
exh≤ Texhmax, then S is not r-exhaustion-safe wrtϕr .

Proof. If the set{TE
exec: E ∈ JSK} does not have a bound, it is impossible to guarantee thatTE

exec< Texhmax,

for everyE ∈ JSK and, therefore, by Property 2.6,S is notr-exhaustion-safe.

In fact, synchronous systems may suffer accidental or malicious faults. These faults may have

two bad effects: provoking timing failures that increase the expected execution time; causing resource
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degradation, e.g., node failures, which decreaseTexh. Notice that both these effects force the conditions

of Corollary 3.2. Thus, in a synchronous system, an adversary can not only perform attacks to exhaust

resources, but also violate the timing assumptions, even if during a limited interval. For this reason, there

is currently among the research community a common belief that synchronous systems are fragile, and

that secure systems should be built under the asynchronous model.

3.2 Asynchronous Systems

The distinguishing feature of an asynchronous system is the absence of timing assumptions, which means

arbitrary delays for the execution of operations and message deliveries, and unbounded drift rates for the

local clocks [10, 17, 9]. This model is quite attractive because it leads to the design of programs and

components that are easier to port or include in different environments.

If one considers a distributed asynchronous systemSunderREX, thenScan be built in such a way

that termination is eventually guaranteed (sometimes only if certain conditions become true). However,

it is impossible to determine exactly when termination will occur. In other words, the execution time is

unbounded. Therefore, all we are left with is the relation betweenTexecandTexh, in order to assess ifS is

r-exhaustion-safe, for givenr andϕr .

Can a distributed asynchronous systemS be r-exhaustion-safe? Despite the arbitrariness ofTexec,

the conditionTE
exec< TE

exh must always be maintained. Given thatTE
exec may have an arbitrary value,

impossible to know through aprioristic calculations, the system should be constructed in order to ensure

that, in all executions,TE
exh is greater thanTE

exec. This is very hard to achieve for some types ofr and

ϕr . An example is assuring that no more thanf nodes ever fail. We provide a solution to this particular

case in the next section based on a hybrid system architecture that guarantees exhaustion-safety through

a synchronous subsystem that executes periodic rejuvenations.

If one assumes that the system is homogeneously asynchronous, and that the set{TE
exh : E ∈ JSK} is

bounded, one can prove the following corollary of Property 2.6, similar to Corollary 3.2:

Corollary 3.3. If S is an asynchronous system (and, hence,@Texecmax ∈ ℜ+
0 ,∀E ∈ JSK : TE

exec≤ Texecmax)

and∃Texhmax∈ℜ+
0 ,∀E ∈ JSK : TE

exh≤ Texhmax, then S is not r-exhaustion-safe wrtϕr .

Proof. See Corollary 3.2.

This corollary is generic, in the sense that it applies to any type of system with a boundedTexh for

some assumptionϕr . However, its implications on distributedf fault-tolerant systems deserve a special

look, given that in the remaining of the paper, we concentrate on the exhaustion-safety of such systems.
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Even though real distributed systems working under the asynchronous model have a boundedTexh

in terms of node failures, they have been used with success for many years. This happens because, until

recently, only accidental faults (e.g., crash or omission) were a threat to systems. This type of faults,

being accidental by nature, occur in a random manner. Therefore, by studying the environment in detail

and by appropriately conceiving the system (e.g., estimate an upper bound onTexecthat applies to a large

number of executions), one can achieve an asynchronous system that behaves as if it were exhaustion-

safe, with a high probability. That is, despite having the failure syndrome as it was proved, it would be

very difficult to observe it in practice.

However, when one starts to consider malicious faults, a different reasoning must be made. This

type of faults is intentional (not accidental) and therefore their distribution is not random: the actual

distribution may be shaped at will by an adversary whose main purpose is to break the system (e.g., force

the system to execute during more time than any estimated upper bound onTexec). In these conditions,

having a boundedTexh(e.g., stationary maximum bound for node failures) may turn out to be catastrophic

for the safety of the system. That is, the comments above regarding accidental faults do not apply to

intrusion-tolerant systems working under the asynchronous model.

Consequently,Texh should not have a bounded value in an asynchronous distributed fault-tolerant

system operating in a environment prone to anything more severe than accidental faults. The goal should

then be to maintainTexh aboveTexec, in all executions.

4 An Architectural Hybrid Model for Proactive Recovery

4.1 Proactive Recovery

One of the most interesting approaches to avoid resource exhaustion due to accidental or malicious cor-

ruption of components is through proactive recovery [19], which can be seen as a form of dynamic

redundancy [23]. The aim of this mechanism is conceptually simple – components are periodically re-

juvenated to remove the effects of malicious attacks/faults. If the rejuvenation is performed frequently

often, then an adversary is unable to corrupt enough resources to break the system. Proactive recovery

has been suggested in several contexts. For instance, it can be used to refresh cryptographic keys in

order to prevent the disclosure of too many secrets [16, 15, 12, 30, 4, 29, 18]. It may also be utilized

to restore the system code from a secure source to eliminate potential transformations carried out by

an adversary [19, 6]. Moreover, it may encompass the substitution of software components to remove

vulnerabilities existent in previous versions (e.g., software bugs that could crash the system or errors
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exploitable by outside attackers). Vulnerability removal can also be done through address space random-

ization [3, 2, 11, 20, 28], which could be used to periodically randomize the memory location of all code

and data objects.

Thus, intuitively, by using a well-planned strategy of proactive recovery,Texh can be recurrently

increased in order that it is always greater thanTexec in all executions. However, this intuition is rather

difficult to substantiate if the system is asynchronous. The simple task of timely triggering a periodic

recovery procedure is impossible to attain under the pure asynchronous model, namely if it is subject

to malicious faults. From this reasoning, and according to Corollary 3.3, one can conclude that it is

not possible to ensure the exhaustion-safety of an asynchronous system with bounded exhaustion time

through asynchronous proactive recovery. For a detailed discussion on this topic, see [24].

