
On a Concept Map for the
Modelling of Controlled Flexibility

in Software Processes

Ricardo Martinho
Dulce Domingos

João Varajão

DI–FCUL TR–2009–12

May 2009

Departamento de Informática
Faculdade de Ciências da Universidade de Lisboa

Campo Grande, 1749–016 Lisboa
Portugal

Technical reports are available at http://www.di.fc.ul.pt/tech-reports. The files are
stored in PDF, with the report number as filename. Alternatively, reports are available
by post from the above address.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade de Lisboa: Repositório.UL

https://core.ac.uk/display/32330558?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




On a Concept Map for the Modelling of
Controlled Flexibility in Software Processes

Ricardo Martinho1, Dulce Domingos2, and João Varajão3

1 School of Technology and Management, Polytechnic Institute of Leiria, Portugal
rmartin@estg.ipleiria.pt

2 Department of Informatics, Faculty of Sciences, University of Lisboa, Portugal
dulce@di.fc.ul.pt

3 Department of Engineering, University of Trás-os-Montes e Alto Douro, Portugal
jvarajao@utad.pt

Abstract. Software processes and corresponding models are commonly
held as dynamic entities that are often changed and evolved by skillful
knowledge workers such as the members of a software development team.
Consequently, process flexibility has been identified as one of the most
important features that both Process Modelling Languages (PMLs) and
software tools that manage the processes should support. However, in
the everyday practice, most software team members do not wish for to-
tal flexibility. They rather prefer to have controlled flexibility, i.e., to
learn and follow advices previously modelled by a process engineer on
which and how they can change the elements that compose a software
process. Since process models constitute a preferred vehicle for sharing
and communicating knowledge on software processes, the process engi-
neer needs a PML that can express this controlled flexibility, along with
other process perspectives. To achieve this enhanced PML, we firstly need
a sound core set of concepts and relationships that defines the knowl-
edge domain associated with the modelling of controlled flexibility. In
this paper we capture and represent this domain by using Concept Maps
(Cmaps). These include diagrams and descriptions that elicit the rela-
tionships between the concepts involved. The proposed Cmaps can then
be used as input to extend a PML with modelling constructs to express
controlled flexibility within software processes. Process engineers can use
these constructs to define, in a process model, advices on changes that
can be made to the model itself or to related instances. Software team
members can then consult this controlled flexibility information within
the process models, and perform changes accordingly.

1 Introduction

Software process modelling involves eliciting and capturing informal process de-
scriptions, and converting them into process models. A process model is ex-
pressed by using a suitable Process Modelling Language (PML), and is best
developed in conjunction with the people who participate in, or are affected by
the process. Therefore, it is important for them to be familiar with the concepts

1



expressed by the PML. Most common ones include activities, artifacts, work
products, roles, control flow elements (e.g., sequencing, fork, join, decision and
merge nodes) and object flow elements (e.g., inputs and outputs to activities).

These process elements are specified in the PML’s metamodel, and can
be used to define process models. Models are instantiated to realise software
projects. Therefore, process instances follow a certain model, and are comple-
mented with specific (runtime) project data such as activities’ duration, cost and
resource assignments. Process instances are then executed along with project’s
real-world enactments.

Software systems that manage and execute these process models and in-
stances are generally referred as Process-Aware Information Systems (PAIS) [1].
Particularly for software processes, these are often called Process-centred Soft-
ware Engineering Environments (PSEE) [2].

Software process models and instances are commonly held as dynamic enti-
ties that often must be changed and evolved, in order to cope with alterations
occurred in: the real-world software project (due to changing requirements or un-
foreseen project-specific circumstances); the software development organization;
the market; and in the methodologies used to produce software [3]. Therefore,
it should be possible to quickly design new process models, to enable on-the-fly
adaptations of running instances, to defer decisions regarding the exact process
modelling logic to runtime, and to evolve implemented process models over time.

Consequently, process flexibility has been identified as one of the most im-
portant features to consider in PMLs and supporting PSEEs [4]. In this context,
it denotes the ability to change processes, without completely replacing them.
Terms such as adaptability are also commonly used in literature. To clarify these,
we adopted the distinction made in [5], which states that adaptability is change-
ability triggered by an internal agent of change, while flexibility involves changes
made by an external one (human or software component).

