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Abstract. We study a convex optimization framework for bounding extreme events in nonlinear dynamical4
systems governed by ordinary or partial differential equations (ODEs or PDEs). This framework5
bounds from above the largest value of an observable along trajectories that start from a chosen set6
and evolve over a finite or infinite time interval. The approach needs no explicit trajectories. Instead,7
it requires constructing suitably constrained auxiliary functions that depend on the state variables8
and possibly on time. Minimizing bounds over auxiliary functions is a convex problem dual to the9
non-convex maximization of the observable along trajectories. This duality is strong, meaning that10
auxiliary functions give arbitrarily sharp bounds, for sufficiently regular ODEs evolving over a finite11
time on a compact domain. When these conditions fail, strong duality may or may not hold; both12
situations are illustrated by examples. We also show that near-optimal auxiliary functions can be13
used to construct spacetime sets that localize trajectories leading to extreme events. Finally, in the14
case of polynomial ODEs and observables, we describe how polynomial auxiliary functions of fixed15
degree can be optimized numerically using polynomial optimization. The corresponding bounds16
become sharp as the polynomial degree is raised if strong duality and mild compactness assumptions17
hold. Analytical and computational ODE examples illustrate the construction of bounds and the18
identification of extreme trajectories, along with some limitations. As an analytical PDE example,19
we bound the maximum fractional enstrophy of solutions to the Burgers equation with fractional20
diffusion.21
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optimization23

AMS subject classifications. 93C10, 93C15, 93C20, 90C22, 34C11, 37C10, 49M2924

1. Introduction. Predicting the magnitudes of extreme events in deterministic dynamical25

systems is a fundamental problem with a wide range of applications. Examples of practical26

relevance include estimating the amplitudes of rogue waves in fluid or optical systems [62],27

the fastest possible mixing by incompressible fluid flows [23, 56], and the largest load on28

a structure due to dynamical forcing. In addition, extreme events relating to finite-time29

singularity formation are central to mathematical questions about the well-posedness and30

regularity of partial differential equations (PDEs). One such question is the Millennium Prize31

Problem concerning regularity of the three-dimensional Navier–Stokes equations [8], for which32

finite bounds on various quantities that grow transiently would imply the global existence of33

smooth solutions [22, 17, 18, 15].34
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2 G. FANTUZZI AND D. GOLUSKIN

This work studies extreme events in dynamical systems governed by ordinary differential35

equations (ODEs) or PDEs. Specifically, given a scalar quantity of interest Φ, we seek to bound36

its largest possible value along trajectories that evolve forward in time from a prescribed set37

of initial conditions. This maximum, denoted by Φ∗ and defined precisely in the next section,38

may be considered over all forward times or up to a finite time. Our definition of extreme39

events as maxima applies equally well to minima since a minimum of Φ is a maximum of −Φ.40

Bounding Φ∗ from above and from below are fundamentally different tasks. A lower bound41

is implied by any value of Φ on any relevant trajectory, whereas upper bounds are statements42

about whole classes of trajectories and require a different approach. Analytical bounds of both43

types appear in the literature for many systems with complicated nonlinear dynamics, but44

often they are far from sharp. More precise lower bounds on Φ∗ have sometimes been obtained45

using numerical integration, for instance to study extreme transient growth, optimal mixing,46

and transition to turbulence in fluid mechanics [5, 6, 21, 23, 56, 37]. In such computations,47

adjoint optimization [29] is used to search for an initial condition that locally maximizes48

Φ at a fixed terminal time, and a second level of optimization can vary the terminal time.49

Since both optimizations are non-convex, they give a local maximum of Φ but do not give a50

way to know whether it coincides with the global maximum Φ∗ or is strictly smaller. Thus,51

adjoint optimization cannot give upper bounds on Φ∗, even when made rigorous by interval52

arithmetic. To find such an upper bound using numerical integration, one could use verified53

computations to find an outer approximation to the reachable set of trajectories starting from54

a bounded set [12], and then bound Φ∗ from above by the global maximum of Φ on this55

approximating set. However, the latter is hard to compute if either Φ or the set on which it56

must be maximized are not convex.57

The present study describes a general framework for bounding Φ∗ from above that does not58

rely on numerical integration. This framework can be implemented analytically, computation-59

ally, or both, depending on what is tractable for the equations being studied. It falls within a60

broad family of methods, dating back to Lyapunov’s work on nonlinear stability [53], whereby61

properties of dynamical systems are inferred by constructing auxiliary functions, which depend62

on the system’s state and possibly on time, and which satisfy suitable inequalities. Lyapunov63

functions [53, 14], which often are used to verify nonlinear stability, are one type of auxil-64

iary functions. Other types can be used to approximate basins of attraction [69, 40, 31, 75]65

and reachable sets [54, 36], estimate the effects of disturbances [83, 13, 3], guarantee the66

avoidance of certain sets [66, 4], design nonlinear optimal controls [47, 32, 55, 41, 85, 42],67

bound infinite-time averages or stationary stochastic expectations [10, 20, 44, 25, 71, 43, 27],68

and bound extreme values over global attractors [26]. Some of these works refer to auxiliary69

functions as Lyapunov, Lyapunov-like, storage, or barrier functions, or as subsolutions to the70

Hamilton–Jacobi equation. Others do not use auxiliary functions explicitly but characterize71

nonlinear dynamics using invariant or occupation measures; the two approaches are related72

by Lagrangian duality and are equivalent in many cases. Furthermore, many proofs about dif-73

ferential equations that rely on monotone quantities can be viewed as special cases of various74

auxiliary function methods. For instance, as we explain in Example 2.2, the bounds on tran-75

sient growth in fluid systems proved in [5, 6] fit within the general framework described here.76

Similarly, the “background method” introduced in [16] to bound infinite-time averages in fluid77

dynamics is equivalent to using quadratic auxiliary functions in a different framework [9, 27].78
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BOUNDING EXTREME EVENTS IN NONLINEAR DYNAMICS 3

In this paper, we describe how to use auxiliary functions to bound extreme values among79

nonlinear ODE or PDE trajectories starting from a specified set of initial conditions. Precisely,80

any differentiable auxiliary function satisfying two inequalities given in section 2 provides an a81

priori upper bound on Φ∗, without any trajectories being known. In the field of PDE analysis,82

these inequality conditions have been used implicitly to bound extreme events (e.g., [5, 6]),83

but the unifying framework we describe often has gone unrecognized. In the field of control84

theory, generalizations of our framework appear as convex relaxations of deterministic optimal85

control problems (e.g., [81, 80, 48, 79]) and of stochastic optimal stopping problems [11].86

In these works, constraints on auxiliary functions are deduced using convex duality after87

replacing the maximization of Φ over trajectories with a convex maximization over occupation88

measures. Here we derive the same constraints using elementary calculus, and we illustrate89

their application using numerous ODE examples and one PDE example.90

Unlike the maximization over trajectories that defines Φ∗, seeking the smallest upper91

bound among all admissible auxiliary functions defines a convex minimization problem. In92

general these two optimization problems are weakly dual: the minimum is an upper bound93

on the maximum but may not be equal to it. In some cases they are strongly dual, meaning94

that the maximum over trajectories coincides with the minimum over auxiliary functions, and95

these functions act as Lagrange multipliers that enforce the dynamics when maximizing Φ96

over trajectories. In such cases there exist auxiliary functions giving arbitrarily sharp upper97

bounds on Φ∗. Strong duality holds for a large class of sufficiently regular ODEs where the98

maximum of Φ is taken over a finite time horizon. This strong duality has been proved for a99

more general class of optimal control problems using measure theory and convex duality [48],100

and Appendix D gives a simpler proof for our present context that shows existence of near-101

optimal auxiliary functions using a mollification argument similar to [33].102

In many practical applications, constructing auxiliary functions that yield explicit upper103

bounds on Φ∗ is difficult regardless of whether strong duality holds. We illustrate various con-104

structions here but do not have an approach that works universally. However, in the important105

case of dynamical systems governed by polynomial ODEs, polynomial auxiliary functions can106

be constructed using computational methods for polynomial optimization. With an infinite107

time horizon, this approach is applicable if the only invariant trajectories are algebraic sets,108

which is always true of steady states and is occasionally true of periodic orbits. With a finite109

time horizon, there is no such restriction. Polynomial ODEs are computationally tractable be-110

cause the inequality constraints on auxiliary functions amount to nonnegativity conditions on111

certain polynomials. Polynomial nonnegativity is NP-hard to decide [59] but can be replaced112

by the stronger constraint that the polynomial is representable as a sum of squares (SOS).113

Optimization problems subject to SOS constraints can be reformulated as semidefinite pro-114

grams (SDPs) [60, 45, 64] and solved using algorithms with polynomial-time complexity [78].115

Thus, one can minimize upper bounds on Φ∗ for polynomial ODEs by numerically solving116

SOS optimization problems. Moreover, we prove that bounds computed with SOS methods117

becomes sharp as the degree of the polynomial auxiliary function is raised, provided that118

the time horizon is finite, certain compactness properties hold, and the minimization over119

general auxiliary functions is strongly dual to the maximization of Φ over trajectories. We il-120

lustrate the computation of very sharp bounds using SOS methods for several ODE examples,121

including a 16-dimensional system.122
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4 G. FANTUZZI AND D. GOLUSKIN

In addition to methods for bounding Φ∗ above, we describe a way to locate trajectories123

on which the observable Φ attains its maximum value of Φ∗. Specifically, auxiliary functions124

that prove sharp or nearly sharp upper bounds on Φ∗ can be used to define regions in state125

space where each such trajectory must lie prior to its extreme event. We illustrate this using126

an ODE for which nearly optimal polynomial auxiliary functions can be computed by SOS127

methods.128

The rest of this paper is organized as follows. Section 2 explains how auxiliary functions129

can be used to bound the magnitudes of extreme events in nonlinear dynamical systems. We130

construct bounds in several ODE examples and one PDE example; some but not all of these131

bounds are sharp. Section 3 explains how auxiliary functions can be used to locate trajectories132

leading to extreme events. Section 4 describes how polynomial optimization can be used to133

construct auxiliary functions computationally for polynomial ODEs. Bounds computed in134

this way for various ODE examples appear in that section and others. Section 5 extends135

the framework to give bounds on extreme values at particular times or integrated over time,136

rather than maximized over time, giving a more direct derivation of bounding conditions that137

have appeared in [81, 80, 48, 79]. Conclusions and open questions are offered in section 6.138

Appendices contain details of calculations and an alternative proof of the strong duality result139

that follows from [48].140

2. Bounds using auxiliary functions. Consider a dynamical system on a Banach space X141

that is governed by the differential equation142

(2.1) ẋ = F (t, x), x(t0) = x0.143

Here, F : R × X → X is continuous and possibly nonlinear, the initial time t0 and initial144

condition x0 are given, and ẋ denotes ∂tx. When X = Rn, (2.1) defines an n-dimensional145

system of ODEs. When X is a function space and F a differential operator, (2.1) defines a146

parabolic PDE, which may be considered in either strong or weak form [70, 68]. The trajectory147

of (2.1) that passes through the point y ∈ X at time s is denoted by x(t; s, y). We assume that,148

for every choice of (s, y) ∈ R × X , this trajectory exists uniquely on an open time interval,149

which can depend on both s and y and might be unbounded.150

Suppose that Φ : R × X → R is a continuous function that describes a quantity of151

interest for system (2.1). Let Φ∗ denote the largest value attained by Φ[t, x(t; t0, x0)] among152

all trajectories that start from a prescribed set X0 ⊂ X and evolve forward over a closed time153

interval T that is either finite, T = [t0, T ], or infinite, T = [t0,∞):154

(2.2) Φ∗ := sup
x0∈X0

t∈T

Φ[t, x(t; t0, x0)] .155

We write Φ∗T and Φ∗∞ instead of Φ∗ when necessary to distinguish between finite and infinite156

time horizons. Our objective is to bound Φ∗ from above without knowing trajectories of (2.1).157

Let Ω ⊂ T ×X be a region of spacetime in which the graphs (t, x(t; t0, x0)) of all trajectories158

starting from X0 remain up to the time horizon of interest. In applications one may be able to159

identify a set Ω that is strictly smaller than T ×X , otherwise it suffices to choose Ω = T ×X .160