The impossibility of building an exhaustion-safef fault/intrusion-tolerant distributed asynchronous

system, namely in the presence of malicious faults, and even if enhanced with asynchronous proactive

recovery, lead us to investigate hybrid models for proactive recovery.

4.2 The Proactive Resilience Model

Proactive recovery is useful to periodically rejuvenate components and remove the effects of malicious

attacks/failures, as long as it has timeliness guarantees. In fact, the rest of the system may even be

completely asynchronous – only the proactive recovery mechanism needs synchronous execution. This

type of requirement made us believe that one of the possible approaches to use proactive recovery in an

effective way, is to model and architect it under a hybrid distributed system model [26].

In this context, we propose the Proactive Resilience Model (PRM) – a more resilient approach to

proactive recovery based on theWormholes distributed system model[26]. ThePRM defines a system

enhanced with proactive recovery through a model composed of two parts: the proactive recovery sub-

system and the payload system, the latter being proactively recovered by the former. Each of these two

parts obeys different timing assumptions and different fault models, and should be designed accordingly.

The payload system executes the “normal” applications and protocols. Thus, the payload synchrony

and fault model entirely depend on the applications/protocols executing in this part of the system. For

instance, the payload may operate in an asynchronous Byzantine environment.

The proactive recovery subsystem executes the proactive recovery protocols that rejuvenate the ap-

plications/protocols running in the payload part. This subsystem is more demanding in terms of timing

and fault assumptions, and it is modeled as an abstract distributed component calledProactive Recovery

Wormhole(PRW). By abstract we mean that this component admits different instantiations. Typically, a
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cluster CZ with a single local PRW

Figure 2: The architecture of a system with a PRW.

specific instantiation is chosen according to the concrete application/protocol that needs to be proactively

recovered.

The architecture of a system with a PRW is suggested in Figure 2; there is a local module in every

host, called thelocal PRW. These modules are organized in clusters, calledPRW clusters, and the local

PRWs in each cluster are interconnected by a synchronous and securecontrol network. The set of all

PRW clusters is what is collectively calledthe PRW. The PRW is used to execute proactive recovery

procedures of protocols/applications running between participants in the hosts concerned, on any usual

distributed system architecture (e.g., the Internet).

Conceptually, a local PRW is a module inside a host and separated from the OS. In practice, this

conceptual separation between the local PRW and the OS can be achieved in either of two ways: (1) the

local PRW can be implemented in a separate, tamper-proof hardware module (e.g., PC appliance board)

and so the separation is physical; (2) the local PRW can be implemented on the native hardware, with a

virtual separation and shielding between the local PRW and the OS processes implemented in software.

The way clusters are organized is dependent on the rejuvenation requirements. Typically, a clus-

ter is composed of nodes that are somehow interdependent w.r.t. rejuvenating (e.g., need to exchange

information during recovery). In this paper we focus on two specific cluster configurations:

PRWl is composed ofn clusters, each one including a single local PRW. Therefore, every PRWl cluster

is exactly like clusterC Z depicted in Figure 2, and, consequently, no control network exists in any

cluster;
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PRWd is composed of a single cluster including all local PRWs. For instance, if the system was composed

of 3 nodes, then the (single) PRWd cluster would be like clusterC X depicted in Figure 2. In this

case every local PRW is interconnected through the same control network.

PRWl should be used in scenarios where the recovery procedure only requires local information,

and therefore there is no need for distributed execution (e.g., rebooting a stateless replicated system

from clean media in order to remove malware programs). PRWd should be used when the recovery is

done through a fully distributed recovery procedure in which every local PRW should participate (e.g.,

proactive secret sharing as explained in Section 5). Many more configurations are possible, namely

configurations composed of heterogeneous clusters (i.e., clusters with different sizes). We leave the

discussion of such configurations and their usefulness as future work.

4.2.1 Periodic Timely Rejuvenation

The PRW executes periodic rejuvenations through a periodic timely execution service. This section

defines the periodic timely execution service, proposes an algorithm to implement it, and specifies the

real-time guarantees required of the PRW. Then, assuming that the local PRWs do not fail, Section 4.2.2

proves that systems enhanced with a PRW executing an appropriate periodic timely rejuvenation service

are assuredly node-exhaustion-safe. Section 4.2.2 also discusses how this result can be generalized in

order to take into account potential crashes of local PRWs.

Each PRW cluster runs its own instance of the periodic timely execution service, and there are no

constraints in terms of the coordination of the different instances. Albeit running independently, each

cluster offers the same set of properties dictated by four global parameters:F , TP, TD andTπ . Namely,

each cluster executes a rejuvenation procedureF in rounds, and each round is triggered withinTP from

the last triggering. This triggering is done by at least one local PRW (in each cluster), and every other

local PRWs (of the same cluster) start executing the same round withinTπ of each other. Moreover, each

cluster guarantees that, once all local PRWs are in the same round, the execution time ofF is bounded by

TD. Therefore, the worst case execution time of each round ofF is given byTπ +TD. Figure 3 illustrates

the relationship betweenTP, TD, andTπ , in a cluster with three local PRWs. A formal definition of the

periodic timely execution service is presented next. The definition is generic, in the sense that it applies

to generic components and not only local PRWs.

Definition 4.1. Let F be a procedure and TD,TP,Tπ ∈ ℜ+
0 , s.t. TD + Tπ < TP. A set of components

C , organized in s disjoint and non-empty clustersC 1, ...,C s, offers aperiodic timely execution service
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Figure 3: Relationship betweenTP,TD andTπ in a clusterC X with three local PRWs.