Totally rigid software processes, PML and supporting PSEE have long proven
to be not effective for the dynamic nature of software [3]. On the other hand,
allowing for total process flexibility (i.e., 100% changeable) threatens the original
purpose of process models, which is to provide guidance for software project
planning and execution. In fact, enabling software team members to perform
(and describe) unlimited and unclassified changes to software processes hampers
seriously the learning and reuse of this information in the future. Moreover, in
the everyday business practice, most people do not want to have much flexibility,
but would like to follow very simple rules to complete their tasks, making as little
decisions as possible [6, 7].

To corroborate this, case studies on flexibility in software processes (e.g.,
[8]) make evidence on the need of having (senior) process participants express-
ing and controlling the changes that other process participants are advised to
make in software process models, instances and, consequently, real-world soft-
ware projects. This controlled flexibility can be defined as the ability to express
and control, by means of a PML and resulting process models, which, where and

2



how certain parts of a software process can change, while keeping other parts
stable [7].

Therefore, the first step on deriving a controlled flexibility-aware PML is to
provide a set of understandable concepts and relationships associated with this
domain of knowledge. These should be easily learnt and shared among process
engineers and software development team members. We provide, in this paper,
a set of core concepts and relationships that pertain the modelling of controlled
flexibility in software processes. We achieve this purpose by using Concept Maps
(Cmaps) [9] that capture these concepts through diagrammatic representations
of the relationships between them. We also provide detailed descriptions about
these maps.

The purpose is to form a sound knowledge base on controlled flexibility, to be
shared between process engineers and software team members. This knowledge
is to be latter incorporated into a PML, in order to enable process engineers the
modelling of advices on which, where and how changes can be made to software
processes. Software team members should then follow those advices and perform
changes accordingly.

This paper is organised as follows: section 2 introduces Cmaps and section 3
presents the main diagrams for the proposed maps, along with descriptions on
the comprised concepts and relationships. Section 4 analyses most relevant re-
lated work on flexibility conceptual frameworks, taxonomies and corresponding
applications. Finally, section 5 concludes the paper and presents future work.

2 Introduction to ontologies and Concept Maps

The use of ontologies pursuit a standard way of specifying content-specific agree-
ments for the sharing and reuse of knowledge [10]. A body of formally represented
knowledge is based on a conceptualisation: the objects, concepts, and other en-
tities that are assumed to exist in some area of interest and the relationships
that hold among them [11]. An ontology is an explicit specification of a concep-
tualisation [10].

This specification can assume more or less formal representations, according
to the purpose of the ontology, and to whom/what will be the sharing target of
the knowledge it defines. If it is to be shared among humans, it can assume a
less formal and human-centred representation, such as the diagrams and tools
associated with Concept Maps (Cmaps) [9]. If the reasoner is automated (e.g.,
a software component), then a more formal and machine-centred language ap-
plies, such as the Resource Description Framework (RDF) and Web Ontology
Language (OWL) [12].

According to Novak and Cañas in [9], a Concept Map is a graphical tool for
organising and representing knowledge. It includes concepts that are graphically
represented by a box or circle drawing shape, and relationships between concepts
represented by a connecting line linking two concepts. Lines have also a textual
representation (referred to as linking words or linking phrases), which specify
the relationship between the two concepts.

3



Concept is defined as a perceived regularity in events or objects, or records
of events or objects, designated by a label. This label is usually composed by
one or more words, but can also assume other textual symbols, such as + or %.

Propositions are statements regarding objects or events in the universe, either
naturally occurring or constructed. They form a meaningful statement about the
relationships that exist between two or more concepts.

Relationships may be classified under static and dynamic [13]. Static rela-
tionships between concepts help to describe, define, and organise knowledge for
a given domain. Classifications and hierarchies are usually captured in relation-
ships that have a static nature and indicate belongingness, composition, and
categorisation.

A dynamic relationship between two concepts reflects and emphasises the
propagation of change in these concepts. It shows how change in quantity, quality,
or state in one concept causes change in quantity, quality, or state of the other
concept in a proposition. In other words, a dynamic relationship reflects the
functional interdependency of the two concepts involved [14].

