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Abstract

This document describes the first specification of the APIs and Protocols for the
MAFTIA Middleware. The architecture of the middleware subsystem has been described
in a previous document, where the several modules and services were introduced: Activity
Services; Communication Services; Network Abstraction; Trusted and Untrusted Com-
ponents. The purpose of the present document is to make concrete the functionality of
the middleware components, by defining their application programming interfaces, and
describing the protocols implementing the above-mentioned functionality.
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1 Introduction

This document describes the first specification of the APIs and protocols for the
MAFTIA middleware. The architecture of the middleware subsystem has been presented
in a previous deliverable (D23), where the various system models, modules and services
were introduced. This document is the first of two deliverables that will be related with
the definition of the APIs and protocols. Therefore, it focuses mainly on the specification
of the external interfaces of the modules, which will allow all partners to have a common
basis of work contributing towards a coherent result. Many protocols are currently under
development, and as such the protocols chapter is mostly devoted to the underlying prin-
ciples, and whenever protocols are described, they are necessarily done in a concise way.
The information provided by this document will expanded in the next deliverable (D9 -
Complete specification of APIs and protocols for the MAFTIA middleware), due one year
from now.

Figure 1.1 represents the architecture of a MAFTTA host, in which the dependence
relations between modules are depicted by the orientation of the (“depends-on”) arrows.
The figure also represents the main runtime environments that will support the architec-
ture, and other components in general that might want to call their interfaces, namely the
Appia protocol kernel, the Trusted Timely Computing Base (TTCB), and of course the
Operating System (OS).

This deliverable is organized in two main parts, one that introduces the services
and APIs and another that presents the protocols. The services and APIs are explained
using a bottom-up approach, it starts by describing the runtime environments and then
the middleware modules.

Appia is the protocol kernel that is going to be employed by the MAFTIA mid-
dleware. In terms of protocol design, a protocol kernel provides the tools that allow a
designer to compose stacks of protocols (or modules) according to the needs of the archi-
tecture. In run-time the protocol kernel supports the exchange of data (messages) and
control information between layers and provides a number of auxiliary services such as
timer management and memory management for message buffers.

The TTCB, like the Operating System (OS), is a component that might have its
services called by every other module. Unlike the OS, the TTCB can be a fairly modest and
simple component of the system, with properties well-defined and preserved by construc-
tion. The TTCB exhibits a fail-controlled behavior, i.e., it fails only by crashing, even in
the presence malicious faults, and regardless of the characteristics of the applications using
its services. It can be seen as an assistant for parts of the execution of the protocols and
applications, since it provides a small set of trusted services related to time and security.



MNi

< > LAN Driver

Runtime
(Appia+TTCB+0S)

Figure 1.1: Architecture of a MAFTIA Host

The lowest module of the middleware architecture is the Multipoint Network, MN,
created on top of the physical infrastructure. The MN hides the particulars of the un-
derlying network to which a given site is directly attached, and is as thin as the intrinsic
properties of the latter allow. The main services that it provides are multipoint addressing
and best-effort message delivery, basic secure channels and message envelopes. Its API is
composed by the standard interfaces to well-known protocols, such as TCP /TP and SNMP,
that might be used by the modules above it.

Communication Support, CS, is the core module related to data interchange among
sites. It depends on the information given by the Site Membership, SM, module about
the composition of the groups, and on the MN to access the network. The CS module
implements cryptographic group communication primitives, such as Byzantine agreement
or message broadcast, and other core services. The group communication primitives are
provided with several reliability and ordering guarantees, such as causal or atomic, and are



defined in terms of several programming models: asynchronous, timed with support from
the TTCB, or asynchronous with assistance from the TTCB. From all the combinations
of guarantees and models that are possible, only a subset are going to be offered.

The Activity Support module, AS, implements building blocks that assist the de-
velopment of specific classes of applications, such as distributed transactional support and
replication management. Its main purpose is to offer top-level interfaces that will make the
access to CS protocols and interfaces easier, and provide functionality that will simplify the
construction of those applications. This deliverable describes essentially the transactional
support APIs and services. It presents a typical transactional architecture and introduces
its most important components, such as the resource managers and transaction managers,
and then defines their interfaces.

The Site Failure Detector module, SF, as its name indicates, determines which sites
have failed. This module can use the services of the TTCB to offer a reliable failure
detection, since the TTCB is synchronous and secure. If a TTCB is not present, the
SF module might not provide completely correct information because it depends on the
conditions of the network, which has uncertain synchrony and might be prone to attacks.
Site Membership, SM, keeps and updates the information related to the set of sites that are
registered and in the current view (currently trusted sites). It depends on the information
given by the SF module. The Participant Failure Detector module, PF, assesses the liveness
and correctness of all local participants, based on information provided by the operating
system.

In this deliverable, we do not present the internal interface of the modules, which
will have to be specified in terms of Appia events and other constructs. This interface is
currently being developed, and its definition mostly important only to the partners involved
in the production of a middleware prototype (deliverable D25 - Running lab prototype of
MAFTIA middleware, due six months from now).



2 Runtime Support Services and APIs

2.1 Appia

This section describes the API of Appia. Appia is a layered communication frame-
work implemented in Java, providing extended configuration and programming possibil-
ities. The conceptual model behind Appia is described in several papers [26, 25]. More
information about the framework and the latest updates can be retrieved at the Appia
website [2].

Appia is a general purpose framework that is being used in several research projects.
Although Appia is not a fully developed component solely for MAFTIA, we decided to
include this section in the deliverable mainly for two reasons: first, for completeness, since
most of the development of MAFTIA middleware will be done within this framework, it is
important to understand the capabilities and support provided by Appia; second, because
MAFTIA influenced the development of Appia. When the MAFTIA project endorsed
Appia, it was still in an early stage of design, and measures were taken in order that an
adequate effort was put into it so that the deadlines demanded by MAFTIA were met,
and more importantly, that its structure and API would meet the needs of the MAFTIA
project.

This section presents the class signatures and details their usage and function.

2.1.1 Overview

Networked inter-process communication requires that several distinguishable prop-
erties be combined in order to provide the derived service.

Some networking standards, detailing the provided properties, have been developed
and are now widely used. This is the case of the Internet Protocols such as IP, TCP,
UDP [34, 35, 32] and the OSI model [53]. Most of them assume a layering model, having
each protocol piled over another. Each protocol relies on the documented properties of the
protocols below to provide his service to the layers above. Transmission Control Protocol
(TCP), for instance, relies on routing capabilities of IP to ensure that the sent packets
will be delivered to the correct destination. As IP does not ensure FIFO ordering, TCP
provides this property.

Each combination of layers (protocols) on the stack provide a different set of prop-



erties! and can be considered as the service provided by the stack. The properties resulting
from each combination and the protocols used in the stack are used interchangeably in this
document and referred as the Quality of Service (QoS).

Appia is a layered communication support framework. Its mission is to define a
standard interface to be respected by all layers and facilitate communication among them.
Appia is protocol independent. That is, the framework layers any protocol as long as it
respects the predefined interface, making no provisions to validate the final composition
result.?

These services can be found in several previous works. For a comparison see [26].

2.1.2 Appia Concepts

This section briefly describes the concepts and terminology used in Appia.

Static and dynamic concepts Appia presents a clear distinction between the declara-
tion of something (either a protocol or a stack) and its implementation.

A Layer is defined by the properties a protocol requires and those it will provide.
A Session is a running instance of a protocol. A Session is always created on behalf of a
layer and its state is independent from other instances.

A QoS is a static description of an ordered set of protocols. A Channel is a
dynamic instantiation of a QoS. Protocol instances (sessions) communicate using channel
infrastructure.

All these concepts are illustrated in Figure 2.1 and Table 2.1.

As they are static, layers do not exchange information between themselves. Instead,
they declare the communication interface of their dynamic instantiations, the sessions.
Communication between sessions and with the channel is made using Events. Appia
provides a predefined set of events, each with a different meaning but programmers are
encouraged to extend this set to detail protocol specific occurrences. Starting from the
session which generated it, events flow through the stack in a predefined direction. The
information contained in any particular event extends a basic set of fields that all events
must contain.

! Different orderings of protocols can also provide different sets of properties.
2In fact, Appia provides a limited form of stack validation.



Reusability Reusability in Appia is based on inheritance. Since most of the protocols
depend (at least weakly) on the service provided by others, upgrading some may produce
incompatibilities. Appia uses inheritance to make the upgrades transparent. When a new
version of a protocol is released, it is expected that the generated events will have richer
information than the previous version. Assuming that none of the previously provided
information format is changed, protocols may simply create new events extending previous
ones. This way, protocol backward compatibility is assured.

Optimization Inheritance is also used to improve protocol performance. Timer events,
for instance, are generated by protocols (as requests) and handled by the channel. Any
session is free to extend the standard timer events, allowing it to add information that
otherwise would have to be kept in the session state. A reliable delivery protocol for
instance may include the message to be retransmitted in the timeout request event. When
the timeout occurs, the session simply peeks the message from the event and resends it.

Event processing time is reduced by preventing protocol instances from handling
unwanted events. Each protocol registers his interest in receiving event classes. Events of
classes not declared are not delivered to the corresponding sessions.

Channel created oq behalf of _ QoS
Protocol Set g g
.............................. 8 8
Protocol I . Sy

Session created or? behalf of ~ Layer

Dynamicé Static

Figure 2.1: Relation between sessions, layers, channels and QoS’s

Protocol definition Each protocol is defined by two different classes: one extending the
Layer class and the other extending the Session class. By convention, the former is usually



| Concept | Behavior | # | Description |

Layer Static 1 | The static description of a protocol. The properties it
requires and provides.
Session Dynamic n | Execution instance of a protocol. Keeps the protocol

state and provides the properties described in the cor-
responding layer.

QoS Static 1 | An ordered set of layers. Describes the properties that
a running instance of that combination of protocols
would have.

Channel | Dynamic | n | An ordered set of sessions, modeled by one QoS. The
entity providing the set of properties specified in the

QoS.

# The expected number of instances per protocol/protocol set in an Appia process.

Table 2.1: Relation between static and dynamic concepts in Appia

named ProtocolLayer and the later ProtocolSession having Protocol to be the name of the
protocol.

The ProtocolLayer class is the one participating in QoS definitions. Its purpose is
to export the event sets and to create instances of the ProtocolSession class.

The ProtocolSession class is the one participating in channels and executing protocol
instances. It has two main goals: to cooperate in channel definitions and to handle and
generate events, providing the properties expected from the protocol.

Relation between sessions and channels In Appia, a session (i.e. a running instance
of a protocol) may participate in several channels simultaneously even if they have different
QoS’s. This means that a single protocol instance can participate in multiple protocol
combinations.

This is one of the innovative aspects of Appia and offers a new perspective on the
way different kinds of data are related. For instance, by having only one single FIFO
session on two channels, one with an appropriate QoS for video transmission and another
for audio, the receiver imposes the sending order of messages across the two media without
any additional programming effort.

Whether sessions deal transparently with multiple channels or not is implementation
and protocol dependent. On event reception, sessions are free to query the event’s channel.
Events can be forwarded without sessions knowing the channel being used.



Implementation classes There are eleven classes that are relevant for layer and ap-
plication implementation in Appia: QoS, Channel, ChannelCursor, Layer, Session, Event,
Message, MsgWalk, MsgBuffer, Direction and Appia. Figures 2.2, 2.3 and 2.4 present the
UML models of the framework. The remaining classes of Appia are not presented as they
do not provide relevant features to protocol and application development.

Notation Methods and classes are presented using usual object-oriented languages no-
tation.

Classes always have an upper-case first character while methods are identified by a
lower-case first character. The remaining characters will be lower case except when a new
word is started.

The existence of optional arguments is signaled by the presentation of different
methods with the same name. This document presents only the interface relevant for the
user. By default, presented methods and attributes have no access restritions and are
qualified as public.

2.1.3 API Description by Class

This section describes the interface of the classes that are relevant for protocol and
application development. Class descriptions are ordered from the more generic to the more
specific concept, attempting to avoid forward references.

Each class interface is introduced by a description of the role the class plays in the
framework and how it is normally used by protocol and application programmers.

Class QoS A Quality Of Service is a set of properties, each independently provided by
one protocol.

QoS missions are to glue protocols (presented as layers), attempt to validate the
resulting composition and define the interaction rules between the protocols. At QoS
definition time, layers declare the events their sessions are interested to receive. Using this
knowledge, QoS builds for each event class an “event path”, including only the layers that
are interested in receiving it. The information extracted can then be used to efficiently
create channels.

Class QoS defines the Qualities of Services that will be available to the application.
From the programmer’s point of view, a QoS instance is simply an array of layers.
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One optional argument of the createUnboundChannel method is the EventSched-
uler. Appia configuration options allow programmers to define event scheduling policies
by redefining this class. The default implementation of the EventScheduler class is single
threaded and puts all events in a FIFO queue. The internals of the EventScheduler class
lie outside the scope of this document and can be found elsewhere [24].

class QoS {

QoS(String qosID, Layer|[] layers) throws AppialnvalidQoS;

Channel createUnboundChannel(String channellD, EventScheduler
eventScheduler);

Channel createUnboundChannel(String channellD);

Layer|[] getLayers();

Class Channel Channels are instantiations of (QoS’s. Channels glue sessions the same
way QoS’s glue layers. A Channel is created on behalf of a QoS type. When a channel
is created, it inherits the knowledge captured from the layers in that QoS, improving
performance.

On channel creation, event paths are exported from the QoS. The channel maps the
layers on the QoS event paths into the bound session to route events.

Channels also provide the background run-time environment for session execution.
They are responsible, for instance, for providing timers. The ChannelEvent sub-class of
events is dedicated to these operations.

Channel definition Upon creation, a channel is as an array of “typed empty
slots”. Each of these slots must be filled with a session of the layer specified in the QoS
for that position. Sessions can be bound to the slots explicitly (by the user) or implicitly
by other sessions (automatic binding). By default, new sessions will be bound to the
remaining slots.

Using explicit binding it is possible to associate specific sessions to specific channels.
These sessions may either be already in use by other channels or may be intentionally
created for the new channel. Explicit binding enables the user to have fine control over
the channel configuration.

Using automatic binding it is possible to delegate to already bound sessions the
task of specifying the remaining sessions for the channel. Typically, a mixture of explicit
and automatic binding is used.
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Both explicit and automatic binding are performed on a ChannelCursor object, which
can be obtained from the Channel. Explicit binding must be performed prior to calling the
start method of the channel. One of the tasks of this method is to ensure that every slot is
fulfilled with a valid object. The first step performed by start is to invite sessions explicitly
bounded to perform automatic binding by calling their boundSessions method. For those
slots not explicitly or automatically bounded, the start method requests the creation of a
new session from the corresponding layer.

Channel initialization and termination A channel is instructed to start and
stop by its methods start and end. Besides the operations concerning session instantiation
performed by start, both methods introduce an event in the channel. The Start event
is supposed to be the first to flow in a channel. Protocols should be aware that events
created in response to handling a Start event must be inserted after invoking the go method
on the Start event. Although this requirement is not mandatory and does not produce
inconsistencies in Appia, other protocols may rely on this property.

The end method introduces a Stop event in the channel. Sessions receiving the Stop
event may not introduce more events in the channel but must be prepared to receive others.
Received events may be propagated.

A stopped channel may latter be restarted by again calling the start method. How-
ever, for temporary suspensions, protocols should consider using EchoEvents to obtain the
same feature.

class Channel {

String getChannellD();

QoS getQoS();

boolean equalQoS(Channel channel);
void start();

void end();

ChannelCursor getCursor();

Class ChannelCursor Channel cursors are helpers for channel session specification.
The class provides a set of methods for iterating over the channel stack, retrieving references
to already defined sessions and setting sessions for the yet empty slots. Methods of this
class raise AppiaCursorException exceptions when a invalid operation is done.

