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ABSTRACT 

There are a number of clinical strategies to promote fracture healing and treat 

bone defects, such as autologous or allogenic bone grafting procedures and stem cell 

therapies. Stem cell therapies have shown great potential in the area of regenerative 

medicine and tissue engineering. However, numerous considerable limitations are 

associated with the presented techniques, including limited supply in donor tissue, 

often insurmountable regulatory hurdles, ethical and economic issues. Extracellular 

vesicles (EVs) have gained considerable attention in tissue engineering as a new 

potential therapy that enables bone and tissue healing.  EVs are nano-sized particles 

that are released into the cellular environment from all types of cells contributing to 

cell-to-cell communication. Naturally EVs deliver important biological cargo including 

nucleic acids and osteoinductive proteins. An EV approach to tissue engineering could 

eliminate the significant issues with grafting procedures and provide an alternative 

therapy to the current biological therapies. However, the separation and identification 

of regenerative EV populations is currently problematic due to the variability that 

exists in vesicles and isolation protocols. 

The vast part of this study concerns the isolation and characterisation of 

osteoblastic EVs. EVs were isolated by two different methods; sequential and 

differential ultracentrifugation. Their size distribution and morphologies wеrе 

determined via three different microscopy techniques such as dynamic light scattering 

(DLS), nanoparticle tracking analysis (NTA) and transmission electron microscopy 

(TEM). The total protein content was analysed using a protein quantification assay 

(BCA) and the influences of these EVs on osteoblast metabolism were assessed using 

an Alamar Blue assay (AB). 

Finally, formulation of an injectable biomaterial in an effort to facilitate 

localised EV delivery to a bone defect was explored. The biomaterial of interest in this 

study was a natural hydrogel called Gellan Gum (GG). Gellan Gum (GG) is commonly 

usеd in the food and pharmaceutical industries as a thickening agent. In this study, 

different cross-linker solutions were prepared and evaluated as a potential injectable 

system that may be used to controllably deliver therapeutic doses of isolated vesicles.  
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In order to produce an injectable gel, toothpaste was considered as a baseline material 

with desirable rheological characteristics. The rheological behavior of GG sample was 

tested and compared to that of a toothpaste.  

EVs were successfully isolated using both protocols. The highest centrifugal 

forces; 75,000 x g and 120,000 x g gave the highest concentration of EVs that were 

capable to enhance cell proliferation in culture. Also, at these two centrifugal forces in 

both protocols, EVs with similar average sizes appeared. Future work would focus on 

the incorporation of EVs into optimised GG hydrogels and in-vitro testing of 

mineralisation. 
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AIM AND OBJECTIVES 

The main goal of the present work was to assess and compare the various 

osteoblastic EVs factions isolated from conditioned culture media (CCM). Two different 

protocols, consisting of five different centrifugation speeds, were compared with the 

view of selecting a protocol tailored to osteoblast EVs and consequently contribute to 

the field’s understanding of ultracentrifugation optimisation.  

These two protocols, namely sequential and differential, have been compared 

based on the size, concentration and protein content of isolated EVs in order to 

identify similarities and differences. Also, in this study design parameters for the 

development of a physically cross - linked Gellan Gum (GG) hydrogel, as a potential 

injectable vehicle composited with purified osteogenic EVs to enable localised release 

was explored.  

To achieve the overarching aim of this thesis the following objectives were 

defined: 

 

Objectives: 

• Purify intact EVs using two different methods of isolation; sequential 

and differential ultracentrifugation. 

• Define EV size, morphology and concentration using dynamic light 

scattering (DLS), nanoparticle tracking analysis (NTA) and transmission 

electron microscopy (TEM). Following, assess protein content (BCA 

Assay) of the purified vesicles and their influence on cellular metabolic 

activity (Alamar Blue Assay) to select an optimum isolation protocol. 

• Formulate injectable Gellan Gum hydrogels with comparable rheological 

behavior to toothpaste for the design of a vesicle injectable system. 
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CHAPTER 1 – LITERATURE REVIEW  

The requirement for effective bone regeneration therapies is huge.  Every year 

more than 1.5 million individuals worldwide undergo graft surgeries to replace or 

repair bone; lost to disease, genetic abnormalities or trauma (Goldring and Gravallese, 

1999; Jahangir et al., 2008; Wang and Yeung, 2017; Kowalczewski and Saul, 2018). This 

has an associated annual cost of more than $2.5 billion and is anticipated that it will 

increase at a compound annual rate of 7 – 8% (Jahangir et al., 2008; Kowalczewski and 

Saul, 2018). 

Several studies reported that 5 – 10% of bone fractures, which occur from 

trauma, age and chronic diseases such as osteoporosis and rheumatoid arthritis, may 

heal insufficiently due to limited bone formation (Mathew and Hanson, 2009; Fisher et 

al., 2016). These defects are usually associated with loss of function and pain, 

influencing an enormous number of individuals around the world, causing chronic 

disabilities and in some cases shorter life expectancy. Fracture healing has been 

promoted through the use of various treatment methods including internal and 

external fixation and autologous/allogeneic bone grafting (Robert and Rosenbaum, 

2012; Bennett et al., 2012; Goodman et al., 2013; Fisher et al., 2016; Qin et al., 2016). 

The aim of these treatments is to provide stability and the return of bone function as 

quickly and completely as possible.  

Autologous bone grafting is a process during which bone or tissue graft is 

transferred from one body site to another body site in the patient. This particular type 

of bone grafting is regarded as the “gold” standard for the replacement of bone since 

it minimises immunological rejection and provides the best osteoinductive properties 

(Robert and Rosenbaum, 2012; Fisher et al., 2016; Kowalczewski and Saul, 2018). 

Allogenic grafting refers to tissue or bone that is collected from a donor, in most cases 

from a human cadaver, and transplanted to a recipient (Robert and Rosenbaum, 2012). 

Nevertheless, roughly 20 to 30% of patients who undergo;;autologous bone grafting 

procedures suffer from donor-site morbidity and 30% of patients who undergo 

allogenic bone grafting procedures suffer from complications such as infection and 

fracture, increasing significantly the treatment cost and operative time (Robert and 

Rosenbaum, 2012; Qin et al., 2016; Kowalczewski and Saul, 2018). 
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 In addition, there is a limit to the amount of autologous/allogenic tissue and bone that 

can be harvested and therefore large defects may not be treatable. In summary, all the 

above methods are not optimal due to limited availability and high risks of 

complication (Nandi et al., 2010; Matassi et al., 2011; Qin et al., 2016).  

In response to these limitations, researchers have focused on the development 

of regenerative medicine and tissue engineering strategies. These fields aim to repair 

damaged and diseased tissues or organs using biomaterials and autologous cells. 

Ceramics, natural and synthetic polymers have been widely investigated as candidate 

biomaterials for the development of implants to deliver therapeutics that promote 

bone and tissue repair (Deng et al., 2011). 

 

1.1 Regenerative medicine and tissue engineering 

Regenerative medicine (RegMed) is a broad area that focuses on the 

regeneration, replacement and enhanced healing of tissues or organs. These can be 

achieved by stimulating irreparable organs to restore themselves or even incorporate 

cells with biodegradable and biocompatible materials to participate in tissue formation 

(Figure 1) (Polykandriotis et al., 2010; Lamichhane et al., 2014; De Jong et al., 2014). 

RegMed consists of two critical approaches. The first approach is based on cell 

therapies, in this case the cells have been administered to repair a tissue via paracrine 

functions or directly (De Jong et al., 2014; Mao and Mooney, 2015). The second 

approach is mention as tissue engineering. This particular approach is based on the 

integration and incorporation of cells with biocompatible scaffolds to form a tissue 

(Figure 1) (De Jong et al., 2014; Mao and Mooney, 2015). In this case the cells have 

been expanded in the laboratory under specific conditions and have been seeded onto 

or in a scaffold made of biocompatible materials that is implanted back to the patient 

as a therapy (De Jong et al., 2014; Mao and Mooney, 2015).  
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Bone formation, development, repair, and remodelling are continuous 

processes throughout life. In recent years, stem cell - based approaches have gained 

considerable attention in tissue engineering since they can be used as an alternative 

biological method to classic cell therapies. 

In the case of orthopaedic injuries, the use of stem cells as a therapy may 

reduce the pain, increase the functionality and heal stubborn injuries. Several studies 

have been reported that mesenchymal stem cells (MSCs) derived from bone marrow 

have the ability to differentiate and inform new tissues in orthopaedics that make up 

cartilage, tendons, muscles and bones (Centeno et al., 2010; Wei et al., 2013; Wang et 

al., 2017). Stem cells are unspecialised and undifferentiated cells.  A variety of sources 

are being applied to specialise stem cells or even generate cells with osteoblastic 

activity. An example is the osteoblastic cells that are derived from osteoprogenitor 

cells having mesenchymal origin. This particular type of cell is located in bone marrow 

and is responsible to promote and stimulate bone formation by calcium and phosphate 

mineralisation (Jayakumar and Di Silvio, 2010; Qin et al., 2016). 

Osteoblastic cells have been shown to be an essential factor in bone 

regeneration technologies (Reisman and Adams, 2014; Qin et al., 2016). Several 

studies have demonstrated that stem cells generate and release a broad range of 

proteins, cytokines and growth factors that are involved in the restoration of damaged 

tissue (Ong and Wu, 2015).  

 

 

 Figure 1. Overview of tissue engineering approach. The incorporation of cells with a biomaterial 

scaffold.  The autologous cells may be collected directly from the patient and are expanded in the 

laboratory under specific conditions. Next, the cells are seeded onto or in a scaffold in order to be 

implanted back to the patient as a therapy (Lamichhane et al., 2014; De Jong et al., 2014). 
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According to Ong and Wu, recent studies have shown that the physical presence of 

stem cells is not obligatory and beneficial effects within the infracted heart can be 

derived just from the administration of cells’ conditioned media (CCM) (Ong and Wu, 

2015). Vrijen et al. (2010) and Lai et al. (2015) reported that molecules derived from 

MSC have functions similar to those of MSC including suppression of inflammatory 

responses and repair of damaged tissue (Vrijen et al., 2010; Lai et al., 2015). Based on 

these indications, numerous studies have shown that stem cells are able to release 

factors such as nanosized heterogeneous membrane vesicles, microvesicles and 

exosomes, into the cellular environment contributing to cell-to-cell communication 

(Raposo and Stoorvogel, 2013; Lamichhane et al., 2014; Zaborowski et al., 2015; Bruno 

et al., 2016; Qin et al., 2016; Mendes et al., 2016; Cunnane et al., 2018). 

The above studies provide novel insights into the potential application of 

extracellular vesicles as a cell - free therapeutic system to use in place of autologous 

and allogeneic stem cell administration (Vrijen et al., 2010; Ratajczak et al.,2012; Ong 

and Wu, 2015; Lai et al., 2015). 

 

1.2 Introduction to Extracellular Vesicles (EVs) 

Translation of stem cell therapies are often prevented by insurmountable 

regulation, ethical and economic issues. Small soluble molecules including cytokines 

and growth factors are secreted into the cellular environment from stem cells.  Recent 

studies have shown that nano-sized particles which elicit biological activity are 

released by stem cells. These particles called extracellular vesicles (EVs) (Vrijen et al., 

2010; Yeo et al., 2013; Lai et al., 2015; Azoidis et al., 2018). 

EVs were first detected by Wolf in the late 1960s. EVs were found within the 

platelets and described as “platelet dust” (Wolf, 1967; Azoidis et al., 2018). In 1967, 

Bonucci and Anderson, identified small electron – dense particles attached to collagen 

fibrils in a cartilage matrix. These electron - dense particles were defined as matrix 

vesicles (MVs) (Bonucci, 1976; Anderson, 1976; Azoidis et al., 2018).  In 1980, these 

vesicular particles were shown to participate in immunological procedures (Tram et al., 

1981; Ronquist and Brody, 1985; Azoidis et al., 2018).  
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Today, EVs are defined as nano-sized heterogeneous messengers that are 

released upon fusion with the plasma cell membrane into the cellular environment 

allowing intercellular communication and enhanced cell differentiation (Figure 2) 

(Raposo and Stoorvogel, 2013; Lamichhane et al., 2014; Bruno et al., 2016; Qin et al., 

2016; Mendes et al., 2016; Zaborowski et al., 2015; Cunnane et al., 2018; Bebelman et 

al., 2018).  

 

 
                          

 

EVs have been detected and isolated from a wide range of biological fluids 

including lymph, saliva, ascetic fluid, urine, blood, semen, bile and cerebrospinal fluid 

(Hu et al., 2012; Szatanek et al., 2017; Konoshenko et al., 2018). Also, EVs can be 

isolated from cell culture supernatants of several cell types including, mesenchymal 

stromal (MSC), immune cells (dendritic), bone marrow stem cells (BMSC) and human 

neural stem cells (hNSCs) (Momen-Heravi et al., 2013; Yuana et al., 2013; Lamichhane 

et al., 2014; Zaborowski et al., 2015; Mendes et al., 2016; Azoidis et al., 2018). Multiple 

contents have been reported in isolated vesicle populations including proteins, 

messenger RNAs (mRNAs), microRNAs (miRNAs) and lipids (Momen-Heravi et al., 2013; 

Yuana et al., 2013; Lamichhane et al., 2014; Zaborowski et al., 2015; Mendes et 

al.,2016; Azoidis et al., 2018). 

EVs can be distinguished into three different types according to their diameter 

and mechanism of biogenesis such as apoptotic bodies, microvesicles and exosomes 

(Momen-Heravi et al., 2013; Yuana et al., 2013; Lamichhane et al., 2014; Zaborowski et 

al., 2015; Mendes et al.,2016; Azoidis et al., 2018).  