These are the basic foundations of Cmaps. We apply them in the next sec-
tion to capture the knowledge domain of modelling controlled flexibility within
software processes.

3 Capturing the knowledge involved in modelling
controlled flexibility

We adopted Cmaps and CmapTools [15] as a less formal but proven method
for explaining and communicating domain knowledge [16]. CmapTools has been
developed over the previous decade as an intuitive, human-centred computer
interface for creating and managing concept maps. We use it to create and man-
age the relationships between the proposed concepts. Our goal does not com-
ply, for the time being, automated mechanisms as possible targets for sharing
knowledge. We aim at enhancing the learning and sharing of process controlled
flexibility-related concepts among process engineers and software team members.
Nevertheless, CmapTools includes export and import features for ontologies rep-
resented in formal OWL-derived languages, which provides us the means for a
latter and more formalised ontology approach.

To achieve our purpose, we begin by providing in the next section a focus
question to which our Cmaps must be able to answer.

3.1 Focus question

Recent studies advocate that, when a Cmap is constructed with a particular
purpose and for a certain audience, its objective is better achieved by providing
a focus question, to which the Cmap will be designed to answer [14, 9]. Moreover,
and to prompt dynamic thinking and dynamic relationships between concepts,
the question should be of type “How does the concept X work?”, rather than
“What is concept X?” [14].

4



Fig. 1. Core Concept Map for sharing knowledge on process controlled flexibility

In the context of this work, we propose, in the next section, Cmaps to provide
answers for the following focus question:

“How can software processes be subjected to changes in a controlled
way?”

3.2 Diagrams

In this section we present the diagrams for the concepts and relationships that
provide answers to the focus question. We begin by illustrating in Figure 1 the
main Cmap for this purpose. As we carry along describing those concepts, we also
provide helpful descriptions on related contexts and examples (not represented
in the diagrams, for not being within their focus).

Figure 1’s diagram shows that a software process is a combination of elements
represented by a model. These elements can be used to express correlated process
perspectives, including [17]:

5



– Functional - what process elements are being performed (e.g. phase, activity
and step elements);

– Behavioural - when process elements are performed (e.g. control flow nodes
such as fork, join, decision and merge nodes, as also iterative/parallel region
elements);

– Organisational - where and by whom (which agents) in the organisation pro-
cess elements are performed (e.g. role elements, and resources like physical
communication mechanisms, physical media and location used for storing
entities); and

– Informational - informational entities produced or manipulated by a pro-
cess (e.g. data, artifact, work product (intermediate and end) and object
elements). It includes both structure of informational entities and the rela-
tionships among them.

Back to our diagram, a process element model depends on its metamodel,
which establishes its structure of concepts, relationships and constraints. An
overall process metamodel usually defines a Process Modelling Language (PML),
where all process modelling elements are specified. The Software & Systems
Process Engineering Metamodel (SPEM) [18] is an example of a software process
metamodel which defines UML Activity Diagrams (AD) as the core PML.

Process models are then created as instances of the metamodel, and include
as more or less specified arrangements of process element model representations
such as activities, resources and resulting work products. Examples of software
process models include the (textual and graphical/diagrammatic) process rep-
resentations comprised by well known software methods such as the Unified
Process [19].

Applying a process model for a specific software project is called process in-
stantiation. An instance follows the model and needs to be provided with specific
data for each distinct project, such as activities’ duration, (human) resource as-
signments, cost estimations and monitoring/control data updates. Multiple pro-
cess instances may share the same process model. On the contrary, real-world
processes have a 1:1 multiplicity to process instances, as they reflect the activi-
ties, resources and products that are actually performed, used and produced by
humans or tools. It describes what is really happening, and process participants
may retrieve feedback which is used to update process running instances.

Metamodel, model, instance and real-world are process element representa-
tions defined at distinct but correlated abstraction levels of modelling. These
representations are subjected to changes, which in turn have effects that can
affect their states.

A change is characterised by properties and enforced by operations. Perform-
ing change operations includes creating, updating and deleting process elements,
as well as moving them or realising element- and representation-specific oper-
ations such as undo, skip or redo an Activity in a process running instance.
Actually, change operations are the actions that will change the state of process
elements.