Initially, the cursor is not positioned over any position on the channel. The initial
position must be defined by either the top or bottom methods. Scrolling below the bot-
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tommost position of the channel or above the uppermost will also set the cursor to the not
positioned state.

class ChannelCursor {

void top();

void bottom();

void jumpTo(int position) throws AppiaCursorException;

void down() throws AppiaCursorException;

void up() throws AppiaCursorException;

void jump(int offset) throws AppiaCursorException;

boolean isPositioned();

Session getSession() throws AppiaCursorException;

void setSession(Session session) throws AppiaCursorException;
Layer getLayer() throws AppiaCursorException;

Class Layer Layers are the static representatives of micro-protocols. They describe the
behavior of micro-protocols. Layers are used in QoS definitions to reserve a specific position
for a session implementing the protocol and to declare the needed, accepted and generated
events, respectively, via the evRequire, evAccept and evProvide attributes.

Layers are responsible for instantiating sessions (in response to calls to the method
createSession) and are notified by the channel whenever one session is dismissed by a channel
(by calls to the method channelDispose).

class Layer {

Class[] evProvide;

Class[] evRequire;

Class[] evAccept;

Session createSession();

void channelDispose(Session session, Channel channel);

Class Session A session is the dynamic part of a micro-protocol. Sessions maintain
the state of a micro-protocol instance and provide the code necessary for its execution.
Channels provide the connection between the different sessions of a stack. A session keeps a
relation of “one-to-many” with channels: one single session can be part of multiple channels.
A session is defined as channel-aware if its algorithm recognizes and acts differently upon
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reception of events flowing from different channels. Many of the protocols that can be
found in existing stacks are channel-unaware. When a channel is being defined, sessions
already bound to the channel may be invited to bind other sessions. The invitation is made
by a call to the boundSessions method.

Sessions communicate with their environment by events. Reception of events is
made by the handle method. A session can learn the channel that is delivering an event to
it by querying the channel attribute of the Event.

class Session {

protected Layer layer;

Layer getLayer();

void boundSessions(Channel channel);
void handle(Event event);

Class Direction Class Direction is an implementation support class of Appia. It qualifies
an event stating the direction it is flowing. The direction attribute accepts two values UP
and DOWN defined as static constants.

class Direction {

int direction;

static final int UP=1;
static final int DOWN=2;
Direction(int direction);
void invert();

Class Event Sessions use events to communicate with the surrounding environment.
This class contains the attributes necessary for the event routing. In Appia, events can be
freely defined by the protocol programmers as along as all descend from the main Event
class. Programmers should be aware that sub-classing should be done as deeply as possible
on the sub-classing tree, improving event sharing and compatibility among different micro-
protocols.

The Event class has three attributes that must be defined prior to the event insertion
in a channel. For each, a pair of set and get methods is defined. The attributes are:

direction Stating the direction of the movement (up or down).
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channel Stating the channel where the event will flow.

source Stating the session that generated the event. This attribute is important to deter-
mine the event route.

The attributes can be defined either by the constructor or by the individual set
methods. When methods are used, the method init must be invoked after all attributes are
defined and prior to the invocation of the go method.

The cloneEvent method uses the Java clone operation of the Object class. Redef-
inition of this method should always start by invoking the same method on the parent
classes.

Concurrency control Appia is not thread-safe in the sense that consistency is
not ensured if protocols insert events in the channel while not owning the Appia main
thread. However, a thread-safe event method, with a particular semantics, is provided.

The asyncGo method should be called only when an event is inserted asynchronously
(i.e. concurrently with the Appia main thread) in the channel. If the direction defined at
the event is UP, asyncGo will place the event at the bottom of the channel. Otherwise,
the event will be placed at the top of the channel. The event will then present the same
behavior as any other, respecting the FIFO order while crossing the channel and only
visiting the sessions of the protocols that declared it in the accepted set. Events inserted
in a channel using the asyncGo method should not be initialized either by the constructor
or by the init method.

Asynchronous events are particular useful for protocols using their own thread to
execute, like those receiving information from outside the channel. Examples of such pro-
tocols are those listening to a socket to retrieve incoming messages. When an incoming
network message arrives, the session can use these events to request the synchronous de-
livery of the event through the Appia main thread.

Note: Protocol programmers should be aware that the asynchronous insertion of
events in the channel must be handled with particular care since it subverts the usual event
behavior. Events inserted assynchronously travel directly to the end of the stack, prior to
being inserted. This does not respect possible causal dependencies between events. Fur-
thermore, programmers should be aware that the use of asynchronous events may subvert
the ordering of the stack. Consider the example of the previous paragraph. If some proto-
col is below the protocol receiving messages from the network, it should not be presented
with incoming network messages, that are expected to be sent toward the top of the stack.
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This problem may occur if the event type used for the asynchronous event is the one used
for sending the message to the stack.

class Event {

Event(Channel channel,Direction dir,Session source) throws
AppiaEventException;

Event();

void init() throws AppiaEventException;

void setDirection(Direction dir);

Direction getDirection();

void setChannel(Channel channel);

Channel getChannel();

void setSource(Session source);

Session getSource();

void go() throws AppiaEventException;

void asyncGo(Channel c, Direction d) throws AppiaEventException;

Event cloneEvent() throws CloneNotSupportedException;

Class EventQualifier The event qualifier class differentiates channel events with one of
three types: ON, OFF and NOTIFY. The precise interpretation of these values will depend
on the qualified event type. However, a common usage pattern is defined:

ON is used for setting requests or starting a mode or operation. OFF is intended for
abortion of requests or mode cancellation. NOTIFY is used for notifications of occurrences.

class EventQualifier {

static final int ON=0;

static final int OFF=1;

static final int NOTIFY=2;

EventQualifier(int qualifier) throws AppiaEventException;
EventQualifier();

void set(int qualifier) throws AppiaEventException;
boolean isSet();

boolean isCancel();

boolean isNotify();

17



Class ChannelEvent The ChannelEvent class is the topmost class grouping all channel
related events. That is, all events provided by the channel or containing requests for
services provided by the channel. This class, descendant of the main Event class, includes
the attribute qualifier of type EventQualifier, allowing the channel to determine the type
of operation to be performed. Instances of the ChannelEvent class are never created. Its
subclasses are used to detail the requested or provided operation.

class ChannelEvent extends Event {

void setQualifier(EventQualifier qualifier);
EventQualifier getQualifier();

}

Class EchoEvent EchoEvent events are event carriers. When a EchoEvent reaches one
of the sides of the channel, the event passed to the constructor is extracted and inserted in
the channel in the opposite direction. No copies are realized: the inserted object instance
is the same that was given to the EchoEvent.

EchoEvents allow protocols, for example, to perform composition introspection, like
learning the available maximum PDU size, or to perform requests to other protocols like
temporarily suspending the channel activity.

The carried event will be initialized prior to being inserted in the channel. The
main Event class attributes will be set as if the event has been launched by the channel.
The protocol launching this event should declare itself as the provider of the event.

class EchoEvent extends ChannelEvent {

EchoEvent(Event event, Channel channel, Direction dir, Session source);
Event getEvent();

Classes Timer and PeriodicTimer Appia offers periodic and aperiodic timer notifi-
cation services. To request a aperiodic timer, sessions should send a Timer event to the
channel. The direction the event flows and the EventQualifier attribute of the event dis-
tinguish requests from notifications. Table 2.2 presents the expected combinations. The
attributes declared by a Timer extend those available in the ChannelEvent with a String and
the time in milliseconds that the notification should occur. When issuing a timer request,
the EventQualifier attribute must be set to ON.

Programmers are encouraged to extend the basic Timer class. This will impact
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| Operation | Direction | Qualifier |

Request DOWN ON
Cancellation | DOWN OFF
Notification | UP NOTIFY

Table 2.2: Expected combinations of Directions and Qualifiers on Timers operations in an
Appia execution

performance at two different levels. If the event type declared in the provided and accepted
events for the protocol matches the newly defined event type, notifications requested by
other protocols will not consume wasteful resources of this protocol. On the other hand, the
new class may encompass any information required by the protocol to handle the timeout.
This improves protocol execution time. When the timeout is delivered to the application,
the same object instance is delivered to the protocol. The qualifier attribute will be set to
NOTIFY and the direction attribute will have a value inverse to the one defined at timer
request.

Cancellation of a timer is requested by the protocol issuing a new timer event with
the same timer ID and an OFF qualifier. Note that event cancellation can not be ensured by
Appia: the notification event may already be inserted in the channel when the cancellation
reaches the bottom of the channel.

class Timer extends ChannelEvent {

Timer(String timerID, long when, Channel channel, Direction dir,
Session source, EventQualifier qualifier) throws AppiaException;

void setTimeout(long when);

long getTimeout();

Periodic timers differ from aperiodic timers by accepting a time interval instead of
an absolute local clock time. The semantics associated with PeriodicTimer events is that
a notification is due every “period” milliseconds. Appia only ensures that no more events
will be raised than periods expire.

The object delivered upon timer expiration will be a copy of the original object. The
copy is performed using the cloneEvent method. Specialization can also be used to redefine
this method in order to provide a different semantics from that initially defined which is to
perform a deep copy of all attributes except the timerID (which has its reference copied).
If redefined, cloneEvent should start by calling its parent cloneEvent method. After issuing
a request to cancel a periodic timer, a undefined number of notifications, those already
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inserted in the channel, can be received.

class PeriodicTimer extends ChannelEvent {

PeriodicTimer(String timerID, long period, Channel channel, Direction
dir, Session source, EventQualifier qualifier) throws AppiaException;

void setPeriod(long period);

Time getPeriod();

Note: Appia provides weak time delivery guarantees for notification as this may
compromise the event FIFO ordering within the channel. The only guarantee provided is
that notifications will be raised by the timer manager after the requested timeout period
has expired.

Class SendableEvent SendableEvents are one of the branches of the event tree defined
by Appia. The semantics expected to be applied by protocols regarding SendableEvents is
that those are the events to be sent to the network. Non SendableEvents are supposed to
be local to the channel that created them.

SendableEvents extend the basic event class with three attributes: source, dest and
message. These attributes are of type java.lang.Object. Their instantiation type is sup-
posed to be agreed by the protocols composing the channel and can even change while
the event crosses the stack. It is expected that most of the layers use them transparently
relying only in equality operations. It is therefore advised that value based comparison
operations should be defined for the chosen class.

When retrieving SendableEvents (or any of its subclasses) from the network, pro-
tocols are expected to satisfy at least the following conditions on the event inserted in the
receiving endpoint:

e All attributes of the Event class should be correctly filled; The creator of the event is

the session that retrieved the event from the network and will insert it in the channel,

e Source and dest attributes are equal to the ones received by the session that sent the
event to the network;

e The message attribute has the same sequence of bytes received by the session that
sent the event to the network;

e The event type should be the same;
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Note that besides the event type, no special requirements are imposed for sending
subclasses of SendableEvents. In particular, attributes not inherited from SendableEvent
are not expected to be passed to the remote endpoint. This is the behavior of the current
protocols that interface the network, namely UDPSimple, TCPSimple and TCPComplete.

Messages are set and retrieved by two specific operators. Class Message is defined
later in this document.

class SendableEvent extends Event {

public Object dest;

public Object source;

SendableEvent();

SendableEvent(Channel channel, Direction dir, Session source) throws
AppiaEventException;

SendableEvent(Message msg);

SendableEvent(Channel channel, Direction dir, Session source, Message
msg) throws AppiaEventException;

Message getMessage();

void setMessage(Message m);

Class Message The class Message provides an encapsulation of an array of bytes with
methods providing efficient operations for adding and removing headers and trailers. The
class was conceived as the principal method for inter-channel communication.? Message
provides an interface for sessions to push and pop headers of byte arrays. Message interface
is mainly imported from the z-Kernel [28]. The use of message was devised assuming that
the layer responsible for sending messages to the network has weak serialization capabilities.
Although this is not the case in some programming languages (for instance, Java), using
this facility may raise some additional problems:

Over serialization Java default serialization procedures places the object and all its ref-
erences in a stream. In Appia, an event contains references to the channel he is
running and the event scheduler being used which in turn contain references for
all sessions and for all events currently on the channel. Serializing an event in a
straightforward way will transfer a huge amount of irrelevant information.

Language independence Java serializes objects in a language specific byte array. Com-
patibility between channels coded in different languages would be strongly compro-

3 Inter-channel communication is defined as the means by which channels on different processes exchange
information. This is the opposite of intra-channel communication, ideally performed by event attributes.
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mised.

The class has only an empty constructor. To initialize a message instance with an
array of bytes, one should call setByteArray, specifying the first position in the source array
and the number of bytes to be copied. Most of the remaining methods take a MsgBuffer
as an argument.® All push, peek and pop operations (which respectively add, query and
extract an header) are called with the len attribute of MsgBuffer defined. The remaining
values are ignored and overlaped by the method execution. When the call returns, the off
attribute points to the first position in the data buffer where the header is stored or can
be retrieved.

The sequence of actions performed to push an header is:

1. Prepare a MsgBuffer object with the lenght of the header;
2. Invoke the push method;

3. Copy the header to the data array, starting at the position indicated by offset;’

Popping an header requires the same sequence of actions to be performed, retrieving
the data in step 3.

Note: The byte array presented to the protocol will tipically be larger than the
required lenght. Most of the time, the remaining positions will have headers of other pro-
tocols in the channel. Appia makes no provisions to ensure that protocols act accordingly
to this specification.

[terating over an entire message (for checksumming or encryption) is made with the
MsgWalk class.

“The goal of the MsgBuffer is to avoid memory copies. This class is described later in this document.
5The only restriction is that the header must be defined prior to calling the go method on the event
owning the message, so, to avoid memory copies, the header can be constructed directly in the buffer.
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class Message {

Message();

void setByteArray(byte[] data, int offset, int length);
int length();

void peek(MsgBuffer mbuf);
void discard(int length);

void push(MsgBuffer mbuf);
void pop(MsgBuffer mbuf);

void truncate(int newLength);
void frag(Message m,int length);
void join(Message m);

MsgWalk getMsgWalk();

byte[] toByteArray();

Class MsgBuffer The MsgBuffer class is used as an helper class to operations over
messages. The goal of this class is to improve performance by avoiding message copies.

The MsgBuffer class is used to pass arguments to and receive arguments from meth-
ods of the Message class. The fields are used with the following meaning:

data An array of bytes retrieved from or to be included in the message;

off The first position in the array data containing information relevant to the operation.
Respecting the usual array representation, the first position of an array has offset 0;

len The number of bytes of the array data relevant to the operation;

Array data positions not between off and off+len-1 are reserved and can not be
used.

Instances of this class always have the same usage pattern: the user fills the len
attribute of one instance and invokes the method passing the instance as an argument.
When the method returns, the data, off and len attributes will be appropriately filled. In
peek, pop and next (from the MsgWalk class) the array contains the data retrieved from the
message. In push the array contains the space to be filled with the headers by the session.
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class MsgBuffer {

byte[] data;

int off;

int len;

MsgBuffer();

MsgBuffer(byte[] data, int off, int len);

Class MsgWalk MsgWalk objects are iterators over messages. This class is intended to
be used by protocols operating on the entire message buffer such has checksum or cipher
protocols. The array returned by the next method can be used for reading and writing but
no data can be appended or deleted from the message.

class MsgWalk {

void next(MsgBuffer mbuf)

Objects Message As an extension to the default behavior, Appia provides the Ob-
jectsMessage class that enriches Message with the methods to push and pop serializable
objects. Since ObjectsMessage extends Message, the interface is transparent to protocols
using the parent class. One ObjectsMessage object supports the interleaved use of both
types of headers.

Note: For performance reasons, the ObjectsMessage objects keep only a reference
to a pushed object. If the protocol also keeps a reference to the object, it will be able to
change it. However, it is not possible to know if the object has already been serialized, in
which case, changes would not affect the sent message.

2.2 Trusted Timely Computing Base

The Trusted Timely Computing Base (TTCB) was defined in MAFTTA deliverables
D1 and D23. This section defines the TTCB services and their interface. We consider that
the communication between entities and the TTCB is done with function calls, i.e., the
TTCB API is simply a set of functions. This is generic enough and does not put special
constraints on the TTCB implementation. At the end of the section we describe some
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additional APIs that do not correspond to services: distribution of TTCB public keys,
delivery of entity ids, etc.

In this section we use the word entity to mean anything that calls the TTCB: a
process, a thread, Appia, or a software module of some kind.