Figure 2. Schematic presentation of intracellular release of EVs (Bruno et al., 2016). 
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Apoptotic bodies are the larger particles (50 – 4000 nm), which are released upon the 

fragmentation of plasma membrane by apoptosis having a heterogeneous shape. The 

protein markers of apoptotic bodies are C3b, TST and histones (Bruno et al., 2016; 

Willms et al., 2016; Ha et al., 2016; Szatanek et al., 2017; Konoshenko et al., 2018; 

Azoidis et al., 2018; Harjes et al., 2019). Microvesicles (50 – 1000 nm) are smaller than 

apoptotic bodies and larger than exosomes. Microvesicles are produced by direct 

budding of; the plasma membrane having various shapes containing nucleic acids and 

cytosolic proteins. The protein markers that are presented in the microvesicle 

population are CD40, integrins and selectins (Mendes et al., 2011; Momen-Heravi et 

al., 2013; Yuana et al., 2013; Lamichhane et al., 2014; Zaborowski et al., 2015; Ha et 

al., 2016; Willms et al., 2016; Szatanek et al., 2017; Azoidis et al., 2018; Konoshenko et 

al., 2018; Harjes et al., 2019). Exosomes (20 – 150 nm) are released by the fusion 

between plasma membrane and multivesicular bodies (MVB), having endosomal 

origin. Several studies reported that exosomes have a uniform circular shape and 

contain specific proteins, including heat shock proteins (CCT2, HSPA5, HSP60, HSP70 

and HSP90), endosomal trafficking proteins (Alix and TSG101), Flotillin, and tetraspanin 

proteins (CD9, CD63 and CD81). The membranes of exosomes contain ceramide, 

sphingomyelin, cholesterol, phosphatidylinositol, lipid rafts which are related to 

proteins (e.g glycosylphosphatidylinositol), phosphatidylserine and 

phosphatidylethanolamine (De Jong et al., 2014; Zaborowski et al., 2015; Bruno et al., 

2016; Ha et al., 2016; Szatanek et al., 2017; Konoshenko et al., 2018; Harjes et al., 

2019). Remarkably, there is an inconsistency within the literature concerning the size 

range of each EV subtype.  

The natural capability of EVs, both microvesicles and exosomes, to deliver 

biological cargo has attracted attention since they could be used as a delivery vehicle 

for osteoinductive proteins and nucleic acids that are highly effective in bone 

regeneration technologies. Nevertheless, the identification of these specific sub-

populations is problematic due to the variability that exists in vesicles sizes, way of 

formation, shape and source (Lamichhane et al., 2014; Konoshenko et al., 2018).  
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Therefore, in this thesis, the EV population will not be fractioned into exosomes or 

microvesicles instead the focus is to compare the relative proportion within a mixed 

sample and assess potential therapeutic efficacy. 

1.2.1 Isolation Methods for EVs 

EVs can be isolated from cells and biological fluids via several methods 

including, ultracentrifugation, ultrafiltration, size exclusion chromatography, polymer - 

based precipitation and immunoaffinity separation (Witwer et al., 2013; Raposo and 

Stoorvogel, 2013; De Jong et al., 2014; Zaborowski et al., 2015; Yakimchuk, 2015; 

Bruno et al., 2016; Konoshenko et al., 2018). Differential ultracentrifugation is the 

most broadly used method for the EVs isolation (Zaborowski et al., 2015). However, it 

should be noted that differential ultracentrifugation, like other existing methods, may 

not efficiently separate completely microvesicles from exosomes or apoptotic bodies 

and even protein aggregates. New techniques have also been explored for the 

extraction of EVs from cells and all the biological fluids, including microfluidic devices, 

antibody magnetic beads and advanced filtration technologies (Momen-Heravi et al., 

2013; Cheung et al., 2018). However, the assessment of EV (microvesicles and 

exosomes) sizes and concentrations is technically complicated due to the 

heterogeneity of EVs population and also the wide range of quantitative methods used 

for the determination of these particular characteristics (Lamichhane et al., 2014; De 

Jong et al., 2014; Zaborowski et al., 2015; Konoshenko et al., 2018). There is an 

imperative need for efficient and reliable techniques of vesicles isolation so that all 

recent studies can be more standardised and efficient. 
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1.2.1.1 Differential centrifugation and ultracentrifugation 

The differential centrifugation method is based on sequential centrifugation 

steps at different centrifugal forces. This method aims to separate particles according 

to their buoyant density (Lai et al., 2011; Tatischeff et al., 2012; Witwer et al., 2013; 

Yakimchuk, 2015; Szatanek et al., 2015; Zhou et al., 2016). Several protocols involve a 

few sequential centrifugation speed spins. These centrifugation speeds are reported in 

both g and rpm within the literature. Typically, the initial centrifugal spin is designed to 

remove dead cells with centrifugation forces ranging from 300 to 2,000 x g for 10 to 30 

minutes (Lai et al., 2011; Tatischeff et al., 2012; Momen-Heravi et al., 2013; 

Zaborowski et al., 2015; Yakimchuk, 2015; Szatanek et al., 2015; Konoshenko et al., 

2018). Followed by a second spin to remove apoptotic bodies and aggregates of 

biopolymers with centrifugation forces ranging from 10,000 to 20,000 x g for 20 to 30 

minutes (Lai et al., 2011; Tatischeff et al., 2012; Momen-Heravi et al., 2013; Witwer et 

al., 2013; Zaborowski et al., 2015; Yakimchuk, 2015; Szatanek et al., 2015; Zhou et al., 

2016; Konoshenko et al., 2018). In the final stage, supernatant from the second spin is 

subjected to a final round of centrifugation. The centrifugation forces vary at this 

particular speed from 100,000 to 200,000 x g maintained for 70 to 120 minutes (Lai et 

al., 2011; Tatischeff et al., 2012; Momen-Heravi et al., 2013; Witwer et al., 2013; 

Zaborowski et al., 2015; Yakimchuk, 2015; Szatanek et al., 2015; Zhou et al., 2016). The 

non – vesicle proteins in the vesicle pellet are removed by multiple washings with 

phosphate buffered saline (PBS) at 100,000 x g for 70 minutes (Lai et al., 2011; 

Momen-Heravi et al., 2013; Witwer et al., 2013; Zaborowski et al., 2015; Yakimchuk, 

2015; Szatanek et al., 2015; Zhou et al., 2016). However, the multiple washes not only 

enhance the vesicles’ purification but also can decrease their quantity and quality 

(Livshits et al., 2015; Konoshenko et al., 2018). An additional disadvantage for this 

method is that the high ultracentrifugation forces allow the formation of EV aggregates 

decreasing the efficacy of EVs’ isolation (Mol et al., 2017; Konoshenko et al., 2018). 

That said, ultracentrifugation allows for relatively rapid processing of large volumes of 

cell culture medium quantities that may not be possible with other methods 

(Konoshenko et al., 2018; Chen et al., 2019).  
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1.2.1.2 Ultra - Filtration 

Ultra - filtration techniques have been used for the collection of microvesicles 

and exosomes (Yakimchuk, 2015; Konoshenko et al., 2018). Filtration membranes with 

pore diameters of 0.1, 0.22, 0.45 and 0.8 μm are used to “trap” vesicles with diameters 

larger than 100, 200, 450 and 800 nm. Insoluble molecules and big particles removed 

first. In particular, filters with pore diameter of 0.45 and 0.8 μm are used to collect 

particles with diameters larger than 800 nm or 400 nm. In the following step, particles 

with smaller size than the target of EVs are separated by filters with pore diameter of 

0.1 and 0.22 μm (Witwer et al., 2013; Yakimchuk, 2015). Thus, the EV fraction of a 

specified size is concentrated by the filtration membrane. However, the ultrafiltration 

method has a significant disadvantage; the additional forces which are applied to pass 

the liquid of particles via the filtration membrane, could potentially cause damage to 

the vesicles’ surface (Wang et al., 2013; Yakimchuk, 2015; Konoshenko et al., 2018). 

1.2.1.3 Size exclusion chromatography 

Size exclusion chromatography (SEC) is often used to separate large molecules 

(cells, debris) and small molecules (microvesicles, exosomes) on the basis of their size. 

Briefly, a mixture of molecules dissolved in liquid is applied to a chromatography 

column packed with porous polymeric beads containing multiple pores and tunnels. 

These particular beads used to filter small sample molecules which become temporally 

trapped within the pores (Figure 3). Smaller sample molecules pass around or are 

excluded from the beads. The large sample molecules cannot penetrate the pores. 

Thus, these particular molecules elute first, smaller molecules elute later, while 

molecules that can access all the pores elute last from the column. This method 

appears to have a main advantage compared to centrifugation techniques; the isolated 

EVs are not affected by the higher centrifugal shear forces, which may potentially 

change the structures of the vesicles and also reduce their quality.  
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The major disadvantage of this method is that it requires a long running time 

and multiple biological samples (Szatanek et al., 2015; Yakimchuk, 2015; Lozano-

Ramos et al., 2015). 

 

 
 

 

 

 
 

 

1.2.1.4 Polymer - Based Precipitation  

Polymer - based precipitation is used for the isolation of vesicles through a 

polymer mixing process. This method of isolation usually includes mixing the biological 

fluid with a polyethylene glycol (PEG) solution and centrifugation at low speed (10,000 

x g for 60 mins at 4°C). The polymer precipitation is a quick process that preserves the 

vesicles’ integrity and biological activity. Nevertheless, the presence of the polymeric 

material may cause contamination to the biological sample and interfere with 

downstream analysis. The ExoQuick kit (System Biosciences, Mountain View, CA, USA) 

is frequently used for this method (Yakimchuk, 2015; Szatanek et al., 2015; Niu et al., 

2017). 

 

 

 

Figure 3. Schematic presentation of ciliated porous structures designed to isolate EVs. These particular 

structures do not let vesicles larger than 1μm to pass into the wired area while cellular debris, protein 

and EVs flow through and enter the micropillar area. Cellular debris, protein and EVs are excluded by 

the nanocilia which from pores with diameter 30 – 200 nm. The ciliated porous structures can then 

selectively capture microvesicles and exosomes (Wang et al., 2013). 
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1.2.1.5 Immunoaffinity separation 

This method is based on the vesicles’ surface receptors. These particular 

receptors are used to isolate extracellular vesicles depending on their origin. Briefly, 

magnetic microbeads coated with an antibody can recognize certain intercellular 

markers enabling the selection of vesicle population based on the expression of the 

marker regardless of its size (Figure 4). Intercellular markers that are presented on 

microvesicle population are CD40, integrins and selectins (Raposo and Stoorvogel, 

2013; Bruno et al., 2016; Yakimchuk, 2015; Li et al., 2017; Konoshenko et al., 2018). 

Following, the intercellular markers that are contained on the exosome population are 

tetraspanins family proteins (CD81, CD63 and CD9), heat shock proteins (CCT2, HSPA5, 

HSP90, HSP70 and HSP60), Alix, Flotillin and TSG101 (Raposo and Stoorvogel, 2013; 

Yakimchuk, 2015; Bruno et al., 2016; Li et al., 2017; Konoshenko et al., 2018). This 

particular technique has the potential for high specificity, an important consideration 

in the characterisation process of unique vesicle populations (Tauro et al., 2012). An 

important limitation for this method is that the purified EVs can be difficult eluted 

from the magnetic beads reducing their functional activity and consequently their final 

concentration (Raposo and Stoorvogel, 2013; Szatanek et al., 2015; Yakimchuk, 2015; 

Bruno et al., 2016; Li et al., 2017). 

 

 
 

 

 

 
 
 

 
 

Figure 4. Schematic illustration of antibody coated magnetic beads. 

This illustration shows how antigens of extracellular vesicles (ECVs) 

bind to the antibodies of coated magnetic beads (Momen-Heravi et 

al., 2013).  
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Method Time Advantages Disadvantages 

Differential 
Centrifugation and 
Ultracentrifugation  

140–600 min Low cost 
procedure; 
isolation from 
large sample 
volumes 

Damage of EVs; efficiency is 
affected by the centrifugation 
forces; only six samples can be 
concurrently processed in one 
centrifuge; complexity; low 
reproducibility 

Ultrafiltration  130 min Simple procedure; 
no limitations on 
sample volume 

Damage of EVs surface; filter 
plugging; contamination from 
proteins; complexity 

Size Exclusion 
Chromatography 
(SEC) 

1mL/min Reproducibility 
and purity 

Long-time procedure that 
requires multiple biological 
samples; specialised equipment 

Polymer – Based 
Precipitation  

65 min Simple procedure; 
no need in 
additional 
equipment 

Cost; polymer contamination and 
retention 

Immunoaffinity 
Separation  

65 min High specificity Not applicable for large sample 
volumes; EVs may lose the 
functional activity 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Table 1. A comparison of the most frequently used methods for EVs isolation (Tauro et al., 2012; Wang 
et al., 2013; Yakimchuk, 2015; Szatanek et al., 2015; Livshits et al., 2015; Lozano-Ramos et al., 2015; 
Bruno et al., 2016; Li et al., 2017; Niu et al., 2017; Konoshenko et al., 2018; Chen et al., 2019).   
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1.2.2 Physical analysis of extracellular vesicles (EVs) 

Several optical and non - optical techniques have been developed to evaluate 

EVs based on phenotypical features including size, concentration, density, morphology, 

charge and mobility (Momen-Heravi et al., 2012; Kooijmans et al., 2012; Konoshenko 

et al., 2018). Current available techniques regularly used to characterise EVs, including 

dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), flow cytometry, 

western blotting, transmission electron microscopy (TEM), scanning electron 

microscopy (SEM) and atomic force microscopy (AFM) are summarised in this section 

with advantages and limitations of each technique highlighted. 