6



Properties of change are not dependent on a process element’s type, but
characterise multiple and general dimensions of a change. Concrete properties
of change commonly referred in literature include [20, 21]:

– Extent of change, denotes whether a change is only introduced to an already
existing process model (incremental change), or abolishes the existing pro-
cess model and creates a completely new one (revolutionary change). Often
experts are required to do revolutionary changes to the whole or part of a
process model;

– Duration of change, states that changes can be temporary or permanent
changes. Temporary changes are valid for a limited period of time, and per-
manent changes are valid until the next permanent change;

– Swiftness of change, expresses whether changes are to be applied immediately
to all process model instances (also the running ones), or deferred only to
new instances of the changed process model;

– Anticipation of change, defines whether the change is planned or ad-hoc. Ad-
hoc changes are often made to tolerate exceptional situations, and planned
changes are often part of a process redesign.

Operations use mechanisms in order to be enforced. For example, executing
an add operation on a process model implies the use of a software tool that,
besides supporting process editing features, also provides verification of confor-
mance, consistency, and compliance rules associated with that operation. All
these resources can be considered as mechanisms of change [5]. These mecha-
nisms can depend on the properties that are desired for a change to have. For
example, if the former add operation was to be valid during two weeks (duration
property of change), the mechanism(s) used to support it would have also to
comprise this property.

Changes are instigated (put into action) by agents of change. In the software
process context, the agent of change is responsible for setting into motion op-
erations that will result in an effect of change endured by one or more process
element representations.

Agents of change may be software components that automatically change
process element representations under some criteria, or humans such as soft-
ware process engineers, project managers, analysts, designers, programmers and
testers, that need to change/adjust software process representations.

A change can be controlled by constraints, which are also represented by mod-
els that the process engineer configures. Constraints define advices of change,
which refer to the abstraction level, operations, properties, mechanisms and/or
agents that should be considered when changing a certain process element rep-
resentation. Advice on a change can be a value- or text-based attribute (for
instance, 60% or recommended), or any other combination of values that best
fit the process element representation to which the advice is associated.

For example, a constraint of change may impose that changes made at the
process model are recommended to be reflected immediately to all corresponding
running instances. The modelling of this constraint can be made by composing

7



Fig. 2. Generalisation relationships for some of the concepts illustrated in Figure 1

a tuple with semicolon separated values of the form (abstraction level repre-
sentation: <String>; change property name: <String>, change property value:
<ChangePropertyValue>; advice type: <AdviceType>, advice value: <Advice-
Value>), with the values (abstraction level representation: "model"; change
property name: "swiftness", change property value: immediate; advice type:
TextBasedAdvice, advice value: "recommended").

Figure 2 represents some generalisation relationships pertaining concepts al-
ready presented in Figure 1 and referred above. Some concepts are filled with
question marks (????). This means that the general concept can have more or
different specialised elements beyond the examples represented, since they can
depend on factors such as the modelling language, application domain, tool sup-
port and/or organisational context.

4 Related work

Since the early 1990s, there has been a shift from data orientation to process
orientation, triggering the development of Process Aware Information Systems
(PAIS): software systems that manage and execute operational processes in-
volving people, applications, and/or information sources on the basis of process
models [1]. Within the process modelling and enacting research areas, flexibility
became a hype when several researchers observed that rigidity was not desirable
in some specific areas, such as the ones involving software processes [3]. There-
after, some research works contributed with conceptual frameworks, while others
focused on tool support regarding on flexibility.

Although all these works are valuable for refining the process flexibility scope,
they do not share a common set of inherent concepts. In fact, we can observe that
there are different descriptions, perspectives and classifications for the concepts
involved (see, e.g., the concept of abstraction level of change, which fall into
different classifications in [22], [20] and [23]).

8



We also could not find any related work on concept maps for process flexibil-
ity, or any kind of specific (sub)taxonomy of concepts related with the control
of that flexibility. Nevertheless, the taxonomies presented here as related work
are a mix between flexibility concept descriptions and flexibility classifications,
where relationships between the concepts described/classified are not always
clear. Also, these works emphasise on flexibility within process models and in-
stances, disregarding the possibility of controlling flexibility within metamodel
and real-world representations as well.