2.2.1 The TTCB Interface

This section discusses two basic assumptions about the TTCB interface:

e Malicious entities cannot interfere with the TTCB operation through its interface.

e Any entity can obtain correct information at the TTCB interface.

Therefore, correct entities can correctly use the services of the TTCB, despite the
action of malicious entities. On the other hand, both correct and malicious entities can use
the TTCB, but what a malicious entity does with correct TTCB information is irrelevant
at this stage.

The second assumption above is handled using two approaches: (1) means are given
to the entities to communicate securely with the TTCB; and (2) services are defined in
order to provide useful results despite the lack of security and timeliness of the entities
that use them.

Security of entity-TTCB communication, approach (1), can be ensured using cryp-
tographic techniques. An entity (either in a host with a local TTCB or not) can decide
to secure its communication with the TTCB using a secure channel or secure envelopes
(signed service outputs). A secure channel is obtained calling the local authentication ser-
vice (section 2.2.3.2) that establishes a shared key between the entity and the TTCB. That
key can subsequently be used to encrypt or cryptographically checksum the messages they
exchange, thus assuring the desired combination of communication authenticity, confiden-
tiality and integrity.

The TTCB outputs can be encapsulated in secure envelopes in order to guarantee
their integrity and authenticity. The TTCB is the appropriate place in a host to put long-
term keys since it is the only component that we assume to be completely secure. So, every
local TTCB has an asymmetric key pair. Its private key is held securely inside the local
TTCB, while the public key is distributed to entities that may want to use it. Outputs of
the TTCB may then be signed with the local TTCB’s private key.

Approach (2) means that the services themselves have to be defined in order to be
used by insecure and untimely entities. Most services that explore the security of the TTCB
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require only secure entity-TTCB communication in order to give useful results. This is
the case of the random number generation service. Others, such as the consensus service,
give a correct result if, e.g., the majority of the entities involved is correct, a common
assumption for applications running in insecure environments.

For timeliness, an example can illustrate this approach. In general, a timestamp
given by the TTCB is not particulary useful since the delay between its generation and
the moment when the entity reads it is unknown. However, if an entity calls the TTCB
before and after executing an operation, the TTCB can calculate an upper bound on the
time taken to execute it (duration measurement service), and give feedback to the calling
entity on how well it did with regard to time. This mechanism is inspired by the Timely
Computing Base work, and explained with detail in [48].

Most TTCB functions have two versions, one that returns unsigned results and

another that return them signed. The later has a -S in the end of the name, e.g.:

timestamp getTimestamp-S()

2.2.2 The TTCB Services

The TTCB services can be roughly divided in security-related services and time-
related services. The security-related services were selected considering the TTCB design
principles [47] and a set of informal criteria:

e The services should be the minimal set that assists in a useful manner the implemen-
tation of building blocks for trusted distributed systems.

e Services should give useful results to entities running in an insecure environment.

e Services should be implementable within the TTCB design principles. E.g., they
should not be too complex to be verifiable.

The TTCB services are summarized in Figure 2.5. The following subsections de-
scribe the TTCB services and their APIs. Figure 2.6 shows the meaning of some common
API parameters.
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Security related services

Trusted block consensus
Local authentication

Distributed authentication

Trusted random number generation

Achieves consensus on a small, fixed size, block of data (e.g., 64
or 128 bits).

Used for an entity to authenticate the TTCB and establish a se-
cure channel with it.

Used for two or more entities residing in different hosts to authen-
ticate themselves mutually through the TTCB. A shared key is
established.

Generates trustworthy random numbers, that are essential for
building cryptographic primitives such as authentication proto-
cols.

Time services

Trusted timely execution
Trusted duration measurement
Trusted timing failure detection

Trusted absolute timestamping

Executes operations securely and within a certain interval of time.
Measures the duration of the execution of an operation.

Checks if an operation is executed in an interval of time; if not, a
function can be executed to handle the failure (e.g., to perform a
fail-safe shutdown).

Provides globally meaningful timestamps, implying all TTCB in-
ternal clocks to be synchronized to an external standard reference
(e.g. UTC).

Figure 2.5: TTCB Services

Parameter | Description

eid an entity identification

elist a list of entities identified by their eids

tag an unique id for an execution of a service (given by the TTCB)
initiator the eid of the service initiator

value a value given to or returned by a service

encrypt encryption algorithm

key key established in a service

Figure 2.6: Common TTCB API parameters

2.2.3 Security Related Services

2.2.3.1 Trusted Block Consensus Service

The trusted block consensus service (or consensus service for short) achieves consen-
sus between a set of distributed entities on a “small” fixed size block of data. Consensus is
a classical distributed systems problem than can be informally stated as: how can a set of
distributed entities agree unanimously on a value related to the values that each of them

proposed?
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This service was selected for the TTCB for several reasons: it can be useful to
perform simple but crucial decision steps in more complex payload protocols; inside the
TTCB it can be reliable, secure and timely due to the TTCB properties; since the TTCB
is synchronous it can be solved deterministically, on the contrary to what happens in
asynchronous systems (FLP impossibility result [14]); it can be lightweight since it achieves
consensus on a small amount of data.

Consensus is defined in terms of two primitives, propose(v) used by an entity to
propose the value v, and decide(v), used by an entity to decide v [16]. The TTCB consensus
is specified by the following properties seen at its interface:

TBC1 Termination. Every correct entity eventually decides some value.

TBC2 Integrity. Every correct entity decides at most one value, and if it decides
v then some entity must have proposed v.

TBC3 Agreement. If a correct entity decides v, then all correct entities eventually
decide v.

TBC4 Validity. If all entities that propose a value, propose v, then all correct
entities eventually decide v.

The definition of consensus does not specify which of the values proposed is chosen.
The service is parameterizable in order to choose one of the following values:

e The most voted by the entities.

e The most voted by the local TTCBs. Every local TTCB votes with the value more
voted locally by the entities.

e The entity proposed the same value as the majority of entities? This can be useful
to test, say, a shared protocol variable that must be equal in all correct entities.
Entities that proposed a value different from the majority receive just an error code.
The others receive a list of the entities that voted the majority value.

The consensus service is timely at the TTCB interface, i.e., not considering the time
taken for the TTCB to communicate with the entities. Formally:

TBC5 Timeliness. There is an instant ¢, and a known constant A such that no
correct (not crashed) local TTCB decides after ¢, + A.

The instant ¢, is the last moment for the phase of proposals to end and the consensus
protocol to start to run inside the TTCB.
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The motivation for the consensus service is to supply multi-entity fault-tolerant
protocols with an opportunity to synchronize at specific points in a reliable and timely
manner. Despite the fact that some entities may be corrupt and try to disturb the operation
of the protocol, they are prevented from: attacking the timeliness assumptions; sending
disturbing and/or contradicting (Byzantine) information to different parties. Why is this
so? Because the TTCB mediates this synchronization. As such, the API is based on the
idea that entities propose a value and later call a function to receive the result.

‘ H Action ‘ Description
1 | Entities || propose The entities propose their values
Entities || decide The entities get the value decided

Figure 2.7: Consensus service API: sequence of function calls

Figure 2.7 shows the sequence of functions that each entity calls and below we
specify the function calls. Every function returns an error code that we omit for simplicity.
Most functions receive as input the entity eid. These eids are generated by the TTCB and
are unique.

tag propose(eid, elist, tstart, decision, value);
results decide(eid, tag);

To propose a value an entity calls propose. The parameter tstart is an absolute
timestamp that indicates the last moment for the consensus to start, in the case that not
all entities effectively propose a value. The decision parameter is used to indicate how
the result should be calculated (most voted by the entities, by the local TTCBs,...). To
get the result of the consensus the entities call decide. The format of this result depends
on the type of decision requested.

All entities have to know beforehand what tstart to use, which should be the list
of entities involved (elist), and how to decide (decision). This seems to be a reasonable
assumption. In fact, this problem is similar to the problem of initiation of a clock synchro-
nization round, and has been solved in that context (see for instance [43, 50]). A malicious
entity could try to corrupt the result of the service proposing a different list of entities,
a different tstart or even a different decision parameter. This is not possible because
the TTCB decides that a set of entities want to engage in the same run of the consensus
precisely because they have given the same list of entities, the same tstart, and the same
decision parameter.

The Timeliness parameter £, in property TBC5 is given by: t, = tstart.
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2.2.3.2 Local Authentication Service and Secure Channels

This service is used by an entity to authenticate a local TTCB and obtain a shared
key to interact with it. This key can subsequently be used to guarantee the authenticity,
integrity and/or confidentiality of their communication, thus establishing a secure channel
between them.

It is especially useful for several reasons: for the entity to authenticate the local
TTCB, to be sure that it is talking with it (the TTCB does not need to authenticate
the entity since it is supposed to provide its services to any entity that requires them,
correct or malicious); to secure the entity-TTCB communication (confidentiality and/or
integrity). This service has several degrees of importance depending on the way an entity
communicates with the TTCB. It is specially useful if the entity does not have a local
TTCB in its host and is communicating with another host’s local TTCB.

The established channel remains secure as long as the key is not disclosed. During
the establishment of the channel the entity gives its eid to the TTCB.

In general entities will use a secure channel to communicate with the local TTCB.
However, we also envisage channels with address- or topology-based authentication and
secure communication with the TTCB ensured by the system architecture. These may not
need the local authentication service.

The protocol (sequence of function calls) to establish the session key has to be an
authenticated key establishment protocol with local TTCB authentication. The protocol
has to have the following properties [23]:

SK1 Implicit Key Authentication. The entity and the TTCB know that no
other entity has the session key.

SK2 Key Confirmation. Both the entity and the TTCB know that the other
has the session key.

SK3 Authentication. The entity has to authenticate the TTCB.

SK4 Trusted Against Known-Key Attacks. Compromise of past session keys
does not allow either (1) a passive adversary to compromise future session keys, or (2)
impersonation by an active adversary®.

The session key has to be changed (rekeyed) regularly since the probability of a

6A passive adversary “attempts to defeat a cryptographic technique by simply recording data and
thereafter analyzing it (e.g., in key establishment, to determine the session key). An active attack involves
an adversary who modifies or injects messages.” [23]
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passive attacker disclosing the key increases with time. This danger increases also with
the amount of data exchanged, encrypted with the key. The time for rekey has to be
a balance between the potential threat against the secure channel and the strength of
the encryption algorithm. This last parameter should be balanced with the performance
needed of communication.

A simple protocol with properties SK1 through SK3 can be implemented by a single
function call. We assume that the entity can reliably obtain the local TTCB public key
and that entities do not repeat prior challenges. Below we show the function call with the
parameters represented as in and out for simplicity. Figure 2.8 shows the corresponding
protocol.

out localAuthentication(eid, in);

When the entity calls the local TTCB it sends it the new key and a challenge, both
encrypted with the TTCB public key. This information can be decrypted only with the
corresponding private key, known only to the local TTCB. The local TTCB decrypts it
and sends back the challenge signed with the private key, proving that it knows the private
key and has received the shared key.

‘ H Action ‘ Description

1| P —T| (Ey(Kp,Xp)) The entity sends the TTCB the new key K,; and a challenge X,
both encrypted with the local TTCB public key

2| T—=P | (5,(Xp)) The TTCB sends the entity the challenge signed with its private
key

Figure 2.8: Local authentication service API protocol

The protocol verifies SK1 since only the local TTCB has the private key that can
decrypt in. SK2 is trivial. SK3 is also verified since the entity gives the TTCB a value that
only the TTCB can decrypt, and the TTCB gives back the decrypted challenge, showing
that it was able to do the decryption. Property SK4 depends on the key generation method
and encryption algorithm. We assume that the entity or the TTCB generate keys that
verify that property.

2.2.3.3 Distributed Authentication Service

This service mutually authenticates a distributed set of entities and establishes a
shared key between them. In other words, the TTCB checks the identification of a set of
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entities on behalf of each other. Each entity is identified by its eid, an asymmetric key pair
and, optionally, by the ID of the local TTCB that it calls. The shared key established can
be used to enforce the confidentiality and integrity of the communication between a set of
entities.

The justification for putting this service in the TTCB is that the authentication
between several distributed entities is crucial for distributed protocols and it can easily be
made secure and timely inside the TTCB. Another reason is that such a service involves
consensus so it would not be deterministic if executed in an asynchronous system, on the
contrary to what happens in the TTCB.

Every entity P is individually authenticated in the same way: P gives its identifica-
tion to the TTCB; one or more of the other entities give also the TTCB the identification
of P; the TTCB compares both and, if they match, gives P the shared key. This ba-
sic protocol is shown in Figure 2.9, for two entities. The protocol assumes that entities
communicate with the TTCB using secure channels.

‘ | Action | Description
L T—=A || (X)) The TTCB sends entity A a challenge
T — B || (Xu) The TTCB sends entity B a challenge

3|A=T| (4,5, (Xw)B,Ky,) A sends the TTCB its eid, the challenge signed with its
private key, entity B’s eid and public key. Optionally,
it could also send B’s local TTCB ID.

4| B =T | (B,S,(Xn),A Ky,) B sends the TTCB its eid, the challenge signed with its
private key, entity A’s eid and public key. Optionally, it
could also send A’s local TTCB ID.

5| T Challenges well signed? | The TTCB uses the public key of A given by B to check
if A correctly signed the challenge. It does the same
for B. If the entities gave the local TTCB IDs that
comparison is also performed. If all these checks hold,

the authentication was correct.

6| T—A| (K) The TTCB sends A the shared key K if the authentica-
tion was correct. Otherwise, an error is returned.
7| T—=B | (K) The TTCB sends B the shared key K if the authenti-

cation was correct. Otherwise, an error is returned.

Figure 2.9: Distributed authentication protocol: simple case with just two entities, A and
B

The service has two APlIs:

e Symmetric authentication API. All entities authenticate all others. All entities pro-
vide the TTCB the identification of all others and the TTCB uses that information
to do the authentication.
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e Asymmetric authentication API. The initiator authenticates all other entities but the
others authenticate only the initiator. Therefore, the trust that an entity can put on
the entities with the shared key depends on the trust it has on the initiator.

The basic operation of the service considering the symmetric authentication API
and several entities is the following:

1. The initiator asks the TTCB a challenge and the others block waiting also for a
challenge.

2. Every entity calls the service on its local TTCB and gives it two things: (1) its own
identification (eid and signed challenge, see Figure 2.9); and (2) the identification it
has for the other entities (eid, public key and, optionally, local TTCB id).

3. The TTCB collects all information and decides which is the correct identification for
every entity. This decision is made through the (internal) consensus protocol that
elects the most voted pairs public-key/local-TTCB-id for every entity.

4. For every entity, the TTCB compares the identification it gave for itself and for the
others with the identifications that were determined to be the correct (Figure 2.9). If
all match, the entity is accepted and receives the shared key. Otherwise it is rejected.

‘ | Action | Description
1 | Entities | waitDistSymAuth | The entities block on the TTCB waiting for the service to
start

2 | Initiator || startDistSymAuth| The initiator starts the service
3| All distSymAuth The initiator and the entities get the result of the system
execution: the shared key if they are authenticated or an

error

Figure 2.10: Distributed authentication with symmetric authentication: sequence of func-
tion calls

The sequence of function calls is given in Figures 2.10. The function calls are:
tag waitDistSymAuth(eid, time_block, challenge, initiator, elist, tstart,
encrypt);

tag startDistSymAuth(eid, elist, tstart, encrypt, challenge);
key distSymAuth(eid, tag, s_challenge, edata, elist);

The initiator starts the service asking the TTCB a challenge, calling function start-
DistSymAuth. It gives the TTCB the eids of the entities that will be involved, elist. The
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tstart is the latest instant for all entities (including the initiator itself) to give the signed
challenge to the TTCB. Other parameters have the usual meanings (see Figure 2.6).

Entities other than the initiator wait for an authentication request blocking on
function waitDistSymAuth for time block units of time.

When startDistSymAuth and waitDistSymAuth return, respectively the initiator and
the other entities all have their challenge. Next they have to sign it with their private key
and give it to the TTCB calling distSymAuth. This function is also used by all to give
the TTCB the identification of the others, edata. This parameter is a table with three
columns: eid, public key and, optionally, local TTCB id. The correctly authenticated
entities receive back the shared key.