The maximum (2.2) that we aim to bound depends only on trajectories within Ω.161
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BOUNDING EXTREME EVENTS IN NONLINEAR DYNAMICS 5

To derive upper bounds on Φ∗ we employ auxiliary functions V : Ω → R. In most cases162

we require V to be differentiable along trajectories of (2.1), so that its Lie derivative163

(2.3) LV (s, y) := lim
ε→0

V [s+ ε, x(s+ ε; s, y)]− V (s, y)

ε
164

is well defined. By design the function LV : Ω→ R coincides with the rate of change of V along165

trajectories, meaning d
dtV (t, x(t)) = LV (t, x(t)) if x(t) solves (2.1) and all derivatives exist.166

Crucially, an expression for LV can be derived without knowing the trajectories. In practice167

one differentiates V [t, x(t; s, y)] with respect to t and uses the differential equation (2.1). For168

example, when X = Rn and (2.1) is a system of ODEs, the chain rule gives169

(2.4) LV (t, x) = ∂tV (t, x) + F (t, x) · ∇xV (t, x).170

Subsection 2.1 presents inequality constraints on V and LV that imply upper bounds171

on Φ∗, as well as a convex framework for optimizing these bounds. Both can be obtained as172

particular cases of a general relaxation framework for optimal control problems [81, 80, 48], but173

we give an elementary derivation. Subsection 2.2 compares bounds obtained when Ω = T ×X ,174

meaning that the constraints on V are imposed globally in spacetime, to bounds obtained when175

a strictly smaller Ω containing all relevant trajectories can be found. Finally, subsection 2.3176

discusses conditions under which arbitrarily sharp upper bounds on Φ∗ can be proved.177

2.1. Bounding framework. Assume that for each initial condition x0 ∈ X0 a trajectory178

x(t; t0, x0) exists on some open time interval where it is unique and absolutely continuous.179

This does not preclude trajectories that are unbounded in infinite or finite time. To bound180

Φ∗ we define a class V(Ω) of admissible auxiliary functions as the subset of all differentiable181

functions, C1(Ω), that do not increase along trajectories and bound Φ from above pointwise.182

Precisely, V ∈ V(Ω) if and only if183

LV (t, x) ≤ 0 ∀(t, x) ∈ Ω,(2.5a)184

Φ(t, x)− V (t, x) ≤ 0 ∀(t, x) ∈ Ω.(2.5b)185186

The system dynamics enter only in the derivation of LV ; conditions (2.5a,b) are imposed187

pointwise in the spacetime domain Ω and can be verified without knowing any trajectories. If188

Ω = T × X we call V a global auxiliary function, otherwise it is local on a smaller chosen Ω.189

We claim that190

(2.6) Φ∗ ≤ inf
V ∈V(Ω)

sup
x0∈X0

V (t0, x0),191

with the convention that the righthand side is +∞ if V(Ω) is empty. To see that (2.6) holds192

when V is not empty, consider fixed V ∈ V(Ω) and x0 ∈ X0. For any t ≥ t0 up to which the193

trajectory x(t; t0, x0) exists and is absolutely continuous, the fundamental theorem of calculus194

can be combined with (2.5a,b) to find195

(2.7) Φ[t, x(t; t0, x0)] ≤ V [t, x(t; t0, x0)] = V (t0, x0) +

∫ t

t0

LV [ξ, x(ξ; t0, x0)] dξ ≤ V (t0, x0).196
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6 G. FANTUZZI AND D. GOLUSKIN

Thus, the existence of any V ∈ V(Ω) implies that Φ[t, x(t; t0, x0)] is bounded uniformly on T197

for each x0. Conversely, if Φ blows up before the chosen time horizon for any x0 ∈ X0, then198

no auxiliary functions exist. Maximizing both sides of (2.7) over t ∈ T and x0 ∈ X0 gives199

(2.8) Φ∗ ≤ sup
x0∈X0

V (t0, x0),200

and then minimizing over V(Ω) gives (2.6) as claimed.201

The minimization problem on the righthand side of (2.6) is convex and gives a bound on the202

(generally non-convex) maximization problem defining Φ∗ in (2.2). Despite convexity of the203

minimization, it usually is difficult to construct an optimal or near-optimal auxiliary function,204

even with computer assistance. Nevertheless, any auxiliary function satisfying (2.5a,b) gives205

a rigorous upper bound on Φ∗ according to (2.8). This framework therefore can be useful206

for analysis, and sometimes for computation, even when the dynamics are very complicated.207

Analytically, one often can find a suboptimal auxiliary function that yields fairly good bounds.208

Computationally, for certain systems including polynomial ODEs, one can optimize V over a209

finite-dimensional subset of V(Ω) to obtain bounds that are very good and sometimes perfect.210

However, the inequality in (2.6) is strict in general, meaning that there are cases where the211

optimal bounds provable using conditions (2.5a,b) are not sharp. Local auxiliary functions212

can sometimes produce sharp bounds when global ones fail, although this depends on the213

spacetime set Ω inside which the graphs of trajectories are known to remain. This is illustrated214

by examples in subsection 2.2, while subsection 2.3 discusses sufficient conditions for bounds215

from auxiliary functions to be arbitrarily sharp. First, however, we present two examples216

where global auxiliary functions work well.217

Example 2.1 concerns a simple ODE where the optimal upper bound (2.6) produced by218

global V appears to be sharp. We conclude this by constructing V increasingly near to optimal,219

obtaining bounds that are extremely close to Φ∗. These V are constructed computationally220

using polynomial optimization methods, the explanation of which is postponed until section 4.221

Example 2.2 proves bounds for the Burgers equation with ordinary and fractional diffusion.222

We analytically construct V giving bounds that are finite, but unlikely to be sharp. The223

bounds for fractional diffusion are novel, while those for ordinary diffusion show that the224

proof of the same result in [5] can be seen as an instance of the auxiliary function framework.225

Example 2.1. Consider the nonautonomous ODE system226

(2.9)

[
ẋ1

ẋ2

]
=

[
x2t− 0.1x1 − x1x2

−x1t− x2 + x2
1

]
.227

All trajectories eventually approach the origin, but various quantities can grow transiently.228

For example, consider the maximum of Φ = x1 over an infinite time horizon. Let the initial229

time be t0 = 0 and the set of initial conditions X0 contain only the point x0 = (0, 1). Then,230

Φ∗∞ is the largest value of x1 along the trajectory with x(0) = (0, 1), and it is easy to find by231

numerical integration. Doing so gives Φ∗ ≈ 0.30056373, and this value can be used to judge232

the sharpness of upper bounds on Φ∗∞ that we produce using global auxiliary functions.233

The quadratic polynomial234

(2.10) V (t, x) = 1
2

(
1 + x2

1 + x2
2

)
235
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BOUNDING EXTREME EVENTS IN NONLINEAR DYNAMICS 7

Table 1
Upper bounds on Φ∗∞ for Example 2.1, computed using polynomial optimization with V of various polyno-

mial degrees. For the single initial condition x0 = (0, 1), numerical integration gives Φ∗ ≈ 0.30056373 for all
time horizons larger than T = 1.6635, which agrees with the degree-8 bound to the tabulated precision. For the
set X0 of initial conditions on the shifted unit circle with center (− 3

4
, 0), nonlinear optimization of the initial

angular coordinate yields Φ∗∞ ≈ 0.49313719, which agrees with the degree-10 bound to the tabulated precision.

Upper bounds

deg(V ) X0 = {(0, 1)} X0 circle

2 1 1.75
4 0.41381042 0.80537235
6 0.30056854 0.49808038
8 0.30056373 0.49313760
10 ” 0.49313719

(a) (b)

Figure 1. (a) Sample trajectories starting from the circle with center (− 3
4
, 0) and unit radius ( ). The

initial conditions are marked with a circle, while the color scale reflects the maximum value of Φ along each
trajectory. (b) Numerical approximation to the maximum of Φ along single trajectories with initial condition
on the shifted unit circle (cos θ − 3

4
, sin θ) as a function of the angular coordinate θ.

is an admissible global auxiliary function, meaning that it satisfies the inequalities (2.5a,b) on236

Ω = [0,∞)× R2. For this V and the chosen X0 and t0, the bound (2.8) yields237

(2.11) Φ∗∞ ≤ V (0, x0) = 1.238

This is the best bound that can be proved using global quadratic V , as shown in Appendix A,239

but optimizing polynomial V of higher degree produces better results. For instance, the best240

global quartic V that can be constructed using polynomial optimization is241
242

(2.12) V (t, x) = 0.2353 + 0.7731x2
1 + 0.1666x1x2 + 0.4589x2

2 + 0.5416x3
1 + 0.05008 tx2

1243

+ 0.1616 tx1x2 + 0.2505 tx2
2 − 0.1058x2

1x2 + 0.1730x1x
2
2 − 0.5766x3

2244

+ 0.2962x4
1 + 0.1888 t2x2

1 + 0.1888 t2x2
2 + 0.5923x2

1x
2
2 + 0.2962x4

2,245246

where numerical coefficients have been rounded. The bound on Φ∗∞ that follows from the above247

V is reported in Table 1, along with bounds that follow from computationally optimized V248

of polynomial degrees 6, 8, and 10 (omitted for brevity). The bounds improve as the degree249

of V is raised, and the optimal degree-8 bound is sharp up to nine significant figures. The250

numerical approach used for such computations is described in section 4.251

Unlike searching among particular trajectories, bounding Φ∗ from above is not more diffi-252

cult when the set X0 of initial conditions is larger than a single point. For example, consider253
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8 G. FANTUZZI AND D. GOLUSKIN

initial conditions on the shifted unit circle centered at (−3
4 , 0),254

(2.13) X0 =
{

(x1, x2) :
(
x1 + 3

4

)2
+ x2

2 = 1
}

=
{(

cos θ − 3
4 , sin θ

)
: θ ∈ [0, 2π)

}
.255

Sample trajectories and the variation of maxt≥0 Φ with the angular position θ in X0 are shown256

in Figure 1. Finding the trajectory that attains Φ∗ requires numerical integration, combined257

with nonlinear optimization over initial conditions in X0. Starting MATLAB’s optimizer258

fmincon from initial guesses with angular coordinate θ = 3π
4 and θ = π

10 yields locally optimal259

initial conditions of θ ≈ 1.125π and θ = 2π, which lead to Φ values of 0.49313719 and 0.25,260

respectively. Figure 1(b) confirms that the former initial condition is globally optimal, meaning261

Φ∗ ≈ 0.49313719. On the other hand, polynomial auxiliary functions can be optimized by the262

methods of section 4 using exactly the same algorithms as when X0 contains a single point.263

For initial conditions on the shifted unit circle X0, Table 1 lists upper bounds on Φ∗ implied264

by numerically optimized polynomial V of degrees up to 10. We omit the computed V for265

brevity. The optimal degree-10 V gives a bound that is sharp to eight significant figures. �266

Example 2.2. To illustrate the analytical use of global auxiliary functions for PDEs, we267

consider mean-zero period-1 solutions u(t, x) of the Burgers equation with fractional diffusion,268

(2.14)

u̇ = −uux − (−∆)αu,

u(0, x) = u0(x), u(t, x+ 1) = u(t, x),

∫ 1

0
u(t, x) dx = 0.