〈F,TD,TP,Tπ〉, if and only if:

1. the components of the same clusterC i execute F in rounds, and therefore F is a distributed proce-

dure within a cluster;

2. for every real time instant t ofC execution time, there exists a round of F triggered in each cluster

C i within TP from t, i.e., one component C in each clusterC i triggers the execution of a round of

F within TP from t;

3. every component in a clusterC i triggers the execution of the same round of F within Tπ of each

other component in the same cluster;

4. each clusterC i ensures that, once all components are in the same round of F, the execution time

of F is bounded by TD, i.e., the difference between the real time instant when the last component

in a clusterC i starts executing F and the real time instant when the last component of the same

cluster finishes executing is not greater than TD (both executions refer to the same round).

Corollary 4.2. If C is a set of components, organized in s clustersC 1, ...,C s, that offers a periodic

timely execution service〈F,TD,TP,Tπ〉 then, for every real time instant t ofC execution time, there exists

a round of F triggered in each clusterC i within TP from t that is terminated within TP +TD +Tπ from t.

Definition 4.3. A system enhanced with a PRW(〈F,TD,TP,Tπ〉) has a local PRW in every host. More-

over these are organized in clusters and in conjunction offer the periodic timely execution service

〈F,TD,TP,Tπ〉.

As mentioned before, the PRW admits two particular cluster configurations — PRWl and PRWd.

These are defined as follows.
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Definition 4.4. A system enhanced with a PRWl (〈F,TD,TP,Tπ〉) is a system enhanced with a

PRW(〈F,TD,TP,Tπ〉) s.t. there exists n clustersC 1, ...,C n, and each clusterC i is composed of a single

local PRW.

Definition 4.5. A system enhanced with a PRWd(〈F,TD,TP,Tπ〉) is a system enhanced with a

PRW(〈F,TD,TP,Tπ〉) s.t. there exists a single clusterC 1 comprising all local PRWs.

A periodic timely execution service can be built using, for instance, Algorithm 1, and a construction

process that ensures the following properties:

P1 There exists a known upper bound on the processing delays of every local PRW.

P2 There exists a known upper bound on the clock drift rate of every local PRW.

P3 There exists a known upper bound on the message delivery delays of every control network inter-

connecting the local PRWs of a same cluster.

Suppose that each local PRW executes Algorithm 1, where functionclock returns the current value

of the clock of the local PRW,F is the recovery procedure that should be periodically timely executed,

andTP is the desired recovery periodicity. Valueδ defines a safety time interval used to guarantee that

consecutive recoveries are triggered withinTP from each other in the presence of the assumed upper

bounds on the processing delays (P1) and the clock drift rate (P2). Notice that between thewait instruc-

tion in line 2 and the triggering ofF in line 7, there is a set of instructions that take (bounded) time to

execute.δ should guarantee that consecutive recoveries are always triggered withinTP of each other

independently of the actual execution time of those instructions, and taking into account the maximum

possible clock drift rate. However,δ should also guarantee that every local PRW triggersF within Tπ

of each other. So,δ should not be greater thanTP− (TD + Tπ) in order to ensure that the local PRW

C i
1 in each clusterC i does not start to executeF too early (i.e., when other local PRWs may still be

executing the previous round). In these conditions, the algorithm guarantees thatF is always triggered,

in each clusterC i , by local PRWsC i
1 within TP from the last triggering. Moreover, given that it is

assured that different rounds do not overlap, the triggering instant in the local PRWs of the same cluster

differs in at most the maximum message delivery delay (P3) plus the maximum processing delay, i.e.,

the time necessary for messagetrigger to be delivered and processed in all local PRWs. Thus, the value

of Tπ is defined by this sum. In this situation, each local PRW offers a periodic timely execution ser-

vicePRW(〈F,TD,TP,Tπ〉) provided they ensure that, once all local PRWs are in the same round ofF , its

execution time is bounded byTD.
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Algorithm 1 : Periodic timely execution service run by each local PRWC i
j in clusterC i

initialization: tlast← clock

begin

while truedo
// local PRWsC i

j with j = 1 in each clusterC i coordinate the recovering process

if j = 1 then1

wait until clock= tlast +TP−δ2

tlast← clock3

multicast(trigger,C i)4

else5

receive(trigger)6

executeF7

end

4.2.2 Building Node-Exhaustion-Safe Systems

A system enhanced with aPRW(〈F,TD,TP,Tπ〉) can be made node-exhaustion-safe under certain condi-

tions, as it will be shown in Theorem 4.6. This theorem states that if it is possible to lower-bound the

exhaustion time (i.e., the time needed to producef + 1 node failures) of every system execution by a

known constantTexhmin, then node-exhaustion-safety is achieved by assuring thatTP +TD +Tπ < Texhmin.

In what follows, letJSK denote the set of executions of anf fault-tolerant distributed systemS

under the REX model for the conditionϕnode= nf ail ≤ f , wherenf ail represents the maximum number

of nodes which, during an execution, are failed simultaneously. Notice that the type of failure is not

specified, but only that nodes may fail in some way and that this failure can be recovered through the

execution of a rejuvenation procedure. A node failure may be for instance the disclosure of some secret

information (the type of failures considered in Section 5), or a hacker intrusion that compromises the

behavior of some parts of the system. Notice also that the rejuvenation procedure will depend on the

type of failure considered. For instance, whereas a hacker intrusion may require the reboot of the system

and the reloading of code and state from some trusted source, the disclosure of secret information may

be solved by simply turning that information obsolete.

Theorem 4.6. Suppose that

1. S is a system composed of a total of n nodes which, once failed, do not recover, and let Texhmin =
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inf({TE
exh : E ∈ JSK})1;

2. the time needed to produce f+1 (≤ n) node failures at any instant is independent of the number

of nodes that are currently failed;

3. F is a distributed procedure that upon termination ensures that all nodes involved in its execution

are not failed.