1.2.2.1 Optical methods - size, concentration and mobility 

1.2.2.1.1 Dynamic light scattering 

Dynamic light scattering (DLS) is the most common used optical method to 

determine the size distribution of nano-sized particles in a solution (Van De Pol et al., 

2010; Rupert et al., 2017; Hartjes et al., 2019). This particular method is based on the 

analysis of the temporal intensity fluctuations which are caused by Brownian motion of 

the nanoparticles upon illumination with a laser beam in a solution. Particles 

undergoing Brownian motion cause intensity fluctuations of scattered light, which is 

recorded typically in 30 seconds (Figure 5) (Rupert et al., 2017).  DLS defines the 

mobility of the scattering vesicles which are present in the measurement volume. The 

main advantage of the DLS instrument is the simplicity of typical measurements 

making it a suitable tool for routine vesicle analysis. The detection limits of DLS ranges 

from 0.3 nm – 10 μm (Malvern Panalytical, 2019). Thus, small particles can be hidden 

from the presence of large particles affecting the averaged data and consequently the 

final results (Van De Pol et al., 2010; Rupert et al., 2017). 

 

 
 Figure 5. Schematic illustration of a dynamic light analysis (DLS) (Szatanek et al., 2017). 
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1.2.2.1.2 Nanoparticle tracking analysis 

Nanoparticle tracking analysis (NTA) is an alternative method to DLS for 

evaluating the absolute size distribution and concentration of individual particles. The 

particles are directly visualised and illuminated by a laser light scattering beam. Their 

hydrodynamic radius is detected by the principle of Brownian motion (Rupert et al., 

2017). A highly sensitive camera records the size and locomotion of the particles 

(Figure 6). The detection limits of NTA ranges from 10 nm – 2000 nm. In the case of 

EVs characterisation, NTA instrument has an advantage compared to DLS instrument; 

its detection limits are lower and close to the sizes of EVs; therefore there is a low 

possibility to measure large particles and eventually the averaged data in a sample 

cannot be affected (Malvern Panalytical, 2019). In principle, NTA has to be able to 

define the size of EVs, however in practice, the analysis seems to be limited by the 

short-measured trajectories. This is happening due to the diffusion of EVs in and out of 

the camera focus. Despite this limitation, NTA provides fast assessment and EV size 

distribution.  This method is often used for the antigens detection which are presented 

on extracellular vesicles by applying fluorescently labelled antibodies. (Van De Pol et 

al., 2010; Momen-Heravi et al., 2012; Witwer et al., 2013; Rupert et al., 2017; Szatanek 

et al., 2017). 

 

      

 

 

 

 

Figure 7. An image of EVs secreted by 

osteoblasts, cell line MC3T3, acquired by NTA 

instrument.    

Figure 6. Schematic illustration of a 

Nanoparticle Tracking Analysis (NTA) 

instrument by Nanosight (Rupert et al., 

2017). 
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1.2.2.1.3 Flow cytometry 

Flow cytometry is a powerful technology for scanning and counting single cells 

with diameter > 1000nm in fluids at a rate of thousands of counts per minute.  This 

method is widely used to record the scattered light and the fluorescence signal, which 

is generated by single cells using a laser beam as they are passing through a nozzle 

(Figure 8). In the case of vesicle characterisation, the size can be obtained from the 

scattering signal. Several authors have suggested that scattering intensity of beads can 

be used as internal calibration in order to determine the vesicles. However, the 

accuracy of this particular method is limited because the lower detection limit of flow 

cytometers for beads is 300 - 500 nm. Thus, only particles with a size higher than 300 

nm can be resolved with conventional flow cytometers (Perez-Pujol et al., 2007; 

Robert et al., 2009; Van De Pol et al., 2010; Momen-Heravi et al., 2012; Witwer et al., 

2013). 

 

 

 

 
1.2.2.2 Non-optical methods - Structure and morphology 

1.2.2.2.1 Electron microscopy 

Transmission electron microscopy (TEM) is the most common surface - based 

imaging technique, which allows the detection of particles illustrating their structures 

and morphologies.  This particular microscope transmits a beam of electrons via a thin 

specimen to create an image. Prior to imaging, all the biological samples need to be 

dehydrated and fixed since TEM is performed most cases under vacuum mode. 

Figure 8. Schematic illustration of a flow 

cytometer analysis (Rupert et al., 2017). 
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A negative staining protocol is also applied in order to enhance the contrast of the 

imaging. The most commonly used stains are ammonium molybdate, neutral 

phosphotungstic acid, aurothioglucose and uranyl acetate (UA) (Ohi et al., 2004). On 

the other hand, scanning electron microscopy (SEM), scans a beam of electrons on a 

thin sample over the surface and collects the scattered electrons, yielding a 

topographical image of the surface. (Momen-Heravi et al., 2012; Rupert et al., 2017).  

Both of these imaging techniques have an important limitation; sample 

preparation and imaging conditions may damage fragile vesicles and as such their sizes 

and morphologies may be altered from their native state if care is not taken (Momen-

Heravi et al., 2012; Witwer et al., 2013; Rupert et al., 2017). Notably, TEM has a higher 

resolving power than SEM, thus cellular structures of the sample can be viewed at very 

high magnifications. That said, TEM is a readily used method to qualify size 

distributions obtained from techniques, such as DLS or NTA, while also providing 

additional information about EV morphology and electron density (Momen-Heravi et 

al., 2012; Witwer et al., 2013; Rupert et al., 2017).  Figure 9 is an example TEM image 

obtained as part of this thesis and used in a wider study concerning osteogenic EVs 

(Davies et al., 2017). This image was used to qualify vesicle size and demonstrate 

circular heterogenous morphologies. 

 

 
 

 

 

 

Figure 9. TEM analysis of EVs populations isolated from MC3T3s revealed a 

heterogeneous population of circular vesicles ranging in size from 20 - 200 nm 

(Davies et al., 2017). 
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1.2.2.2.2 Cryo - electron microscopy 

Cryo-electron microscopy (cryofixation) is also used for the size detection of 

particles. This particular technique enables particle analysis at low temperatures 

(below -100°C) avoiding the effects of chemical fixation, dehydration and water 

crystallisation. Imaging is performed under vacuum conditions with samples 

maintained in a frozen state (Momen-Heravi et al., 2012; Witwer et al., 2013; Rupert et 

al., 2017). In contrast to mentioned methods of characterisation, cryogenic TEM (Cryo-

TEM) and cryogenic SEM (Cryo-SEM) allows direct visualisation and investigation of a 

biological specimen in their native state. Using Cryo-electron microscopy high 

resolution images and ultra – structure of the vesicle can be obtained. However, as in 

other electron microscopic methods of characterisation artefacts may occur in cryo-

SEM and cryo-TEM techniques. Ice residuals can remain on the sample from the 

freezing process, which may led to sample contamination. Furthermore, the time 

period of a specimen viewing in cryo-SEM and cryo-TEM is often limited due to the 

samples’ sensitivity to radiation damages (Kuntsche et al., 2011; Momen-Heravi et al., 

2012; Witwer et al., 2013; Rupert et al., 2017; Hartjes et al., 2019). 
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1.2.2.2.3 Atomic force microscopy (AFM) 

Atomic force microscopy is a surface - based imaging method, which provides a 

nanometre, or even sub - nanometre, lateral and vertical resolution of topography. 

AFM employs an incident laser beam which is focused on the back of a cantilever with 

a very sharp tip that moves up and down (tapping mode) on the surface of a specimen 

and the deflections of the beam are captured by a photo diode (Figure 10). AFM is 

used on dry immobilised EV samples allowing the detection of the size and structure. 

Additionally, AFM offers high resolution images and also provide the mechanical 

properties of a sample such as stiffness and elasticity. However, there are difficulties 

associated with using the sharp AFM tip to probe fragile vesicles as this may cause 

distortion or damage (Van De Pol et al., 2010; Witwer et al., 2013; Rupert et al., 2017; 

Hartjes et al., 2019). 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Schematic illustration of an atomic force 

microscope analysis (Rupert et al., 2017). 
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Method Information 
Acquired  

Advantages Disadvantages 

 DLS EVs’ size 
distribution and 
scattering 
intensity  

Easy and fast procedure  High detection limits; small 
particles can be hidden from 
the presence of large 
particles  

 NTA EVs’ size 
distribution and 
concentration  

Low detection limits (10 nm – 
2000 nm); low possibility to 
measure large particles; easy 
and fast procedure 

Limited analysis due to the 
diffusion of EVs in and out of 
the camera focus  

Flow 
Cytometry  

EVs’ absolute 
number and size  

Enables the analysis of 
thousands of EVs in one 
sample  

Limited accuracy 

Electron 
Microscopy  

EVs’ size and 
morphology  

Direct visualisation; high 
resolution images 

Damage of EVs surface; 
sensitivity  

Cryo – 
Electron 
Microscopy  

EVs’ size and 
morphology  

Direct visualisation; high 
resolution images 

Sample contamination due 
to ice residuals; background 
noise; sensitivity 

AFM EVs’ size 
diameter, three-
dimensional 
topography  

High resolution images; 
mechanical properties of EVs 
can be obtained  

Distortion or damage of EVs 
surface 

Table 2. A comparison of the most frequently used methods for EVs characterisation (Van De Pol et al., 
2010; Witwer et al., 2013; Rupert et al., 2017; Szatanek et al., 2017; Hartjes et al., 2019).  
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1.2.3 Biochemical analysis of extracellular vesicles (EVs) 

EVs can be also analysed by their biochemical characteristics (proteins and 

lipids) (Hartjes et al., 2019). Several studies have been reported that proteins and lipids 

enriched in vesicles populations that are used as detection markers. The protein and 

lipid content of the vesicles is highly related to the type of cell, biogenesis mode and 

the lipid content from the surrounding membranes (Rayner and Hannessy, 2013; 

Vishnubhatla et al., 2014; Yanez-Mo et al., 2015; Zaborowski et al., 2015; Lu et al., 

2017; Azoidis et al., 2018; Thery et al., 2018). 

In general, according the ExoCarta database, tetraspanins, MHC molecules, 

fusion proteins (annexins, GTPases), endosomal trafficking proteins (Alix, TSG101) and 

heat shock proteins (CCT2, HSPA5, HSP60, HSP70 and HSP90) which are involved in 

multivesicular body of biogenesis, are abundantly detected in vesicles’ pellets after 

their isolation. Tetraspanins (CD9, CD63, and CD81) is a family of transmembrane 

proteins which recently have been observed in microvesicles. Tetraspanins are mainly 

involved in cell signalling events and because of their function as mediators are 

considered to be interesting targets in the area of drug delivery (Raimondo et al., 

2011; Kooijmans et al., 2012; Witwer et al., 2013; Vishnubhalta et al., 2014; Yanez-Mo 

et al., 2015; Zaborowski et al., 2015; Davies et al., 2017; Azoidis et al., 2018). 

Several lipids are reported to play an essential role in the function of EVs since 

they bind with proteins and allow the interaction of the vesicle with a cell. The 

membranes of the vesicles are enriched in cholesterol, prostaglandins (J2, D2, E2 and F2), 

sphingomyelin, ganglioside GM3, glycol – sphingolipids, phosphatidylserine and 

lipoproteins, which are involved in membrane activities including cell attachment and 

membrane trafficking. Lipoproteins also play an important role in signalling events, 

since they are comprised of a number of lipids and proteins; which are responsible to 

deliver cholesterol, fat-soluble vitamins and triacylglycerols to the surrounding tissues. 

In the profiling of the lipoproteins and lipids content of the vesicles, mass 

spectrometry, western blotting and liquid chromatography are the most frequently 

used methods (Raimondo et al., 2011; Kooijmans et al., 2012; Van Dommelen et al., 

2012; Witwer et al., 2013; Rayner and Hannessy, 2013; Vishnubhalta et al., 2014;  

Yanez-Mo et al., 2015; Zaborowski et al., 2015; Azoidis et al., 2018). 
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1.3 Introduction to biomaterials 

Bone fracture healing has been promoted through the use of various 

treatments. Biomaterials are broadly used to restore the function of damaged bone 

and in some cases to replace it. Biomaterial is any synthetic of natural elements or 

combination of elements which collaborate with the biological system to replace or 

treat any organ, tissue or body function (Williams, 1999). Since the environment of the 

human body is highly chemically and mechanically demanding, the requirements of the 

candidate materials’ properties are quite strict (Navarro et al., 2008). 

 During the last 60 years, mainly two generations of biomaterials seem to be 

clearly marked according to their interactions with the host tissues during or after 

implantation: bioinert (first generation), bioactive and bioresorbable materials (second 

generation) (Navarro et al., 2008; Cooper, 2015). Bioinert materials constitute the first 

generation of biomaterials that have limited interaction with the surrounding tissues 

once implanted in the body. Bioinert materials are used in the field of orthopaedic 

medicine for the production of fracture plates-screws and implant applications 

(Navarro et al., 2008; Winkler et al., 2018). Some examples of these materials are 

stainless steel, titanium, zirconia and alumina. Despite their excellent corrosion and 

mechanical properties, bioinert materials are not biologically recognised by the body 

(Navarro et al., 2008; Parida et al., 2012; Matassi et al., 2013). The second generation 

of biomaterials arises between 1980 and 2000. Bioactive materials constitute the 

second generation of biomaterials (Navarro et al., 2008). Bioactive materials are those 

materials that when implanted can interact with surrounding tissue to enhance 

biological response. Bioresorbable materials are those materials that when placed in 

human body start to dissolve and be replaced with advancing tissue (Navarro et al., 

2008). The most common bioactive – bioresorbable materials are natural and synthetic 

origin polymers such as polydioxanone (PDS), poly(3-caprolactone) (PCL), chitosan, 

poly(2-hydroxyethyl-methacrylate) (PHEMA), polyorthoester, polylactide (PLA), 

polyhydroxybutyrate (PHB), polyglycolide (PGA) and bio-glasses (Navarro et al., 2008). 