269

Following standard PDE notation, in this example the state variable in X is denoted by u(t, ·),270

whereas x ∈ [0, 1] is the spatial variable. Discussion of this equation and a definition of the271

fractional Laplacian (−∆)α can be found in [84]. Ordinary diffusion is recovered when α = 1.272

For each α ∈ (1
2 , 1], solutions exist and remain bounded when the Banach space X in which273

solutions evolve is the Sobolev space Hs with s > 3
2 − 2α [38]. Let us consider a quantity that274

is called fractional enstrophy in [84],275

(2.15) Φ(u) :=
1

2

∫ 1

0

[
(−∆)

α
2 u
]2

dx.276

We aim to bound Φ∗∞ among trajectories whose initial conditions u0 have a specified value Φ0277

of fractional enstrophy, so the set of initial conditions is278

(2.16) X0 = {u ∈ X : Φ(u) = Φ0} .279

Here we prove Φ0-dependent upper bounds on Φ∗∞ for α ∈ (3
4 , 1]. Such bounds have been280

reported for ordinary diffusion (α = 1) [5] but not for α < 1. We employ global auxiliary281

functions of the form282

(2.17) V (u) =
[
Φ(u)β + C‖u‖22

]1/β
,283

where ‖u‖22 =
∫ 1

0 u
2 dx and the constants β,C > 0 are to be chosen. This ansatz is guided by284

the realization that the analysis of the α = 1 case [5] is equivalent to the auxiliary function285

framework with β = 1/3 in (2.17).286
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BOUNDING EXTREME EVENTS IN NONLINEAR DYNAMICS 9

To be an admissible auxiliary function, V must satisfy (2.5a,b). The inequality V (u) ≥287

Φ(u) holds for every positive C, while the inequality LV (u) ≤ 0 constrains β and C. To288

derive an expression for LV (u) we first note that differentiating along trajectories of (2.14)289

and integrating by parts gives290

d

dt
‖u(t, ·)‖22 = −4Φ[u(t, ·)],(2.18a)291

d

dt
Φ[u(t, ·)] = R[u(t, ·)] := −

∫ 1

0
[(−∆)αu]2 dx−

∫ 1

0
uux(−∆)αudx.(2.18b)292

293

Differentiating V [u(t, ·)] in time thus gives294

(2.19) LV (u) =
1

β

[
Φ(u)β + C‖u‖22

] 1
β
−1 [

βΦ(u)β−1R(u)− 4CΦ(u)
]
.295

The sign of LV is that of the expression in the rightmost brackets, so an estimate for R(u)296

is needed. Theorem 2.2 in [84] provides R(u) ≤ σαΦ(u)γα , with γα = 8α−3
6α−3 and explicit297

prefactors σα that blow up as α → 3
4

+
. By fixing β = 2 − γα and C = (2 − γα)σα/4, we298

guarantee that (2.19) is nonpositive. Thus, V is a global auxiliary function yielding the bound299

(2.20) Φ∗∞ ≤ sup
u0∈X0

[
Φ2−γα

0 +
(2− γα)σα

4
‖u0‖22

] 1
2−γα

300

according to (2.8). Finally, the righthand maximization over u0 can be carried out analytically301

by calculus of variations to bound Φ∗∞ in terms of only the initial fractional enstrophy Φ0,302

(2.21) Φ∗∞ ≤
[
Φ2−γα

0 +
(2− γα)σα

2(2π)2α
Φ0

] 1
2−γα

.303

The bound (2.21) is finite for every α ∈ (3
4 , 1]. The coefficient on Φ0 is bounded uniformly304

for α in this range, but the exponent 1
2−γα blows up as α→ 3

4

+
. When α = 1 we can replace305

σα with a smaller prefactor from [52] to find306

(2.22) Φ∗∞ ≤
(

Φ
1/3
0 + 2−10/3π−8/3 Φ0

)3
.307

The above estimate is identical to the result of [5],1 and their argument is equivalent to ours308

in that it implicitly relies on our V being nonincreasing along trajectories. Similarly, in [6]309

the same authors bound a quantity called palinstrophy in the two-dimensional Navier–Stokes310

equations, and that proof can be seen as using (in their notation) the global auxiliary function311

V (u) =
[
P(u)1/2 + (4πν2)−2K(u)1/2E(u)

]2
.312

The bound (2.21) is unlikely to be sharp. For α = 1 it scales like Φ∗∞ ≤ O
(
Φ3

0

)
when313

Φ0 � 1, whereas numerical and asymptotic evidence suggests that Φ∗∞ = O
(
Φ

3/2
0

)
[5, 65]. It314

is an open question whether going beyond the V ansatz (2.17) can produce sharper analytical315

bounds, and whether the optimal bound (2.6) that can be proved using global auxiliary316

functions would be sharp in this case. �317

1Expression (5) in [5] is claimed to hold with E being identical to our Φ(u), but in fact it holds with
E = 2Φ(u) because their derivation uses estimate (3.7) from [52]. With this correction, and with L = 1 and
ν = 1, the expression in [5] agrees with our bound (2.22).

This manuscript is for review purposes only.



10 G. FANTUZZI AND D. GOLUSKIN

2.2. Global versus local auxiliary functions. In various cases, such as Example 2.1 above,318

global auxiliary functions can produce arbitrarily sharp upper bounds on Φ∗. Other times they319

cannot. In Example 2.3 below, global auxiliary functions give bounds that are finite but not320

sharp. In Example 2.4, no global auxiliary functions exist. Sharp bounds can be recovered in321

both examples by using local auxiliary functions, meaning that we enforce constraints (2.5a,b)322

only on a subset Ω ( T × X of spacetime that contains all trajectories of interest.323

There are various ways to determine that trajectories starting from the initial set X0324

remain in a spacetime set Ω during the time interval T . One option is to choose a function325

Ψ(t, x) and use global auxiliary functions to show that Ψ∗ ≤ B for initial conditions in X0.326

This implies that trajectories starting from X0 remain in the set327

(2.23) Ω := {(t, x) ∈ T × X : Ψ(t, x) ≤ B}.328

Any Ψ that can be bounded using global auxiliary functions can be used, including Ψ = Φ,329

and Ω can be refined by considering more than one Ψ. Another way to show that trajectories330

never exit a prescribed set Ω is to construct a barrier function that is nonpositive on {t0}×X0,331

positive outside Ω, and whose zero level set cannot be crossed by trajectories. Barrier functions332

can be constructed analytically in some cases, and computationally for ODEs with polynomial333

righthand sides; see [66, 4] and references therein. Finally, in the polynomial ODE case the334

computational methods of [31] can produce a spacetime set Ω = T ×X, where X ( X is an335

outer approximation for the evolution of the initial set X0 over the time interval T . The next336

two examples demonstrate the differences between global and local auxiliary functions for a337

simple ODE where a suitable choice of Ω is apparent.338

Example 2.3. Consider the autonomous one-dimensional ODE339

(2.24) ẋ = x2, x(0) = x0.340

Trajectories x(t) = x0/(1−x0t) with nonzero initial conditions grow monotonically. If x0 < 0,341

then x(t)→ 0 as t→∞; if x0 > 0, then x(t) blows up at the critical time t = 1/x0. Suppose342

the set of initial conditions X0 includes only a single point x0, the time interval is T = [0,∞),343

and the quantity to be bounded is344

(2.25) Φ(x) =
4x

1 + 4x2
.345

Since |Φ(x)| ≤ 1 uniformly, Φ∗∞ is finite for each x0 despite the blowup of trajectories starting346

from positive initial conditions. Explicit solutions give347

(2.26) Φ∗∞ =


0, x0 ≤ 0,

1, 0 < x0 ≤ 1
2 ,

4x0

1 + 4x2
0

, x0 >
1
2 .

348

Here X0 contains only one initial condition, so the optimal bound (2.6) simplifies to349

(2.27) Φ∗∞ ≤ inf
V ∈V(Ω)

V (0, x0).350
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The constant function V ≡ 1 belongs to V for each x0 and implies the trivial bound Φ∗∞ ≤ 1,351

which is sharp for x0 ∈ (0, 1/2]. For all other x0 6= 0 there exist different V providing sharp352

bounds on Φ∗∞, regardless of whether the domain Ω of auxiliary functions is global or local.353

This is shown in Appendix B. At the semistable point x0 = 0, however, sharp bounds are354

possible only with local auxiliary functions on certain Ω.355

In the x0 = 0 case, the resulting trajectory is simply x(t) ≡ 0. Thus it suffices to enforce356

the auxiliary function constraints (2.5a,b) locally on Ω = [0,∞)×{0}. On this Ω, the constant357

function V ≡ 0 is a local auxiliary function giving the sharp bound Φ∗ ≤ 0. In fact, the same358

is true with Ω = [0,∞) × X for any X with 0 ∈ X ⊆ (−∞, 0]. On the other hand, if the359

chosen set X contains any open neighborhood of 0, then sharp bounds are not possible. This360

is true in particular for global auxiliary functions, which must satisfy constraints (2.5a,b) on361

Ω = [0,∞)×R. The righthand minimum in (2.27) over global auxiliary functions is attained362

by the constant function V = 1. No better bound is possible with global V because they must363

satisfy V (0, 0) ≥ 1. To prove this, recall that every V (t, x) is continuous by definition. Thus364

for any δ > 0 there exists y > 0 such that V (0, 0) ≥ V (0, y)− δ. The trajectory of (2.24) with365

initial condition x(0) = y blows up in finite time and must therefore pass through x = 1
2 at366

some time t∗. Condition (2.5b) requires that V (t∗, 1
2) ≥ Φ(1

2) = 1, while (2.5a) implies that367

V decays along trajectories, so368

(2.28) V (0, 0) ≥ V (0, y)− δ ≥ V (t∗, 1
2)− δ ≥ 1− δ369

for every δ > 0. Thus V (0, 0) ≥ 1, so when x0 = 0 the righthand minimum over global V370

in (2.27) is indeed attained by V ≡ 1. Local auxiliary functions can prove better bounds,371

but a similar argument shows that the sharp bound Φ∗ ≤ 0 for X0 = {0} is possible only if372

0 ∈ X ⊆ (−∞, 0]. That is, the upper limit of X must coincide with the boundary of the basin373

of attraction of the semistable point at 0. In more complicated systems it may not be possible374

to locate X so precisely. In such cases, if global auxiliary functions do not give sharp bounds,375

local ones might not either, at least for spacetime sets Ω that one can identify in practice. �376

Example 2.4. In some cases, global auxiliary functions can fail to exist even if Φ∗ is finite.377

Again consider the ODE (2.24) from Example 2.3 with T = [0,∞) and a single initial condition378

X0 = {x0}, but now consider the quantity379

(2.29) Φ(t, x) = x2ex.380

Recalling that x(t) approaches zero if x0 ≤ 0 and blows up otherwise, we find381

(2.30) Φ∗∞ =


4 e−2, x0 ≤ −2,

x2
0 ex0 , −2 < x0 ≤ 0,

∞, x0 > 0.

382

For auxiliary functions satisfying (2.5a,b) globally on Ω = [0,∞) × R, V(Ω) must be empty383

when x0 > 0 since Φ∗∞ = ∞. However, V(Ω) is empty also when x0 ≤ 0, despite Φ∗∞ being384

finite. This is because any global V satisfying (2.5a,b) must be nonincreasing for trajectories385

starting at all y ∈ R, not only for initial conditions in the set of interest X0. In particular,386

(2.31) V (0, y) ≥ V [t, x(t; 0, y)] ≥ Φ[t, x(t; 0, y)] = x(t; 0, y)2 ex(t;0,y)
387
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12 G. FANTUZZI AND D. GOLUSKIN

for all y ∈ R and all t ≥ 0, where the second inequality follows from (2.5b). No V that is388

continuous on [0,∞)× R can satisfy (2.31) because, for each y > 0, the rightmost expression389

becomes infinite as t approaches the blowup time 1/x0. Thus, V(Ω) is empty.390

Sharp bounds on finite Φ∗ become possible with local rather than global auxiliary func-391

tions, much as in Example 2.3. Since Φ∗ is finite only when X0 ⊆ (−∞, 0], and trajectories392

starting from any such X0 stay within X = (−∞, 0], conditions (2.5a,b) can be enforced lo-393

cally on Ω = [0,∞) ×X. As in Example 2.3, it is crucial that X contains no points outside394

the basin of the semistable equilibrium at the origin. A local V giving sharp bounds is395

(2.32) V (t, x) =

{
4 e−2, x ≤ −2,

x2 ex, x > −2.
396

At each x0 ≤ 0 this V is equal to the value (2.30) of Φ∗∞ for the single trajectory starting at397

x0. Thus, this V gives a sharp bound on Φ∗∞ for every possible initial set X0 ⊆ (−∞, 0]. �398

2.3. Sharpness of optimal bounds. The best bounds on Φ∗ provable using auxiliary399

functions are often but not always sharp. Examples 2.3 and 2.4 above show that the upper400

bound (2.6) can be strict, at least for infinite time horizons and global auxiliary functions.401