Then, the system S, enhanced with a PRW(〈F,TD,TP,Tπ〉) s.t. TP +TD +Tπ < Texhmin is node-exhaustion-

safe w.r.t.ϕnode.

Proof. Assumption (1) entails that, in every execution ofS, from a state with0 failed nodes, it takes at

leastTexhmin for f +1 node failures to be produced. Letm be a natural number such thatm+ f +1≤ n.

Then, using assumption (2), we may conclude that, in every execution ofS, it takes at leastTexhmin to

reach a state withm+ f +1 failed nodes from a state withm failed nodes2. This also means that :

4. in every execution ofS, the number of node failures during a time interval]t, t +Texhmin[ is at most

f .

By contradiction, assume that there exists an execution of the systemS, enhanced with a

PRW(〈F,TD,TP,Tπ〉) s.t. TP +TD +Tπ < Texhmin, that violatesϕr . This means that there is a time instant

tC when there are more thanf failed nodes. Notice thattC cannot occur in less thanTexhmin from the

system initial start instant, because this would mean that more thanf + 1 node failures were produced

in less thanTexhmin from a state with0 failed nodes, which is contradictory with assumption (1). Hence,

tC occurs in at leastTexhmin from the system initial start instant. Then, by (4), because in less thanTexhmin

is not possible that more thanf nodes become failed, intI = tC−Texhmin there is at least one failed node.

Given that we assumed that the PRW never fails and given that the nature ofF is to recover the nodes

of the cluster whereF is executed (assumption (3)), the execution ofSunderPRW(〈F,TD,TP,Tπ〉) with

TP+TD +Tπ < Texhmin ensures that any node that is failed attI is recovered no later thantI +TP+TD +Tπ

and, hence, is recovered earlier thantC = tI + Texhmin. If one of the nodes that are failed intI becomes

recovered beforetC and there are more thanf failed nodes intC = tI + Texhmin, then more thanf nodes

become failed in the interval]tI , tI +Texhmin[. But this is contradictory with (4) above.

1inf() denotes the infimum of a set of real numbers, i.e., the greatest lower bound for the set.
2Notice that a node may fail, be recovered, fail again, and so on. Therefore, the total number of node failures does not

correspond necessarily to the number of currently failed nodes.
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From Theorem 4.6 it follows that, in order to build a node-exhaustion-safe intrusion-tolerant system,

the system architect should choose an appropriate degree of fault-tolerancef , such thatTP +TD +Tπ <

TE
exh, for every system executionE . In other words, any interval with lengthTP +TD +Tπ should not be

sufficient for f +1 node failures to be produced, throughout the lifetime of the system.

As mentioned before, the results presented in this section depend on the assumption that local PRWs

never fail. This assumption allows to abstract from PRWs crashes and, in this way, allows to focus on

what it is really important. However, Theorem 4.6 could be extended to the case where the number of

crashes is upper-bounded by some known constantfc. The difference would be that one would need

to add sufficient redundancy to the system in order to resist thefc possible crashes, and the protocol(s)

executed by the PRW would also have to take this into account. Section 5 explains how this could

be done in a concrete scenario. In order to minimize the probability of crashing more thanfc local

PRWs, and in this way guarantee the exhaustion-safety of the overall system, the system architect would

need to estimate the probability of crash according to environment conditions and/or apply techniques

of dynamic redundancy, where crashed PRWs could be repaired or replaced before more thanfc become

crashed.

In the next section, the Proactive Resilience Model is applied to a concrete algorithmic scenario as a

proof of concept. We present a proactive secret sharing wormhole, showing how the resilience of a secret

sharing protocol can be enhanced using our model.

5 The Proactive Secret Sharing Wormhole

Secret sharing schemes protect the secrecy and integrity of secrets by distributing them over different

locations. A secret sharing scheme transforms a secrets into n sharess1,s2, ...,sn which are distributed

to n share-holders. In this way, the adversary has to attack multiple share-holders in order to learn or

to destroy the secret. For instance, in a(k+1,n)-threshold scheme, an adversary needs to compromise

more thank share-holders to learn the secret, and corrupt at leastn−k shares in order to destroy the same

secret.

Various secret sharing schemes have been developed to satisfy different requirements. This paper

uses the Shamir’s approach [22] to implement a(k+1,n)-threshold scheme. This scheme can be defined

as follows: given an integer-valued secrets, pick a primeq which is bigger than bothsandn. Randomly

choosea1,a2, ...,ak from [0,q[ and set polynomialf (x) = (s+ a1x+ a2x2 + ...+ akxk) mod q. For i =

1,2, ...,n, set the sharesi = f (i). The reconstruction of the secret can be done by havingk+1 participants
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Figure 4: Shamir’s secret sharing scheme fork = 1.

providing their shares and using polynomial interpolation to computes. Moreover, givenk or fewer

shares, it is impossible to reconstructs.

A special case wherek = 1 (that is, two shares are required for reconstructing the secret), is given

in Figure 4. The polynomial is a line and the secret is the point where the line intersects with the y-axis

(i.e., (0, f (0)) = (0,s)). Each share is a point on the line. Any two (i.e.,k+1) points determine the line

and hence the secret. With just a single point, the line can be any line that passes the point, and hence its

insufficient to determine the right y-axis cross point.

In many applications, a secrets may be required to be held in a secret-sharing manner byn share-

holders for a long time. If at mostk share-holders are corrupted throughout the entire lifetime of the

secret, any(k+1,n)-threshold scheme can be used. In certain environments, however, gradual break-ins

into a subset of locations over a long period of time may be feasible for the adversary. If more thank

share-holders are corrupted,s may be stolen. An obvious defense is to periodically refreshs, but this

is not possible whens corresponds to inherently long-lived information (e.g., cryptographic root keys,

legal documents).