Polymers have been utilized for a considerable length of time rather than glass and 

metals in numerous applications because of their great physiochemical properties and 

their low cost compared to other materials (Chamy and Rosenkranz, 2013).  
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The third generation of biomaterials are intended to be new biomaterials in order to 

stimulate particular cellular reactions. These biomaterials properties ought to combine 

with their capability to signal and trigger particular cellular action and behavior 

(Navarro et al., 2008). 

In recent years, ceramics and biocompatible polymers have been broadly 

investigated as candidate bio-materials for the development of natural or synthetic 

bone scaffolds. Advantageously therapeutic molecules may be embedded into these 

biomaterials to promote bone repair, including extracellular matrix molecules (ECM) 

such as collagen, vitronectin, laminin, osteopontin, fibronectin and morphogenetic 

proteins (protein2 - BMP2 and protein7 - BMP7) (Zhang et al., 2014; Perez et al., 2015; 

Kowalczewski and Saul, 2018). These particular molecules are an essential factor in 

bone repair since they have the ability to produce inflammatory molecules essential to 

stimulate angiogenesis and cell-homing, and consequently contribute to the bone 

healing process (Zhang et al., 2014; Perez et al., 2015; Kowalczewski and Saul, 2018). 

The procedure of bone repair can be achieved under specific conditions, 

meaning the presence of cells which is capable to restore the damaged structure and a 

micro-environment may support regeneration. Introduction of porosity into bone 

scaffolds has been widely explored. Physically this network may provide the 

appropriate micro-environment for cell retention and support infiltration of 

vasculature and nutrients into the structure. Scaffolds and implants can either be of 

natural origin (natural hydrogels) or synthetic biomaterials including synthetic 

polymers and ceramics (De Jong et al., 2014). 

The last few years, scientists have focused on the construction of biomimetic 

and bio-inspired materials such as natural and synthetic derived polymers, which can 

be easily incorporated with the body functions, integrate with extracellular matrix 

components and regenerate bones and tissues. Bio-inspired materials also referred to 

as biomimetic; is any synthetic or natural element, or combination, whose structure 

and functions mimic those of the native tissue. The main purpose of this type of 

biomaterial is to collaborate with the biological system and treat or replace any 

function.  
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The requirements of the candidate bio-materials properties are quite strict due to the 

physiological environment within the body, which is chemically and mechanically 

demanding. Thus, materials with high molecular properties such as natural or synthetic 

derived polymers need to be investigated (Meyers et al., 2008; Stevens, 2008; Navarro 

et al., 2008; Williams, 2008; Cooper, 2015). Natural and synthetic derived polymers 

which are used in bone repair technologies, such as chitosan, alginate, hyaluronic acid 

(HA), Collagen (Type-I), silk fibroin and gellan gum (GG) are presented in this section of 

the report. 

1.3.1 Injectable hydrogels 

A variety of hydrogels are used in tissue engineering as a “system of support” 

that provides the appropriate micro - environment for cell maintenance, retention and 

immobilisation (Figure 11). Hydrogels are usually descripted as three - dimensional, 

hydrophilic networks having the capability to absorb large amounts of biological fluids 

and water. Hydrogels are classified by their origin in two categories, natural or 

synthetic (Drury and Mooney, 2003; Lanza et al., 2014; Sheikh et al., 2015; 

Radhakrishnan et al., 2016). 

 
 

 

 

Recently, a range of natural hydrogels have gained considerable attention, in 

both areas of bioengineering and drug delivery, due to their desirable properties 

including processability, tailored chemistry, biocompatibility, biodegradability and high 

- water content (Drury and Mooney, 2003; Lanza et al., 2014; Sheikh et al., 2015; 

Kowalczewski and Saul, 2018; Radhakrishnan et al., 2016).  

Figure 11. Schematic presentation of a cell-material 

microenvironment (Lamichhane et al., 2014).  
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Natural hydrogels including Collagen (Type-I), Silk fibroin, Chitosan, Alginate and Gellan 

gum, are widely used for the construction of natural biocompatible implants and 

scaffolds for wound healing, bone regeneration and drug delivery systems (Drury and 

Mooney, 2003; Sheikh et al., 2015; Lanza et al., 2014; Radhakrishnan et al., 2016; 

Kowalczewski and Saul, 2018). 

In the field of drug delivery, injectable hydrogels used as a delivery vehicle 

capable of locally releasing a therapeutic molecule, minimises surgical procedures, and 

invasiveness for the patient (Kretlow et al., 2007). Of these natural hydrogels, gellan 

gum gels, have received a great attention due to their well - documented physical 

properties such as low toxicity and high biocompatibility. The above characteristics 

have made gellan gum a suitable material for the delivery of therapeutic molecules 

such as EVs (Lanza et al., 2014; Radhakrishnan et al., 2016; Kowalczewski and Saul, 

2018). 

1.3.1.1 Synthetic Hydrogels 

Synthetic hydrogels have a high - water absorption capacity and strong 

chemical performance providing a long service life to a patient. Synthetic hydrophilic 

gels such as Polyanhydrides, Polydimethylsiloxane (PDMS), Polyacrylamide (PAM), 

Polyvinyl alcohol (PVA,) Polylactide acid (PLA), Polyethylene glycol (PEG), 

Polyethylene oxide (PEO) and polyphosphates can be prepared by different 

techniques including polymerisation and cross-linking of multifunctional monomers.   

Their properties can be engineered for chemical and mechanical stability, 

biocompatibility and several other requirements, such as uniform cell distribution and 

immobilization. However, the last two decades, scientists have focused on natural 

origin hydrogels due to their biodegradable and hydrophilic properties (Drury and 

Mooney, 2003; Goodman et al., 2013; Ahmed, 2015, Sheikh et al., 2015; Tozzi et al., 

2016; Tsou et al., 2016). 

1.3.1.2 Natural derived hydrogels 

 Interest in natural hydrogels has been increasing due to their desirable 

molecular properties such as low cytotoxicity, low immunogenicity, high 

biocompatibility and high degradability.  
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The natural hydrogels originally can be made from polysaccharides and proteins which 

are extracted from plants, humans or animals (Drury and Mooney, 2003; Lanza et al., 

2014; Sheikh et al., 2015; Radhakrishnan et al., 2016; Kowalczewski and Saul, 2018).  

In this section of the report, the most frequently used natural bio-polymers for 

bone and tissue engineering such as Chitosan, Gelatin, Alginate, Hyaluronic acid (HA), 

Gellan gum and proteins (collage Type-l, silk fibroin) will be discussed (De Witte et al., 

2018). It has to be noted that the above polysaccharide hydrogels can be prepared by 

different techniques including polymerisation and cross-linking of multifunctional 

monomer (Drury and Mooney, 2003; Sheikh et al., 2015). 

1.3.1.2.1 Chitosan 

Chitosan is a linear polysaccharide derived from chitin that can be found in 

shrimps, fungi, mushroom, lobster, crab and coral (Drury and Mooney, 2003; 

Venkatesan and Kim, 2010; Radhakrishnan et al., 2016). Chitin is one of the most 

abundant bio – polymer with the highest rate of degradation and production. This type 

of polysaccharide is composed of (1 à 4) linked N-acetyl-D-glucosamine and N-D-

glucosamine groups (Figure 12). The physical properties of the Chitosan, such as 

biodegradability, non-toxicity, processability, biocompatibility and antibacterial 

behavior, set it the most broadly used natural polymer for the production of bone 

scaffolds in tissue engineering (Drury and Mooney, 2003; Radhakrishnan et al., 2016; 

Tsou et al., 2016; Kowalczewski and Saul, 2018; De Witte et al., 2018). 

 

 
 

 

 

Figure 12. Chemical structure of Chitosan (Radhakrishnan et al., 2016). 
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1.3.1.2.2 Collagen (Type - I) 

Collagen (Type - I) is one of the most important bio – polymers derived from 

the skins of vertebrate species. Collagen consists of three polypeptide chains which 

intertwine together into a triple helix structure. Collagen (Type – I) is an attractive 

biomaterial in bone tissue engineering since is the most abundant protein in bone and 

tissues (Drury and Mooney, 2003; Sheikh et al., 2015). Collagen play an important role 

in the promotion of osteogenic differentiation of bone cells through α - β integrin 

receptor interactions. These particular interactions promote the cell adhesion and 

consequently cell proliferation. This specific ability of collagen makes it suitable for 

implants coating and scaffolds production. Also, it may be modified with nanofiber-

based growth factors which include bone morphogenetic protein (BMP), vascular 

endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), transforming 

growth factor beta (TGF-β) and fibroblast growth factor (FGF) to promote osteogenic 

differentiation (Drury and Mooney, 2003; Sheikh et al., 2015; Duconseille et al., 2015; 

Tsou et al., 2016; Dong and Lv, 2016; De Witte et al., 2018). 
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1.3.1.2.3 Gelatin 

Gelatin is a heterogeneous mixture of single or multi stranded polypeptides, 

each with extended left handed proline helix conformations containing between 50 - 

1000 amino acids (Chaplin, 2018). Its amino acid composition is close to that of 

collagen (Type – I).  Gelatin can be extracted from the skin or bones of animals (pigs), 

insects and fishes by the hydrolysis of collagen and composed of many glycine residues 

(1 in 3 residues which are arranged every third residue), proline and 4-hydroxyproline 

residues (Figure 13). Gelatin is used in pharmaceuticals industries for the production of 

hard or soft capsules, absorbent pad and sealants for vascular prostheses. Its low cost 

of production, good biocompatibility and non-immunogenic properties are attractive 

in the field of tissue engineering (Pulat and Akalin, 2013; Hoque et al., 2015; Tsou et 

al., 2016; Wang et al., 2017; Deshmukh et al., 2017). 

 

 
 

 

 

 

 

 

 

 

 

 

                     Figure 13. Chemical structure of Gelatin (Deshmukh et al., 2017) 
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1.3.1.2.4 Alginate 

Alginate is a block polysaccharide naturally secreted from bacteria and brown 

seaweeds. This type of polysaccharide is characterised by an anionic behavior and is 

composed of β-D-mannuronic acid and α-L-guluronic acid groups linked by (1 à 4) 

glycosidic linkages (Figure 14) (Zhang et al., 2013). Alginate has a unique characteristic; 

can interact with divalent ions and create a three-dimensional dense structure which 

called “egg box” improving the mechanical properties. Like chitosan, alginate is 

characterised by a high biocompatible and degradable polymeric material with low 

cytotoxicity and cost of production. Among the natural polymers, alginate and chitosan 

are the most frequently used for bone tissue scaffolding application. However, alginate 

is also suitable for cell encapsulation techniques such as the allogenic cell 

implementation for the insulin production for diabetes Type I (Muzzarelli, 2011; Lee 

and Mooney, 2012; Venkatesan et al., 2015; Tsou et al., 2016; Radhakrishnan et al., 

2016; Kowalczewski and Saul, 2018). 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Chemical structure of Alginate (Radhkrishnan et al., 2016). 
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1.3.1.2.5 Hyaluronic acid (HA) 

Hyaluronic acid (HA) is also a linear polysaccharide and released through the 

body in synovial fluid of joints, extracellular matrix of cartilage and organs during the 

wound healing process. HA plays also an important role in morphogenesis, 

angiogenesis and cell signalling phases. This type of polysaccharide consists of β-D-

glucuronic acid and N-acetyl-β-glucosamine residues linked by (1 à 3) and (1 à 4) 

glucoside groups (Figure 15) (Magnani et al., 1998). Its high - water adsorption 

capability and biodegradable properties are extremely attractive in bone repair 

technologies. Space filling and wound healing scaffolds can be produced from 

hyaluronic acid enhancing the capability for cell adhesion and differentiation. In the 

case of bone repair, scaffolds and injectable systems have been recently produced 

from hyaluronic acid to promote bone healing (Drury and Mooney, 2003; Collins and 

Birkinshaw, 2013; Sheikh et al., 2015; Tsou et al., 2016; Radhakrishnan et al., 2016). 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 15. Chemical structure of Hyaluronic Acid (Radhkrishnan et al., 2016). 
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1.3.1.2.5 Silk fibroin 

Silk fibroin (SF) is commonly defined as a natural protein polymer derived from 

silkworms (Bombyx mori), bees and spiders. According to Qi et al. (2018), silk fibroin is 

an attractive biomaterial in bone technology due to its excellent mechanical and 

biocompatible properties. The silk fibroin consists of two main structural proteins; the 

heavy chain and the light chain associated through a disulfide bond (Figure 16). The 

higher molecular weight heavy chain is dominated by the existence of β-sheet. This 

particular chain is characterised by the presence of 45.9% Gly-cine (G), 30.3% Alanine 

(A), 12.1% Serine (S), 5.3% Tyrosine, 1.8%Valine and 0.25% Tryptophan (Figure 16). 

Several studies reported that, biomimetic scaffolds produced from silk fibroin enable 

the protein bioactivity to be preserved and to enhance osteogenic differentiation 

(Schlotzer-Schrehardt et al., 2013; Qi et al., 2017; De Witte et al., 2018; Prasad and 

Mandal, 2018). 