For finite time horizons and local auxiliary functions, on the other hand, arguments in [48]402

prove that (2.6) is an equality provided trajectories remain in a compact set over the finite403

time interval of interest. Section 2.3.1 states this result and gives an explicit counterexample404

for infinite time horizons. Section 2.3.2 explains why sharp bounds are always possible if one405

allows V to be discontinuous, a fact which is useful for theory but not for explicitly bounding406

quantities in particular systems.407

2.3.1. Sharp bounds for ODEs with finite time horizon. Local auxiliary functions can408

produce arbitrarily sharp bounds on Φ∗T with finite time horizon T for well posed ODEs,409

provided the initial set X0 is compact and trajectories that start from it remain inside a410

compact set X up to time T . Precisely, Theorem 2.1 and equation (5.3) in [48] imply the411

following result.412

Theorem 2.5 ([48]). Let ẋ = F (t, x) be an ODE with F locally Lipschitz in both arguments.413

Given Φ : R × Rn → R continuous, an initial time t0, a finite time interval T = [t0, T ], and414

a compact set of initial conditions X0, define Φ∗T as in (2.2). Assume that:415

(A.1) All trajectories starting from X0 at time t0 remain in a compact set X for t ∈ T ;416

(A.2) There exist a time t1 > T and a bounded open neighborhood Y of X such that, for all417

initial points (s, y) ∈ [t0, t1]× Y , a unique trajectory x(t; s, y) exists for all t ∈ [s, t1].418

Then, letting V(Ω) denote the set of differentiable auxiliary functions that satisfy (2.5a,b) on419

the compact set Ω := T ×X,420

(2.33) Φ∗T = inf
V ∈V(Ω)

sup
x0∈X0

V (t0, x0).421

In Appendix D we give an alternative proof of this theorem that uses mollification to422

construct near-optimal V . This construction does not yield explicit bounds on Φ∗T for partic-423

ular ODEs because it invokes trajectories, which generally are not known. Both the original424

proof in [48] and our proof rely on assumptions (A.1) and (A.2) to ensure that trajectories425
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starting in a neighborhood of X remain bounded past the time horizon T and are regular in426

the sense that the map (s, y) 7→ x(t; s, y) is locally Lipschitz on [t0, t1]× Y . Regularity over a427

spacetime set slightly larger than Ω is used to construct smooth uniform approximations to428

certain functions on Ω via mollification. However, the assumptions are not necessary for the429

equality (2.33) to hold. For instance, the example in Appendix B violates assumption (A.1)430

when x0 > 0 and T = 1/x0, yet the V in (B.1) implies sharp bounds on Φ∗T .431

It is an open challenge to weaken the assumptions of Theorem 2.5. With infinite time432

horizons, for instance, auxiliary functions give sharp bounds in some examples but not others.433

Sharp bounds for an infinite time horizon are illustrated in Appendix B. In the next example,434

on the other hand, there exists a set X such that infinite-time analogues of assumptions (A.1)435

and (A.2) hold, yet differentiable local auxiliary functions cannot give sharp bounds on Φ∗∞.436

Example 2.6. Consider the one-dimensional ODE437

(2.34) ẋ = x2 − x3,438

which has two equilibria: the semistable point xs = 0 and the attractor xa = 1. Although439

no explicit analytical solution is available, trajectories exist for all times. As t → ∞, they440

approach xs if x0 ≤ 0 and approach xa if x0 > 0. We let441

(2.35) Φ(x) = 4x(1− x)442

and seek upper bounds on Φ∗∞ for initial conditions in the set X0 = [−1, 0]. All trajectories443

starting in X0 approach xs from below, so444

(2.36) Φ∗∞ = sup
x0∈X0

t∈[t0,∞)

Φ[x(t;x0)] = 0.445

Trajectories with initial conditions in X0 = [−1, 0] remain there, so the smallest X we could446

choose is X = X0. With this choice, V ≡ 0 gives a sharp upper bound. However, suppose447

we choose X = [−1, 1], which is the smallest connected set that is globally attracting and448

contains X0. For this X, assumptions analogous to (A.1) and (A.2) in Theorem 2.5 hold on449

the infinite time interval [0,∞), yet any upper bound on Φ∗∞ = 0 provable with differentiable450

local V cannot be smaller than 1. Indeed, any such V must be continuous at (t, x) = (0, 0)451

and arguing as in Example 2.3 shows that V (0, 0) ≥ 1, so any V subject to (2.5a,b) satisfies452

(2.37) max
x∈[−1,0]

V (0, x) ≥ 1.453

Thus, with X = [−1, 1], any bound implied by (2.6) is no smaller than 1 as claimed above. �454

The inability of differentiable auxiliary functions to produce sharp bounds in Examples 2.3455

and 2.6 is due to the map x0 7→ x(t; 0, x0) from initial conditions to trajectories not being456

locally Lipschitz near the saddle point xs = 0. Because the time horizon is infinite, a fixed457

distance from xs is eventually reached by trajectories starting arbitrarily close to xs. This458

does not happen when the time horizon is finite. We cannot say whether the strong duality459

result of Theorem 2.5 applies with an infinite time horizon when the map x0 7→ x(t; 0, x0) is460

Lipschitz; both the original proof in [48] and our alternative in Appendix D rely on the time461

interval T being compact.462
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2.3.2. Nondifferentiable auxiliary functions. One way to guarantee that optimization463

over V gives sharp bounds on Φ∗, regardless of whether the time horizon is finite or infinite,464

is to weaken the local sufficient condition (2.5a,b) by removing the requirement that V is465

differentiable. Since the Lie derivative LV may not be defined in this case, condition (2.5a)466

must be replaced with the direct constraint that V does not increase along trajectories,467

(2.38) V [s+ τ, x(s+ τ ; s, y)] ≤ V (s, y) ∀τ ≥ 0 and (s, y) ∈ Ω.468

Slight modification of the argument leading to (2.8) then proves469

(2.39) Φ∗∞ ≤ min
V : (2.5b),

(2.38)

sup
x0∈X0

V (t0, x0).470

Condition (2.38) cannot be checked when trajectories are not known exactly.2 Differentiability471

of V therefore is crucial to find explicit bounds for particular systems because the Lie derivative472

LV gives a way to check that V is nonincreasing without knowing trajectories.473

For theoretical purposes, on the other hand, nondifferentiable V are useful because474

(2.40) V ∗(s, y) := sup
t≥s

Φ[t, x(t; s, y)]475

is optimal and attains equality in (2.39), meaning476

(2.41) Φ∗∞ = min
V : (2.5b),

(2.38)

sup
x0∈X0

V (t0, x0) = sup
x0∈X0

V ∗(t0, x0).477

This V ∗ is discontinuous in general because of the maximization over time. It follows directly478

from the definition of Φ∗∞ that V ∗ satisfies (2.5b) globally and gives a sharp bound when479

substituted into (2.41). To see that (2.38) holds, observe that the trajectory starting from y480

at time s is the same as that starting from x(s+ τ ; s, y) at time s+ τ . Then, since τ ≥ 0,481

V ∗[s+ τ, x(s+ τ ; s, y)] = sup
t≥s+τ

Φ{t, x[t; s+ τ, x(s+ τ ; s, y)]}(2.42)482

= sup
t≥s+τ

Φ[t, x(t; s, y)]483

≤ sup
t≥s

Φ[t, x(t; s, y)]484

= V ∗(s, y).485486

Example 2.7 below gives V ∗ in a case where trajectories are known.487

2For systems with discrete-time dynamics, on the other hand, discontinuous V may be practically useful.
This work focuses on continuous-time dynamics, but the convex bounding framework of subsection 2.1 readily
extends to maps xn+1 = F (n, xn) when the continuous-time decay condition (2.5a) is replaced by the discrete
version of (2.38), namely that V [n + 1, F (n, xn)] ≤ V (n, xn) for all n ∈ N and xn ∈ X . This can be checked
directly without knowing trajectories. In addition, the computational methods described in section 4 can be
applied with minor modifications to finite-dimensional polynomial maps.
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Example 2.7. Recall Example 2.3, which shows that differentiable global auxiliary func-488

tions cannot give sharp bounds for the ODE (2.24) with Φ as in (2.25) and the single initial489

condition X0 = {0}. For the auxiliary function490

(2.43) V (t, x) =


0, x ≤ 0,

1, 0 < x ≤ 1
2 ,

4x

1 + 4x2
, x > 1

2 ,

491

which is discontinuous at x = 0, explicit ODE solutions confirm that V satisfies the non-492

increasing condition (2.38). This V implies sharp bounds on Φ∗∞ for all sets X0 of initial493

conditions, and in fact it is exactly the optimal V ∗ defined by (2.40). �494

When trajectories are not known explicitly, the V ∗ defined by (2.40) cannot be used to find495

explicit bounds, but it can still be useful. For instance, in Appendix D we prove Theorem 2.5496

by showing that V ∗ can be approximated with differentiable V . Moreover, V ∗ has arisen in497

various contexts. One field in which V ∗ arises is optimal control theory. Using ideas from498

dynamic programming for optimal stopping problems (see, e.g., section III.4.2 in [7]) one can499

show that if V ∗ is bounded and uniformly continuous on Ω, then it is exactly the so-called500

value function for problem (2.2) and is the unique viscosity solution to its corresponding501

Hamilton–Jacobi–Bellman complementarity system. This system consists of the auxiliary502

function constraints (2.5a,b) and the condition503

(2.44) LV (t, x)[Φ(t, x)− V (t, x)] = 0 ∀(t, x) ∈ Ω.504

The auxiliary function framework studied in this work therefore can be seen as a relaxation of505

the Hamilton–Jacobi–Bellman system that results from dropping (2.44). A second connection506

between V ∗ and existing literature occurs in the particular case of linear dynamics on a Hilbert507

space, as explained in the following example.508

Example 2.8. Let X be a Hilbert space with inner product 〈·, ·〉. Consider the autonomous509

linear dynamical system ẋ = Ax with initial condition x(0) = x0, where A is a closed and510

densely defined linear operator, not necessarily bounded, that generates a strongly continuous511

semigroup {St}t≥0. Trajectories satisfy x(t) = St x0, so St is the flow map. Suppose St512

is compact for each t > 0. In various linear systems of this type, one is interested in the513

maximum possible amplification of the norm ‖x‖ =
√
〈x, x〉, which in the present framework514

means that Φ(x) = ‖x‖ with the initial set X0 = {x0 ∈ X : ‖x0‖ = 1}. In fluid mechanics,515

for instance, such problems have been studied to understand linear mechanisms by which516

perturbations are amplified (see, e.g., [72]). With the above choices, (2.40) and (2.41) reduce517

to the well-known result518

(2.45) Φ∗∞ = sup
‖x0‖=1

sup
t≥0

Φ(St x0) = sup
t≥0

sup
‖x0‖=1

√
〈St x0, St x0〉 = sup

t≥0
σmax(St),519

where σmax(St) denotes the maximum singular value of St. We stress, however, that the520

general bounding framework of subsection 2.1 does not require an explicit flow map and521

applies also to nonlinear systems. �522
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3. Optimal trajectories. So far we have presented a framework for bounding the magni-523

tudes of extreme events without finding the extremal trajectories themselves. The latter is524

much harder in general, partly due to the non-convexity of searching over initial conditions.525