One of the most prominent foundational research works on software process
flexibility is the one presented by [23] and his Prism model of changes. Here,
Madhavji has identified several items strongly related with the software devel-
opment environment, which are subjected to continuous change. The basic items
of change are people, policies, laws, resources, processes and results. For various
predictable and unpredictable reasons, such items may need to be changed on
an ongoing basis. Therefore, the Prism model of change included the following
features:

– Separation between changes made to the described items and changes made
to the environmental facilities encapsulating those items;

– A dependency structure that describes the various items and their interde-
pendencies. It is used to identify the items affected by a given change;

– A change structure that classifies, records and analyses change-related data,
and makes qualitative judgement of the consequences of a change;

– Identification of the many distinct properties of a change;
– A built-in mechanism for providing feedback on changes made.

Prism incorporates a two-level approach for designing, implementing and
controlling changes to items in an environment. The first level (the meta level)
deals with the identification of the set of items affected due to a certain change.
The second level (the normal level) is where data related to the change is clas-
sified and recorded. These levels also include feedback mechanisms to instigate
changes to items and provide projection for future changes.

The PRISM model of changes covers not only the identification of change
concepts and relationships, but also the logging of changes made and corre-
sponding analysis/feedback to improve the software process. In spite of being an
important contribution to characterise change, it does not comply a way for pro-
cess engineers to model some control of changes, based on feedback information
from software project runs.

Figure 3 illustrates the Prism model of change with the two-level approach.
Both dependency and change structures are to be use at the normal level. It is at
the meta level that these structures can be added, refined and improved through
meta feedback mechanisms that come from their use in the normal level.

Another earlier and often cited work is the one presented in [24], tagged as a
reference framework for categorising process evolution. Based on six dimensions
(origin, cause, type, how, when, and by whom), a change categorised by this
framework is called a change pattern.

9



Use of 
DEPENDENCY STRUCTURE

Describe & Improve:
- Basic items of change
- Dependencies

- Identify affected items

- Make changes or 
adjustments to items

- Provide feedback (items)

- Provide meta feedback 
(infrastructure DS)

Analyse 
feedback

- Build / Improve 
Change Structure

- Incorporate 
Change Structure

- Build / Improve 
Dependency Structure

- Incorporate 
Dependency Structure

Analyse 
feedback

Analyse 
meta feedback

Analyse 
meta feedback

Use of 
CHANGE STRUCTURE

- Record changes and
feedback

- Provide feedback (changes)

- Record post analysis

- Provide meta feedback 
(infrastructure CS)

Fig. 3. The PRISM Model of changes (adapted from [23])

The change pattern, project characteristics, and product quality attributes
are stored together so that they can be used for future projects. Data on the
evolution of a software development project were collected in a case study per-
formed in the software development department of a banking institution. With
regard to the origin, i.e., the sources of process changes, 40% of the recorded
changes were due to customer requests, and 60% were due to changes from senior
or middle management. The most common observed reasons (causes) were the
following:

– Misunderstanding originating from the customer;
– Resources and competence was not always available; and
– A new approach for solving the problem was adopted.

10



As the aforementioned work of Madhavji with the PRISM model, the authors
focused on registering and categorising changes made to process runs. This infor-
mation is then directly used to fine-tune process representations. Once again, it
is not included as guidance or control for process participants that really change
the way the process is executed against model representations.

According to a recent taxonomy proposed in [20], process flexibility can be
classified in three orthogonal dimensions:

1. Abstraction level of change, that distinguishes where changes are to be made,
i.e., if at the type or instance levels (or both). Changing the process model
(type level) implies changing the defined standard way of working, as it will
affect all instances created there forward. However, change can occur only
for certain instances of a process (instance level), in order to accommodate
exceptional situations;

2. Subject of change, representing which modelling elements are to be changed,
and, consequently, which related perspective(s) (such as the ones in [17]
mentioned above);

3. Properties of change, denoting how can a modelling element be changed. Ex-
amples include properties mentioned above, such as extent, duration, swift-
ness and anticipation of change.