 

 
       

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Chemical structure of Silk Fibroin (Prasad and Mandal, 2018). 
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1.3.1.2.6 Gellan Gum Hydrogel 

The biomaterial of interest in this study is a natural hydrogel called Gellan Gum 

(GG) which is commonly used in the food and pharmaceuticals industries as a viscosity 

modifier. Gellan gum (GG) is a natural anionic polysaccharide, similar to alginate in 

utility profile, derived from Sphingomonas elodea bacteria (ATCC 31461) by aerobic 

fermentation. GG is composed of tetrasaccharide (1, 3-b-D-glucose, 1, 4-b-D-glucuronic 

acid, 1, 4-b-D-glucose, 1, 4-a-L-rhamnose) repeating units and contains one carboxyl 

side bond (Figure 17). Gellan gum can be formed into gels using either temperature 

setting or chemical cross-linking using cations. GG is in a coil from at high 

temperatures. Upon the temperature decrease this coil form is transited to double 

helix. This particular thermally reversible performance is prerequisite for the gel 

formation (Nitta and Nishinari, 2005; Sworn, G., 2009; Oliveira et al., 2010; 

Radhakrishnan et al., 2016). 

 

 
 

 

The physical properties of the GG, such as resistance to heat, high porosity 

(>90%), non- cytotoxicity, versatility, injectability and physical gelation, make this 

anionic polysaccharide suitable for therapeutic delivery applications. GG gels have 

been used in tissue engineering for scaffold production and cell encapsulation 

providing a specialized environment for isolated cells (Nitta and Nishinari, 2005; 

Sworn, G., 2009; Oliveira et al., 2010; Radhakrishnan et al., 2016). However, Gellan 

Gum is still relatively unknown in the area of biomedical engineering. Only a few 

studies have searched this material for bone-tissue regeneration and therapeutic 

delivery applications (Lanza et al., 2014; Radhakrishnan et al., 2016).  

Figure 17. Chemical structure of Gellan Gum (Radhkrishnan et al., 2016). 
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We are proposing to use this biomaterial, GG, in this study to be used in bone or tissue 

regeneration technologies and therapeutic delivery applications. 

One of the most interesting features about Gellan Gum hydrogels is their 

physical property to remain in gel structure at high temperatures (e.g 37°C) 

constituting an important factor for the preparation of a stable gel once injected into 

the human body. Also, its swelling and high porosity properties indicates that this 

particular polysaccharide may have an appropriate network structure to enable 

release of incorporated EVs. Thus, controlling GG properties can be beneficial to 

synthesise a delivery platform for controlled vesicle delivery. One extra parameter for 

the optimisation of the vesicles release is to incorporate EVs with other molecules 

(miRNA, collagen and calcium phosphate) once seeded into the GG gels enhancing the 

osteogenic activity of the vesicles. 

 

1.4 Synthesis of Literature Review 

The natural capability of extracellular vesicles (EVs) to mediate therapeutic 

effects and deliver biological cargo (DNA, mRNA and proteins) makes them an exciting 

tool for regenerative medicine.  There is potential to harness the therapeutic potential 

of EVs and use biomaterials to locally deliver them to the site of interest (Lamichhane 

et al., 2014). The selection of a suitable bio-material to interact with the vesicles plays 

an important role to this particular therapeutic approach. This study aims to prepare 

and define the design parameters for the development of a physically cross – linked 

Gellan Gum (GG) hydrogels, as a potential injectable gel (vehicle) loaded with purified 

EVs, enable to maintain them and enhance bone or tissue repair. 
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CHAPTER 2 – MATERIALS AND METHODS  

The present section of the report covers in detail, all the materials and methods 

used for the isolation and characterisation of EVs as well as the preparation and 

characterisation of gellan gum hydrogels, including specific techniques and equipment. 

 

2.1 Cell cultures and sample preparation 

Murine pre – osteoblastic cells (MC3T3) from a passage 10 were seeded and cultured, 

at a density of 1 x 106 cells/flask, in a T175 flask in minimal essential medium (α – 

MEM; Sigma – Aldrich, UK) supplemented with 10% (50mL) foetal bovine serum (FBS; 

Sigma – Aldrich, UK), 2.4% (12mL) L – glutamine (Sigma – Aldrich, UK) and 1% (5mL) 

penicillin (Sigma – Aldrich, UK), that was replaced every two days. Cells were passaged 

at a ratio of 1:3 on average every three to four days when they reached 80% 

confluence according to the standard techniques. All cultures were incubated at 37°C 

in 5% CO2.  

2.1.1 Osteogenic differentiation 

To induce osteogenic differentiation, MC3T3 cells (P15), were cultured in a 

T175 flask in growth medium (α-minimal essential medium) supplemented with 10% 

(50mL) foetal bovine serum (FBS; sigma), 2.4% (12mL) L-glutamine and 1% (5mL) 

penicillin for five days. Next, the α-MEM supplement was replaced by an osteogenic 

medium. The osteogenic media was consisting of 50 mL exosome depleted growth 

medium with 10nM sodium β-glycerophosphate and 50μg/mL L-ascorbic acid. For the 

preparation of osteogenic media, exosome depleted FBS was prepared by the serum 

ultracentrifugation at 120,000 x g for 16 hours.   The cells were cultured in osteogenic 

medium for a period of 14 days which was replaced every three days. Next the culture 

conditioned medium (CCM) was collected into 50 mL centrifuge tubes and stored in a 

fridge for 2 days at 15°C before isolation. All cultures were incubated at 37°C in 5% 

CO2. 
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2.2 Isolation of EVs 

2.2.1 Sequential method for EVs ultracentrifugation isolation  

EVs were isolated from culture conditioned media (CCM) pooled over the two-

week osteogenic culture period. Two different protocols have been used (sequential 

and differential protocol) and five different speeds (10,000 x g, 20,000 x g, 50,000 x g, 

75,000 x g and 120,000 x g) have been applied with the view of selecting a protocol 

tailored to a specific population.  

The sequential method of EVs’ isolation consists of five consecutive 

ultracentrifugation speeds at 10,000 x g, 20,000 x g, 50,000 x g, 75,000 x g and 120,000 

x g (Figure 18). Initially, the osteogenic media was centrifuged at 2,000 x g for 20 

minutes, in a Mistral 2000 (MSE) centrifuge, to remove the dead cells and the pellet 

discarded. Afterwards, 19 mL of the supernatant were collected and centrifuged 

consecutively in an Avanti J-E fixed angle rotor (Beckman Coulter, USA) centrifuge at 

10,000 x g, 20,000 x g and then 50,000 x g for 30 minutes respectively. The resulting 

pellets from each speed were re-suspended; in 200μL of PBS and stored at -80°C for 

further analysis. The collected supernatant was further centrifuged at 75,000 x g in a 

Sorvall MX 150 Plus (ThermoFisher Scientific, USA) ultracentrifuge for a further 70 

minutes. The resulting pellet was re-suspended in 200μL of PBS and stored at -80°C for 

further analysis. The same supernatant was collected and centrifuged again for the last 

speed at 120,000 x g for 70 minutes in Sorvall MX 150 Plus (ThermoFisher Scientific, 

USA) ultracentrifuge to concentrate the pellet of purified EVs. The resulting pellet was 

re-suspended in 200μL of PBS and stored at -80°C for further analysis. All 

ultracentrifugation speeds were performed at 4°C.  

 
Figure 18. Sequential protocol. Schematic presentation of the 

sequential isolation of EVs. 
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2.2.2 Differential method for EVs ultracentrifugation isolation  

The differential method of EVs’ isolation consists of five individual 

ultracentrifugation speeds at 10,000 x g, 20,000 x g, 50,000 x g, 75,000 x g and 120,000 

x g (Figure 19). The same five speeds were used in both protocols to enable the 

comparison of isolated EVs’ population. Five tubes containing 20 mL of osteogenic 

media each, were centrifuged at 2,000 x g for 20 minutes each in a Mistral 2000 (MSE) 

centrifuge and the pellet discarded. Afterwards, 19 mL of each supernatant placed into 

20mL tubes and centrifuged individually. Three tubes were centrifuged using an Avanti 

J-E fixed angle rotor (Beckman Coulter, USA) for 30 minutes each at either 10,000 x g, 

20,000 x g or 50,000 x g.  All supernatants were removed, and the resulting pellets 

were re-suspended in 200μL of PBS and stored at -80°C for further analysis. The two 

remaining tubes were centrifuged in a Sorvall MX 150 Plus (ThermoFisher Scientific, 

USA) ultracentrifuge at 75,000 x g or 120,000 x g for 70 minutes. The purified EVs’ 

pellets were re-suspended in 200μL of PBS and stored at -80°C for further analysis. All 

ultracentrifugation speeds were performed at 4°C. 

 

 

 

 

 

 

 

 

 

 

Figure 19. Differential protocol. Schematic presentation of the 

differential isolation of EVs. 
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2.3 EVs characterisation 

The size distribution and concentration of EVs were obtained for all the speeds 

(10,000 x g, 20,000 x g, 50,000 x g, 75,000 x g and 120,000 x g) in both protocols 

(sequential and differential) by dynamic light scattering (DLS) and nanoparticle tracking 

analysis (NTA). Next, the morphology of isolated EVs by the last two speeds in both 

protocols, at 75,000 x g and 120,000 x g, was illustrated using transmission electron 

microscopy (TEM). The protein content of isolated EVs was evaluated for all the speeds 

in both protocols using a BCA assay. In conclusion, the influence of purified EVs on 

cellular metabolic activity isolated by the last two speeds in both protocols, at 75,000 x 

g and 120,000 x g was evaluated by an Alamar Blue Assay (AB). 

2.3.1 Dynamic light scattering (DLS) 

DLS analysis was performed with a Zetasizer nano - series instrument (Malvern 

Nano - Zetasizer, = 10 μm laser wavelength), to determine the size distribution of 

isolated EVs (Apolinário et al., 2018). Initially, 20 μL of each sample was dispersed in 

700 μL PBS and placed into a cuvette. Prior to DLS analysis, to avoid EVs aggregations 

all the samples were placed into a sonic bath for 10 minutes. Each sample was 

analysed five times (n=5) by DLS instrument at 25°C using the Malvern software.  

2.3.2 Nanoparticle tracking analysis (NTA) 

NTA is the most common instrument for the analysis of EV size distribution and 

concentration. A NanoSight LM 10 (Malvern Instruments Ltd, UK) microscope equipped 

with a 455nm laser wavelength, used to determine the size distributions and 

concentrations of isolated EVs. Initially, 20 μL of each sample was diluted in fresh 700 

μL PBS and injected to the laser beam manually. Each sample was analysed five times 

(n=5) by NTA instrument using NTA 3.2 software. EVs acquisition and videos of 30s 

were captured at 22°C for each sample. 
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2.3.3 Transmission electron microscopy (TEM) 

A suspension of EVs emerged from the last two speeds at 75,000 x g and 

120,000 x g, were visualised using transmission electron microscopy (TEM). Briefly, 

20μL of EVs suspension was placed onto a carbon coated film grid (S160-4H Agar 

Scientific, UK) and allowed to dry for 1 minute at 25°C (room temperature). The excess 

PBS suspension was gently removed by touching the grid to a tissue paper. Negative 

staining process was conducted to enhance sample contrast. A single drop (20μL) of 2 

% (w/v) uranyl acetate solution (UA) was placed onto the carbon coated film grid and 

allowed to dry for a period of 1 minute at 25°C (room temperature). The excess UA 

suspension was gently removed by touching the grid to a tissue paper and the sample 

was dried for permanent preservation. A JEM 3200FX transmission electron 

microscope (Joel, USA) was used to image vesicles samples at a voltage of 80 kV. 

2.3.4 Bicinchoninic acid assay (BCA) 

The detection and quantitation of total vesicle protein contents was assessed 

with a Thermo Scientific pierce BCA protein assay for all the spins in both protocols. 

Prior to experiment the preparation of working reagent was necessary. Working agent 

consists of 1000μL BCA reagent A and 20μL BCA reagent B (plate protocol described in 

the Pierce instruction booklet). Following, 175μL of working reagent pipetted into a 48 

well plate and mixed with 20μL of EVs. The plate was incubated for 30 minutes at 37°C 

in 5% CO2. As a positive control, MC3T3s were cultured in growth medium in the 

absence of EVs. MC3T3 cells from a passage 10 were seeded and cultured, at a density 

of 1 x 106 cells/flask, in a T175 flask in minimal essential medium (α – MEM; Sigma – 

Aldrich, UK) supplemented with 10% (50mL) foetal bovine serum (FBS; Sigma – Aldrich, 

UK), 2.4% (12mL) L – glutamine (Sigma – Aldrich, UK) and 1% (5mL) penicillin (Sigma – 

Aldrich, UK) for three days to reach 80% confluence. The conditioned medium was 

removed from the flask and 4mL of phosphate buffered saline (PBS) was added to 

remove CCM residues. Next, the PBS was removed and 4mL of Trypsin (Sigma – 

Aldrich, UK) was added to the flask. The flask was placed in the incubator for 10 

minutes at 37°C in 5% CO2 to allow cell detachment from the flask bottom.  
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Afterwards, 4mL of fresh growth medium was added to the cell-PBS suspension and 

collected to a 50 mL tube which was centrifuged for 3 minutes at 1000 rpm in a Mistral 

2000 (MSE) centrifuge.  The supernatant was removed and the pellet of the cells was 

suspended in 1mL of fresh growth medium. Next, the cells were counted with a 

Neubeuer hemacytometer (Marienfeld) and brought to a concentration of 1 × 

106 cells/mL. Following, 175μL of working agent pipetted into a 48 well plate and 

mixed with 20μL of MC3T3s suspension. The plate was incubated for 30 minutes at 

37°C in 5% CO2. The absorbances were measured at 525 nm using the microplate 

spectrophotometer system (Spectra Max-L-Lumi microplate reader). Each sample was 

analysed five times (n=5) by the Soft max pro software. 