However, auxiliary functions producing bounds on Φ∗ do give some information about optimal526

trajectories. Specifically, sublevel sets of any auxiliary function define regions of state space527

in which optimal and near-optimal trajectories must spend a certain fraction of time prior to528

the extreme event. A similar connection has been found between trajectories that maximize529

infinite-time averages and auxiliary functions that give bounds on these averages [71, 43]. The530

following discussion applies to both global and local auxiliary functions with either finite or531

infinite time horizons. The simpler case of exactly optimal auxiliary functions is addressed in532

subsection 3.1, followed by the general case in subsection 3.2.533

3.1. Optimal auxiliary functions. Suppose for now that the optimal bound (2.8) is sharp534

and is attained by some V ∗, in which case535

(3.1) sup
x0∈X0

V ∗(t0, x0) = Φ∗.536

Let x∗0 ∈ X0 be an initial condition leading to an optimal trajectory, which attains the maxi-537

mum value Φ∗ at some time t∗. To determine the value of V ∗ on an optimal trajectory, note538

that the same reasoning leading to (2.8) yields539

Φ∗ = Φ[t, x(t∗;x∗0)](3.2)540

≤ V ∗(t0, x∗0) +

∫ t∗

t0

LV ∗[ξ, x(ξ; t0, x
∗
0)] dξ541

≤ sup
x0∈X0

V ∗(t0, x0) +

∫ t∗

t0

LV ∗[ξ, x(ξ; t0, x
∗
0)] dξ542

= Φ∗ +

∫ t∗

t0

LV ∗[ξ, x(ξ; t0, x
∗
0)] dξ543

≤ Φ∗544545

The above inequalities must be equalities and LV ∗ ≤ 0, so LV ∗ ≡ 0 and V ∗ ≡ Φ∗ along an546

optimal trajectory up to time t∗. These constant values of LV ∗ and V ∗ can be used to define547

sets in which optimal trajectories must lie:548

R0 := {(t, x) ∈ Ω : LV ∗(t, x) = 0} ,(3.3)549

S0 :=

{
(t, x) ∈ Ω : V ∗(t, x) = sup

x0∈X0

V ∗(t0, x0)

}
,(3.4)550

551

where we have used (3.1) in defining S0. The intersection S0 ∩ R0 contains the graph of552

each optimal trajectory until the last time that trajectory attains the maximum value Φ∗. In553

general, S0 ∩R0 may also contain points not on any optimal trajectory.554

3.2. General auxiliary functions. Consider an auxiliary function V and an initial condi-555

tion x0 that are a near-optimal pair, meaning that an upper bound on Φ∗ implied by V and556
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a lower bound implied by the trajectory starting from x0 differ by no more than δ. That is,557

calling the upper bound λ,558

(3.5) λ− δ ≤ sup
t∈T

Φ[t, x(t; t0, x0)] ≤ Φ∗ ≤ sup
x0∈X0

V (t0, x0) ≤ λ.559

The upper bound λ might be larger than supx∈X0
V (t0, x) if the latter cannot be computed ex-560

actly, and the lower bound λ−δ might be smaller than supt∈T Φ[t, x(t; t0, x0)] if the trajectory561

starting from x0 is only partly known.562

Let t∗ denote the latest time during the interval T when the trajectory starting at x0563

attains or exceeds the value λ−δ. The constraints (2.5a,b) require V to decay along trajectories564

and bound Φ pointwise, so565

(3.6) λ− δ ≤ V [t∗, x(t∗; t0, x0)] ≤ V [t, x(t; t0, x0)] ≤ V (t0, x0) ≤ sup
x∈X0

V (t0, x) ≤ λ566

for all t ∈ [t0, t
∗]. The above inequalities imply that the trajectory starting at x0 satisfies567

(3.7) 0 ≤ λ− V [t, x(t; t0, x0)] ≤ δ568

up to time t∗, so its graph must be contained in the set569

(3.8) Sδ := {(t, x) ∈ Ω : 0 ≤ λ− V (t, x) ≤ δ} ,570

which extends to suboptimal V the definition (3.4) of S0 for optimal V ∗.571

The definition (3.3) of R0 also can be extended to suboptimal V , but the resulting sets572

are guaranteed to contain optimal and near-optimal trajectories only for a certain amount of573

time. When V satisfies (3.5), an argument similar to (3.2) shows that574

(3.9) Φ∗ ≤ Φ∗ + δ +

∫ t∗

0
LV [ξ, x(ξ; t0, x0)] dξ,575

and therefore576

(3.10) −
∫ t∗

t0

LV [ξ, x(ξ; t0, x0)] dξ ≤ δ.577

Since LV ≤ 0, the above condition can be combined with Chebyshev’s inequality (cf. §VI.10578

in [39]) to estimate, for any ε > 0, the total time during [t0, t
∗] when LV ≤ −ε. Letting Θε579

denote this total time and letting 1A denote the indicator function of a set A, we find580

(3.11) Θε :=

∫ t∗

t0

1{ξ:LV [ξ,x(ξ;t0,x0)]<−ε} dξ ≤ −1

ε

∫ t∗

t0

LV [ξ, x(ξ; t0, x0)] dξ ≤ δ

ε
.581

In other words, a trajectory on which Φ ≥ λ− δ at some time t∗ cannot leave the set582

(3.12) Rε := {(t, x) ∈ Ω : −ε ≤ LV (t, x) ≤ 0}583

for longer than δ/ε time units during the interval [t0, t
∗]. This statement is most useful when584

the upper bound Φ∗ ≤ λ implied by V is close to sharp, so there exist trajectories where Φ585

attains values λ− δ with small δ. Then one may take ε small enough for Rε to exclude much586

of state space, while also having it be meaningful that near-optimal trajectories cannot leave587

Rε for longer than δ/ε. The computational construction of Sδ and Rε for a polynomial ODE588

is illustrated by Example 4.3 in the next section.589
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4. Computing bounds for ODEs using SOS optimization. The optimization of auxiliary590

functions and their corresponding bounds is prohibitively difficult in many cases, even by591

numerical methods. However, computations often are tractable when the system (2.1) is an592

ODE with polynomial righthand side F : R× Rn → Rn, the observable Φ is polynomial, and593

the set of initial conditions X0 is a basic semialgebraic set:594

(4.1) X0 := {x ∈ Rn : f1(x) ≥ 0, . . . , fp(x) ≥ 0, g1(x) = 0, . . . , gq(x) = 0}595

for given polynomials f1, . . . , fp and g1, . . . , gq. The set Ω ⊂ R× Rn in which the graphs of596

trajectories remain over the time interval T is assumed to be basic semialgebraic as well:597

(4.2) Ω := {(t, x) ∈ R× Rn : h1(t, x) ≥ 0, . . . , hr(t, x) ≥ 0, `1(t, x) = 0, . . . , `s(t, x) = 0}598

for given polynomials h1, . . . , hr and `1, . . . , `s. To construct global auxiliary functions with599

state space Rn, the set Ω can be specified by a single inequality: h1(t, x) := t − t0 ≥ 0 or600

h1(t, x) := (t − t0)(T − t) ≥ 0 for infinite or finite time horizons, respectively. To construct601

local auxiliary functions, more inequalities or equalities must be added to define a smaller Ω.602

For any integer d, let Rd[t, x] and Rd[x] denote the vector spaces of real polynomials of603

degree d or smaller in the variables (t, x) and x, respectively. Restricting the optimization604

over differentiable auxiliary functions in (2.6) to polynomials in Rd[t, x] gives605

(4.3) Φ∗ ≤ inf
V ∈Rd[t,x]

s.t. (2.5a,b)

sup
x0∈X0

V (t0, x0).606

Recalling that the supremum over X0 is the smallest upper bound λ on that set, and substi-607

tuting expression (2.4) for LV in the ODE case into (2.5a), we can express the righthand side608

of (4.3) as a constrained minimization over V and λ:609

Φ∗ ≤ inf
V ∈Rd[t,x]
λ∈R

{λ : −∂tV (t, x)− F (t, x) · ∇xV (t, x) ≥ 0 on Ω,(4.4)610

V (t, x)− Φ(t, x) ≥ 0 on Ω,611

λ− V (t0, x) ≥ 0 on X0}.612613

Under the assumptions outlined above, the three constraints on V and λ are polynomial614

inequalities on basic semialgebraic sets. Checking such constraints is NP-hard in general [59],615

so a common strategy is to replace them with stronger but more tractable constraints. Here we616

require that the polynomials in (4.4) admit weighted sum-of-squares (WSOS) decompositions,617

which can be searched for computationally by solving SDPs. These WSOS constraints imply618

that the inequalities in (4.4) hold on Ω or X0 but not necessarily outside these sets.619

To define the relevant WSOS decompositions, let Σµ[t, x] and Σµ[x] be the cones of SOS620

polynomials of degrees up to µ in the variables (t, x) and x, respectively. That is, a poly-621

nomial σ ∈ Rµ[x] belongs to Σµ[x] if and only if there exist a finite family of polynomials622

q1, . . . , qk ∈ Rbµ/2c[x] such that σ =
∑k

i=1 q
2
i . For each integer µ that is no smaller than the623

highest polynomial degree appearing in the definition (4.1) of X0, the set of degree-µ WSOS624
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polynomials associated with X0 is625

Λµ :=
{
σ0 +

p∑
i=1

fiσi +

q∑
i=1

giρi : σ0 ∈ Σµ[x],(4.5)626

σi ∈ Σµ−deg(fi)[x], i = 1, . . . , p627

ρi ∈ Rµ−deg(gi)[x], i = 1, . . . , q
}
.628

629

In words, WSOS polynomials associated with X0 can be written as a weighted sum of poly-630

nomials, where the weights are {1, f1, . . . , fp, g1, . . . , gq} and the polynomials weighted by631

{1, f1, . . . , fp} are SOS. Every SOS polynomial is globally nonnegative, and it is WSOS with632

respect to any X0 since all terms in the WSOS decomposition aside from σ0 can be zero. On633

the other hand, WSOS polynomials need not be SOS.634

Analogously to Λµ, the set of degree-µ WSOS polynomials associated with Ω is635

Γµ :=
{
σ0 +

r∑
i=1

hiσi +

s∑
i=1

`iρi : σ0 ∈ Σµ[t, x],(4.6)636

σi ∈ Σµ−deg(hi)[t, x], i = 1, . . . , r637

ρi ∈ Rµ−deg(`i)[t, x], i = 1, . . . , s
}
.638

639

If a polynomial belongs to Γµ or Λµ, then it is nonnegative on Ω or X0, respectively. (The640

converse is false beyond a few special cases [34].) We can strengthen the inequality constraints641

on V in (4.4) by requiring WSOS representations instead of nonnegativity. This gives642

Φ∗ ≤ λ∗d := inf
V ∈Rd[t,x]
λ∈R

{λ : −∂tV − F · ∇xV ∈ Γd−1+deg(F ),(4.7)643

V − Φ ∈ Γd,644

λ− V (t0, ·) ∈ Λd}.645646

For each integer d, the righthand side is a finite-dimensional optimization problem with WSOS647

constraints that are linear in the decision variables—the scalar λ and the coefficients of the648

polynomial V . It is well known that such problems can be reformulated as SDPs (e.g., Section649

2.4 in [46]). Such SDPs can be solved numerically in polynomial time, barring problems with650

numerical conditioning. Open-source software is available to assist both with the reformulation651

of WSOS optimizations as SDPs and with the solution of the latter.3 The SOS computations652

in Examples 2.1, 4.3, and 4.5, and in Appendix C, were set up in MATLAB using YALMIP [50,653

51] or a customized version of SPOTless.4 The resulting SDPs were solved with the interior-654

point solver MOSEK v.8 [58] except in Example 4.5, where the SDP was solved in multiple655

precision arithmetic with SDPA-GMP v.7.1.3 [24].656

3Most modeling toolboxes for polynomial optimization, including the ones used in this work, do not natively
support WSOS constraints. However, these can be implemented using standard SOS constraints. For instance,
the WSOS constraint P ∈ Γµ can be implemented as the SOS constraint P −

∑p
i=1 hiσi−

∑q
i=1 `iρi ∈ Σµ[t, x],

along with the SOS constraints σi ∈ Σµ−deg(hi)[t, x] for i = 1, . . . , p. This formulation, known as the generalized
S-procedure [69, 20], introduces more decision variables than the direct WSOS approach of [46, Section 2.4].
The additional variables may lead to larger computations, but they can improve numerical conditioning by
giving more freedom for the rescaling that is done within SDP solvers.