In consequence, what is actually required to protect the secrecy of the information is to be able to

periodically renew the shares without changing the secret. Proactive secret sharing (PSS) was introduced

in [16] in this context. In PSS, the lifetime of a secret is divided into multiple periods and shares are

renewed periodically. In this way, corrupted shares will not accumulate over the entire lifetime of the

secret since they are checked and corrected at the end of the period during which they have occurred.

A (k+1,n) proactive threshold scheme guarantees that the secret is not disclosed and can be recovered

as long as at mostk share-holders are corrupted during each period, while every share-holder may be

corrupted multiple times over several periods.

Let consistent sharesdesignate shares which, when combined in a sufficient number, make possible
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the calculation ofs. The goal of proactive secret sharing is to harden the difficulty of an adversary being

able to collect a set ofk+1 consistent shares. This is done by periodically changing the shares, assuring

that the interval between consecutive share rejuvenations is not sufficient for an adversary to collectk+1

(consistent) shares.

In this section, we address the exhaustion-safety of distributed systems based on secret sharing, i.e.,

the assumptionϕnode is nf ail ≤ k, wherenf ail represents the maximum number of consistent shares that,

during an execution, are disclosed simultaneously. A share is considered disclosed when it is known by

an adversary.

We propose the Proactive Secret Sharing Wormhole (PSSW) as an instantiation of the

PRWd〈F,TD,TP,Tπ〉 presented in Section 4.2. Notice that this means that there exists a single cluster

composed of all local PSSWs and therefore all local PSSWs are interconnected by the same synchronous

and secure control network. The PSSW targets distributed systems which are based on secret sharing

and the goal of the PSSW is to periodically rejuvenate the secret share of each node, so that the overall

system is exhaustion-safe wrtϕnode.

The presentation of the PSSW is divided in two parts. The first part describes the procedurere-

freshsharethat renews the shares without changing or disclosing the secret, and enumerates the assump-

tions that need to be ensured in the construction of the PSSW. The second part discusses how the values

of TP, TD andTπ may be chosen in order to ensure that a secret sharing system enhanced with a PSSW

= PRWd〈 refreshshare,TD,TP,Tπ〉 is exhaustion-safe wrtϕnode. The choice of the valuesTD,TP,Tπ is

conditioned by the PSSW assumptions, including the assumed adversary power.

The PSSW executes Algorithm 1 in order to periodically and timely execute the procedurere-

freshsharepresented in Algorithm 2. This procedure is based on the share renewal scheme of [16].

In lines 1–2, local PSSWi picks k random numbers{δim}m∈{1...k} in [0,q[. These numbers define the

polynomialδi(z) = δi1z1 +δi2z2 + ...+δikzk. In lines 3–6, local PSSWi sends the valueui j = δi( j) mod

q to all other local PSSWsj. Then, in lines 7–9, local PSSWi receives the valuesu ji from all other local

PSSWs. These values are used to calculate, in line 10, the new share. Notice that the calculation is done

by combining the previous share with a sum of the random numbers sent by each local PSSW, and that,

in the execution of the first refreshment, the previous share corresponds to the initial sharef (i).

In this paper it is not described how the payload applications obtain the share. We envisage that this

could be done in two different ways, either through a PSSW library composed by functions that could be

used to access the current value of the share, or by resorting to a multi-port memory periodically written

by the local PSSWs and with read-only access by the payload applications. In both approaches, it should
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Algorithm 2 : refreshshareprocedure executed by each local PSSWi

initialization: share← f (i)

begin
// Define the polynomialδi(z) = δi1z1 +δi2z2 + ...+δikzk using{δim}m∈{1...k}

for m= 1 to k do1

δim← generaterandomnumber([0,q[)2

// Sendδi( j) to eachPj

for j = 1 to ndo3

if j 6= i then4

ui j ← δi( j) modq5

sendui j to Pj6

// Receiveδ j(i) from eachPj

for j = 1 to ndo7

if j 6= i then8

receiveu ji from Pj9

// Calculate the new share

share← (share+u1i +u2i + ...+uni) modq10

end

be guaranteed that the payload applications are aware of the current version of the shares.

Note that, after the termination of the procedurerefreshsharein all local PSSWs, the time necessary

for conditionϕnode to be violated is extended. The system is exhaustion-safe if the interval between

consecutive rejuvenations is not sufficient forϕnode to be violated. Next we present the assumptions that

the PSSW must satisfy in order to guarantee the correct and timely execution ofrefreshshare.

A1 There exists a known upper boundTprocmax
on local processing delays.

A2 There exists a known upper boundTdri f t max
on the drift rate of local clocks.

A3 Any network message is received within a maximum delayTsendmax from the send request.

A4 The content of the network traffic cannot be read by unauthorized users.
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In what follows it is first proved that therefreshsharefunction has a bounded execution time when

executed under assumptions A1–A4. Then, it is shown that it is possible to build a PSSW and that

by choosing appropriate values forTD,TP,Tπ , andk, one can have an exhaustion-safe intrusion-tolerant

secret sharing system.

Theorem 5.1. If all local PSSWs execute Algorithm 1 with F=refreshshareunder assumptions A1–A4,

then:

Bounded execution timeOnce all nodes are in the same round, there is an upper bound Texecmax on the

execution time ofrefreshshare, i.e., the difference between the real time instant when the last node

starts executingrefreshshareand the real time instant when the last node finishes executing is not

greater than Texecmax.

RobustnessAfter all nodes finish the execution of each round ofrefreshshare, the new shares computed

correspond to the initial secret (i.e., any subset k+ 1 of the new shares interpolate to the initial

secret).