2.3.5 Alamar Blue assay (AB) 

Alamar Blue (Sigma-Aldrich) assay kit was used to assess the effect of purified 

EV dosing on cell metabolic activity. MC3T3 cells from a passage 10 were seeded and 

cultured, at a density of 1 x 106 cells/flask, in a T175 flask in minimal essential medium 

(α – MEM; Sigma – Aldrich, UK) supplemented with 10% (50mL) foetal bovine serum 

(FBS; Sigma – Aldrich, UK), 2.4% (12mL) L – glutamine (Sigma – Aldrich, UK) and 1% 

(5mL) penicillin (Sigma – Aldrich, UK) for three days to reach 80% confluence. The 

conditioned medium was removed from the flask and 4mL of PBS was added to 

remove CCM residues. Next, the PBS was removed from the flask and 4mL of Trypsin 

(Sigma – Aldrich, UK) was added. The flask was placed in the incubator for 10 minutes 

at 37°C in 5% CO2 to allow cell detachment. Afterwards, 4mL of fresh growth medium 

was added to the cell-PBS suspension and collected to a 50 mL tube which was 

centrifuged for 3 minutes at 1000 rpm in a Mistral 2000 (MSE) centrifuge. The 

supernatant was removed and the pellet of the cells was suspended in 1 mL of fresh 

growth medium. Afterwards, the cells were counted with a Neubeuer hemacytometer 

(Marienfeld) and brought to a concentration of 1 × 106 cells/mL. MC3T3s were seeded 

into a 96 well culture plate (200 µl well−1, Nunc, UK) at concentrations of 5,000 cells / 

well and incubated at 37°C for two hours to allow cell attachment. After that, EVs 

which were isolated by the fourth and fifth speed at 75,000 x g and 120,000 x g, were 

added to MC3T3s at four different concentrations (0.5 μg/mL, 1 μg/mL, 5 μg/mL and 

10 μg/mL). As a positive control, MC3T3s were cultured in growth medium in the 
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absence of EVs. This particular experiment has been conducted within a period of 

three days. After 24 hours (Day 1) Alamar Blue solution was directly added into the 

culture media at a concentration of 10%. Similarly, after 48 hours (Day 2), Alamar Blue 

solution was directly added into the culture media at a concentration of 10%. In final 

day (Day 3) after 72 hours Alamar Blue solution was directly added into the culture 

media at a concentration of 10%. All absorbances were measured using the microplate 

spectrophotometer system (Spectra Max-L-Lumi microplate reader) at 525 nm. The 

results were analysed by the Soft max pro software. 

 

2.4 Gellan Gum (GG) hydrogel 

2.4.1 Preparation of Gellan Gum Fluid Gels 

 In this study eight natural Gellan Gum (GG) hydrogels were prepared (Table 3) 

with varied polymer and cross-linker concentrations as well as polymer to cross - linker 

ratio and evaluated as a potential injectable system that may be used to controllably 

deliver therapeutic doses of isolated EVs. The main idea was to produce a gellan gum 

fluid gel, which can mimic the rheological behavior of a toothpaste to enable easy 

injection and maintain the structure locally to facilitate release of incorporated EVs.  

 

Sample Code 

 

GG Concentration 

 

 

CaCl2 Concentration 

 

 

Agitator Speed 

 

 

1 

2 

3 

4 

5 

6 

7 

8 

 

2% w/v 

2% w/v 

2% w/v 

2% w/v 

1.5% w/v 

1.5% w/v 

1.5% w/v 

1.5% w/v 

 

200μL of 50mM 

200μL of 100mM 

150μL of 50mM 

150μL of 100mM 

200μL of 50mM 

200μL of 100mM 

150μL of 50mM 

150μL of 100mM  

 

1150 rpm 

1150 rpm 

1150 rpm 

1150 rpm 

1150 rpm 

1150 rpm 

1150 rpm 

1150 rpm 

 

 

Table 3. Table presenting the design of experiments which were conducted in order to 
evaluate the effect of gellan gum and cross-linker concentration. The agitator speed was 
fixed at 1150 rpm for all the gel suspensions.   
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For each sample, Gellan Gum powder (Sigma – Aldrich) was thoroughly mixed 

with sterile water under constant stirring and heated progressively to 90°C until full 

dissolution was achieved. After that, GG gel was stored for 30 minutes at 25°C to cool 

down. The gel was then sheared for 5 minutes at 1150 rpm using an overhead impeller 

and calcium chloride (Sigma – Aldrich) was added drop wise. The rheological behavior 

of the resultant fluid gel was then analysed and compared with a Colgate toothpaste 

bought from a local pharmacy. 

2.4.2 Rheological measurements 

All rheological measurements were performed using an AR-1000 rheometer 

fixed with a stainless-steel cone (angle 2°, diameter of 40 mm) and plate geometry. 

Dynamic viscosity measurements for all the samples were taken at 37°C using a 5-

minute shear continuous ramp from 1 s-1 to 1000 s-1.  Oscillation frequency sweep 

measurements were used to determine the rheological behavior of the samples in 

terms of the elastic modulus (G’) and viscous modulus (G”) as a function of frequency 

from 0.01 to 10 Hz. Measurements were taken at 37°C and performed at 1 min 

equilibrium time and 0.5% strain (linear mode). A sample of toothpaste has been used 

as positive control due to the product’s controllable flow behavior and its recovery 

characteristics.  

 

2.5 Statistical analysis 

The statistical analysis was performed using SPSS 15.0 software (SPSS, Inc., 

Chicago, IL, USA). The results are expressed as ± standard deviation (SD). A paired t-

test was used to identify any significant statistical difference among the means of 

independent groups. A p-value < 0.05 was considered as statistically significant. 

 

 

 

 

 

 

 



49 

 

CHAPTER 3 – RESULTS AND DISCUSSION  

EVs have attracted considerable interest in the field of tissue engineering  due 

to their capability to mediate cell to cell communication and enable the transfer of 

genetic information in important biological processes such as angiogenesis, 

immunomodulation, extracellular matrix interaction and tissue regeneration (Lee et 

al., 2012; De Jong et al., 2014; Qin et al., 2016; Davies et al., 2017). More specifically, 

several studies have reported that EVs derived from mesenchymal stem cells (MSC) 

were able to improve recovery in animal models of experimentally, induced acute 

renal injury and also promote bone regeneration (Osugi et al., 2012; Vicencio et al., 

2015).  

 However, the identification of these population is problematic due to the 

variety of isolation and characterisation protocols and also the continuing 

development of EVs biogenesis. More and more studies have been conducted to purify 

EVs and several methods have been applied, including ultracentrifugation, 

ultrafiltration, size exclusion chromatography, polymer - based precipitation and 

immunoaffinity separation (Lai et al., 2011; Momen-Heravi et al., 2013; Witwer et al., 

2013; Zaborowski et al., 2015; Yakimchuk, 2015; Szatanek et al., 2015; Zhou et al., 

2016). So far, differential centrifugation coupled to ultracentrifugation is the most 

widely used method for EVs isolation from cell conditioned media (CCM) and various 

biological fluids. Notably, the effects of repeating ultracentrifugation steps on the 

recovery of EV yields have not been evaluated comprehensively. There are many 

isolation protocols that differentiate in the number of steps and the conditions of 

centrifugation such as rotor types. Thus, the results obtained using dissimilar protocols 

make the comparison difficult (Konoshenko et al., 2018). It appears that a unified 

protocol which will enable an efficient isolation and characterisation of EVs is needed. 

The aim of this study was to assess and compare the various osteoblastic EVs 

factions that were isolated from conditioned culture media (CCM) using two different 

isolation protocols and applying five different centrifugation forces with the view of 

selecting a protocol tailored to a specific population and consequently contribute to 

the optimisation of ultracentrifugation method.   
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These two protocols, namely sequential and differential, have been compared based 

on the size, concentration and protein content of isolated EVs in order to identify 

similarities and differences which might lead to the most efficient one.   

Both isolation protocols (sequential and differential) consist of five equal 

speeds starting from 10,000 x g and then accelerating gradually to 20,000 x g, 50,000 x 

g, 75,000 x g and finally to 120,000 x g. The difference between these two protocols 

lies on the centrifugation of the supernatant. During the sequential protocol the initial 

supernatant was centrifuged consecutively at all spins whereas at the differential 

protocol, five tubes of supernatants were centrifuged individually at all five spins. The 

biophysical properties of isolated EVs, such as sizes, concentrations and morphologies, 

were obtained by using dynamic light scattering (DLS) analysis, nanoparticle tracking 

analysis (NTA) and transmission electron microscopy (TEM). A BCA protein assay was 

also conducted to assess the protein content of isolated EVs for each spin separately. 

In addition, the influence of osteogenic EVs on MC3T3 cells metabolic activity was 

examined for a period of three days in both protocols, after culturing cells with four 

different doses of EVs isolated by the last two spins. 

 

3.1 Dynamic light scattering analysis (DLS) 

DLS was used to evaluate the size distribution of osteoblastic EVs isolated by 

sequential and differential ultracentrifugation at five different centrifugation forces. 

The analysis of DLS findings of the sequential protocol showed that the majority of EVs 

sizes range from 50 to 260 nm (Figure 20b) whereas the analysis of DLS findings of the 

differential protocol, showed that the majority of EVs sizes range from 50 to 794 nm 

(Figure 21b). More specifically, at the first spin of sequential protocol, at 10,000 x g, 

the average size and scattering intensity of EVs was reported to be of 260 ± 16.1nm, 

17% while at the same spin in differential protocol the average size of EVs was 

reported to be higher, 449 ± 14 nm having a slightly lower scattering intensity of 15%. 

At the next two sequential spins the average size and scattering intensity of EVs 

decreased cumulatively to 247.5 ± 17.7 nm, 14.4% and 198.4 ± 15 nm, 13% 

respectively.  
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On the other hand, in the corresponding differential spins it was observed that the 

average size and scattering intensity of EVs increased unexpectedly to 513 ± 13 nm, 

19% and 794 ± 15 nm, 21%. At the last two sequential spins the average size and 

scattering intensity of EVs further decreased to 152.9 ± 14.6 nm, 8.8% and 147.4 ± 13.6 

nm, 7%. Similarly, at the last two differential spins the average size and scattering 

intensity of EVs decreased to 249 ± 11.5 nm, 10% and 129 ± 11 nm, 2.4%. It is 

interesting that in the case of sequential protocol between the last two centrifugal 

forces there was no significant change in size and intensity profile while the opposite 

happened in differential protocol. It is important to recognise that the scattering 

intensity of EVs isolated by the last differential spin was significantly lower than all 

other samples in both protocols. Despite the size variation that exists in the sample, no 

statistical differences (p > 0.05) between the average size of isolated EVs by the first 

two sequential spins; 10,000 x g and 20,000 x g, was detected (Figure 20b). However, 

further increase in the centrifugal force significantly (p < 0.05) decreased the EVs mean 

size (Figure 20b). Similarly, in the case of differential protocol no statistical differences 

(p > 0.05) were observed between the average sizes of the first two differential spins 

(Figure 21b), however further increase in the centrifugal force significantly (p < 0.05) 

decreased the EVs mean size (Figure 21b).  

 

Figure 20. Dynamic light scattering analysis of isolated EVs by the sequential method. (a) Size 

distribution curve including standard deviation calculated from n=5. (b) Statistical analysis among the 

average sizes (nm) of isolated EVs including standard deviation calculated from n=5. 
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Overall, it was observed that in the case of sequential protocol, the size and the 

scattering intensity of the EVs decreased when the speed of isolation gradually 

increased. Two subpopulations exist in all the centrifugal forces and this can be 

attributed to the nature of the differential protocol. In the case of differential protocol, 

the size and the scattering intensity of the EVs increased during the first three spins 

while the opposite happened in the last two spins, meaning that EVs’ size and finally 

scattering intensity decreased, potentially due to errors introduced by the DLS or 

breakage of larger EVs at the last two high centrifugal forces. It was also observed that 

the sizes and scattering intensity of EVs were greater in the differential protocol 

compared to the sequential; this applies for the first four spins while on the fifth spin 

the two protocols have similar average sizes (147.4 ± 13.6 nm, 129 ± 11 nm). Previous 

studies have been shown that EVs isolated from CCM by differential 

ultracentrifugation consisted from three main sequential spins (last speed at 100,000 x 

g and 120,000 x g) had an average size of EVs < 200 nm (Palmieri et al., 2014; Martins 

et al., 2016; Davies et al., 2017). The aforementioned findings appear to be similar with 

the findings observed in the last two spins of both protocols, sequential and 

differential conducted in this study. It must also be recognized that high standard 

deviations were associated with all the DLS measurements. This fact indicates that at 

all spins in both protocols the EV suspensions had a wide range of sizes. This fact 

confirms the heterogenous population that exists in EV suspensions as previously 

Figure 21. Dynamic light scattering analysis of isolated EVs by the differential method. (a) Size 

distribution curve including standard deviation calculated from n=5. (b) Statistical analysis among the 

average sizes (nm) of isolated EVs including standard deviation calculated from n=5.  
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reported in the literature (Momen-Heravi et al., 2013; Yuana et al., 2013; Lamichhane 

et al., 2014; Zaborowski et al., 2015; Mendes et al.,2016; Willms et al., 2018; Azoidis et 

al., 2018).  

 

3.2 Nanoparticle tracking analysis (NTA) 

A Nanosight LM10 instrument was also used to analyse further the size 

distribution and evaluate the concentration of EVs for both protocols at each spin. The 

analysis of NTA findings revealed that the majority of EV sizes at all spins in both 

protocols range from 50 to 200 nm (Figure 22a and Figure 23a). During the first spin in 

both protocols, the isolated EVs reported to have similar average sizes but slightly 

different concentrations (Figure 22b and Figure 23b). 

 
 

 

 

 

 

 

Figure 22. Nanoparticle tracking analysis of isolated EVs by the sequential method. (a)  Statistical 

analysis among the average sizes (nm) of isolated EVs including standard deviation calculated from 

n=5. (b) Statistical analysis in average concentrations (particles/mL) of isolated EVs. 