The asymmetric authentication API is similar to this one. The difference is that
each entities other than the initiator has to give the TTCB the identification of the initiator
and its own.

2.2.3.4 Trusted Random Number Generation Service

The trusted random number generation service gives trustworthy uniformly dis-
tributed random numbers. These numbers are basic for building cryptographic primitives
such as authentication protocols. If the numbers are not really random, those algorithms
can be vulnerable.

The interface of the service has only one function that returns a random number:

number getRandom();

2.2.4 Time Related Services

2.2.4.1 Trusted Absolute Timestamping Service

Every local TTCB has an internal clock that is synchronized to the other local
TTCB clocks. This is achieved with a clock synchronization protocol inside the TTCB. The
trusted absolute timestamping service gives timestamps that, since clocks are synchronized,
are meaningful to all local TTCBs. The precision of the timestamps is limited by the
precision of the clock synchronization protocol. The interface of the service is:
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timestamp getTimestamp();

When an application running on the payload part of the system asks for a times-
tamp, it receives it some time after it was generated by the T'TCB. This delay is variable,
depending mostly on the time taken by the operating system scheduler to give CPU time to
the application, on the time the application takes to read the timestamp, and on potential
attacks against time. However, a timestamp can still be useful since, e.g., the difference be-
tween two timestamps is an upper bound on the real duration of the time interval between
them.

2.2.4.2 Trusted Duration Measurement Service

This services measures the time taken to execute a function. The service verifies
the following property:

TDM1 Duration measurement. Given any two events occurring in any two
nodes at instants ¢, and t,, the TTCB is able to measure the duration between those two
events with a known bounded error [11].

The service is used calling the functions:

tag startMeasurement(start_ev);
duration stopMeasurement(tag, end_ev);

The parameters start_ev and end_ev are timestamps that indicate respectively the
time of the beginning and end of the operation to measure. duration is the value measured
for the duration of the operation. start_ev has to be obtained prior to the execution of
the service calling the timestamping service.

2.2.4.83 Trusted Timely Execution Service

This service allows an application to execute (sporadically) a function with a strict
timeliness and/or a high degree of security. The function is executed inside the TTCB
before a deadline (eager execution) and/or after a liveline (deferred execution) [11]:

TTE1 Timely execution. Given any function £ with an execution time bounded
by a known constant T, , and given a delay time lower-bounded by a known constant
Tx . >0, for any execution of the function triggered at real time t44,.;, the TTCB does

Amin
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not start the execution of £ within T, from 4., and terminates £ within T, . from

tstart .

The function f is executed between instants start_ev+delay and start_ev+t_exec:

end_ev exec(start_ev, delay, t_exec, f);

An issue to be studied later is what functions can be executed inside the TTCB. The
TTCB can either offer a library of generic useful functions or let an entity upload functions.
The later case requires an entity that ensures that the function is correct (that it will not
attack the TTCB or create a vulnerability) and calculates the worst-case execution time
(WCET) for the function. When an entity uses the trusted timely execution service to
request the execution of a function, the WCET is used to make a schedulability analysis,
that assesses if the TTCB has resources to execute it. In case the TTCB does not have
resources, an error is returned.

2.2.4.4 Trusted Timing Failure Detection Service

This service is used to detect if a timed action is executed before its deadline. The
action is executed in the payload system and the TTCB simply verifies its timeliness. It
is defined by the two properties [11]:

TTFD1 Timed strong completeness. Any timing failure is detected by the
TTCB within a known interval from its occurrence.

TTFD2 Timed strong accuracy. Any timely action finishing no later than
some known interval before its deadline is never wrongly detected as a timing failure by
the TTCB.

The service has different APIs depending on the timed action being local or remote.

Local detection API Local timing failure detection is done calling the following two
functions:

tag startLocal(start_ev, spec, handler);
faulty endLocal(tag, end_ev, duration);

The first function requests the TTCB to observe the timeliness of the execution of
an operation. start_ev is the start instant and spec the expected duration. The handler
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is used to tell the TTCB the reaction to have if a failure is detected, in case that is needed.
The handler has to specify a function in the same way as f in the trusted timely execution
service. Examples of reactions are a fail safe shutdown or a crash of the host.

The second function disables the detection, i.e., it indicates the TTCB that the
action terminated. The parameters returned indicate the termination instant (end_ev),
the duration measured and if there was a timeliness failure or not (faulty).

Distributed detection API The basic idea of this interface is that a distributed action
is initiated by the transmission of a message from a sender to a receiver. The way the API
works is similar to the local detection API, i.e., an entity calls the TTCB telling that it is
going to send a message (start a distributed action, startDistributed), sends the message, the
receiver receives the message, executes the remote operation, and tells the TTCB that it is
delivered delivDistributed). If the time to receive the message expires, the TTCB executes
a function, in case that was requested. Messages can be multicast to several receivers:

tag startDistributed(start_ev, spec, mid, elist, handler);
deliv_ev delivDistributed(mid, tag);
list_info waitlnfo(tag);

The parameter mid is a unique message id. The handler is executed by the local
TTCB of the sender in case there is a timeliness failure. In delivDistributed the parameters
indicates that a message was received. When that call is made, the TTCB checks if there
was a timing failure and returns that information.

An entity, either the sender or a receiver, can get information relative to timing fail-
ures using the function waitInfo. The input parameter tag is optional since the entity may
decide to wait for information of all or only one of the distributed actions it is involved in.
The parameter list_info contains the delay to deliver and the indication about timeliness
faults for every receiver.

2.2.5 Other Services

2.2.5.1 TTCB Public Keys API

This section does not describe a service but some functions of the API needed to
give the local TTCB public keys that have to be reliably obtained by the entities. A
conventional way to distributed such keys is to use a Public Key Infrastructure. An entity
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can get keys from there in a certificate signed with the PKI private key.

Another solution is for the entity to ask the key directly from a local TTCB using
function getLocalPublicKey that simply returns the local TTCB public key (see below).
There is no version of this function that returns a signed value, since the output would be
signed with the local TTCB private key.

key getLocalPublicKey();

key getLocalPublicKeySigned(remote_local_ TTCB.id);
key getRemotePublicKeySigned(local - TTCB.id);

id getLocal TTCBId();

Two other functions exist that return signed values, one from a remote local TTCB,
the other from the local one: getLocalPublicKeySigned and getRemotePublicKeySigned. The
first one returns this host local TTCB public key signed with the public key of the local
TTCB with id remote_local TTCB_id. The second one returns the key of the local TTCB
with id 1ocal TTCB_id signed with this host local TTCB private key.

The last function, getLocalTTCBid, can be used to get the local TTCB id.

2.2.5.2 Eiud API

Entities eids are supposed to be generated by the TTCB and to be unique. They
contain enough information for the TTCB to known which is the local TTCB that produced
the eid. Since the entity is supposed to gets its eid directly from the TTCB, the eid
is supposed to indicate the entity local TTCB and the TTCB can use it to check this
information. The function that returns an eid is:

eid getEid();

Whenever an entity wants to start to use the TTCB services, it has to start by
requesting the eid calling this function.

2.2.5.83 Local TTCB Fatlure API

A local TTCB can fail only by crashing. Its crash is equivalent to the crash of the
host where it exists, i.e., whenever one crashes the also does the same. Therefore, the
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information of a local TTCB crash can be useful for applications to test if a host crashed.
This API allows entities to do precisely that. The two functions are below. The first
receives a local TTCB as input. The second receives an entity eid as input and checks if
its host crashed:

out crashedLocal TTCBid(id);
out crashedEid(eid);
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3 Middleware Services and APIs

3.1 Multipoint Network

At the network level, there are several services that can be used by higher layers of
the architecture. These services form the basis for all the communication to and from each
site. Although it is possible to include a vast number of services at this level, we will only
focus on the ones we see as elementary, either because there is a specific need for them,
or because they are already standard services in the Internet. These services are IP, IP
Multicast, ICMP, IPSec and SNMP protocols.

3.1.1 Internet Protocol

The Internet Protocol (IP) [34] is designed to be used in interconnected systems
of packet-switched computer communication networks. IP provides the means for trans-
mitting blocks of data, called datagrams, from sources to destinations, where sources and
destinations are hosts identified by fixed length addresses. It also offers the service of frag-
mentation and reassembly of packets transparently. IP by itself can not be used directly
by an application, and so, it has two other protocols built on top of it: the User Datagram
Protocol (UDP) and the Transmission Control Protocol (TCP).

UDP [32] makes available a datagram mode of packet-switched computer communi-
cation in the environment of an interconnected set of computer networks. Applications can
send messages to other programs with a minimum set of guarantees using UDP. The key
characteristics of the protocol are: it is transaction oriented, the delivery of messages is not
ensured, nor is the order of message arrival, and there might be duplication of messages.

TCP [35], on the other hand, is a connection-oriented, end-to-end reliable protocol
designed to fit into a layered hierarchy of protocols which support multi-network appli-
cations. Applications can send messages using TCP, in a reliable way, to other programs
on host computers attached to distinct but interconnected computer communication net-
works. TCP does not rely on the protocols below, but rather assumes that it can obtain a
simple, potentially unreliable datagram service from the lower level protocols, such as IP.

The socket interface to TCP and UDP is well-known, and we include summary
below just for completeness. For details, consult for instance the book by Stevens [45].

The functions that must be called to establish a TCP or a UDP connection are
different, since the protocols have different purposes. In order to establish a UDP connec-
tion, the server must call the functions: socket(), bind() and then recvfrom(), which
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Function

Description

socket(domain, type, protocol) specifies a communication domain and seman-
tics, and particular protocol

bind(sockfd, my_addr, addrlen) assigns to the socket descriptor (sockfd) a local
address (my_addr)

listen(sockfd, backlog) specifies the willingness to accept incoming con-
nections in a given socket descriptor (sockfd)
and specifies a queue limit (backlog)

accept(sockfd, addr, addrlen) removes the first connection request from the
queue of pending connections, and creates a new
connected socket

recvirom(sockfd, buf, len, flags, | receives messages from a socket
from_addr, fromlen)
sendto(sockfd, buf, len, flags, | transmits a message to a socket
to_addr, tolen)
read(sockfd, buf, len) attempts to read from socket descriptor
write(sockfd, buf, len) attempts to write to a socket descriptor

Table 3.1: Summary of socket interface.

blocks until data is received by the client. The client, in order to connect, must follow
the order: socket(), sendto(), which sends data to the server (thus unblocking it) and
then recvfrom() to receive the reply. The server will then process the request and do a
sendto () back to the client.

For a TCP connection, the order for the server is: socket(), bind(), listen()
and accept (), which blocks until connection is established with the client. The client, on
its side, must do: socket() and connect (). With this, the connection is established, and
now client and server can exchange through the call of write() and read() functions.

3.1.2 IP Multicast

IP multicast gives the ability to transmit an IP datagram to a group of hosts, which
are identified by a single IP destination address. The multicast datagram is delivered to
all members of the group with the same guarantees given by the regular IP datagrams: it
is not guaranteed to reach all members, it is not guaranteed to arrive intact to all members
and it is not guaranteed to arrive in the same order to all members, relative to other
datagrams.
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The membership of a group is dynamic, meaning that hosts can join and leave the
group at any time. Not only can a host belong to more than one group at a time, but it
also does not need to be a member of a group to send datagrams to it.

A group may be permanent or transient. A permanent group has a well-known,
administratively assigned IP address. It is the address, not the membership of the group,
that is permanent; at any time a permanent group may have any number of members,
even zero. Those [P multicast addresses that are not reserved for permanent groups are
available to be dynamically assigned to temporary groups, which exist only as long as the
group has members in it.

The API to send TP Multicast packets can be the same as the IP, in which an
application sends the packets to the group address, rather than to an individual host.
However, some extensions to the IP Module are desirable, so that IP recognizes IP group
addresses when routing outgoing datagrams.

In order to receive IP Multicast packets, the API must be expanded so that there
are two necessary functions: the JoinHostGroup and the LeaveHostGroup, which are self-
explanatory. The TP Module must also be expanded to maintain a list of host group
memberships associated with each network interface. An incoming datagram with one of
these groups as destination is processed in exactly the same way as if it has the host as
destination.

3.1.3 IPSec

Given its importance for the MAFTIA middleware, this section provides a brief
overview of the current state of IPSec. IPSec is designed to offer enhanced security to
[Pv4 and IPv6 protocols, providing inter-operable, high quality, cryptographically-based
security. It offers several services, such as access control, connectionless integrity, data
origin authentication, protection against replays, confidentiality (through encryption) and
limited traffic flow confidentiality. Since these services are offered at the IP layer, they can
be used by any higher layer protocol, such as TCP, UDP, ICMP, etc.

[PSec also supports negotiation of IP compression [42], which is motivated by the
observation that encryption used within IPSec prevents effective compression by lower
protocol layers.

To achieve these objectives, IPSec uses cryptographic key management procedures
and protocols and two traffic security protocols:

Authentication Header(AH) Providing connectionless integrity, data origin authenti-
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cation, and an optional anti-replay service.

Encapsulation Security Payload (ESP) Maybe providing confidentiality (encryption),
and limited traffic flow confidentiality. Optionally, it may also provide connectionless
integrity, data origin authentication, and an anti-replay service.

Both AH and ESP are vehicles for access control, based on the distribution of
cryptographic keys and the management of traffic flows relative to these security protocols.
These protocols may be applied alone or in combination with each other to provide the
desired set of security services in IPv4 or IPv6, and both support two different modes of
operation:

transport mode In this mode, the protocols provide protection primarily for upper layer
protocols.

tunnel mode In this mode, the protocols are applied to tunneled IP packets.

[PSec allows the user (or the system administrator) to control the granularity at
which a security service is offered, allowing, for example, the creation of a single encrypted
tunnel to carry all the traffic between two security gateways or a separate encrypted tunnel
for each TCP connection between a pair of hosts communicating across these gateways.

3.1.3.1 Current IPSec API

The most used IPSec implementation for the Linux operating system is FreeS/WAN.
This implementation does not have an API that can be used by applications to transmit
secure data. Instead, it works at the operating system level, and can only be configured
by the system administrator. A system administrator can define the policy for IPSec on a
host basis, determining the ways by which a host can connect securely to another.

FreeS/WAN does not use DES for encryption, since this algorithm is no longer
secure for many types of applications. Instead, it uses triple DES, and is also looking for
some other strong protocols to be included in the software.

In the present protocol implementation, FreeS/WAN does not allow the specification
of IPSec policies based on connection ports; it only focuses on machines. Therefore, one
can not specify that between the same two machines (be them gateways or not), the http
traffic uses IPSec, but mail traffic does not. Either both or neither use IPSec. It can,
however, be assumed that this feature will be available, since it is part of the standard.
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One interesting thing that FreeS/WAN implements, and which is not in the stan-
dard definition, is what they call Opportunistic Encryption. This means that any two
FreeS/WAN gateways will be able to encrypt their traffic, even if they have no prior
knowledge of each other, by using some public key scheme, possibly provided by the Do-
main Name Service (DNS). This will create a default policy for security in the Internet, if
followed by all the implementors.

3.1.4 Internet Control Message Protocol

Although not needed at the moment, we believe it is worth noting the existence of
the Internet Control Message Protocol (ICMP) protocol [33]. It will not be defined here,
nor will we give an exact API for it, since it should follow the API for the IP protocol. We
merely name the protocol, so it can later be used, if so desired.

3.1.5 Simple Network Management Protocol

The Simple Network Management Protocol (SNMP) is also relevant for MAFTIA
since it might be important to the middleware operation, namely in the failure/intrusion
detection management. SNMP is actually a set of standards for network management that
include a protocol, a database structure and some data objects.