4https://github.com/aeroimperial-optimization/aeroimperial-spotless
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The bounds λ∗d found by solving (4.7) numerically form a nonincreasing sequence as the657

degree d of V is raised. These bounds appear to become sharp in various cases, including658

Example 2.1 above and Example 4.3 below. We cannot say whether such convergence occurs in659

all cases, even when auxiliary functions arbitrarily close to optimality are known to exist. This660

is due to our restriction to polynomial V and use of WSOS constraints, which are sufficient but661

not necessary for nonnegativity. However, if the sets X0 and Ω are both compact and there662

exists a differentiable V attaining equality in (2.6), then the following theorem guarantees663

that bounds from SOS computations become sharp as the polynomial degree is raised. The664

proof is a standard argument in SOS optimization and relies on a result known as Putinar’s665

Positivstellensatz [67, Lemma 4.1], which guarantees the existence of WSOS representations666

for strictly positive polynomials; details can be found in Section 2.4 of [46].667

Theorem 4.1. Let Ω and X0 be compact semialgebraic sets. Assume the definitions of Ω668

and X0 include inequalities C1 − t2 − ‖x‖22 ≥ 0 and C2 − ‖x‖22 ≥ 0 for some C1 and C2,669

respectively, which can always be made true by adding inequalities that do not change the670

specified sets. Let λ∗d be the bound from the optimization (4.7). If differentiable auxiliary671

functions give arbitrarily sharp bounds (2.33) on Φ∗T , then λ∗d → Φ∗T as d→∞.672

Proof. Assume that the semialgebraic definitions of Ω and X0 include inequalities of the673

form C1 − t2 − ‖x‖22 ≥ 0 and C2 − ‖x‖22 ≥ 0, respectively. If not, these inequalities can be674

added with C1 and C2 large enough to not change which points lie in Ω and X0 since both675

sets are compact. Then, C1 − t2 − ‖x‖22 ∈ Γµ and C2 − ‖x‖22 ∈ Λµ for all integers µ.5676

To prove that λ∗d → Φ∗T as d→∞, we establish the equivalent claim that, for each ε > 0,677

there exists an integer d such that λ∗d ≤ Φ∗T + ε. Choose γ > 0 such that678

(4.8) γ <
2Tε

5T − t0
.679

By assumption there exists an auxiliary function W ∈ C1(Ω), not generally a polynomial,680

such that681

(4.9) W (t0, x0) ≤ Φ∗T + γ on X0.682

Since Ω is compact, polynomials are dense in C1(Ω) (cf. Theorem 1.1.2 in [49]). That is, for683

each δ > 0 there exists a polynomial P such that ‖W −P‖C1(Ω) ≤ δ, where ‖ · ‖Ck(Ω) denotes684

the usual norm on Ck(Ω)—the sum of the L∞ norms of all derivatives up to order k. Fix such685

a P with686

(4.10) δ <
γ

max
{

2, 2T, 2T‖F1‖C0(Ω), . . . , 2T‖Fn‖C0(Ω)

} .687

By definition Ω contains the initial set {t0}×X0, so |W (t0, ·)− P (t0, ·)| < δ uniformly on X0.688

We define the polynomial auxiliary function689

(4.11) V (t, x) = P (t, x) + γ

(
1− t

2T

)
.690

5Theorem 4.1 holds also when the semialgebraic definitions of Ω and X0 satisfy Assumption 2.14 in [46,
Section 2.4], which is a slightly weaker but more technical condition implying the inclusions C1−t2−‖x‖22 ∈ Γµ
and C2 − ‖x‖22 ∈ Λµ for all sufficiently large integers µ.
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With δ as in (4.10), γ as in (4.8), and W satisfying (4.9), elementary estimates show that691

−∂tV − F · ∇xV > 0 on Ω,(4.12a)692

V − Φ > 0 on Ω,(4.12b)693

Φ∗T + ε− V (t0, ·) > 0 on X0.(4.12c)694695

The inequalities (4.12a–c) are strict. Since C1 − t2 − ‖x‖22 ∈ Γµ and C2 − ‖x‖22 ∈ Λµ for696

all integers µ by assumption, a straightforward corollary of Putinar’s Positivstellensatz [67,697

Lemma 4.1] guarantees that inequalities (4.12a–c) can be proved with WSOS certificates.698

Precisely, there exists an integer µ′ such that the polynomials in (4.12a,b) belong to Γµ′ , and699

the polynomial in (4.12c) belongs to Λµ′ . We now set d = max{deg(V ), µ′} and observe that700

V is feasible for the righthand problem in (4.7) with λ = Φ∗T + ε because Γµ′ ⊆ Γd, Λµ′ ⊆ Λd,701

and V ∈ Rd[t, x]. This proves the claim that λ∗d ≤ Φ∗T + ε.702

The computational cost of solving WSOS optimization problems grows quickly as d is703

raised. For instance, suppose the polynomials f1, . . . , fp and h1, . . . , hr all have the same704

degree ω, and let dF := d−1+deg(F ). Then, the time for standard primal-dual interior-point705

methods scales as O(L6.5
1 + (p + r)1.5L6.5

2 ), where L1 =
(
n+bdF /2c

n

)
and L2 =

(
n+b(d−ω)/2c

n

)
;706

see [63] and references therein for further details. Appendix C describes a way to improve707

bounds iteratively without raising d, but the improvement is small in the example tested. Poor708

computational scaling with increasing d can be partly mitigated if symmetries of optimal V709

can be anticipated and enforced in advance, leading to smaller SDPs. When the differential710

equations, the observable Φ, and the sets Ω and X0 all are invariant under a symmetry711

transformation, then the optimal bound is unchanged if the symmetry is imposed also on V712

and the weights σi and ρi. The next proposition formalizes these observations; its proof is a713

straightforward adaptation of a similar result in Appendix A of [27], so we do not report it.714

Proposition 4.2. Let A : Rn×n be an invertible matrix such that Ak is the identity for some715

integer k. Assume that F (t, Ax) = AF (t, x), Φ is A-invariant in the sense that Φ(t, Ax) =716

Φ(t, x), and all polynomials defining Ω and X0 are A-invariant also. If V ∈ V(Ω) gives a717

bound Φ∗ ≤ λ, then there exits V̂ ∈ V(Ω) that is A-invariant and proves the same bound.718

Moreover, if the pair (V, λ) satisfies the WSOS constraints in (4.7), then so does the pair719

(V̂ , λ) and there exist WSOS decompositions with A-invariant weights σi, ρi.720

We conclude this section with three computational examples. The first two demonstrate721

that SOS optimization can give extremely good bounds on both Φ∗T and Φ∗∞ in practice, even722

when the assumptions of Theorems 2.5 and 4.1 do not hold. The first example also illustrates723

the approximation of optimal trajectories described in section 3. The third example, on724

the other hand, reveals a potential pitfall of SOS optimization applied to bounding Φ∗∞ for725

systems with periodic orbits: infeasible problems may appear to be solved successfully due to726

unavoidably finite tolerances in SDP solvers.727

Example 4.3. Consider the nonlinear autonomous ODE system728

(4.13)

[
ẋ1

ẋ2

]
=

[
0.2x1 + x2 − x2(x2

1 + x2
2)

−0.4x2 + x1(x2
1 + x2

2)

]
,729
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(a) (b)

Figure 2. (a) Phase portrait of the ODE (4.13) showing the attracting equilibria ( ), the saddle ( ), and the
saddle’s unstable ( ) and stable ( ) manifolds. (b) Sample trajectories starting from the circle ‖x‖22 = 0.25.
Small circles mark the initial conditions. Colors indicate the maximum value of Φ = ‖x‖22 along each trajectory.

Figure 3. (a) Upper bounds on Φ∗T in Example 4.3 for various time horizons T , computed using auxiliary
functions V (t, x) with polynomial degrees 4 ( ), 6 ( ), and 8 ( ). Lower bounds on Φ∗T found by maximizing
Φ[x(T ; 0, x0)] over x0 using adjoint optimization are also plotted ( ). (b) Detailed view of part of panel (a).

which is symmetric under x 7→ −x. As shown in Figure 2(a), the system has a saddle point at730

the origin and a symmetry-related pair of attracting equilibria. Let X0 = {x : ‖x‖22 = 0.25}.731

Aside from two points on the stable manifold of the origin, all points in X0 produce trajectories732

that eventually spiral outwards towards the attractors, as shown in Figure 2(b).733

Using SOS optimization, we have computed upper bounds on the value of Φ(x) = ‖x‖22734

among all trajectories starting from X0, for both finite and infinite time horizons. For sim-735

plicity we considered only global auxiliary functions, meaning we used Ω = [0, T ] × R2 and736

Ω = [0,∞) × R2 to solve (4.7) in the finite- and infinite-time cases, respectively. Since both737

choices of Ω and the set of initial conditions X0 = {x : ‖x‖22 = 0.25} share the same symmetry738

as (4.13), we applied Proposition 4.2 to reduce the cost of solving (4.7). Our implementation739

used YALMIP to reformulate (4.7) into an SDP, which was solved with MOSEK.740

Figure 3 shows upper bounds on Φ∗T that we computed for a range of time horizons T by741

solving (4.7) with time-dependent polynomial V of degrees d = 4, 6, and 8. Also plotted in742

the figure are lower bounds on Φ∗T , found by searching among initial conditions using adjoint743

optimization. The close agreement with our upper bounds shows that the degree-8 bounds744
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Table 2
Upper bounds on Φ∗T and Φ∗∞ for Example 4.3, computed by solving (4.7). The bounds for Φ∗T and Φ∗∞

were computed using time-dependent and time-independent V , respectively. Lower bounds are implied by the
maximum of Φ on particular trajectories, whose initial conditions were found by adjoint optimization.

deg(V ) T = 2 T = 3 T =∞
Upper bounds 4 1.948016 2.062952 2.194343

6 1.584910 1.918262 1.942396
8 1.584055 1.901411 1.931330
10 ” 1.901409 1.916228
12 ” ” 1.903525
14 ” ” 1.903448
16 ” ” 1.903185
18 ” ” 1.903181

Lower bounds 1.584055 1.901409 1.903178

are very close to sharp, and that adjoint optimization likely has found the globally optimal745

initial conditions. We find that Φ∗T = Φ∗∞ ≈ 1.90318 for all T ≥ 3.2604, indicating that Φ746

attains its maximum over all time when T ≈ 3.2604.747

Table 2 reports upper bounds on Φ∗T computed with time-dependent V up to degree 18748

for T = 2 and T = 3, as well as upper bounds on Φ∗∞. The infinite-time implementation749

was restricted to time-independent polynomial V (x) because polynomial dependence on t750

gave no improvement in preliminary computations. This restriction lowers the computational751

cost because the first two WSOS constraints in (4.7) are independent of time and reduce to752

standard SOS constraints on R2. The resulting bounds are excellent for each T reported in753

Table 2. As the degree of V is raised, the upper bounds on Φ∗ apparently converge to the754

lower bounds produced by adjoint optimization. Note that this convergence is not guaranteed755

by Theorems 2.5 and 4.1 because the domain Ω is not compact.756

Finally, we illustrate how auxiliary functions can be used to localize optimal trajectories757

using the methods described in section 3. For a near-optimal V we take the time-independent758

degree-14 auxiliary function that gives the upper bound λ = 1.903448 reported in Table 2. Any759

trajectory that attains or exceeds a value λ− δ at some time t∗ must spend the interval [t0, t
∗]760

inside the set Sδ defined by (3.8). In the present example, the lower bound 1.903178 ≤ Φ∗761

guarantees the existence of such trajectories for all δ ≥ 0.00027. In general a good lower762

bound on Φ∗ may be lacking, in which case the sets Sδ tell us where near-optimal trajectories763

must lie if they exist. With this general situation in mind, Figure 4(a,b) show Sδ for δ = 0.01764

and 0.002, along with the exactly optimal trajectories. The Sδ sets localize the optimal765

trajectories increasingly well as δ is lowered, although they contain other parts of state space766

also. Figure 4(c) shows the setsRε, defined by (3.12), for ε = 0.008 and 0.004. Each trajectory767

coming within δ = 0.002 of the upper bound, for example, cannot leave these Rε for longer768

than δ/ε = 0.25 and 0.5 time units, respectively, prior to any time at which Φ ≥ λ− δ. The769

same is true of the intersections of these sets with Sδ, which are shown in Figure 4(d). �770

Example 4.4. Here we consider a 16-dimensional ODE model obtained by projecting the771

Burgers equation (2.14) with ordinary diffusion (α = 1) onto modes un(x) =
√

2 sin(2nπx),772
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(a) (b) (c) (d)