Figure 23. Nanoparticle tracking analysis of isolated EVs by the differential method. (a) Statistical 

analysis among the average sizes (nm) of isolated EVs including standard deviation calculated from 

n=5. (b) Statistical analysis in average concentrations (particles/mL) of isolated EVs. 
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In sequential protocol, the average size and concentration of EVs stated to be 199.6 ± 

16 nm, 3.60 x 108 particles/mL whereas at the same spin in differential protocol, the 

average size and concentration of EVs stated to be 194 ± 17.5 nm, 4.25 x 108 

particles/mL. Passing through the second spin at 20,000 x g, the average size and 

concentration of EVs in sequential protocol decreased significantly to 166 ± 15.5 nm, 

2.89 x 108 particles/mL in contrast to the differential protocol where the size and 

concentration of EVs slightly increased to 200 ± 17 nm, 5.6 x 108 particles/mL. During 

the third speed at 50,000 x g, in both protocols, the average size and concentration of 

EVs were slightly decreased to 159 ± 15.6 nm, 2.74 x 108 particles/mL and 190 ± 16 nm, 

5.38 x 108 particles/mL. A significant increase (p < 0.05) in concentration of EVs was 

observed for both protocols at the fourth spin of 3.64 x 108 particles/mL and 8.81 x 108 

particles/mL respectively. Despite the fact that the concentration of EVs was increased, 

the size of EVs was decreased to 132 ± 15.3 nm and 165.7 ± 17.3 nm respectively. At 

the last spin the average size of EVs are not significantly different between the two 

protocols (Table 4 and Figures 22a and 23a). More specifically, EVs isolated after the 

sequential protocol, were found to have an average size of 148 ± 15 nm. Similarly, EVs 

isolated after the differential protocol were reported to have an average size of 150 ± 

14.6 nm. However, at this particular spin, the EV concentrations were significantly 

different between the two protocols. Interestingly, in the case of sequential protocol, 

the EVs concentration derived at last spin (120,000 x g) was significantly lower than 

other fractions even 75,000 x g that resulted in a similarly sized population. On the 

other hand, in the case of differential protocol, the concentration derived at the 

120,000 x g was significantly higher than other fractions. It is also notable that at the 

last spin EV concentrations in differential protocol was significantly higher than the 

sequential, 10.18 x 108 particles/mL and 1.97 x 108 particles/mL, respectively.  

Significant statistical differences (p > 0.05) in the average size and 

concentration of EVs were observed among the five sequential spins (Figures 22a and 

22b). Similar to sequential protocol, significant statistical differences (p > 0.05) in the 

average size and concentration of EVs were observed among the five differential spins 

(Figures 23a and 23b).  
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The significant statistical differences which observed among the measurements of 

average sizes of isolated EVs and also the high standard deviation associated with 

these measurements reveals the heterogeneity of EVs population (Momen-Heravi et 

al., 2013; Yuana et al., 2013; Lamichhane et al., 2014; Zaborowski et al., 2015; Mendes 

et al.,2016; Willms et al., 2018; Azoidis et al., 2018).  

Overall, EVs characterisation using the NTA instrument revealed that in the 

case of sequential protocol, the sizes and concentrations of EVs decreased when the 

speed of isolation gradually increased, except the fourth spin during which the 

concentration of EVs unexpectedly increased (Figure 22). Similarly, in the case of 

differential protocol, the sizes of EVs decreased when the speed of isolation gradually 

increased, however, the concentrations gradually increased (Figure 23). The fact that 

no statistical difference was observed in the mean size with the increase in spin 

between 20,000 x g and 50,000 x g for both the sequential and differential protocols 

could be attributed to the higher concentration of EVs with even smaller sizes that 

were pelleted at even higher spins; 75,000 x g, and due to differences in the EVs 

density. In previous studies, osteoblast-derived EVs isolated from CCM by differential 

ultracentrifugation and characterised by NTA instrument have been concluded with an 

average diameter below 160 nm (Morhayim et al., 2016; Davies et al., 2017). The 

aforementioned findings appear to be similar with the findings observed in the last 

two spins of both protocols, sequential and differential conducted in this study. 

The comparison of DLS and NTA measurements reveals that the EVs measured 

by DLS instrument appeared to have greater average sizes than the EVs measured by 

the NTA instrument. This was observed especially during the implementation of 

differential protocol. Interestingly, at the first speed at 10,000 x g a significant 

difference in size was observed. This unexpected finding might have happened due to 

DLS inability to resolve accurately samples with heterogeneous population and its 

tendency to miscalculate the contribution of the larger particle at the intensity of the 

scattered light which is used for correlation with the particle diameter (Serrano-

Pertierra et al., 2019).  
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In that respect, NTA appears to be more effective since, according to the findings, the 

average sizes emerged from sequential protocol did not have major differences from 

the respective sizes which emerged from differential protocol. NTA has another 

advantage, that is, its detection limits are lower and close to the EVs sizes; therefore 

the measurements are more accurate and the results are in better agreement with the 

TEM ones (Figure 24) (Malvern Panalytical, 2019).  It is interesting that both 

instruments, DLS and NTA, revealed that at the last two spins in both protocols, EVs 

with similar average sizes appeared. These have a mean diameter below 300 nm 

correlating with diameters previous documented for small EVs and exosomes (Xiao et 

al., 2007; De Jong et al., 2014; Yáñez-Mó et al., 2015; Zaborowski et al., 2015; Bruno et 

al., 2016; Ha et al., 2016; Szatanek et al, 2017; Konoshenko et al., 2018; Harjes et al., 

2019).  However, it is notable that in differential protocol significantly higher EV 

concentrations were detected at all spins compared to sequential, especially at the last 

two spins.  Previous studies mentioned that high - speed spins in EV purification not 

only increase the purity of target EVs but also decrease their yield and quality since 

aggregated EVs can be observed in samples obtained by ultracentrifugation (Théry et 

al., 2006; Konoshenko et al., 2018). Thus, the high concentration samples that 

occurred by the differential ultracentrifugation method might be associated with 

aggregated vesicle population and lipoproteins.  
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 DLS NTA 

 

Mean size 

(nm) 

 

Intensity 

(%) 

 

Mean size 

(nm) 

 

Concentration 

(x 108 

particles/mL) 

 

SEQUENTIAL PROTOCOL 

 

10,000 x g 

 

20,000 x g 

 

50,000 x g 

 

75,000 x g 

 

120,000 x g 

 

 

 

260 ± 16.1 

 

247.5 ± 17.7 

 

198.4 ± 15 

 

152.9 ± 14.6 

 

147.4 ± 13.6 

 

 

 

17 

 

14.4 

 

13 

 

8.8 

 

7 

 

 

 

199.6 ± 16 

 

166 ± 15.5 

 

159 ± 15.6 

 

132 ± 15.3 

 

148 ± 15 

 

 

 

3.60 

 

2.89 

 

2.74 

 

3.64 

 

1.97 

 

DIFFERENTIAL PROTOCOL 

 

10,000 x g 

 

20,000 x g 

 

50,000 x g 

 

75,000 x g 

 

120,000 x g 

 

 

 

449 ± 14 

 

513 ± 13 

 

794 ± 15 

 

249 ± 11.5 

 

129 ± 11 

 

 

 

15 

 

19 

 

21 

 

10 

 

2.4 

 

 

 

194 ± 17.5 

 

200 ± 17 

 

190 ± 16 

 

165.7 ± 17.3 

 

150 ± 14.6 

 

 

 

4.25 

 

5.60 

 

5.38 

 

8.81 

 

10.18 

 

 
Table 4. Table presenting an overview of EV sizes, intensity rates and concentrations obtained from 

DLS and NTA instruments at all spins in both protocols.  
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3.3 Transmission electron microscopy (TEM)  

 Electron microscopy (EM) was necessary for this study to further characterise 

EVs sizes and also to visualise their morphology. Taking into consideration that in the 

last two spins similar average sizes emerged, TEM was decided to be used in order to 

capture the EV sizes and morphologies isolated by the sequential and differential 

protocols at 75,000 x g and 120,000 x g. Figures 24A and 24C demonstrate the 

presence of EVs with a diameter above and below the average size particles isolated by 

the last two sequential spins.  Similarly, Figures 24B and 24D demonstrate the 

presence of EVs with a diameter above and below the average size particles isolated by 

the last two differential spins. In both protocols it was observed a heterogeneous 

population of EVs with spherical morphologies and electron dense membranes, 

correlating with morphologies previously documented for small EVs and exosomes 

(Wu et al., 2017; Vestad et al., 2017).  

 

 

 

 

 

 

Figure 24. TEM images of negatively stained EVs. The images show (A) MC3T3s derived EVs isolated by 

the sequential protocol at 75,000 x g, (B) MC3T3s derived EVs isolated by the differential protocol at 

75,000 x g, (C) MC3T3s derived EVs isolated by the sequential protocol at 120,000 x g, (D) MC3T3s 

derived EVs isolated by the differential protocol at 120,000 x g. All images show the presence of EVs in 

several sizes and also the presence of aggregated EVs (white arrows).  
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The electron dense membrane of the EVs interacted strongly with electrons in 

TEM and therefore the purified vesicles look darker (Figure 24A, 24B, 24C and 24D) 

(Yuana et al., 2013; Van der pol et al., 2014; Zabeo et al., 2017). Interestingly, the EVs 

aggregations are obvious in all the figures above (white arrows) but more specifically in 

figure 24D which represents the more concentrated sample according to the NTA 

findings for the highest spin; 120,000 x g. This was also confirmed by the higher mean 

EVs size in the case of the sequential protocol at the highest spin in comparison to 

75,000 x g.  Overall the increase in spin decreases the EVs size. During the sample 

preparation of this experiment, there is a likelihood of emergence of several inorganic 

salts which eventually will form aggregates. The inorganic salts may cause reduction 

and non-uninform adhesion of EVs on the copper grid surface and render the analysis 

more complicated. The inorganic salts could be eliminated by reducing the amount of 

PBS in stored pellets of EVs in future protocols.  

 

3.4 Bicinchoninic acid assay (BCA) 

The next stage of EVs characterisation concerns the biochemical profile of EVs.  

Several studies have been conducted to characterise the protein content of isolated 

EVs.  One of the most frequently used method is the Bicinchoninic acid assay (BCA) or 

Bradford assay. In this study BCA protein assay kit (Thermo scientific, USA) was used in 

order to obtain an initial view of the protein content of osteoblast-derived EVs. The 

total protein content of isolated EVs was determined for all spins by a BCA standard 

protocol. Absorbance units were measured using a micro-plate reader for both 

methods of isolation.  Figure 25 presents the protein concentration of MC3T3 cells 

cultured in the absence of EVs.   

 

 
Figure 25. Positive control graph. The evaluation of protein content in MC3T3 cells cultured without 

the presence of EVs.  BCA concentration of MC3T3s reported to be 10.2 ± 5 μg/mL.  
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Figure 26 presents the protein concentration calculated from the raw absorbance 

measurements using a calibration curve for the sequential and differential protocol.  

 

 
 

 

 

 

At the first spin of sequential protocol the BCA concentration of EVs reported to be 

128 ± 12 μg/mL while at the same spin in differential protocol reported to be higher 

reaching 171 ± 18 μg/mL. Following, in the second spin of the sequential protocol, BCA 

concentration was observed to decrease to 107 ± 10 μg/mL while at the differential 

protocol the BCA concentration of EVs was slightly increased to 174 ± 3 μg/mL. During 

the third spin of both protocols the BCA concentrations were observed to increase 

significantly (p < 0.05) to 187 ± 15.5 μg/mL and 192 ± 5 μg/mL respectively. In the next 

spin of sequential protocol the BCA concentration of EVs increased by 2 units to 189 ± 

13.5 μg/mL while in differential protocol increased by 16 units to 208 ± 3 μg/mL. 

Concluding, at the final spin of sequential protocol, the BCA concentration significantly 

decreased (p < 0.05) to 38.4 ± 9.5 μg/mL compared to differential where the BCA 

concentration of EVs increased further to 215 ± 5 μg/mL. Notably, no significant 

difference between the first two sequential spins at 10,000 x g and 20,000 x g was 

detected. Statistical differences were observed among the first two spins, the third and 

fourth.  Notably, significant statistical differences were observed among the last spin at 

120,000 x g and the first four.   

Figure 26. Precipitated extracellular vesicles released from MC3T3 cells were analysed for the 

content of protein. (a) Statistical analysis in protein content of isolated EVs by the sequential 

protocol. (b) Statistical analysis in protein content of isolated EVs by the differential protocol. 
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Similarly, no significant difference between the first two differential spins at 10,000 x g 

and 20,000 x g was detected. Significant statistical differences were observed among 

the last spins, 75,000 x g and 120,000 x g, and the first three.  