This taxonomy was very useful to establish some of the concepts we used in
our Cmaps, namely the concepts of abstraction level of change and property of
change. These can be used to compose the tuple of a constraint of change to
control the changes made to a process element representation. Process element
representations correspond (although not explicitly), in this taxonomy, to the
subjects of change concept.

In a sequence of also recent contributions, in [21] Schonenberg et. al propose
another taxonomy on process flexibility. Four distinct approaches are identified,
each having its own application area. They are flexibility by :

– design - for handling anticipated changes in the operating environment,
where supporting strategies can be defined at design-time;

– deviation - for handling occasional unforeseen behaviour, where differences
with the expected behaviour are minimal;

– underspecification: for handling anticipated changes in the operating envi-
ronment, where strategies cannot be defined at design-time, because the final
strategy is not known in advance or is not generally applicable;

– change: either for handling occasional unforeseen behaviour, where differ-
ences require process adaptations, or for handling permanent unforeseen be-
haviour.

Each flexibility type operates in different ways. Figure 4 provides an illus-
tration of the distinction between these types in isolation, in terms of the time
at which the specific flexibility options need to be configured - at design time,
as part of the process model or at runtime via facilities in the process execution
environment. It also shows the anticipated completeness of the process represen-

11



����������		
�����������
�
���
������������
�	��		�����������
�
�
�������	������� ���
����
�� �����
�����
�� ���
��
�����������
�
���
���������
��
���	��
�
	
�������
�����
��
Fig. 4. Flexibility type spectrum (adapted from [21])

tation for each flexibility type.
Flexibility by underspecification works on the basis of an incomplete process

model. Combined with late binding only, it just offers design-time configura-
tion options, i.e., only the fragments that have been defined during design-time
can be selected at runtime. Whereas, combined with late modelling, also run-
time configuration options are offered by providing means to define and select
fragments at runtime.

In the spectrum of options, flexibility by design distinguishes itself by be-
ing the flexibility type that works for full process definitions, whilst only being
configurable at design-time. At runtime, only predefined paths can be chosen.

Both flexibility by deviation and change work with complete process rep-
resentations. For both types, the configuration options are only available at
runtime. Although very similar, only flexibility by change affects process repre-
sentations from both instance and model levels of abstraction, whereas flexibility
by deviation does not affect process models at all.

The same authors also survey contemporary approaches [25], and evaluate
their taxonomy against a selection of PAIS, namely ADEPT1 [26], YAWL [27],
FLOWer (version 3.0) [28] and Declare (version 1.0) [29].

Although our purpose does not include an explicit classification of types of
flexibility, these works by Schonenberg et. al contributed to refine the scope of
several change concepts and relationships of our Cmaps, namely mechanism,
property, operation and abstraction level.

Constraints of change in process models are analysed in [30]. The authors pro-
pose modelling tool artifacts to support correctness, compliance and consistency
constraint modelling and checking. They have developed a simple diagrammatic

12



language named Business Process Compliance Language (BPCL) which a pro-
cess engineer can use to specify constraints to which process representations have
to comply.

This work has contributed to develop our constraint of change concept. It
also provides us several ideas for future work, namely regarding tool support for
the (syntax and semantic) analysis on the modelling and checking of controlled
changes.

5 Conclusions and future work

We provide in this paper concept maps for the modelling of controlled flexibil-
ity in software processes. The main purpose of this map is to establish a sound
knowledge base to enhance process engineers and software team members’ un-
derstandability on process flexibility and how to control it. Our approach was
to define simple concepts that provide answers to the focus question “How can
software processes be subjected to changes in a controlled way?”.

We provide no taxonomic classifications for the concepts. The intent is to de-
velop a PML metamodel structure flexible enough to support these concepts and
corresponding relationships, in order to reflect software organisations’ distinct
needs of controlling flexibility within their software processes.

For this matter, we are using the presented maps as a conceptual basis to
extend UML Activity Diagrams (AD) as a flexibility-aware PML. We have been
working on this through the use of a profile of our own called FlexUML (see [31]
for further details). FlexUML defines a UML profile with a set of stereotypes and
tagged values that extend AD to support the modelling of controlled flexibility
in software process models. Being a standard de facto nowadays, the use of UML
AD as a PML to extend with controlled flexibility provides a better adjustment
for the modelling experience of software team members. They already use UML
AD and stereotypes on a daily basis to develop software. They also recognise
them as the PML used for modelling well known processes like RUP [32], XP
[33], OpenUP [34] and Scrum [35].