This protocol was adopted as a standard for network management in TCP /IP-based
networks in 1989 [6, 7, 8]). To enhance the functionality of SNMP and allow the man-
agement of both local area networks (LAN) as well as the devices attached to them, a
supplement for monitoring networks was issued and is known as Remote Network Mon-
itoring (RMON). In 1993, an upgrade to SNMP, called SNMP version 2 (SNMPv2) was
proposed and a revision of it was issued in 1995 [10]. SNMPv2 adds functional enhance-
ments to SNMP and codes the use of SNMP on OSI-based networks. In 1995, there was
also an extension to RMON called RMON2. This extension includes a specification to in-
clude monitoring of protocol traffic above the MAC level. In 1998, a new version of SNMP
was released and is known as SNMPv3. This new version defines a security capability
for SNMP and an architecture for future enhancements. SNMPv3 is intended to use the
functionality of SNMPv2, but can also be used with SNMPv1. It also introduces a new
concept to SNMP, a User Security Model [3].

SNMP has three commands to perform its function: the Get, Set and Trap com-
mands. The Get command is used by the manager to query the sensor status; the Set
command is used to change some value in the sensor Management Information Base (MIB);
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and the Trap mechanism is what the sensor uses to alert the manager of some event.

The Agent Extensibility (AgentX) Protocol is intended to provide regular SNMP
with a high extension degree in order to enable multi-vendor compatibility and inter-
operability [13]. This was done because of the growing number of MIB modules defined by
vendors and/or IETF workgroups. As a result of this, as the RFC states, the “managed
devices are frequently complex collections of manageable components that have been in-
dependently installed on a managed node. Each component provides instrumentation for
the managed objects defined in the MIB module(s) it implements.”

Because no standard existed, and there was a wide deployment of extensible SNMP
agents, it was very difficult to create SNMP-managed applications. One vendor would have
to support multiple sub-agent environments (APIs), to support different platforms. The
specification of a standard protocol to govern the communication between the master agents
and the sub-agents, allows multiple vendor products to communicate and inter-operate.

There are also some problems with a monolithic SNMP agent, that the AgentX
protocol tries to solve:

e For example, having an agent for the host, another for the print service and another
for the web server means that we must have three agents on the same machine. To
do this, they must be running in different system ports, since each SNMP agent
must have a distinct connection point in order to communicate, which becomes very
difficult to manage.

e Likewise, changes in a MIB require that the agent must be recompiled in order to
incorporate them. This means that the agent must be shut down, recompiled, and
re-run again. In the meantime, the management console will mark it as dead, since
it can not contact its agent.

By using AgentX, these two problems are “automatically” solved, because, in the
first case, AgentX subagents are multiplexed in a single SNMP agent, therefore using only
one communication port; in the latter, subagents are dynamically added and removed, and
so, when a MIB is changed, we need only shutdown the subagent handling it, and start the
new one, without stopping the master agent and without disturbing the rest of the MIB.

More information on SNMP can be found in [44].
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3.1.5.1 Current SNMP APIs

The most used implementation of SNMP in Linux is the one from University of
California at Davis (ucd-snmp). Using this implementation, making an SNMP agent is
done using a simple API, which we present by giving a skeleton of an SNMP agent. This
skeleton can be used both for an SNMP agent as well as for an AgentX subagent.

int agentx_subagent=1; /* change this if you’re a master agent */
snmp_enable_stderrlog() ;

/* if we’re an agentx subagent */

if (agentx_subagent) {
/* make us a agentx client. */
ds_set_boolean(DS_APPLICATION_ID, DS_AGENT_ROLE, 1);

init_agent ("yourappname") ;
/* initialize your mib code here */

init_my_mib_code();

/* yourappname will be used to read yourappname.conf files. */
init_snmp("yourappname") ;

/* If we’re going to be a snmp master agent */
if (!agentx_subagent)
/* open port 161 (UDP:snmp) */
init_master_agent (161, NULL, NULL);

/* your main loop here... */
while(whatever) {
/* if you use select(), see snmp_api(3) */
/* -—— OR -—— %/
agent_check_and_process(0); /* 0 == don’t block */

/* at shutdown time */
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snmp_shutdown ("yourappname") ;

3

3.2 Communication Services

In this section we concentrate on group communications since these services are of
vital importance for the MAFTIA middleware as they enable the construction of dependable
distributed applications. In essence, dependability and fault-tolerance can be achieved by
replicating a database or other applications service across a heterogeneous collection of
Servers.

MAFTIA middleware considers the existence of groups of participants that are
mapped onto groups of sites hierarchically, i.e., every participant belongs to a site and for
every group of participants there must be a group of sites such that the local sites of the
participants belong to the group of sites. When addressing group communication protocols
in this section, we do sometimes not distinguish between participants and sites, and simply
speak of a group of “parties.”

We shall in this section describe the semantics and provide APIs for the MAFTIA
middleware group communications primitives. It is important to note that there are no-
ticeable differences in these semantics depending upon precisely which types of groups are
postulated. Two important axes upon which groups are measured are those of open/closed
and static/dynamic [49]. An open group model permits arbitrary hosts to send messages
to the group, while in a closed model only hosts which are already members of the group
may so communicate. In contrast, a static group is one whose membership does not change
over time (or changes at a very long time scale, such as only upon manual reconfigura-
tion), while dynamic groups allow hosts to apply for group membership or, conversely, to
be excluded from the group automatically when certain trigger events occur (or fail to
occur).

The MAFTIA middleware leaves it to the applications programmer to decide how
to implement either open or closed groups. The MAFTIA group communications API is
designed to facilitate coordinated actions within established groups; these actions may be
initiated by external parties, in an application requiring open groups, or exclusively by
group members themselves, in closed group settings.

The distinction between static and dynamic groups requires more profound differ-
ences in both the APIs and implementation, since in the later case provision must be
made for the whole issue of hosts joining, leaving and being excluded from a group. There
are also subtle questions which must be addressed relating to re-sharing of cryptographic
secrets when the group changes, which is particularly difficult to handle robustly in an
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asynchronous setting.

Regardless of which group model is followed, there are certain general ideas which
are used ubiquitously. These are the basic primitives of “broadcast” and “agreement,” and
the higher-level concept of “service replication.” Broadcast is used when a message is to
be sent to all members of the group. There are various flavors of broadcast depending
upon what other requirements are imposed. One such simply ensures all honest (properly
operating, non-corrupted) servers deliver the same set of messages, be they all messages
broadcast by all honest parties (reliable broadcast) or perhaps fewer but still uniquely de-
livered (consistent broadcast) messages. Another important choice is whether to guarantee
all honest parties will deliver their messages in the same order (atomic broadcast).

Agreement is simply when all group members must agree to some binary value or,
more generally, to a valued in some larger domain. The binary case here is usually known
as Byzantine Agreement in the literature and requires all honest parties to come to the
same value, which value must be the same as that proposed by all honest parties if the
proposal is unanimous. The multi-valued case is more complex (but more useful), requiring
the accepted value to satisfy a certain, globally-known predicate.

We shall now give more complete descriptions of these primitives and their APIs
under the MAFTIA middleware in the static and then dynamic group models.

The APIs presented here are somewhat simplified compared to the description of
the Appia API above. The dynamic composition capabilities provided by Appia are not
essential for describing the particular properties of our group communication protocols
and are thus not modeled. Therefore we will usually just mention abstract protocols and
concrete protocol instances when referring to the group communication primitives. In fact,
these can be mapped to the concepts of Appia in a straightforward way: when a “protocol”
is mentioned below, this corresponds to an Appia “layer”; it can be used as part of a larger
protocol stack, or “QoS” in Appia (which is not modeled here). Similarly, a “protocol
instance” in the following sections corresponds to a dynamic “session” in Appia and could
be realized as such.

3.2.1 Services using Static Groups

When groups are static, we may imagine that cryptographic keys are distributed
once and for all in an entirely secure fashion and protocols need only deal with a known
list of parties, as well as a known bound on the admissible number of corrupted parties.
Therefore we may take an arbitrary group as given, identified by a group identifier groupID,
and proceed directly to the communications within groups. MAFTIA middleware provides
three types of communications primitives in this context: decision, stream (also known as
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“channel”), and broadcast.

Decision. We begin with decision protocols. These all implement the basic concept of
Byzantine agreement, whereby the group members all propose some value to the group,
and this value is the decision produced by the protocol if the honest parties all make
the same proposal; in any case, all honest parties which decide, decide for the same value.
Traditionally, the values in question are merely Boolean, but we also have a use for decision
protocols where the values are in a larger domain. The difficulty in multi-valued Byzantine
agreement is how to ensure the validity of the decided value, which may lie in a set whose
size is not known a priori. Our approach is to introduce the idea of an external validating
predicate, which is known to all parties and can be used to check all proposals, and which
must be satisfied by the decision value of the protocol.

Note that “decision” is an abstract protocol that provides no implementation of its
functionality. It isolates the common features of all decision protocols that will be modeled
as subclasses of decision; but no instances of “decision” can be created. These relations
are orthogonal to the concepts used for implementing them in Appia, where all protocols
correspond to Appia layers, and the instances of a protocol correspond to an Appia session.

MAFTTA middleware provides implementations for the following decision protocols:

binary Byzantine agreement — ABBA
validated binary Byzantine agreement — VABBA
validated multi-valued Byzantine agreement — VBA

Despite their differences, there is a common high-level API for all decision protocols

which is very simple. Let us say that XYZ is such a protocol. Then a new instance (i.e.,
Appia session) of the protocol can be created by the command

Decision decision = new XYZ(protocollD, groupID);

where protocollD is a String, with application-specific meaning, naming the protocol
instance, and grouplD is another String representing the group. This newly-created instance
is still in a quiescent state; the simplest way actually to use it is to launch the protocol,
with a certain initial vote, and to block until it returns, as follows:

Negotiable answer = decision.negotiate(initialVote);

Here both the answer and the initialVote are objects of class which extends the
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Negotiable marker interface in a way useful for the particular protocol, such as containing
a boolean value for ABBA, a byte[] value, byte[] proof and a MultivaluedValidator for VBA,
etc; see below for details.

There is also a way to use the protocol without blocking, as for example in the code
fragment

decision.propose(initialVote); // returns immediately!
while(true) {
if (decision.isDecided()) {
answer = decision.finalDecision();
break;

}

else
do something else interesting

There are also methods for asynchronous invocation of decision protocols which
deliver their results as asynchronous events.

The methods negotiate, propose, isDecided and finalDecision, with the above seman-
tics and argument and return types, exist for all decision protocols (in fact automatically, as
all such protocols extend the Decision class), with only the specific content of the Negotiable
objects changing with the context. In particular:

1. ABBA needs a BinaryNegotiable, which is of the form

public class BinaryNegotiable implements Negotiable {
boolean value;

}

2. VABBA requires a ValidatedBinaryNegotiable, of the form

public class ValidatedBinaryNegotiable extends BinaryNegotiable {
byte[] proof;
BinaryValidator validator;

}

public interface BinaryValidator {
boolean isValid(boolean value, byte[] proof);
}

The application programmer must create a class which implements BinaryValidator,
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providing a body for the isValid(boolean value, byte[] proof) method that determines
the validity of the ValidatedBinaryNegotiable’s value given its proof, perhaps using
other identifying data which would therefore also be in the new class definition. The
field validator will then be a handle to an instance of this new class, and well-formed
instances vbn of the ValidatedBinaryNegotiable class (such as valid propose values in
a VABBA instance or outputs of VABBA finalDecision()) will satisfy the consistency
condition that

vbn.validator.isValid(vbn.value, vbn.proof) == true.

3. VBA uses a ValidatedMultivaluedNegotiable, of the form

public class ValidatedMultivaluedNegotiable implements Negotiable {
byte[] value;
byte[] proof;
MultivaluedValidator validator;
}
public interface MultivaluedValidator {
boolean isValid(byte[] value, byte[] proof);

}

Similar remarks as above in point 2 hold here for the classes that the application
programmer must define and for the consistency of well-formed instances of class
ValidatedMultivaluedNegotiable.

The Class Agreement As noted above, the concept of a “decision protocol” is embodied
in an abstract class which is extended by the concrete classes which realize the protocols
ABBA, VABBA and VBA. The abstract parent class, called Agreement, carries all of the
publicly-accessible methods and fields of the decision protocol, as follows:

abstract class Agreement {
Agreement(String protocollD, String grouplD);
Negotiable negotiate(Negotiable initialVote);
boolean isDecided();
Negotiable finalDecision();
void propose(Negotiable initialVote);

}

The semantics of Agreement’s instance methods were described above, as were the
details of the specific implementations of the Negotiable interface which are appropriate for
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the various concrete extensions of Agreement.

Stream. We move on to stream protocols, a class of broadcast protocols which provide
a long-lived communications channel for the group upon which multiple messages can be
delivered in sequence. (One may always think of streams as communication channels,
but the name “stream” is used here in order not to conflict with the Appia channels of
Section 2.1.) In fact, MAFTIA provides at least two such protocols: ABC, implement-
ing atomic broadcast and SC-ABC, implementing secure causal atomic broadcast. Atomic
broadcast instances, identified by their naming String protocollD and String grouplD, simply
implement a communication stream with that group members can transmit messages with
the guarantee that all honest parties will receive the messages at the end of this stream
in the same order. Secure causal atomic broadcast is likewise a stream with broadcasting
and ordered reception. The difference is that it preserves input causality in the sense of
Reiter and Birman [37], which is achieved by dealing with a given message entirely in
an encrypted form up until its order is determined. This permits applications where the
cleartext of a message must be kept out of the hands of the adversary — and his minions
running corrupted servers in the group — until it is ordered and delivered.

The common features in stream protocols are implemented in a class Stream, whose
instances are created by the command

Stream stream = new XYZ(protocollD, groupID);

where XYZ is either ABC or SC-ABC. Streams are generally long-lived, and in fact
cannot be safely terminated at any time, since a party which shuts down some stream may
be leaving honest parties which are behind in their processing of that stream unable to
finish correctly. Nonetheless, an emergency shut-down procedure is available if necessary,
by invoking

stream.done();

A byte[] payload may be broadcast on a given stream by the method

stream.send(payload);

Here payload will be the message itself for a ABC but will merely be the ciphertext
corresponding to the desired message in the case of SC-ABC. In either case, when the
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stream was created for synchronous access, the delivered messages may be found by calling

byte[] message = stream.receive();

which will block if there is no message currently waiting to be received. To avoid
blocking, the method isReady() may be called, as in the following code fragment:

while(true) {
if (stream.isReady()) {
message = stream.receive();
break;
}
else
do something else interesting
}

Once again, there is an alternate non-blocking approach via what we called asyn-
chronous invocation.

While this is not necessary for most applications, even those which rely upon the
encryption of payloads input into SC-ABC, we should mention that in the precise descrip-
tion of secure causal atomic broadcast, deliveries of ciphertexts always must precede the
corresponding (threshold) decryption and delivery of the cleartext message. Therefore
SCABC objects have an additional pair of methods receiveCiphertext() and isReadyCipher-
text() which perform the same tasks for the ciphertexts as the previously-described methods
do for cleartext messages.

The Class Stream The abstract parent class for “stream protocols” is Stream, which
has the following public methods, whose functionality was already explained:

abstract class Stream {
Stream(String protocollD, String grouplD);
void send(byte[] m);
byte[] receive();
void done();
boolean isReady();

}

This gives the entire public API for ABC, but, as was described above, SC-ABC
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needs two further methods:

class SCABC extends Stream {
byte[] receiveCiphertext();
boolean isReadyCiphertext();

}

Broadcast. Finally, we must describe sequenced broadcast protocols. These are again
broadcast protocols, but they are short-lived and provide agreement on a single broadcast
message. A party can send a messages on a new instance of such a protocol, while other
group members must know to listen for the message from that sending party and with
a predetermined “sequence number.” MAFTIA middleware provides two variants of this
type of broadcast: reliable broadcast RBC, which requires that all honest parties deliver
the same set of messages and that this set includes all messages sent by all honest parties,
and consistent broadcast CBC, which guarantees the uniqueness of delivered messages but
not that all honest parties actually deliver all messages.

Both protocols are extensions of the class Broadcast, and can be created by

Broadcast broadcast = new XYZ(protocollD, sender, seq, grouplD);

where XYZ is either RBC or CBC, and sender and seq are ints.