Secrecy An adversary that at any time knows no more than k shares learns nothing about the secret.

Proof. Robustness and Secrecy are proved in [16]. The proof of Secrecy uses assumption A4.

Bounded execution time:

We shall prove a stronger result: assuming that all nodes are ready to executerefreshshare, i.e.,

all nodes are in the same round, the difference between the real time instant when thefirst node starts

executingrefreshshareand the real time instant when the last node finishes executing is not greater

thanTexecmax. Let I be the set of all instructions used in each execution round ofrefreshshare(i.e., all

instructions executed between lines 1 and 10). LetTexeci be a bound on the execution time of instruction

i,∀i ∈ I . Given that the execution time of any instruction, with the exception ofreceive, depends only

on the local processing delays, letTprocmax
be an upper bound on the execution time of such instructions

(assumption A1). This entails thatTexeci < Tprocmax
,∀i ∈ I \ {receive}. The execution time ofreceive

depends on the local processing and network delivery delays, such that,Texecreceive < Tprocmax
+ Tsendmax

(assumption A2). Therefore, one can upper bound the execution time of the algorithm byTexecmax =

(7n+2k−2)Tprocmax
+(n−1)Tsendmax. This value results from the following calculations. The instructions

in lines 1 and 2 are within a cycle withk iterations. Thus, their total execution time is bounded by

2kTprocmax
. Then, the instructions in lines 3, 4, 5 and 6 are executed in the context of a cycle withn

iterations. However, lines 5 and 6 are not executed in one of the iterations given that 0< i ≤ n. This
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means that the total execution time of lines 3 and 4 is bounded by 2nTprocmax
and that the total execution

time of lines 5 and 6 is bounded by 2(n−1)Tprocmax
. Following the same logic, the total execution time

of lines 7 and 8 is bounded by 2nTprocmax
. Regarding line 9, given that it includes the instructionreceive,

its maximum execution time is bounded by(n−1)(Tprocmax
+Tsendmax). Finally, the execution time of line

10 is bounded byTprocmax
.

According to Theorem 5.1,refreshshareis a distributed procedure appropriate for rejuvenating the

secret shares of a distributed system: upon termination of a round ofrefreshshare, all the nodes have

new shares (and, hence, are not corrupted) and; once all nodes are in the same round, there exists a

known upper boundTexecmax on the execution time ofrefreshshare. The following proposition shows that

is possible to use this rejuvenation procedurerefreshshareto build a PSSW that offers a periodic timely

execution service.

Proposition 5.2. Let PSSW be a PRWd built under assumptions A1–A4 and triggering therefreshshare

procedure through the execution of Algorithm 1 withδ = 4Tprocmax
+Tdri f t max

. Let TP,TD,Tπ ∈ ℜ+
0 such

that

a) TP > TD +Tπ +δ

b) TD ≥ Texecmax

c) Tπ ≥ Tprocmax
+Tsendmax

Then, the PSSW offers the periodic timely execution service〈 refreshshare,TD,TP,Tπ〉.

Proof. Given thatTD +Tπ < TP due to a), we only need to show that conditions 1, 2, 3 and 4 of Defini-

tion 4.1 are satisfied by the PSSW under assumptions A1–A4. Consider the Algorithm 1 executed by the

PSSW.

Condition 1 This condition is trivially satisfied given that the PSSW is composed by a single cluster

and every local PSSW executesrefreshshare.

Condition 2 Without line 2, the local PSSWC 1
1 would executeF within 4Tprocmax

+Texecmax from the

last triggering, given that the procedureF and four instructions would be executed between consecutive

triggering. Therefore, settingTP ≥ 4Tprocmax
+ Texecmax would satisfy condition 2. The addition of the

wait instruction in line 2 potentially decreases the frequency ofF execution in order to enforce a certain

periodicity that is sufficient to guarantee exhaustion-safety. Notice that this addition is in fact weakening

the system, but it is necessary to minimize the potential overhead provoked by each rejuvenation, and in
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order to guarantee that consecutive rejuvenations do not overlap (in different local PSSWs). Regarding

the value ofδ , if the local PSSW clocks were perfect, one could setδ = 4Tprocmax
in order to satisfy

condition 2, as long as the chosenTP would be greater thanTexecmax + 4Tprocmax
. However, according to

assumption A2, local PSSW clocks have a bounded drift rateTdri f t max
. Therefore, given thatδ has also

to cancel this drift rate, we have that ifδ = 4Tprocmax
+Tdri f t max

andTP > Texecmax+δ , the PSSW satisfies

condition 2.

Condition 3 First of all, given thatTP > TD + Tπ + δ , consecutive executions ofrefreshsharedo not

overlap. This means that whenever the local PSSWC 1
1 finishes waiting in line 2, all other local PSSWs

are already ready to receive the messagetrigger and start a new round. Therefore, the difference between

the refreshsharetriggering instants on every local PSSW depends on the delivery delay and processing

of the messagetrigger sent by local PSSWC 1
1 in line 4 and received by every other local PSSW in line

6. This means that settingTπ ≥ Tprocmax
+Tsendmax allows the PSSW to satisfy condition 3.

Condition 4 According to Theorem 5.1, the PSSW satisfies condition 4 ifTD ≥ Texecmax.

As a corollary of Theorem 4.6, we have that under some conditions, a secret sharing systemS

enhanced with an appropriate PSSW is exhaustion-safe wrtϕnode. As before, we useJSK to denote the

set of executions of a secret sharing systemSunder the REX model for assumptionϕnode.

Corollary 5.3. Suppose that

1. S is a secret sharing system composed of a total of n nodes, each one with a share that never

changes, and let Texhmin = inf({TE
exh : E ∈ JSK});

2. the time needed to discover k+1 (≤ n) shares at any instant is independent of the number of shares

that are currently known.