We are also implementing the extended AD on a PSEE tool called Flex-
EPFC (see [36] for further details), which is based on the IBM’s Eclipse Process
Framework Composer (EPFC1) tool. This enables process engineers to define
and publish software process models with additional (textual/graphical) flexi-
bility information through the use of the FlexUML profile stereotypes. Other
software team members can then visualise and learn about this information, and
change process model and/or instance representations accordingly.

References

1. Dumas, M., van der Aalst, W., ter Hofstede, A.H.M., eds.: Process-Aware Infor-
mation Systems: Bridging People and Software Through Process Technology. John
Wiley & Sons, Inc. (2005)

1 http://www.eclipse.org/epf

13



2. Gruhn, V.: Process-centered software engineering environments, a brief history
and future challenges. Ann. Softw. Eng. 14(1-4) (2002) 363–382

3. Cugola, G.: Tolerating Deviations in Process Support Systems via Flexible En-
actment of Process Models. IEEE Transactions on Software Engineering 24(11)
(1998) 982–1001

4. Reichert, M., Rinderle-Ma, S., Dadam, P.: Flexibility in process-aware information
systems. LNCS Transactions on Petri Nets and Other Models of Concurrency
(ToPNoC), Special Issue on Concurrency in Process-aware Information Systems 2
(2009) 115–135

5. Ross, A.M., Rhodes, D.H., Hastings, D.E.: Defining changeability: Reconciling
flexibility, adaptability, scalability, modifiability, and robustness for maintaining
system lifecycle value. Systems Engineering 11(3) (2008) 246–262

6. Bider, I.: Masking Flexibility Behind Rigidity: Notes on How Much Flexibility Peo-
ple are Willing to Cope With. In: Proceedings of the 17th International Conference
on Advanced Information Systems Engineering (CAiSE’05). (2005) 7–8

7. Borch, S.E., Stefansen, C.: On Controlled Flexibility. In: Proceedings of the 7th
Workshop on Business Process Modeling, Development and Support (BPMDS’06)
co-located with the 18th Conference on Advanced Information Systems Engineer-
ing (CAiSE’06). (2006) 121–126

8. Cass, A.G., Osterweil, L.J.: Process Support to Help Novices Design Software
Faster and Better. In: Proceedings of the 20th IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE ’05). (2005) 295–299

9. Novak, J.D., Cañas, A.J.: The theory underlying concept maps and
how to construct and use them. Technical report, IHMC CmapTools,
2006-01 Rev 2008-01, Florida Institute for Human and Machine Cogni-
tion (2008) available at: http://cmap.ihmc.us/Publications/ResearchPapers/
TheoryUnderlyingConceptMaps.pdf.

10. Gruber, T.R.: Toward principles for the design of ontologies used for knowledge
sharing. International Journal of Human-Computer Studies 43(5-6) (1995) 907–
928

11. Genesereth, M.R., Nilsson, N.J.: Logical foundations of artificial intelligence. Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA (1987)

12. W3C: Owl web ontology language guide - w3c recommendation 10 february 2004.
Technical report, W3C (MIT, ERCIM , Keio) (2004)

13. Safayeni, F., Derbentseva, N., Cañas, A.J.: A theoretical note on concepts and
the need for cyclic concept maps. Journal of Research in Science Teaching 42(7)
(2005) 741–766

14. Derbentseva, N., Safayeni, F., Cañas, A.J.: Concept maps: Experiments on dy-
namic thinking. Journal of Research in Science Teaching 44 (2007) 448–465

15. Cañas, A.J., Hill, G., Carff, R., Suri, N., Lott, J., Gmez, G., Eskridge, T.C., Arroyo,
M., Carvajal, R.: Cmaptools: A knowledge modeling and sharing environment. In:
Proceedings of the 1st International Conference on Concept Mapping. (2004)