S0.002
S0.01

S0.002
S0.01

R0.004

R0.008

S0.002 ∩R0.004

S0.002 ∩R0.008

Figure 4. Sets approximating the trajectories that attain Φ∗∞ for Example 4.3: (a) S0.01 and S0.002.
(b) Detail view of part of panel (a). (c) R0.008 and R0.004. (d) S0.002 ∩ R0.008 and S0.002 ∩ R0.004. All sets
were computed using the same degree-14 polynomial V (x) that yields the nearly sharp bounds in Table 2. Also
plotted are the attracting equilibria ( ), the set of initial conditions X0 ( ), the optimal initial conditions ( ),
and the optimal trajectories before ( ) and after ( ) the point at which Φ∗∞ is attained.

n = 1, . . . , 16. In other words, we substitute the expansion u(x, t) =
∑16

m=1 am(t)um(x)773

into (2.14) with α = 1 and integrate the result against each un(x) to derive 16 nonlinear774

coupled ODEs for the amplitudes a1(t), . . . , a16(t). This gives775

(4.14) ȧn = − (2πn)2 an +
√

2πn

[
16−n∑
m=1

amam+n −
1

2

n−1∑
m=1

aman−m

]
, n = 1, . . . , 16.776

Let a = (a1, . . . , a16) denote the state vector. Similarly to what is done for the PDE in777

Example 2.2, we bound the projected enstrophy Φ(a) := 2π2
∑16

n=1 n
2a2
n along trajectories778

with initial conditions in the set X0 = {a ∈ R16 : Φ(a) = Φ0}, and we consider various values779

Φ0 of the initial enstrophy. We construct time-independent degree-d polynomial V of the form780

(4.15) V (a) = c‖a‖d2 + Pd−1(a),781

where d is even, c is a tunable constant, and Pd−1(a) is a tunable polynomial of degree d− 1.782

Since the nonlinear terms in (4.14) conserve the leading ‖a‖d2 term, LV has the same even783

leading degree as V , which is necessary for (2.5a,b) to hold over the global spacetime set784

Ω = [0,∞)× R16. We also construct local V of the form (4.15) by imposing (2.5a,b) only on785

the smaller spacetime set Ω = [0,∞)×X with786

(4.16) X :=

{
a ∈ R16 : ‖a‖22 ≤

Φ0

2π2

}
.787

All trajectories starting from X0 remain in X because (4.14) implies d
dt‖a‖22 = −4Φ(a) ≤ 0,788

so ‖a‖22 is bounded by its initial value, and ‖a‖22 ≤ 1
2π2 Φ(a) pointwise.789

Figure 5 shows upper bounds on Φ∗∞ computed for Φ0 values spanning four orders of790

magnitude using both global and local V of degrees 4 and 6. Also shown are lower bounds791
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Figure 5. Bounds on Φ∗∞ for (4.14) computed with both global and local polynomial auxiliary functions V of
the form (4.15) for d = 4 ( global, local) and d = 6 ( global, local). Also plotted are lower bounds on Φ∗∞
obtained with adjoint optimization ( ). All results are normalized by Φ

3/2
0 , the expected scaling at large Φ0 [5].

obtained using adjoint optimization. (Note that the 16-mode truncation (4.15) accurately792

resolves Burgers equation only in cases with Φ0 . 2 · 105.) We used SPOTless and MOSEK793

to solve (4.7) and applied Proposition 4.2 to exploit symmetry under the transformation794

an 7→ (−1)nan. At each Φ0 value, constructing quartic V required approximately 60 seconds795

on 4 cores with 16GB of memory. Local quartic V produce better bounds than global ones,796

the results obtained with the former being within 1% of the lower bounds from adjoint op-797

timization for Φ0 . 8000. The results improve significantly with sextic V : for all tested Φ0,798

the upper bounds produced by global and local sextic V are within 9% and 5% of the adjoint799

optimization results, respectively. Constructing sextic V at a single Φ0 value required 16800

hours on a 12-core workstation with 48GB of memory, which is significantly more expensive801

than adjoint optimization. However, we stress that auxiliary functions yield upper bounds on802

Φ∗∞, while adjoint optimization gives only lower bounds on Φ∗∞, so the two approaches give803

different and complementary results. �804

It is evident that SOS optimization can produce excellent bounds on extreme events given805

enough computational resources, but care must be taken to assess whether numerical results806

can be trusted. As observed already in the context of SOS optimization [82], numerical SDP807

solvers can return solutions that appear to be correct but are provably not so. The next808

example shows that this issue can arise when bounding Φ∗∞ in systems with periodic orbits.809

Example 4.5. Consider a scaled version of the van der Pol oscillator [77],810

(4.17)

[
ẋ1

ẋ2

]
=

[
x2

(1− 9x2
1)x2 − x1

]
,811

which has a limit cycle attracting all trajectories except the unstable equilibrium at the origin812

(see Figure 6). Let Φ = ‖x‖22 be the observable of interest. We seek bounds on Φ∗∞ along813

trajectories starting from the circle ‖x‖22 = 0.04. All such trajectories approach the limit814

cycle from the inside, so Φ∗∞ coincides with the pointwise maximum of Φ on the limit cycle.815

Maximizing Φ numerically along the limit cycle yields Φ∗∞ ≈ 0.889856.816

We implemented (4.7) with YALMIP using a time-independent polynomial auxiliary func-817

tion V (x) of degree 22. To confirm that difficulties were not easily avoided by increasing preci-818

sion, we solved the resulting SDP in multiple precision arithmetic using the solver SDPA-GMP819
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Figure 6. Limit cycle ( ) for the scaled van der Pol oscillator (4.17). Also plotted are trajectories ( )
with initial conditions ( ) on the circle ‖x‖22 = 0.04 ( ).

Table 3
Parameters for SDPA-GMP used in Example 4.5 to produce an invalid degree-22 auxiliary function for the

scaled van der Pol oscillator. A description of each parameter can be found in [24].

epsilonStar 10−25 betaStar 0.1 lowerBound -1025 maxIteration 200
epsilonDash 10−25 betaBar 0.3 upperBound 1025 precision 200
lambdaStar 104 gammaStar 0.7 omegaStar 2

v.7.1.3. The solver parameters we used are listed in Table 3 in order to ensure that our results820

are reproducible; see [24] for the meaning of each parameter. The solver terminated success-821

fully after 95 iterations, reporting no error and returning the upper bound Φ∗∞ ≤ 0.956911.822

Although this bound is true, it reflects an invalid SOS solution because no time-independent823

polynomial V of any degree can satisfy (2.5a). To see this, suppose that (2.5a) holds, so V824

cannot increase along trajectories of (4.17). In particular, if x(t) lies on the limit cycle and τ825

is the period, then for all α ∈ (0, 1),826

(4.18) V [x(t)] ≥ V [x(t+ ατ)] ≥ V [x(t+ τ)] = V [x(t)].827

Thus, time-independent V giving finite bounds on Φ∗∞ must be constant on the limit cycle.828

This is impossible if V is polynomial because the limit cycle is not an algebraic curve [61].829

There are two possible reasons why the SDP solver does not detect that the problem is830

infeasible despite the use of multiple precision. The first is that inevitable roundoff errors831

mean that our bound does not apply to (4.17), but to a slightly perturbed system whose limit832

cycle is an algebraic curve. The second possibility, which seems more likely, is that although833

no time-independent polynomial V is feasible, there exists a feasible nonpolynomial V that834

can be approximated accurately near the limit cycle by a degree-22 polynomial. In particular,835

the approximation error is smaller than the termination tolerances used by the solver, which836

therefore returns a solution that is not feasible but very nearly so. This interpretation is837

supported by the fact that SDPA-GMP issues a warning of infeasibility when its tolerances838

are tightened by lowering the values of parameters epsilonDash and epsilonStar to 10−30. �839

5. Extensions. The framework for bounding extreme events presented in section 2 can840

be extended in several ways. Here we briefly summarize two extensions. Both are covered by841

the measure-theoretic approach of [81, 80, 48, 79], but we give a more direct derivation.842
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The first extension applies when upper bounds are sought on the maximum of Φ at a fixed843

finite time T , rather than its maximum over the time interval [0, T ]. Such bounds can be844

proved by relaxing inequality (2.5b) to require that V bounds Φ only at time T .845

A second extension lets extreme events be defined using integrals over trajectories in846

addition to instantaneous values. Precisely, suppose the quantity we want to bound from847

above is848

(5.1) sup
x0∈X0
t∈T

{
Φ[t, x(t; t0, x0)] +

∫ t

t0

Ψ[ξ, x(ξ; t0, x0)] dξ

}
849

with chosen Φ and Ψ. One way to proceed is to augment the original dynamical system (2.1)850

with the scalar ODE ż = Ψ(t, x), z(t0) = 0. Bounding (5.1) along trajectories of the orig-851

inal system is equivalent to bounding the maximum of Φ(t, x) + z pointwise in time along852

trajectories of the augmented system, and this can be done with the methods described in853

the previous sections. Another way to bound (5.1), without introducing an extra ODE, is to854

replace condition (2.5a) with855

(5.2) LV (t, x) + Ψ(t, x) ≤ 0 ∀(t, x) ∈ Ω.856

Minor modification to the argument leading to (2.6) proves that857

(5.3) sup
x0∈X0
t∈T

{
Φ[t, x(t; t0, x0)] +

∫ t

t0

Ψ[ξ, x(ξ; t0, x0)] dξ

}
≤ inf

V : (2.5b)
(5.2)

sup
x0∈X0

V (t0, x0).858

As in (2.6), the righthand minimization is a convex problem and can be tackled computation-859

ally using SOS optimization for polynomial ODEs when Φ and Ψ are polynomial. Analogues860

of Theorems 2.5 and 4.1 for (5.3) hold if Ψ is continuous.861

6. Conclusions. We have discussed a convex framework for constructing a priori bounds862

on extreme events in nonlinear dynamical systems governed by ODEs or PDEs. Precisely, we863

have described how to bound from above the maximum value Φ∗ of an observable Φ(t, x) over864

a given finite or infinite time interval, among all trajectories that start from a given initial set.865

This approach, which is a particular case of general relaxation frameworks for optimal control866

and optimal stopping problems [48, 11], relies on the construction of auxiliary functions V (t, x)867

that decay along trajectories and bound Φ pointwise from above. These constraints amount868

to the pointwise inequalities (2.5a,b) in time and state space, which can be either imposed869

globally or imposed locally on any spacetime set that contains all trajectories of interest.870

Suitable global or local V can be constructed without knowing any system trajectories, so871

Φ∗ can be bounded above even when trajectories are very complicated. We have given a872

range of ODE examples in which analytical or computational constructions give very good873

and sometimes sharp bounds. As a PDE example, we have proved analytical upper bounds on874

a quantity called fractional enstrophy for solutions to the one-dimensional Burgers equation875

with fractional diffusion.876

The convex minimization of upper bounds on Φ∗ over global or local auxiliary functions877

is dual to the non-convex maximization of Φ along trajectories. In the case of ODEs and878
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local auxiliary functions, Theorem 2.5, which is a corollary of Theorem 2.1 and equation (5.3)879

in [48], guarantees that this duality is strong when the time interval is finite and the ODE880

satisfies certain continuity and compactness assumptions. This means that the infimum over881

bounds is equal to the maximum over trajectories, so there exist V proving arbitrarily sharp882

bounds on Φ∗. Further, strong duality holds in several of our ODE examples to which the883

assumptions of Theorem 2.5 do not apply, including formulations with global V or infinite884

time horizons. However, neither the proofs in [48] nor our alternative proof in Appendix D885

can be easily extended to these cases because they rely on compactness, and we have given886

counterexamples to strong duality with infinite time horizon even when trajectories remain887

in a compact set. Better characterizing the dynamical systems for which strong duality holds888

remains an open challenge.889

Regardless of whether duality is weak or strong for a given dynamical system, constructing890

auxiliary functions that yield good bounds often demands ingenuity. Fortunately, as described891

in section 4, computational methods of sum-of-squares (SOS) optimization can be applied in892

the case of polynomial ODEs with polynomial Φ. Moreover, Theorem 4.1 guarantees that893

if strong duality and mild compactness assumptions hold, then bounds computed by solving894

the SOS optimization problem (4.7) become sharp as the polynomial degree of the auxiliary895

function V is raised. In practice, computational cost can become prohibitive as either the896

dimension of the ODE system or the polynomial degree of V increases, at least with the897

standard approach to SOS optimization wherein generic semidefinite programs are solved by898

second-order symmetric interior-point algorithms. For instance, given a 10-dimensional ODE899

system with no symmetries to exploit, the degree of V is currently limited to about 12 on900

a large-memory computer. Larger problems may be tackled using specialized nonsymmetric901

interior-point [63] or first-order algorithms [86, 87]. One also could replace the weighted SOS902

constraints in (4.7) with stronger constraints that may give more conservative bounds at less903

computational expense [1, 2].904

In the case of PDEs, the bounding framework of section 2 can produce valuable bounds,905

as in Example 2.2, but theoretical results and computational tools are lacking. Theorem 2.5,906

which guarantees arbitrarily sharp bounds for many ODEs, does not apply to PDEs, nor907

can we directly apply the computational methods of section 4 that work well for polynomial908