Overall, it was observed that in both protocols the BCA concentrations were 

significantly higher than the control (Figure 25 and Figure 26). This is an indication that 

EVs are rich in proteins which previously has been documented in several studies 

(Raposo and Stoorvogel, 2013; Yanez-Mo et al., 2015). In the case of differential 

protocol the BCA concentration of EVs increased when the speed of isolation gradually 

increased, following a similar pattern as the EVs concentration (Figure 23), and 

concluded to a BCA concentration of 215 ± 5 μg/mL. On the other hand, in the case of 

sequential protocol, the BCA concentration of EVs cumulatively increased by the fourth 

spin, following a similar pattern as the EVs concentration (Figure 22), and decreased at 

the last resulting to a significantly lower BCA concentration than the differential 

protocol. Notably, at the fourth spin of both protocols, the BCA concentrations of EVs 

are close. However, at the last spin the BCA concentrations of EVs appeared to have a 

significant difference; the protein content in sequential protocol is much lower than 

the differential, as most EVs were most possibly collected at the lower centrifugal 

forces. The results show that the BCA concentration is a good indication of the EVs 

isolated concentration. Concluding, the protein concentrations observed in both 

protocols - especially in differential protocol - were greater than the protein 

concentration findings reported in relevant studies (Martins et al., 2016; Borosch et al., 

2017). This fact might be associated with the high concentrated samples that were 

obtained by NTA measurements.   
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3.5 Alamar Blue Assay (AB) 

Recent studies have reported that EVs are involved in the differentiation and 

proliferation process of cells. According to Morhayim et al. (2016), EVs isolated from 

pre-osteoblasts were able to deliver genetic cargo such as miRNAs that was able to 

increase the differentiation of embryonic stem cells (ESCs). Similarly, Qin et al. (2016), 

showed that bone marrow stromal/stem cell (BMSC) derived EVs stimulated 

osteogenic gene expression and osteoblast differentiation in vitro experiments.  

Taking into consideration the findings of these studies, the influence of 

osteoblast-derived EVs was examined for a period of three days, after culturing MC3T3 

cells with four different doses of EVs (0.5μg, 1μg, 5μg, 10μg), isolated by both 

protocols at the last to spins (75,000 x g and 120,000 x g). As a positive control, 

MC3T3s were cultured in growth medium in the absence of EVs. The effect of EVs 

dosing on cells’ metabolic activity have been evaluated using an Alamar Blue assay 

(AB) according to the standard protocol as described in Chapter 2. AB assay is used to 

measure quantitatively the proliferation of various human and animal cell lines, 

bacteria and fungi (Bora et al., 2009; Rampersad, 2012). Analysing the findings of the 

sequential protocol revealed that the addition of EVs isolated at 75,000 x g and 

120,000 x g, increased the cells’ proliferation. In day 1 MC3T3s appeared to proliferate 

gradually in the presence of EVs isolated using both spins. Significant statistical 

differences were observed among the control cells and the cells with EVs isolated using 

the two sequential and differential spins (Figures 27a and 27d). 
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More specifically, significant statistical differences were observed among the 

dose of 0.5μg and the other doses of EVs. It is clear that the doses of 1μg, 5μg and 

10μg significantly increased the MC3T3s proliferation in both sequential spins in day 1. 

Following, in day 2 MC3T3s appeared to proliferate gradually in both spins having 

equivalent proliferation rates (Figure 27b, and 27e). Significant statistical differences 

were observed among the last two doses of EVs (5μg and 10μg) and the control. The 

doses of 5 μg and 10 μg significantly increased the cell proliferation in both sequential 

spins in days 1 and 2. It is notable that, in day 3, the cells had apparently reached the 

highest values of proliferation therefore there are no significant statistical differences 

between the control and the cultures with the presence of EVs (p > 0.05). This fact 

indicates that the addition of EVs in cell cultures did not significantly enhanced the 

cells’ proliferation beyond day 1 and 2.  

Figure 27. MC3T3s proliferation was examined for 3 days after culturing cells with four different 

concentrations (0.5μg, 1μg, 5μg, 10μg) of isolated EVs by the sequential protocol at 75,000 x g (a, b, c) 

and 120,000 x g (d, e, f).   
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As expected, the analysis of findings in the case of differential protocol 

revealed that the addition of EVs in cultures isolated at 75,000 x g and 120,000 x g 

increased significantly the cells’ proliferation (this applies for all three days) in all doses 

especially in the case of 5μg and 10μg. Interestingly, in day 1 all the doses of EVs 

significantly increased cells’ proliferation in both protocols. More specifically, EVs in 

dose of 10μg appeared to be more efficient for cells since increased significantly the 

cells proliferation compared with the other doses in both spins as shown in Figure 28a 

and 28d. In day 2 and 3 MC3T3s appeared to have significantly high values of 

proliferation in both spins (p < 0.05). More specifically, EVs in dose of 5μg and 10μg 

appeared to be more efficient compared with the other doses for both spins. 

 

 
 

 
 

 

 

 

 

Figure 28. MC3T3s proliferation was examined for 3 days after culturing cells with four different 

concentrations (0.5μg, 1μg, 5μg, 10μg) of isolated EVs by the differential protocol at 75,000 x g (a, b, c) 

and 120,000 x g (d, e, f).   
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 According to the findings, the addition of EVs isolated by the differential 

protocol in cells’ cultures enhanced the cells’ proliferation more than in the case of the 

EVs isolated using the sequential method. The EVs’ doses of 5μg and 10μg seem to be 

more efficient since those significantly enhanced the cells’ proliferation.  The 

comparison between the sequential and differential at both spins reveals that the EVs 

isolated by the differential protocol had a positive effect in cellular activity since it 

seems that 10 μg enhance cells proliferation to a greater extend in comparison that 

the ones isolated from the sequential protocol (p < 0.05) (Figures  27 and 28). An 

explanation as to why the increase EVs concentration isolated using the sequential 

method did not enhance cell proliferation could be that those EVs went through a 

number of centrifugation cycles and therefore their quality at high spin was reduced in 

comparison to the ones isolated using the differential method.  

A comparison of all processes which were performed on culture media – 

derived EVs revealed that differential ultracentrifugation generated the highest EVs 

yield. In this case, high in concentration and protein content samples have been 

isolated. Interestingly, at the last two spins (75,000 x g and 120,000 x g) in both 

protocols, EVs with similar average sizes appeared. This is an indication that the fifth 

spin at 120,000 x g could be replaced by the fourth spin at 75,000 x g in future 

protocols and thus reduce the number of damaged vesicles which are associated with 

the high - speed spins and increase their quality. Overall, the differential protocol 

seems to be more effective for EVs isolation, however the purified EVs presence in 

both protocols need to be confirm in an exhaustive manner in further studies. Also, 

regarding the EVs characterisation, the NTA instrument seems to be more effective 

than DLS since measure each vesicle separately while DLS tend to miscalculate the 

contribution of the large vesicles. Also, NTA detection limits are lower than DLS and 

close to the EVs sizes; therefore there is a low possibility to measure large in size 

particles and eventually the averaged data in a sample cannot be affected.  
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3.6 Gellan Gum (GG) characterisation and therapeutic potential of 

encapsulated EVs 

EVs have the potential to be used as therapeutic delivery carriers and could be 

uniquely employed in regenerative medicine. They have important advantages on 

therapeutic application regarding the regulatory and safety concerns (Lamichhane et 

al., 2014; De Jong et al., 2014). However, there is one major obstacle in the 

therapeutic application of isolated EVs that is to target EVs to a particular therapeutic 

location and maintain an effective dose at that location hence that localised 

pathologies to be treated (Nikravesh et al., 2019). In that respect a range of natural 

hydrogels such as Alginate and Chitosan, have been used as a delivery vehicle capable 

to locally release therapeutic molecules. Of these hydrogels, Gellan Gum gels have 

received a great attention due to their physical gelation properties (Kretlow et al., 

2007; Lanza et al., 2014; Radhakrishnan et al., 2016; Kowalczewski and Saul, 2018). 

In this study, eight natural Gellan Gum (GG) hydrogels (Table 3) were prepared 

with varied polymer and cross-linker concentrations and evaluated as a potential 

injectable system that may be used to controllably deliver therapeutic doses of 

isolated EVs. In order to guide what rheological behavior would be desirable for an 

injectable agent, toothpaste was considered as a baseline material (positive control) to 

compare material behaviors. This is because toothpaste exhibits shear thinning 

behavior that enables easy injection. Figure 29 shows the viscosity measurements 

obtained for all the samples in comparison to the control.  

 
 

 

Figure 29. Rheological characterisation of gellan gum (GG) gel suspensions at 37°C. (a) Viscosity 

measurements for the 2%w/v GG gel suspensions. (b) Viscosity measurements for the 1.5%w/v GG gel 

suspensions. 
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All the manufactures samples were found to exhibit shear thinning behavior. 

The sample 4, made of 2% w/v GG 150μL CaCl2 (100mM), and sample 8, made of 

1.5%w/v GG 150μL CaCl2 (100mM) have been found to give viscosity data closer to the 

positive control. This behavior is appropriate within injectable systems since lower 

force is required enabling easy injection. Following these initial findings, the 

viscoelasticity of these samples was assessed. Figure 30 shows the mechanical data 

obtained for frequency as function of storage modulus (G’) and loss modulus (G”), for 

both samples in comparison to the control. Storage modulus (G’) is a measure of 

elastic response (stored energy) of a gel while the loss modulus (G”) is a measure of 

viscous response (energy lost as heat) of a gel (Khedmat et al., 2013). Sample 8 

(1.5%w/v GG 150μL CaCl2 (100mM)) exhibited lower G’ and G” values, more similar to 

the control. It is clear that the G’ and G” values of sample 8 is higher than the 

toothpaste. This is directly related to the extent of cross-linking. The higher the degree 

of cross-linking the greater the storage modulus presented in suspension. Thus, GG 

gels with lower degree of cross-linking need to be manufactured and investigated 

further for the encapsulation and the delivery of osteoblastic EVs.  

 

 
 

 

 

Figure 30. Rheological characterisation of gellan gum (GG) gel suspensions at 37°C. (a) Frequency 

sweep measurement for sample 4 (2%w/v GG 150μL CaCl2 100mM). (b) Frequency sweep measurement 

for sample 8 (1.5%w/v GG 150μL CaCl2 100mM). 
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CONCLUDING REMARKS  

The natural capability of EVs both microvesicles and exosomes to deliver 

biological cargo has attracted attention since they could be used as a delivery vehicle 

for osteoinductive proteins and nucleic acids that are highly effective in bone 

regeneration technologies. However, the identification of these population is a difficult 

task for the researchers due to the variability that exists in EVs sizes, way of formation, 

source and also the variety of isolation and characterisation protocols. 

 This study aimed to contribute to the optimisation of ultracentrifugation 

method towards the isolation of EVs. In that respect, two ultra - centrifugation 

protocols (sequential and differential) consisting of five centrifugal forces were 

investigated in order to assess the osteoblastic EVs population that emerge from each 

spin; with emphasis on sizes, concentrations and morphologies using DLS, NTA and 

TEM instruments. EVs characterisation using DLS instrument revealed that in the case 

of sequential protocol, the size of EVs decreased when the speed of isolation gradually 

increased. In the case of differential protocol, the size of EVs increased during the first 

three spins while the opposite happened in the last two. Similarly, EVs characterisation 

using NTA instrument revealed that in the case of sequential protocol, the size and 

concentrations of EVs decreased when the speed of isolation gradually increased, 

except the fourth spin that EVs concentration increased. In the case of differential 

protocol, the sizes of EVs decreased but the concentrations increased when the speed 

of isolation gradually increased. In general, EVs measured by DLS instrument appeared 

to have greater average sizes than the EVs measured by NTA instrument. This was 

observed especially during the implementation of differential protocol. Interestingly, 

at the first speed at 10,000 x g a significant difference in size was observed. This 

unexpected finding might have happened due to DLS inability to resolve accurately 

samples with heterogeneous population and its tendency to miscalculate the 

contribution of the larger particle at the intensity of the scattered light which is used 

for correlation with the particle diameter. In that respect, NTA appears to be more 

effective since, with lower detection limits that are close to the EVs sizes, making NTA 

a more accurate method for EVs size measurements, that provides results similar to 

that obtained by the TEM. 
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Overall, it was shown that high concentration EV suspensions with high protein 

content were isolated after the implementation of differential protocol. It was 

observed that, at the last two centrifugal forces (75,000 x g and 120,000 x g) in both 

protocols, EVs with similar average sizes appeared, providing an indication that the last 

speed at 120,000 x g could be replaced by the 75,000 x g speed in future protocols. 

This may help to maintain EV integrity, which may be important in using these 

nanoparticles for regenerative therapies. Observation of similar sizes EVs obtained at 

different centrifugal forces could be attributed to EVs having varying densities. 

The influence of EVs on cellular metabolic activity was assessed for a period of 

three days.  The findings showed that the addition of EVs isolated by the differential 

protocol had a positive effect in cellular activity since it seems to enhance cells 

proliferation. Overall, the differential protocol seems to be more effective for EVs 

isolation.  However, the purified EVs presence in both protocols need to be confirm in 

an exhaustive manner in further studies. In conclusion, gellan gum (GG) fluid gels were 

prepared and evaluated as a potential injectable system that may be used to deliver 

therapeutic doses of EVs. It was reported that gellan gum gels made of 2% w/v GG 

150μL CaCl2 (100mM) and 1.5% w/v GG 150μL CaCl2 (100mM) found to give 

mechanical data closest to the positive control. These two samples need to be 

investigated further for the production of a localised vehicle for EVs release.  

EVs have important effects in biology and may be useful as delivery vehicles of 

therapeutic agents. Despite the effort to characterise comprehensively the EVs in this 

study, many challenges remain before engineered EVs for delivery applications. This 

includes further work to test the efficacy of vesicles released from the gellan gum 

formulations optimised in this thesis. Further, to enable these acellular vesicle 

products to become therapies the large-scale production of EV will be required. The 

resolution of the above considerations alongside the continuous evolvement of EVs as 

therapeutic delivery vehicles might lead to new therapeutic prospects which will 

involve EVs in regenerative and bio-engineering therapies in future.  
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APPENDICES 

Appendix A - Frequency sweep measurement for sample 1  

 

      
 

 

Appendix B - Frequency sweep measurement for sample 2  
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Appendix C - Frequency sweep measurement for sample 3  

 
 

          
 

 

Appendix D - Frequency sweep measurement for sample 5  
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Appendix E - Frequency sweep measurement for sample 6  

 
 

                  
 
 
 
 
Appendix F - Frequency sweep measurement for sample 7  
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