A message can be sent via sequenced broadcast only if the identity of the sending
host matches the sender value which was specified when the Broadcast object was made.
Furthermore, it is assumed that the sender is a member of the group named by grouplD
(i.e., the groups here are closed). Reception of messages is, however, identical to reception
in ABC: under synchronous invocation, the blocking call broadcast.receive() may be used,
or broadcast.isReady() may be tested first.

A non-blocking interface to these protocols is again provided by methods for asyn-
chronous invocation.

The Class Broadcast For completeness, we also give the public class skeleton of the
abstract parent class for “broadcast protocols”:
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abstract class Broadcast {
Broadcast(String protocollD, int sender, int seq, String groupID);
int getSender();
int getSeq();
void send(byte[] m);
byte[] receive();
void done();
isReady();

3.2.2 Services using Dynamic Groups and related to Group Membership

Dynamic groups allow for addition and removal of members during operation, and
such group membership changes should be transparent to the applications using the group’s
services. Thus, the communication services above are not affected by membership changes,
and the focus of this section is on the orthogonal question of how new members join the
group and current members leave the group.

As mentioned before, MAFTIA middleware considers the existence of groups of
participants that are mapped on groups of sites. This provides a level of clustering that is
useful both to handle security issues and scalability. The membership of groups of sites is
handled by the Site Membership module, while the membership of groups of participants is
handled by the Participant Membership module. In the following subsections we describe
the interface of each of these modules. All functions are non-blocking and their results are
returned as events.

Several groups of participants can be mapped onto a single site group. These groups,
called lightweight groups, are useful to improve performance. The API of the membership
module considering lightweight groups can be the same as for “normal” (heavyweight)
groups [38]. Therefore, the API we describe below can be used in both cases.

The membership of both participant and site groups at a given instant is called a
view. The concept was defined in the context of the wvirtual synchrony group semantics.
Informally, virtual synchrony provides membership information to participants (sites) in
the form of views and guarantees that all participants (sites) that install two consecutive
views deliver the same set of messages between these views. However, the architecture
of MAFTIA middleware does not impose a specific semantics and views can be seen sim-
ply as the membership at a given moment. When views are used, they are broadcasted
atomically to all group members (participants/sites) when they change, in a special system
management atomic broadcast stream. Changes can be due to member joins, leaves and
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to failures (of participants/sites).

Site membership module. This module offers the following calls:

joinSiteGroup(siteGrouplD);
leaveSiteGroup(siteGrouplID);
registerSiteEvents(id, siteGrouplD, mask);
view = getSiteGroupView(siteGrouplD);

joinSiteGroup makes the site try to join the group with site group id siteGroupID.
Other sites in that group can grant or deny the join. If the group does not exist a new one
is created with a single site. The result of the operation is returned as an event.

leaveSiteGroup makes the site leave the group siteGroupID. Only processes with
the uid of the process that requested the site to enter the group can call this function. An
error code is returned if the group does not exist or if the process is not allowed to request
the operation.

registerSiteEvents allows a process to register (and unregister) the events that it
wants to receive. Events can be the results of group operations (join, leave) or view changes.
Events are registered by a process or module identified by id, for the site group identi-
fied by siteGroupID. mask indicates witch events are supposed to be registered (and/or
unregistered).

getSiteGroupView asynchronously returns a site group view. The group is identified
by siteGroupID.

In general, site groups are not used directly by user level entities but by the Partic-
ipant Membership module to implement participant groups.

Participant membership module. This module offers the following calls:

joinGroup(id, participantGrouplID, credential);
leaveGroup(id, participantGrouplD, credential);
excludeGroup(id, participantGrouplD);
registerEvents(id, participantGrouplD, mask);
view = getGroupView(participantGrouplD);

joinGroup can be used by a participant identified by id to try to join the group with
group id participantGroupID. Other participants in that group can grant or deny the join
based on the credential shown by the participant. We do not define what is the credential
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at this point, but it can be something that shows the possession of a certain cryptographic
secret. If the group does not exist a new one is created with a single participant (and a
site group is also created). The result of the operation is returned as an event.

leaveGroup makes the participant leave the group participantGroupID. Only the
participant can request itself to leave the group, so it has to give his credential again in
this operation. An error code is returned. If the participant was the last of this site in the
group, the site leaves also the corresponding site group.

excludeGroup removes from group participantGroupID the participant with iden-
tifier id (a malicious member might not cooperate to execute leaveGroup). It is required
that all honest (i.e., uncorrupted) participants execute this call. How the group members
trigger this function is left unspecified at the moment; typically it could be the effect of an
atomically broadcast control message or the instructions could be transmitted through an
external communications mechanism.

registerEvents allows a participant to register (and unregister) the events that it
want to be informed of. Events can be group operations results (join, leave) or view
changes. Events are registered by a participant identified by id, for the group identified by
participantGroupID. mask indicates witch events are supposed to be registered and/or
unregistered.

getGroupView asynchronously returns the view of the group participantGroupID.

Maintaining shared secrets. The calls of membership modules have no direct effect
on the parameters of the secret keys shared by the members of a particular group. Recall
that the group communication primitives have two parameters n, the number of parties,
and ¢, the maximal number of corrupted parties. With dynamic groups, the parameter n
remains constant only between the deliveries of two successive views. Thus, joinGroup
changes the parameters to n’ =n+ 1 and ¢’ = ¢, and leaveGroup as well as removeGroup
change the parameters to n’ =n — 1 and ¢’ = t.

Moreover, every party that joins a group must receive its share(s) of the crypto-
graphic key(s). In absence of an on-line trusted dealer who can supply the key material,
this requires that the group members carry out a distributed protocol whenever a new
member joins the group. Such protocols are implicit in the description of the membership
interface above.

When the size of the group shrinks, it must be possible to lower ¢ as well, in order to
maintain the system invariant n > 3¢, and when the group grows, it is desirable to increase
also t for more resiliency. This is achieved by a call to
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reshare(grouplD, dt)

where dt is an integer denoting the threshold change At, which can be positive and
negative. Its effect is to change the previous group parameters n and ¢ to the new values
n'=nand t' =t+ At.

In order to guarantee the security of the shared secrets despite the removal of faulty
and potentially corrupted parties, the share refresh operation triggers a refresh of all key
shares, similar to the one in proactive threshold cryptosystems [5]. This renders knowledge
of old key shares from the previous view useless for the current view and all future views,
which is necessary for maintaining proper operation.

3.3 Activity Services

The Activity Services implement building blocks that assist the development of
specific classes of applications. This section describes essentially the MAFTIA transac-
tional support service. The transactional support service is intended to support both
applications built using the MAFTIA middleware and other activity support services, for
example it can be used to guarantee the atomicity of updates to a replicated authorisation
server. From a user’s point of the view the transaction support service appears to be a
CORBA-style transaction service; this is because its intrusion-tolerance is a property of
the implementation rather than of its interfaces.

In section 3.3.1 we provide an overview of transactions, in section 3.3.2 we introduce
a high-level view of the transaction service architecture, in section 3.3.3 we introduce our
system model and describe how a degree of intrusion-tolerance for the service is achieved,
in section 3.3.4 we describe some related approaches and contrast them with the approach
taken within this project, and in section 3.3.5 we describe how the transaction service is
used.

3.3.1 Overview of the Transactional Support

Services provided over a wide area network such as the Internet involve communi-
cation and cooperation between many diverse organisations and their hosts. Faults that
may be due to hardware failure, software failure or malicious agents can disrupt service
delivery. Ideally service functions are atomic in their effect. Atomicity is an “all or noth-
ing” property. If a function is atomic then in the event of failure all of the operations that
make up the function will either have taken effect or not taken effect. A function is not
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atomic if in the event of failure the participants are left in an inconsistent state.

For example, imagine a user of a shopping service. When the user purchases items
from the service then the items are dispatched for delivery and the user’s bank account
is debited for the appropriate amount. This purchase function should be atomic. In the
event of a server failure or client failure then a situation should never arise where the items
have been dispatched but the user’s bank account is not debited, or vice-versa.

Transactions are a well-known technique for providing atomicity. A transaction is
a set of operations that has the following properties.

Atomicity — the transaction completes successfully (commits) or if it fails (aborts) all of
its effects are undone (rolled back).

Consistency — transactions produce consistent results and preserve application specific
invariants.

Isolation —intermediate states produced while a transaction is executing are not visible to
others. Furthermore transactions appear to execute serially, even if they are actually
executed concurrently.

Durability — the effects of a committed transaction are never lost (except by a catas-
trophic failure).

These ACID properties guarantee that a transaction supports the “all or nothing”
property. A transaction that has terminated with a commit has all the changes made
within it made durable. A transaction that has terminated with an abort has the changes
undone.

Typically transaction support services can provide the “all or nothing” property in
the face of software or hardware failure. As transactions progress all participants keep local
durable logs that can be used to restart the transaction after a crash. Also replication can
be used to provide high availability for the objects that are changed during the execution
of a transaction. However, in the MAFTIA project we extend the definition of fault
tolerance to include tolerance of malicious faults. To do this we apply the general MAFTIA
architectural principle of distributing trust by replicating the servers implementing the
transaction service and optionally the resource managers and resources.

3.3.2 Transaction Service Architecture

A high-level view of the transaction service architecture is shown in figure 3.1. The
transaction service architecture is made up of clients, resource managers and transaction
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Figure 3.1: High-level View of Transaction Service Architecture

managers. In order to provide intrusion-tolerance these may be replicated. However, this
is not visible from the viewpoint of a user of the service.

Clients. Clients use the transaction manager to begin and end transactions. Within
the scope of a transaction the clients operate on resources via resource managers. As a slight
extension to the typical transaction architecture, we allow multiple clients to participate
in a transaction. A single client begins a transaction, and passes the transaction identifier
to other clients so that they can cooperate within the transaction scope too. Individual
clients can unilaterally force a transaction abort but all clients must unanimously agree to
attempt a transaction commit.

Resource Managers. A resource manager is a wrapper for resources that allows
the resource to participate in two phase commit and recovery protocols coordinated by a
transaction manager. The resource may or may not be persistent. Persistent resources
may use a persistency service or a database. Resource managers also manage the concur-
rent access by clients to resources. Concurrency control can be pessimistic or optimistic.
Resource managers use a local recovery log to support recovery after a crash.

Transaction manager. The transaction manager is primarily a protocol engine.
[t implements the two phase commit protocol and recovery protocol. It also allows the
creation of new transactions and the marking of transaction boundaries. In order to par-
ticipate in transactions, resource managers are required to register themselves with the
transaction manager. Transaction managers use a local durable recovery log to support
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recovery after a crash.

3.3.3 System model

A general approach taken in the MAFTIA project towards intrusion-tolerance is
to use replication and voting for fault masking. We implement this approach using the
intrusion-tolerant group communication protocols provided by the lower layers of the MAF-
TTA middleware. These group communication protocols can tolerate the byzantine behav-
ior of a proportion of group members, and can tolerate timing faults.

We replicate transaction managers and resource managers/resources. These form
server groups that are distributed across sites. Server groups are a set of n servers, of
which up to ¢ may fail in completely arbitrary ways. Requests are handled by all members
of the service group and the majority result is returned to the user of the service. This
means that as long as no more than ¢ servers fail, the overall service remains trustworthy.
To allow voting on results the servers are assumed to be deterministic. The value of ¢ is
determined using the generalized adversary structures introduced in [4]. This approach
takes into account the diversity of the servers and attempts to find the minimum number
with a common failure mode.

Interacting with the transaction managers and resource managers are an unknown
number of possibly faulty clients. Clients are outside our control and can be implemented
in any way. Therefore they can fail in arbitrary ways in the value domain. Currently we
do not make clients intrusion-tolerant or the transaction service tolerant of misbehaving
clients.

The replicated transaction managers, replicated resource managers, and clients are
initialised by a trusted “dealer” with initial values such as the group identifiers necessary
to use the system, public and private keys, etc. We assume that these initial values are
stored securely. Depending on the construction of the site these keys may be protected by

a security kernel or on a smartcard [1], or stored within a local trusted timely computing
base (TTCB).

All parties in the system are connected by an asynchronous network and possibly
a low capacity synchronous network. The timing model is an optimistic synchrony model.
In [47] a system exhibiting optimistic synchrony is defined as a system that uses partially
synchronous protocols where possible but falls back to probabilistic malicious-fault resilient
asynchronous protocols if the system doesn’t exhibit enough synchrony. The partially
synchronous protocols rely on the presence of a global trusted timely computing base that
is built out of local TTCB units and a trustworthy low capacity synchronous network
linking the local TTCBs. The asynchronous network connecting the parties is assumed
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to be under the control of the adversary. An adversary may insert, delete, reorder or
not deliver messages. The asynchronous protocols have been designed to tolerate such
timing faults (short of a complete denial-of-service). On the other hand, the partially
synchronous protocols do not need to tolerate timing faults as they rely on the use of the
trusted synchronous network.

3.3.4 Related Approaches

The database community has explored the use of atomic broadcast protocols to
support transactions for replicated databases (for a good review of various approaches see
[51]). However, their focus has been on database replication for availability rather than
intrusion tolerance as they assume only crash failures are possible. Furthermore, their
models usually assume that transactions are executed locally on a member of a replica
group and the effect of the transaction is replicated.

The dynamic terminating multicast proposed in [15] describes a primitive that can
be used to build transactional and group communication systems. However, this paper
only considers the implementation of the commit protocol and does not consider how the
other ACID properties are guaranteed.

In [39] a unified framework is proposed based on extensions to a SEND-TO multi-
cast primitive. The primitive is first defined with delivery permanence, i.e. the majority of
members of a group deliver a message or no member of a group delivers a message. This is
extended to support an all-or-nothing delivery property where instead of multicasting to
a single group the multicast is to multiple groups. Finally a global total ordered delivery
is imposed to ensure that every process delivers messages in the same order as every other
message. This provides an elegant way to express some types of transactions using group
communications. The transactional properties of atomicity, durability and serializability
are guaranteed by the SEND-TO primitive as follows: essentially the all-or-none delivery
property of the SEND-TO primitive equates to a transaction’s all or nothing atomicity, the
delivery permanence property of the SEND-TO equates with durability, and total ordering
enforces serializability. However, [39] does not address isolation, subtransactions or recov-
ery after failure. Also it is not clear how serializability is maintained if transactions are
allowed to interleave operations.

For [22] the combined use of transactions and group communications is used to
provide flexible support high availability applications. The approach is not to build trans-
actions on top of group communications but to use transactions and group communications
together to implement fault-tolerant replication. It is argued that transactions are best
used to deal with all exceptions that cannot be masked (abort and retry). Group com-
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munication can be used to provide efficient support for binding service replication, fast
switch over from a failed server, and to implement active replication. Transaction concur-
rency control is used to allow message ordering to be relaxed for some operations. This is
achieved by extending the “exclusive write/shared read” policy to object groups. Clients
are required to lock a majority of the members.

The GroupTransactions [31] model is a integrated model for transactions and group
communications where transactional replicas can be groups of processes. In this model
a single client interacts with transactional replicas. The replicas can be aware of each
other and communicate using multicast. The model also supports subtransactions, multi-

threaded transactions and considers failure atomicity. GroupTransactions is implemented
as a library TransLib for Ada [17].

Our approach is to make use of standard group communication primitives, allow for
heterogeneous resources, apply error compensation techniques to improve intrusion toler-
ance, to allow for multi-party (and potentially) multi-threaded transactions and to consider
failure atomicity. This differentiates our work from approaches that make use of new or
modified group communication primitives (for example, optimistic broadcast) [15, 39, 51].
Also, unlike other approaches, our focus is not on availability but on intrusion tolerance.
This has resulted in us not being able to use techniques such as passive replication that
are widely used by the database community. Passive replication is more efficient than
active replication, and does not require deterministic replicas. However, the problem with
adopting passive replication is its reliance on a leader-follower model. The updates occur
at the leader and the followers are informed of the results. Whereas this adequate in a
crash-fail fault model there are problems when the leader can fail (be corrupted) yet keep
on functioning and sending corrupted updates to the leaders. By adopting an active repli-
cation approach we avoid this problem as there is no single point of failure and more that
t members of the group must be corrupted before the group as a whole is compromised.