Then, the system S enhanced with a PSSW s.t. TP +TD +Tπ < Texhmin is exhaustion-safe w.r.t.ϕnode.

Proof. This result is a straightforward consequence of Theorem 4.6. Notice that assumption 3 of that

theorem is entailed by the robustness property ofrefreshshare, as stated in Theorem 5.1.

All these results are based on the assumption that no local PSSW crashes during the lifetime of the

system. Section 4.2 described generically how one could build a fault-tolerant PRW able to resistfc

crashes. Here it is explained more concretely how could be that done in the context of the PSSW.

Consider a PSSW composed by a total ofn local PSSWs, and assume that at mostfc local PSSWs

crash during the lifetime of the system, such thatn≥ fc+k+1 (this condition guarantees that it is always
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possible to reconstruct the secret). In such a system and under assumptions A1 and A3 it is possible to

build a leader election protocol [13]. This protocol could be used in Algorithm 1 to tolerate the fault of

local PSSWC 1
1. In each round, theleaderwould be the responsible for sending the messagetrigger. In

the case of a leader crash, the following leader would be then the responsible, and so on. The parameter

δ would have to take into consideration the worst case execution time of the leader election protocol.

Regarding therefreshshareprocedure presented in Algorithm 2, each local PSSW would have to resort

to a perfect failure detector [7] in order to detect the crash of the other PSSWs and avoid waiting forever

for messages from failed PSSWs. Under assumptions A1 and A3, it is possible to build a perfect failure

detector with bounded detection time. This bound would then be used in the calculation ofTexecmax. We

hope to have left clear that the fact that we do not handle PSSW crashes is not a limitation of this work

but a limitation of space in this paper. We leave as future work the presentation of the algorithms and the

(slightly different) new proofs that result from the modifications discussed above.

6 Experimental Results

We have implemented a prototype3 of the PSSW using RTAI [8], an operating system with real-time

capabilities, and a switched Fast-Ethernet control network. The feasibility of achieving timeliness guar-

antees using this type of operating system and network are discussed in [5]. RTAI allows the construction

of an architecturally-hybrid execution environment [26], with the PSSW executing as a set of real-time

tasks, and the normal applications executing at Linux user-level.

The PSSW prototype makes use of the GNU Multiple Precision Arithmetic Library (GMP)4, a free

library for arbitrary precision arithmetic. The Linux version of the GMP library was ported to RTAI, and

it is available together with the PSSW prototype source code.

This section presents the results of a set of experiments that were conducted using this prototype,

with the goal of observing the execution time of therefreshshareprocedure (Algorithm 2) when triggered

in the context of the PSSW periodic timely execution service (Algorithm 1). More precisely, the mea-

surements that will be presented represent the interval of time between the first local PSSW triggering

the procedure and the last PSSW finishing executing it. These measurements allow one to study: the

possible values ofTP,TD andTπ in a real environment; predict the types of adversary it is possible to

resist; determine the cost of the rejuvenation overhead (i.e., rejuvenation time vs total execution time).

The experimental infrastructure was composed by 500 MHz single-processor Pentium III based PCs

3Available at http://sourceforge.net/projects/rt-pss/
4http://www.swox.com/gmp
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running RTAI, and interconnected by a 3COM SuperStack II Baseline 100 Mbps switch. The experiences

presented below used 1024-bit shares. The share can be any type of data. It can be, for instance, a 1024-

bit RSA key, and in this case, the PSSW could be used as part of a proactive threshold RSA scheme [21].

The results of every configuration are based on the average of 65535 periodic executions triggered by the

PSSW.

The first experience tested configurations from 2 to 6 machines withk = 1. Remember that the

exhaustion-safety condition isnf ail ≤ k, wherenf ail represents the maximum number of consistent shares

that, during an execution, are disclosed simultaneously. The goal was to evaluate the overhead introduced

by the algorithm when the number of machines increases. The results (mean, standard deviation, min-

imum and maximum execution time) are presented in Figure 5. One of the main conclusions is that

the mean execution time increases with the number of machines. This was expected given that more

machines require more messages to be exchanged and thus greater processing and network delays. The

maximum execution time, however, remains quite stable independently of the number of machines. This

is very important and shows in practice that there exists an upper boundTπ
execmax

on the execution time

(notice thatTπ
execmax

corresponds to the interval between the first local PSSW triggering the refresh and

the last PSSW finishing it, whereas the boundTexecmax mentioned in section 5 does not include the interval

between the first and the last triggerings). Moreover, these measurements also allow us to conclude that

one could trigger a rejuvenation every 2 seconds with a maximum overhead of less than 2% (given that

Tπ
execmax

< 30ms, one could say thatTD +Tπ = 30msand setTP = 2000ms). An adversary would have to

obtaink+ 1 = 2 shares in less than 2.1 seconds (≈ TP + TD + Tπ ) in order to reconstruct the protected

secret. In Figure 6 it is possible to observe the distribution of the (65535) execution times of the experi-

ment in the configuration with 6 machines andk = 1. In terms of probability distribution it is clear that

the probability of execution time values above 24 msec is low.

The next step was to evaluate the impact of increasingk. Notice that increasingk means that one is

attempting to resist a stronger adversary, in other words, resisting the disclosure of a higher number of

shares. Therefore, in the second experiment, 6 machines were used to test the behavior of the system with

k varying between 1 and 5. The results are presented in Figure 7. One can see that there is an increment

in the mean and maximum execution whenk increases. This increment is also visible in the execution

time distribution depicted in Figure 8 and it happens because the size ofk impacts the processing delay.