16. Hoffman, R.R., Woods, D.D.: Studying cognitive systems in context: Preface to
the special section. Journal of the Human Factors and Ergonomics Society 42
(2000) 1–7

17. Curtis, B., Kellner, M.I., Over, J.: Process Modeling. Communications of the ACM
35(9) (1992) 75–90

18. OMG: Software Process Engineering Metamodel Specification, v2.0. Technical
report, Object Management Group (2007)

19. Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software Development Pro-
cess. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (1999)

14



20. Regev, G., Soffer, P., Schmidt, R.: Taxonomy of Flexibility in Business Pro-
cesses. Input to the 7th Workshop on Business Process Modeling, Development
and Support (BPMDS’06) co-located with the 18th Conference on Advanced In-
formation Systems Engineering (CAiSE’06), Website (June 2006) available at:
http://lamswww.epfl.ch/conference/bpmds06/taxbpflex.

21. Schonenberg, H., Mans, R., Russell, N., Mulyar, N., van der Aalst, W.M.P.: To-
wards a taxonomy of process flexibility (extended version). BPM Center Report
BPM-07-11, BPMcenter.org (2007)

22. Schonenberg, H., Mans, R., Russell, N., Mulyar, N., van der Aalst, W.M.P.: To-
wards a taxonomy of process flexibility. In: Proceedings of the Forum at the
CAiSE’08 Conference. (2008) 81–84

23. Madhavji, N.H.: Environment evolution: The prism model of changes. IEEE Trans.
Softw. Eng. 18(5) (1992) 380–392

24. Nguyen, M.N., Conradi, R.: Towards a rigorous approach for managing process
evolution. In: Proceedings of the 5th European Workshop on Software Process
Technology (EWSPT’96), London, UK, Springer-Verlag (1996) 18–35

25. Schonenberg, H., Mans, R., Russell, N., Mulyar, N., van der Aalst, W.M.P.: Process
flexibility: A survey of contemporary approaches. In: Proceedings of Advances in
Enterprise Engineering I, 4th International Workshop CIAO! and 4th International
Workshop EOMAS, held at CAiSE 2008. (2008) 16–30

26. Reichert, M., Rinderle, S., Dadam, P.: Adept workflow management system. In:
Proceedings of the International Conference on Business Process Management
(BPM 2003). (2003) 370–379

27. van der Aalst, W.M.P., ter Hofstede, A.H.M.: Yawl: yet another workflow language.
Information Systems 30(4) (2005) 245–275

28. van der Aalst, W.M.P., Weske, M.: Case handling: a new paradigm for business
process support. Data and Knowledge Engineering 53(2) (2005) 129–162

29. Pesic, M., Schonenberg, M.H., Sidorova, N., van der Aalst, W.M.P.: Constraint-
based workflow models: Change made easy. In: Proceedings of the OTM Conference
on Cooperative information Systems (CoopIS 2007). (2007) 77–94

30. Wörzberger, R., Kurpick, T., Heer, T.: On correctness, compliance, and consistency
of process models. In: Proceedings of the 17th IEEE International Workshops
on Enabling Technologies: Infrastructures for Collaborative Enterprises (WETICE
2008). (2008)

31. Martinho, R., Domingos, D., Varajão, J.: FlexUML: A UML Profile for Flexi-
ble Process Modelling. In: Proceedings of the 19th International Conference of
Software Engineering and Knowledge Engineering (SEKE’2007). (2007) 215–220

32. Kruchten, P.: The Rational Unified Process: An Introduction. 3 edn. Addison-
Wesley, Boston (2003)

33. Beck, K.: Extreme Programming Explained: Embrace Change. 1st edn. Addison-
Wesley Professional (October 1999)

34. Eclipse Foundation: OpenUP. Wiki (October 2008)
http://epf.eclipse.org/wikis/openup/index.htm, Accessed on April 6th, 2009.

35. Schwaber, K., Beedle, M.: Agile Software Development with Scrum. Prentice Hall
PTR (2001)

36. Martinho, R., João Varajão, Domingos, D.: A two-step approach for modelling flex-
ibility in software processes. In: Proceedings of the 23rd IEEE/ACM International
Conference on Automated Software Engineering (ASE’2008). (2008)

15