The approach that is closest to our is that of Group Transactions [31] although our
model of multi-party clients is different in that unlike their model our multiple parties are
not created within the context of a group transaction (in their model the multiple parties
are threads that are spawned by a single thread that begins a group transaction). We differ
also in that their system model assumes a LAN and does not explicitly consider malicious
faults. However, they do address nested transactions whereas we only implement a flat
transaction model.
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3.3.5 Use of the Transaction Service

In this section we describe how the transaction service is used. First we give an
overview of the interactions involved in a transaction then discuss the use of resource
managers, and transaction managers in more detail.

3.3.5.1 Overview

Figure 3.2 shows the main interactions between a client, transaction manager, re-
source manager and a resource. These interactions will be explained in more detail in
following sections, the purpose of this figure is to illustrate at a high level the typical
interactions between the components.

A client establishes a transaction by invoking the begin operation on the transaction
manager. The client then makes its first invocation of an operation on a resource via the
resource manager that wraps the resource, note that the transaction identifier is passed with
the invocation. The resource manager uses the transaction identifier to determine if it is
already involved in a transaction, if it is not then it invokes the registerResource operation on
the transaction manager to register itself as participating in the transaction. The resource
manager then delegates the operation to the resource it is wrapping. Although not shown
we assume that the resource manager receives the result and returns it to the client. The
client then invokes Another operation on the resource using the resource manager, again
it is delegated to the resource for evaluation and the result returned to the client. When
the client has finished invoking operations within the context of the transaction the client
asks the transaction manager to attempt a commit by invoking the commit operation. The
transaction manager then invokes the prepare operation all resource managers registered
with it to determine if all resource managers can commit. If all resource managers return
ok (not shown) to the transaction manager then the transaction manager asks all resource
managers to commit by invoking their commit operation.

3.3.5.2 Resource Managers

Each resource manager implements all the operations that the wrapped resource
implements, and in addition implements the ResourceManager interface that specifies the
operations required for participation in transactions. We have based the design of this
interface on the OPTIMA framework for open transactions [20].

When a resource manager is invoked in the context of a transaction, the resource
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Figure 3.2: Overview of Use of Transaction Service
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manager registers itself with the transaction manager using the transaction manager’s
register operation. The transaction manager keeps a list of resources participating within
each transaction.

How does the resource manager determine the transactional context? The client
must propagate the transaction identifier with every invocation of a resource manager op-
eration. There are generally two ways to do this: implicit, or explicit propagation. With
implicit propagation some hidden context is associated with the client threads and passed
transparently whenever the client invokes a resource manager operation. The drawback
with this approach is that it makes it difficult to program multi-party clients as the trans-
action identifier exposed and cannot be passed between clients. With explicit propagation
the transaction identifier is exposed and client must add the transaction identifier as an
argument to every invocation of a resource manager operation. Explicit propagation can be
implemented by adding a transaction identifier argument each operation belonging to the
resource’s interface. For example, if a resource has a deposit operation with the signature:

public void deposit(float amt)

Then the resource manager implements the operation with an extra transaction
identifier argument:

public void deposit(Transaction tid, float amt)

The resource manager operation prepare is called by a transaction manager to de-
termine if the resource manager can commit or not. If the resource manager can commit
changes (make them permanent) then the resource manager returns true, otherwise it re-
turns false.

Once the transaction manager has taken into account the result from calling prepare
on all resources registered as taking part in the transaction, it either calls commit or abort
on each resource manager. If commit is called then the resource manager causes the
resource to make permanent any changes made within the transactional context. If abort
is called then the resource manager forces the resource to forget any changes made within
the transactional context.

As resources may be used by multiple clients and may participate in multiple trans-
actions it is necessary to use a concurrency control protocol to ensure that the isolation
property is guaranteed. There are two main types of concurrency control schemes: pes-
simistic, and optimistic concurrency control.
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Pessimistic. Locking is the most widely used pessimistic concurrency control pro-
tocol. A locking protocol requires that a client requests a lock for a resource before it
accesses the resource. A lock manager tracks the locks held for resources and makes the
decision whether to grant a new lock for a resource. Unless a deadlock arises the lock man-
ager will grant all locks eventually. It will grant a lock immediately unless there is a conflict
between the lock requested and the locks held for the resource. If there is a conflict then
the request is blocked until it can be satisfied. Lock conflicts are determined by examining
lock types and the transactional context of locks. Pessimistic locking schemes suffer from
the problem of deadlock. Deadlock occurs when two concurrent transactions obtain locks
on some of each other’s required resources and neither transaction can progress until it has
locks on all of its required resources. Deadlock can be resolved by using timeouts on lock
possession or using a deadlock detection process.

Optimistic. Where conflicts between transactions is rare an optimistic concurrency
control protocol can be used. An optimistic scheme allows a transaction to interact freely
with resources but at upon attempting to commit the transaction is validated to determine
if the isolation property would be violated if the transaction committed. If it would not be
violated then the transaction is committed, otherwise the transaction is aborted. Unlike the
locking protocol the optimistic concurrency control protocol does not suffer from deadlocks
but is more complex to implement for a distributed system.

The ResourceManager interface supports the implementation of both pessimistic
and optimistic concurrency protocols. A pessimistic lock based protocol (implemented as
a lock manager) would implement the setLock and unLock methods and define validate
to always returns true. An optimistic protocol would define the two lock methods as
null, and the validate method would be defined to validate the transaction. There are
two types of validation that could be implemented: forward validation, and backward
validation [20]. Forward validation ensures that committing the transaction doesn’t conflict
with the activities of active transactions, if there is a conflict then the transaction is
aborted. Backward validation checks that commitment isn’t invalidated by a commit of a
prior transaction. Initially we will only implement pessimistic concurrency control as this
is the concurrency control scheme most widely used by practical systems.

If the resource being managed by the resource manager is a database then the con-
currency control scheme supported by the database may be used by the resource manager.
This may affect the granularity of the concurrency control. If the database was treated as
a single object then the locking would be at the level of the entire database making for a
very inefficient system. However, if the database has its own concurrency control scheme
then concurrency control could be applied at the level of a single tuple. In this initial
design, the transaction service supports concurrency control at the level of the resource.

Interface. A resource manager implements the ResourceManager interface and the
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application interface. For example,

public class ApplicationResourceMgr
implements ResourceManager, Application {

}

The full ResourceManager interface is shown below:

public interface ResourceManager {
// ask the object to commit
public boolean prepare(Transaction tid);
// force a commit - save changes
public void commit(Transaction tid);
// abort changes
public void abort(Transaction tid);
// request a lock on a resource
public void setLock(Transaction tid, int lockType);
// unlock a resource (not done by client but by transaction
// manager)
public boolean unLock(Transaction tid);
// validate transaction, called by transaction manager
public boolean validate(Transaction tid);

3.3.5.3 Transaction Manager

In our system the transaction managers are realized by a class implementing the
TransactionManager interface. A transaction manager can support multiple transactions,
each transaction has a unique transaction identifier (tid). A client starts a transaction by
invoking the begin method of the transaction manager. The transaction manager generates
a unique transaction identifier for the transaction. The tid is passed back to the client.
This tid is used as a capability and it allows any client possessing it to participate in the
transaction. Object signing is used as a technique to prevent the transaction identifier from
being cloned and used by unauthorised clients. A client that wishes to take part in an active
transaction sends the tid with an invocation of the join method of the transaction manager.
A new transaction identifier which can only be used by that client is then returned by the
transaction manager. Only authorised clients are allowed to join a particular transaction,
and interact with resource managers also taking part in the transaction. A client ends a
transaction by sending the tid with an invocation of either the commit method or abort
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method of the transaction manager. The current status of transaction can be queried by
using getStatus. This is used for the recovery protocols.

An example is shown below:

// begin the transaction
Transaction myTid = TransactionManager.begin();

// transactional operations

// end the transaction
transMgr.commit(myTid);

Atomic commitment of transactions is achieved using a modified two phase commit
protocol (2PC) [27]. We allow multiple clients initiate the protocol. We assume that all
clients must agree on committing a transaction but that any client can force the abort of a
transaction. This is similar in concept to the semantics of Coordinated Atomic Actions [52,
36] where participants must either agree on a normal or exceptional outcome, or abort
the entire action. As our model of multi-party transactions does not currently consider
exceptions then the agreement must be on whether to commit. If there is no agreement
to commit then the transaction is aborted. Once a decision has been made the protocol
executes in two phases:

e the transaction manager asks all resource managers participating in the transaction
if they vote for commit or abort of the transaction.

e the transaction manager decides whether to commit or abort on the basis of the
collected votes and informs each resource manager involved in the transaction.

In the standard protocol a transaction will only be committed if all the resource
managers vote that they can commit; if any resource manager cannot commit then the
transaction is aborted. As we replicate the resource managers this can be weakened to a
majority vote.

As any of the participants (including the transaction manager) may fail, it is im-
portant that a log maintained in stable storage by resource managers and transaction
managers is used to record decisions made during the protocol execution. This means
that upon restart the transaction state can be recovered to a point where the transaction
will either abort or commit. Even in the presence of failure transactions maintain their
property of atomicity.

69



At the end of a transaction the transaction manager also has the responsibility of
releasing any locks that have been acquired during the two phase locking protocol.

Interface. The full TransactionManager interface is shown below:

public interface TransactionManager {
// create a new transaction
public static Transaction begin();
// join an active transaction
public Transaction join(Transaction tid);
// request a transaction commit
public void commit(Transaction tid);
// force a transaction abort
public void abort(Transaction tid);
// register a resource as being a member of the transaction
public void registerResource(Transaction tid, ResourceManager r);
// get current status of a transaction
public int getStatus(Transaction tid);
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4 Middleware Protocols

4.1 Multipoint Network

In this section, we will identify the protocols that compose the services defined
section 3.1.

4.1.1 Internet Protocol

For IP, the two most used protocols are the UDP [32] and TCP [35], which are
standard and widely used protocols. Therefore, we will not include a definition of these
protocols here.

4.1.2 IP Multicast

In order for IP Multicast to fully work, hosts must support some kind of manage-
ment for group membership. This is accomplished using the Internet Group Management
Protocol (IGMP). This protocol is used by IP hosts to report their host group memberships
to any immediately-neighboring multicast router.

The way the protocol works is by defining two types of IGMP messages: Host
Membership Query (Queries) and Host Membership Report (Reports). Multicast routers
send Queries to discover which host groups have members on their attached local networks.
These Queries are sent to the special group address 224.0.0.1, which includes all hosts that
implement IP multicast in the local network. The hosts respond by generating Reports,
containing each host group to which they belong on the network interface at which the
Query was received. In fact, to reduce the total number of Reports received and to avoid
congestion, when a host receives a Query, it starts a report delay timer for each of its
group memberships. Each timer is set to a different, randomly chosen value between 0
and 10 seconds. It only sends the Report when the timer expires, with the destination
address of the host group being reported (with a time-to-live of 1), so that other members
of the same group on the same interface can receive the Report as well. If a host receives
a Report for a group to which it belongs, it stops its timer delay for its own Report for
that group and does not generate the Report. So, in general, only one Report per host
group is generated inside a local network. This works because multicast routers receive all
[P multicast datagrams, and need not be addressed explicitly and also because the routers
need not know which hosts belong to a group, they only need to know that there is at least
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one member of the group on a particular network.

4.1.3 1IPSec

As explained above, IPSec uses two traffic security protocols: Authentication Header
(AH) and Encapsulation Security Payload (ESP). A definition of these protocols is found
in [18] and [19], respectively. These protocols, on their hand, use known protocols to per-
form the security functions they provide. In the AH, IPSec may use Keyed-Hashing for
Message Authentication (HMAC) [21] with Message-Digest Algorithm (MD5) or with Se-
cure Hash Algorithm (SHA-1) [29]. In ESP, IPSec may use also the two above algorithms
for authentication or the Data Encryption Standard (DES) [30] in Cipher Block Chaining
Mode (CBC), which is applicable to several encryption algorithms and for which a general
description is given in [41], to perform encryption. Since encryption (confidentiality) and
authentication are optional, the algorithm for authentication and for encryption may be
“NULL”, although they can not both be “NULL”.

4.1.4 Internet Control Message Protocol

This protocol uses different types of messages to perform a set of actions. The
following table presents the different ICMP messages, with its corresponding type, as
stated in RFC 792 [33]:

Code‘ Type

0 Echo Reply

3 Destination Unreachable
4 Source Quench

5 Redirect

8 Echo

11 Time Exceeded

12 Parameter Problem
13 Timestamp

14 Timestamp Reply
15 Information Request
16 Information Reply

Table 4.1: Summary of [CMP messages.
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4.1.5 Simple Network Management Protocol

This section defines the AgentX Framework, which is, we believe, very important
in extending existing SNMP agents. This definition is taken from [12].

Within the SNMP framework, a managed node contains a processing entity, called
an agent, which has access to management information.

Within the AgentX framework, an agent is further defined to consist of
e a single processing entity called the master agent, which sends and receives SNMP
protocol messages in an agent role (as specified by the SNMP version 1 and version

2 framework documents) but typically has little or no direct access to management
information.

e 0 or more processing entities called subagents, which are ”shielded” from the SNMP
protocol messages processed by the master agent, but which have access to manage-
ment information.

The master and subagent entities communicate via AgentX protocol messages, as
specified in [12] . While some of the AgentX protocol messages appear similar in syntax
and semantics to the SNMP, bear in mind that AgentX is not SNMP.

The internal operations of AgentX are invisible to an SNMP entity operating in
a manager role. From a manager’s point of view, an extensible agent behaves exactly
as would a non-extensible (monolithic) agent that has access to the same management
instrumentation.

This transparency to managers is a fundamental requirement of AgentX, and is
what differentiates AgentX subagents from SNMP proxy agents.

4.1.5.1 AgentX Roles

An entity acting in a master agent role performs the following functions:

e Accepts AgentX session establishment requests from subagents.
e Accepts registration of MIB regions by subagents.

e Sends and accepts SNMP protocol messages on the agent’s specified transport ad-
dresses.
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e Implements the agent role Elements of Procedure specified for the administrative
framework applicable to the SNMP protocol message, except where they specify
performing management operations. (The application of MIB views, and the access
control policy for the managed node, are implemented by the master agent.)

e Provides support for the MIB objects defined in RFC 1907 [9], and for any MIB
objects relevant to any administrative framework it knows.

e Forwards notifications on behalf of subagents.
An entity acting in a subagent role performs the following functions:

e Initiates an AgentX session with the master agent.

e Registers MIB regions with the master agent.

e Instantiates managed objects.

e Binds OIDs within its registered MIB regions to actual variables.
e Performs management operations on variables.

e Initiates notifications.

4.2 Communications Support

In this section we shall give some indications of how the communications services
described in section 3.2 are realized. There are two levels on which this bears examination,
that of the over-all architecture of the MAFTIA group communications middleware — the
various interactions between different protocol components as well as between MAFTTA
protocols and other elements both above and below on the protocol stack — and the precise
algorithmic details of the individual protocols themselves. The protocol algorithms have
been given in some detail in other places [4], so here we shall concentrate instead on the
large-scale architecture.

4.2.1 Architecture Description

The basic group communications primitives provided by MAFTITA middleware fall
into the three classes of agreement, stream broadcast and sequenced broadcast. While the
particular meaning and certainly the implementation of different protocols in the same
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Figure 4.1: Class Overview

category are quite different, the API and general structure remains unchanged. For this
reason each of these categories is represented by a class, called Decision, Stream and
Broadcast, respectively. These classes are extended to form the particular implementations
of all individual protocols, while in turn these all extend the class Protocol which carries
basic information pertinent to all possible protocol types.

Additional infrastructure is provided by two other groups of classes, those responsi-
ble for cryptography and those related to basic system configuration and message handling.
Of these we mention in particular only Threshold, which provides threshold signatures,
encryption and coins, and Link, which is the access point for all protocol implementation
to the multipoint network. Protocol layers communicate with each other and with Link
by sending asynchronous events, which is also the mechanism behind the asynchronous
invocation method allowed by the API.

An overview of these classes and their relationships is shown in Figure 4.1.