Nevertheless, the maximum execution time fork = 5 remains still under 30 ms. This means that one can

extend the previous conclusions and say that an adversary would have to obtain 6 shares in less than 2.1

seconds in order to discover the secret.
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n Texec(msec)

mean std dev. min, max

2 11.4 3.4 10.0, 20.0

3 15.0 3.1 10.1, 22.3

4 17.0 2.6 10.8, 22.3

5 18.1 2.3 11.3, 23.0

6 19.0 1.5 15.4, 22.8

Figure 5: refreshshare execution time with

k = 1 (n – number of machines).
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Figure 6: refreshshare execution time distribution

with 6 machines andk = 1.

k Texec(msec)

mean std dev. min, max

1 19.0 1.5 15.4, 22.8

2 19.8 1.9 12.7, 24.1

3 20.6 2.0 14.6, 25.4

4 21.3 2.3 14.2, 26.4

5 22.6 2.4 14.8, 27.4

Figure 7: refreshshareexecution time with 6

machines.
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Figure 8: refreshshare execution time distribution

with 6 machines andk = 5.

Depending on the assumed adversary strength and on the desired overhead, the system architect can

use the above results to calculate the appropriate degree of fault-tolerancek and the values ofTP, TD and

Tπ . To illustrate how can this be done, two different adversary types (Hare andTortoise) are presented

next, and it is described how to configure an appropriate PSSW in each scenario. In both scenarios the

system is deployed with 6 machines.

Hare This adversary is able to compromise any machine (i.e., disclose a single share) in one second.

Such an adversary can be envisaged in the context of ultra-resilient systems (e.g., national security

related) defending against fierce cyber-attacks.

Without proactive secret sharing,Hare would takek+ 1 seconds to discoverk+ 1 shares and

reconstruct the secret. With 6 machines andk = 5, this would mean that the system could be

compromised after 6 seconds.
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k maxTP overhead

1 1.9 sec 1.6%

2 2.9 sec 1.0%

3 3.9 sec 0.8%

4 4.9 sec 0.6%

5 5.9 sec 0.5%

Figure 9: PSSW overhead in order to resistHare.

k maxTP overhead

1 119.9 sec 0.03%

2 179.9 sec 0.02%

3 239.9 sec 0.01%

4 299.9 sec 0.01%

5 359.9 sec 0.01%

Figure 10: PSSW overhead in order to resist

Tortoise.

In order to resistHare, one has to build a PSSW able to refreshk+ 1 shares in less thank+

1 seconds. Figure 9 compares the resulting overhead of choosing different values ofk and the

corresponding maximum value ofTP. The overhead is calculated using the formulaTD+Tπ

TP+TD+Tπ
, with

TD +Tπ = 30. The conclusion is that independently of the value ofk, it is possible to defend against

Hare with a negligible overhead. Therefore, one can say that the PSSW can be used efficiently to

secure secret sharing systems even in the presence of very powerful adversaries.

Tortoise This adversary is slower thanHare, being able to compromise any machine (i.e., disclose a

single share) in one minute.Tortoisemay be used to model typical cyber-attacks on the web.

Without proactive secret sharing,Tortoisewould takek+1 minutes to discoverk+1 shares and

reconstruct the secret. With 6 machines andk = 5, this would mean that the system could be

compromised after 6 minutes.

In order to resistTortoise, one has to build a PSSW able to refreshk+1 shares in less thank+1

minutes. Figure 10 compares the resulting overhead of choosing different values ofk and the

corresponding maximum value ofTP. The overhead is calculated using the same formula as above

with TD +Tπ = 30. As expected, the overhead is significantly lower than when defending against

Hare. Therefore, the conclusion is that the PSSW can also increase the resilience of money-critical

secret sharing systems deployed on the web.

To the best of our knowledge, we are the first to present and evaluate a proactive secret sharing

implementation in a real time environment. In [1], a Java prototype of a proactive security toolkit (using

the same PSS protocol our PSSW is based on) is presented, but authors do not discuss the temporal

guarantees of their approach. The work presented in [30] describes APSS, a proactive secret sharing
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protocol for asynchronous systems. APSS is in theory a fine replacement of PSS protocols in asynchro-

nous environments. However, to be useful, APSS needs to be executed with guaranteed periodicity and,

by definition, this cannot be guaranteed in asynchronous conditions. More details on this subject can be

found in [24]. Nevertheless, one could envision a PSSW using APSS instead of the synchronous PSS it

currently uses. We leave this as future work.

7 Conclusions

This paper made two distinct but complementary contributions. The first part of the paper was devoted

to a discussion about the actual resilience of current intrusion-tolerant synchronous and asynchronous

systems. We proposed a model that takes in account the evolution of a specified resource along the

timeline of system execution. It was showed that it is feasible to build a node-exhaustion-safe intrusion-

tolerant synchronous system, as long as it has a bounded lifetime. We also showed that it is impossible to

build a node-exhaustion-safe intrusion-tolerant system under the pure asynchronous model, even using

proactive recovery.

In the second part of the paper, we explored the fact that proactive recovery protocols typically

require stronger environment assumptions (e.g., synchrony, security) than the rest of the system. Based

on this, we proposed proactive resilience as a novel approach to proactive recovery that is based on an

architectural hybrid distributed system model: the proactive recovery protocols are executed through a

subsystem with “better” properties than the rest of the system.

The Proactive Resilience Model (PRM) was presented and it was shown that it can be used to build

node-exhaustion-safe systems. As a proof of concept, this model was applied to the secret-sharing sce-

nario, in order to derive a node-exhaustion-safe distributed intrusion-tolerant secret-sharing system.

We furthered our proof of concept with some experimental results that confirm our theoretical pos-

tulates. Our experimental secret sharing prototype is intrusion-tolerant and a realistic configuration was

shown to tolerate any number of intrusions as long as the intrusion rate is not greater than 1 intrusion per

second.
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