4.2.2 Protocols under Static Groups

We shall now provide some specific information about the implementation of the
various protocols of the MAFTIA middleware in the static group model. In particular,
we will very briefly summarize the algorithms underlying these protocols, in large part to
point out the layering and composition which is used to build the complex protocols out
of simpler ones. It shall quickly become clear that the simple picture in Figure 4.1 with
individual protocols as terminal leaves in a simple tree, while literally true on the level of
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class inheritance, is quite deceptive in terms of protocol execution: in fact, most protocols
call one or more of the others as subprotocols, and all protocols use the Link layer to
handle external communications with the rest of the group.

1. In ABBA, each party begins by sending its initial vote to the whole group, then
collecting sufficiently many such votes and determining what is the majority. Then
the parties start going through rounds with a pre-vote stage, a main-vote stage, and
then a decision or threshold coin-share generation stage. Each of these votes are
justified by threshold signatures and each time sufficiently many votes or coin shares
must be collected to assemble the full signature or coin. This is a very direct protocol,
and while it does (potentially) quite a bit of multipoint communication, it does not
call any subprotocols.

2. VABBA is a slight modification of ABBA whereby each party must keep track of
validation data for it’s own initial vote as well as for the opposing vote, if it should
ever appear in some round’s communication from another group member. Then
whichever vote is selected at the end of the protocol run, a validation can be provided
for it.

3. The basic idea of VBA is that every party uses CBC to propose its own value as a
candidate value for the final result, and then one party whose proposal satisfies the
validation predicate is selected as the final decision value in a sequence of VABBAs.

4. For CBC, the sender transmits the message to the whole group and then waits for
sufficiently many parties to reply with a threshold signature share as a “witness”
guaranteeing consistency. The shares are combined and the resulting signature is sent
to the group; any party receiving this signature immediately delivers the message.
Note that while there is extensive use of the Link here, no other protocols are called.

5. The sender in RBC first sends her message to the whole group; any party responds to
the first such opening message by echoing the hash of the message to the group. Upon
receiving sufficiently many echo messages, each party sends a ready message to the
group, again with the hash of the message. A group member who receives sufficiently
many ready messages may deliver the corresponding message if she has it, otherwise
she will ask enough other parties for the message body to be she that some other
honest party will have it and can respond. Again, this protocol has a high multiparty
network communications complexity but depends upon no other subprotocols.

6. ABC proceeds by a series of global rounds in which the parties agree upon a set
of messages to deliver at the end of each round. More precisely, in a given round
every party signs the message it proposes and send this to the whole group. She
then proposes a list of (sufficiently many) such messages for a run of VBA and the
decided-upon list of messages is delivered in some order fixed a priori.
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7. In SC-ABC, an ABC channel is used to broadcast the ciphertexts. When a given
ciphertext is atomically delivered for some party, she then sends via Link a request to
the whole group to decrypt this message along with her share of threshold decryption.
When sufficiently many such shares come in, she can combine them to get the message
cleartext and deliver it.

These inter-protocol dependencies are depicted in Figure 4.2.

4.2.3 Protocols under Dynamic Groups

Dynamic groups are supported by the group membership modules mentioned above.
The protocols are parameterized by an instance of a View, which contains all relevant
parameters (such as the number and the identities of all members).

We need three basic protocols to maintain the secret keys within a dynamic group:
Add, Remove, and Reshare. We give only a brief overview of these here; more details can
be found in [46].

Protocol Add adds a new member to the group as a consequence of the joinGroup
operation, and supplies the necessary secret keys. For the commonly used linear secret
sharing schemes, this can be achieved by means of a distributed secure computation from
which the new member learns its secret key.

Protocol Remove eliminates a member from the group as a consequence of the
leaveGroup or excludeGroup operation. No communication between the members is
needed to achieve this, but one must assume that all cryptographic keys are removed
from the memory of the removed party.

Protocol Reshare basically involves replacing the degree-t sharing polynomial with
a randomly chosen degree-t' polynomial that shares the same secret. This is a well-known
primitive in synchronous threshold cryptography, but new protocols had to be developed
for the asynchronous case [46].
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4.3 Activity Services

This section describes at a high level the protocols used to implement the transac-
tional support service.

The following protocols are outlined in this section:

Atomic commitment and abort protocols

e Recovery protocols,

Distributed locking protocol,

e Resource manager replication protocol.

The protocols make use of some communication primitives that abstract away from
the issue of whether asynchronous or partially synchronous protocols are being used. There
are primitives for atomic broadcast, secure causal broadcast, consensus, reliable broadcast
and reliable send. Each of these is detailed below:

Atomic broadcast The atomic broadcast primitives are:

e a-broadcast(gid, message) initiates atomic broadcast of message to all group
members of the group gid,

e a-deliver(message) is called when a message is delivered to a participant, this
takes place after the message has been received and some computation has been
performed to guarantee the total order atomic broadcast property.

Secure causal atomic broadcast The secure causal atomic broadcast primitives are:

e sc-broadcast(gid, message) initiates a secure causal atomic broadcast of message
to all group members of the group gid,

e sc-deliver(message) is called when a message is delivered to a participant is deliv-
ered, this takes place after the message has been received and some computation
has been performed to guarantee the secure causal total order atomic broadcast
properties.

Consensus This service allows consensus on a proposed value amongst the members of
the group gid, we assume that the consensus function is flexible and the decision
algorithm can be adjusted. In the protocols described below, consensus is on the
value proposed by the majority of honest participants.

The consensus primitives are:
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e propose(gid, vote) launches consensus for the group gid with an initial vote (vote),

e decide(gid, decision) is called when the consensus ends and an agreed majority
value (decision) has been decided upon.

Reliable send The reliable send primitives are:

e send(pid, message) send a message to a participant (pid).

e deliver(message) is called when the message is delivered to the participant.
Reliable broadcast The reliable broadcast primitives are:

e broadcast(gid, message) make a reliable broadcast of a message to a group gid of
message (order is not guaranteed).

e deliver(message) is called when the message is delivered to the participant.

We assume that the group communication primitives make use of two types of
group. There is a transaction manager replica group (transaction manager group) and
possibly multiple resource manager replica groups (resource manager group). It is assumed
that the transaction manager replica group is a static group that exists at system setup,
and the resource manager groups are dynamic groups established when resource managers
register themselves with the transaction managers. See figure 4.3 for an illustration. Here
a client group is shown interacting with a group of transaction servers, and two groups
of resource managers and resources. Note that the resource managers are the dark circle,
and the resources are shown as white circles wrapped by a resource manager. Although it
is possible to imagine a configuration where multiple resource managers manage a single
resource we are initially assuming that there is always one resource manager to a resource
and they are replicated as one component.

We assume that open groups are used which means clients do not need to belong
to the transaction manager group to broadcast to them. Similarly the resource manager
group is open and transaction managers can broadcast to them without having to be within
their group. Closed groups could be supported but it would require the establishment of
overlapping groups, for example a client and transaction manager replica group.

4.3.1 Assumptions

These protocols gain their intrusion tolerance from the use of replication and voting.
If we assume that there are a minimum of 2¢ 41 replicas then the protocols can tolerate up
to t faulty replicas. Termination and liveness guarantees are provided by the underlying
protocols. The underlying protocols also mask timing faults, and byzantine behavior where
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Figure 4.3: Transactional Support Service Groups

replicas send conflicting messages to each other. Where serializability is required we make
use of secure causal broadcast which ensures that each replica receives messages in the
same order that they were sent by the sender.

A common step in the protocols is to wait until ¢ + 1 distinct replicas have sent
identical messages and the deliver this message. As long as our assumption that no more
than t replicas are faulty this is guaranteed to terminate. We define a function major-
ity(primitive(message)) that uses the primitive to collect delivered messages and only delivers
message when ¢+ 1 distinct replicas have sent identical messages. For example, majority(sc-
delivery(message) will only deliver message when ¢ + 1 distinct replicas have sent identical
messages. We use this primitive to simplify the presentation of the protocols below.

The recovery protocols assume that failed replicas will eventually be re-initialised by
some external agency, and that transaction managers and resource managers have secure
durable recovery logs. The force-write(message) primitive is used to write message to the
recovery log.
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4.3.2 Atomic commitment and abort protocols

In this section we describe an intrusion tolerant two-phase atomic commitment

protocol [27] and an intrusion tolerant abort protocol based upon the MAFTIA middleware
atomic broadcast protocols. The protocol is blocking as a unanimous decision to commit
is required from all clients participating in the transaction before commitment can take

place.

The two-phase atomic commitment protocol (2PC) is described below:

Protocol 2pc-atomic-commiat:

10.

11.

. Each client multicasts to the transaction managers using sc-broadcast(transaction

manager group, commit),

each transaction manager (TM) waits for sc-delivery(message) where the message is
commit from every client and then, if there is any disagreement then the abort
protocol is invoked

if all clients have decided to commit then the TM performs sc-broadcast(resource
manager group, prepare), thereby asking each resource manager to prepare,

. each resource manager (RM) waits for majority(sc-delivery(message))and then,

each RM that is willing to commit force-writes a prepare log record, or if it only
willing to abort force-writes an abort log record,

each RM performs sc-broadcast(transaction manager group, ok) if it has committed
okay and otherwise performs sc-broadcast(transaction manager group, notok),

each TM waits for majority(sc-delivery(ok)) from each resource manager group, until
ok has been received from each resource manager group,

if each RM group has decided ok then the TM decides on commit, if any RM group
decided on notok then the TM decides on abort,

. the TM force-writes either commit or abort to the log,

each TM multicasts its decision either to commit or abort to the resource manager
groups using sc-broadcast(resource manager group, decision),

each RM waits for majority(sc-delivery(message)),
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12. if the RM received commit then it force-writes a commit record, multicasts an ac-
knowledgment to the transaction manager group using sc-broadcast(transaction man-
ager group, ack) and commits the transaction,

13. if the RM has received abort then it force-writes an abort record, performs a
sc-broadcast(transaction manager group, ack) and undoes any changes,

14. each TM waits for majority(sc-delivery(message)) from each resource manager replica

group, if the message is ack then the transaction manager force-writes an end record.

The atomic abort protocol is described below. We assume that any client can force
an abort of a transaction.

Protocol atomic-abort:
1. A client multicasts abort to the transaction manager group using sc-broadcast(transaction
manager group, abort),

2. each transaction manager (TM) waits for sc-delivery(message), if the message is abort
then,

3. each TM multicasts to the resource manager groups using sc-broadcast(resource man-
ager group, abort),

4. each resource manager (RM) waits for majority(sc-delivery(message)),

5. if the message was abort then it force-writes an abort record, multicasts it result
to the transaction manager group using sc-broadcast(transaction manager group, ack)
and undoes any changes,

6. each TM waits for majority(sc-delivery(message)), if the message is ack from each
resource manager replica group then TM force-writes an end record.

4.3.3 Recovery protocols

In the event of the failure of a site the aim is to still provide an atomic outcome
for the transaction or failure atomicity. The recovery protocol attempts to do this by
examining log messages maintained by different participants of the transaction service
when they restart. There is a separate protocol for resource managers and transaction
managers.

Protocol resource-manager-recovery:
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1. If on restart, a resource manager (RM) finds itself in the prepare state then,

2. the RM multicasts to the transaction manager group using a-broadcast(transaction
manager group, getStatus) to discover if the transaction has completed,

3. each transaction manager (TM) checks its logs to determine the result of the trans-
action and replies using send(client, result),

4. the TM waits until majority(deliver(message)) delivers a message,

5. if aborted have been received then the RM aborts, otherwise it commits any related
local state.

Protocol transaction-manager-recovery:

1. If on restart, a transaction manager (TM) finds itself in either commit or abort state
then it multicasts to the transaction manager group using a-broadcast(transaction
manager group, getStatus) to discover if the transaction has completed,

2. each TM is delivered the getStatus message by a-delivery(message), checks its logs to
determine the result of the transaction and sends back the result send(transaction
manager group, result),

3. the TM waits until majority(deliver(message)) delivers the result,

4. if the result is aborted then the transaction was aborted, the TM writes an end
message to its log,

5. if the message is committed then the transaction was committed, the TM writes an
end message to its log,

6. if the message is committing or aborting messages are received then the TM completes
the two-phase commit or abort protocols from the commit or aborting point.

This approach assumes that eventually a majority of transaction managers will
recover and accordingly resource managers will commit or abort.

4.3.4 Distributed locking protocol

When locking resources the decision as to whether a resource manager will grant a
lock or not depends on whether the locks are compatible. We assume a one writer, multiple
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reader model where the holding of a read lock does not prevent the granting of write lock
but the holding of a write lock prevents the granting of another write lock by a client not
participating in the transaction. We assume that clients within the same transactional
context take care of concurrency between them using an application specific protocol.

The protocol must take into account the fact that resource manager replicas need
to come to a majority agreement on the granting of a lock. To achieve this consensus is
used.

The lock compatibility scheme implemented by the protocol is the commonly used
lock compatibility scheme of one writer and multiple readers. Here only one write lock can
be held for a resource, but multiple read locks can be held unless there is already a write
lock held for the resource. Who owns the locks must also be taken into account. Where
nested transactions are supported, multiple possession semantics can be defined that allow
child transactions to gain locks that are compatible with their parent transaction. The
current specification of the transaction service only allows flat transactions, so we only
allow locks to be granted when the request is in the same transactional context as those
locks that are already held.

The locks are acquired and released using a two-phase locking protocol which in-
creases the visibility of resources but still ensures that the isolation property is guaranteed.
In the two-phase locking protocol, lock acquisition for resources is attempted as needed but
no lock can be released until all required locks have been acquired. In effect, this means the
locks that have been acquired are only released when the transaction aborts or commits.
Deadlock can occur if a lock request fails because the object is locked already by another
transaction and the lock requester blocks in the hope that the lock may be released soon.
In this protocol we use local timeouts to resolve the problem of deadlock. We also apply a
timeout to the step where the protocol blocks until £ + 1 messages have been received. If
timeout occurs then the result is assumed to be notok.

Protocol replica-locking:
1. A client uses sc-broadcast(resource manager group, setLock(transaction id, lock type))
to multicast the lock request to the resource manager group,

2. Each resource manager (RM) has sc-delivery(message) invoked and begins consensus
with the other members of the replica group,

3. each member proposes either ok or notok

4. once consensus has resulted in a decision each RM uses send(client,decision) to inform
the client,

5. the client waits until majority(deliver(message)) delivers a result.
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4.3.5 Resource manager replication protocol

Resource managers are replicated using an active replication group management
policy. In active replication, all the functioning members of the group perform process-
ing [40]. This requires that the replicas are deterministic and all client invocations are
processed in the same order. We make use of the atomic broadcast protocol to ensure that
client invocations are delivered in the same order to all honest replicas, and we make use
of voting to determine the majority decision of all replicas that return a result. Note that
when a request is send a sequential request id is encapsulated by the request, and when the
reply is returned it encapsulates the corresponding request id. This is to allow the client
to order results and thereby achieve sequential consistency for the results of requests.

Protocol data-replication:
1. the client uses sc-broadcast(resource manager replica group, request) to multicast to
the resource managers replica group,

2. each resource manager (RM) waits for sc-delivery(request) and then executes the re-
quest,

3. the resource manager uses send(client, result) to send the result back to the client,

4. the client waits for majority(delivery(reply)) to deliver the result.
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5 Conclusion

This deliverable presented the first specification of the APIs and protocols for the
MAFTIA middleware. It started by describing the interfaces of the runtime environments
that will support the middleware architecture and other components in general that might
want to use their services, namely the Appia protocol kernel and the Trusted Timely
Computing Base (TTCB). Next, the interfaces of the following modules were presented:
Multipoint Network; Communication Services; Activity Services; Site Membership; Partic-
ipant Membership. The APIs described can be used not only by end-user level programs,
but also recursively by other modules of the architecture. Since many of the protocols are
currently under development, the protocol chapter was mainly devoted to definition of the
underlying principles and in some cases a few protocols were briefly described.

In a next deliverable of WP2, “D9 - Complete specification of APIs and protocols
for the MAFTTA middleware”, this specification will be further refined with the inclusion
of updates to the APIs and with a complete specification of the protocols.
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