ODEs. On the theoretical side, guarantees that feasible auxiliary functions exist for PDEs909

would be of great interest, not least because bounds on certain extreme events can preclude910

loss of regularity. Statements formally dual to results in [11] for optimal stopping problems911

would imply that near-optimal auxiliary functions exist for autonomous PDEs, at least when912

extreme events occur at finite time, but such statements have not yet been proved. On the913

computational side, constructions of optimal V for PDEs would be very valuable, both to914

guide rigorous analysis and to improve on conservative bounds proved by hand. Methods of915

SOS optimization can be applied to PDEs in two ways. The first is to approximate the PDE916

as an ODE system and bound the error this incurs, obtaining an “uncertain” ODE system917

to which standard SOS techniques can be applied [28, 10, 35, 27]. The second approach is918

to work directly with the PDE using either the integral inequality methods of [74, 76, 73]919

or the moment relaxation techniques of [42, 57]. These strategies have been used to study920

PDE stability, time averages, and optimal control, but they are in relatively early development.921

They have not yet been applied to extreme events as studied here, although the method in [42]922
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applies to extreme behavior at a fixed time and could be extended to time intervals. It remains923

to be seen whether any of these strategies can numerically optimize auxiliary functions for924

PDEs of interest at reasonable computational cost, but recent advances in optimization-based925

formulations and corresponding numerical algorithms give us hope that this will be possible926

in the near future.927
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Appendix A. Optimality of the quadratic V in Example 2.1. The V given by (2.10) is932

optimal among all quadratic global auxiliary functions that produce upper bounds on Φ = x1933

along the trajectory starting from the point (0, 1). To prove this, consider a general quadratic934

global auxiliary function,935

936

(A.1) V (t, x1, x2) = C0 + C1x1 + C2x2 + C3t937

+ C4x
2
1 + C5x

2
2 + C6t

2 + 2C7x1x2 + 2C8tx1 + 2C9tx2.938939

The coefficients C0, . . . , C9 must be chosen to minimize the bound Φ∗ ≤ V (0, 0, 1) implied940

by (2.8), subject to the inequality constraints (2.5a,b). Differentiating V along solutions941

of (2.9) yields942

LV (t, x1, x2) = C3 + (2C9 − C2)x2 + (2C8 − 0.1C1)x1 + 2C6t+ (C2 − 0.2C4)x2
1(A.2)943

− (2.2C7 + C1)x1x2 − 2C5x
2
2 + (C1 − 2C9)tx2 − (C2 + 0.2C8)tx1944

+ 2C7x
3
1 − 2C7x1x

2
2 + 2(C5 − C4)x2

1x2 + 2C7tx
2
2945

+ 2(C4 − C5 − C8)tx1x2 + 2(C9 − C7)tx2
1 − 2C9t

2x1 + 2C8t
2x2.946947

In order for this expression to be nonpositive for all (x1, x2) ∈ R2 and t ≥ 0, as required948

by (2.5a), the indefinite cubic terms and the quadratic terms proportional to t must vanish.949

This forces us to set C1, C2, C7, C8, C9 = 0 and C4 = C5, so the expressions for V and LV950

reduce to951

V (t, x1, x2) = C0 + C3t+ C6t
2 + C5

(
x2

1 + x2
2

)
,(A.3a)952

LV (t, x1, x2) = C3 + 2C6t− 0.2C5x
2
1 − 2C5x

2
2.(A.3b)953954

Condition (2.5a), which requires LV ≤ 0, is satisfied only if C3, C6 ≤ 0 and C5 ≥ 0. With955

Φ = x1 condition (2.5b) becomes C0−x1+C5x
2
1+C3t+C6t

2+C5x
2
2 ≥ 0, which in turn requires956

4C0C5 ≥ 1. Minimizing the bound Φ∗ ≤ V (0, 0, 1) = C0 + C5 under these constraints yields957

C0, C5 = 1
2 , and we are free to choose any C3, C6 ≤ 0. Any such V is optimal, including (2.10)958

which results from choosing C3, C6 = 0.959

Appendix B. Sharp bounds for nonzero initial conditions in Example 2.3. Auxil-960

iary functions that give sharp bounds on Φ = 4x/(1 + 4x2) along single trajectories of the961

ODE (2.24) exist for every nonzero initial condition x0. Here we give global V , which also are962
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local V on any Ω in which trajectories remain. In the x0 > 0 case, a global V giving sharp963

upper bounds on Φ∗∞ is964

(B.1) V (t, x) =

1, x ≤ 1
2 ,

4x

1 + 4x2
, x > 1

2 .
965

This function is continuously differentiable and satisfies (2.5a,b). It is optimal because the966

bound on Φ∗∞ implied by (2.6) with X0 = {x0} is967

(B.2) Φ∗∞ ≤ V (0, x0) =

1, 0 < x0 ≤ 1
2 ,

4x0

1 + 4x2
0

, x0 >
1
2 ,

968

which coincides with the expression (2.26) for Φ∗∞.969

The x0 < 0 case requires a more complicated construction. An argument similar to that970

in Example 2.3 shows that any global optimal V providing the sharp bound Φ∗∞ ≤ 0 must971

be time-dependent. The same is true for local V unless Ω ⊆ [0,∞) × (−∞, 0], in which case972

V = 0 is optimal. To construct a time-dependent global V that is optimal for X0 = {x0} with973

x0 negative, we note that β(t) = x0/(1 − x0t) solves the ODE (2.24) with initial condition974

x(0) = x0. Observe that β(0) = x0, β(t) < 0, and β′(t) = β(t)2. Consider975

(B.3) ρ(x) =

exp

(
1− 1

1− x2

)
, |x| < 1,

0, |x| ≥ 1,
976

which is a smooth nonnegative function. We claim that977

(B.4) V (t, x) :=

ρ
(

x

β(t)

)
, x ≤ 0,

1, x > 0
978

is an optimal global auxiliary function. This V implies the sharp bound Φ∗∞ ≤ V (0, x0) = 0979

since ρ(1) = 0, so it remains only to check (2.5a,b). Inequality (2.5b) holds because Φ is980

nonpositive for x ≤ 0 and is bounded above by 1 pointwise. To verify (2.5a), we consider981

positive and nonpositive x separately. The x > 0 case is immediate because LV (t, x) = 0. For982

x ≤ 0, a straightforward calculation using β′(t) = β(t)2 gives983

LV (t, x) = ∂tV + x2 ∂xV =
x

β(t)
[x− β(t)] ρ′

(
x

β(t)

)
.(B.5)984

985

Observe that ρ′(s) vanishes if s = 0 or |s| ≥ 1, so LV = 0 if x ≤ β(t) or x = 0. When986

β(t) < x < 0 instead, LV < 0 because the first two factors in (B.5) are positive, while ρ′(s)987

is negative for 0 < s < 1. Combining these observations shows that LV ≤ 0 for all times if988

x ≤ 0. Figure 7 illustrates the behavior of V and LV when x0 = −3
4 .989
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β(0) β(1) β(4)
x

V (t, x)

β(0) β(1) β(4)
x

LV (t, x)

Figure 7. Top row: Profiles of the auxiliary function V (t, x) in (B.4) and its derivative along trajectories
LV (t, x), plotted as a function of x for t = 0, t = 1, and t = 4. Bottom row: Contours of V (left) and LV
(right). Lines mark the trajectory x = β(t) ( ) and the semistable equilibrium x = 0 ( ). Outside the region
between these two lines, LV = 0. All plots are for x0 = − 3

4
.

Table 4
Upper bounds on Φ∗∞ for Example 4.3, computed using time-independent polynomial auxiliary functions

V (x) of degree d by the iterative procedure described in Appendix C.

Iteration d = 4 d = 6 d = 8 d = 10 d = 12 d = 14

1 2.194343 1.942396 1.931330 1.916228 1.903525 1.903448
2 2.194343 1.934692 1.926088 1.913889 1.903346 1.903307
3 2.194343 1.934643 1.926088 1.913817 1.903280 1.903250
4 2.194342 1.934642 1.926086 1.913815 1.903260 1.903222
5 2.194342 1.934642 1.926086 1.913814 1.903249 1.903207

Appendix C. Improving bounds iteratively with polynomial V of fixed degree. Bounds990

computed with (4.7) can be improved without increasing the degree d by using an iterative991

procedure. First, solve (4.7) to obtain an upper bound Φ∗ ≤ λ∗d,0, which implies Φ(t, x) ≤ λ∗d,0992

along trajectories of interest. Then, replace the original set Ω in which trajectories remain993

with its subset Ω1 := Ω ∩ {(t, x) : Φ(t, x) ≤ λ∗d,0}. Since Ω1 ⊆ Ω is still basic semialgebraic,994

one can solve (4.7) again, but with the WSOS constraints defined on Ω1 rather than Ω.995

This produces a new bound, Φ∗ ≤ λ∗d,1 ≤ λ∗d,0. The process can be iterated by taking996

Ωi+1 = Ω ∩ {(t, x) : Φ(t, x) ≤ λ∗d,i}, i = 1, 2, . . ., until the bound on Φ∗ stops improving. The997

WSOS optimization problem to be solved for each i has constant computational cost, which998

is higher than the original one but typically much smaller than solving (4.7) with larger d.999

Table 4 reports bounds on Φ∗∞ obtained with this iterative procedure for the problem1000

described in Example 4.3, using polynomial V of degrees up to 14. Each iteration lowers the1001

bound as expected. The improvement with each iteration is small in this example, especially1002

with lower-degree V . Raising d by 2 offers much more improvement except when the bound is1003
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nearly sharp already. It remains to be tested whether the iterative scheme brings more gains1004

for other problems.1005

Appendix D. An elementary proof of Theorem 2.5. Under the assumptions of Theo-1006

rem 2.5, differentiable auxiliary functions that produce arbitrarily sharp bounds on Φ∗T can1007

be constructed by approximating the optimal but generally discontinuous V ∗ defined in sec-1008

tion 2.3.2. This construction, which resembles the argument in [33], yields Theorem 2.51009

without the measure theory or convex analysis used in the proofs of [48].1010

D.1. Construction of near-optimal V . Let δ > 0. We must show that there exists a C11011

function V on Ω = [t0, T ]×X that satisfies (2.5a,b) and1012

(D.1) sup
x0∈X0

V (t0, x0) ≤ Φ∗T + δ.1013

To do this we construct W ∈ C1(Ω) such that1014

LW (t, x) ≤ δ

5(T − t0)
on Ω,(D.2a)1015

Φ(t, x) ≤W (t, x) +
2

5
δ on Ω,(D.2b)1016

sup
x0∈X0

W (t0, x0) ≤ Φ∗T +
2

5
δ.(D.2c)1017

1018

Then, (2.5a,b) and (D.1) are satisfied by the continuously differentiable function1019

(D.3) V (t, x) := W (t, x) +
2

5
δ +

(T − t)δ
5(T − t0)

.1020

Our construction of W uses the flow map S(s,t) : Y → Rn, defined for any two fixed time1021

instants s and t such that t0 ≤ s ≤ t ≤ t1 as S(s,t)y = x(t; s, y). In other words, S(s,t)y is the1022

point at time t on the trajectory of the ODE ẋ = F (ξ, x) that passed through y at time s.1023

An explicit expression for the flow map is generally not available. Nonetheless, under the1024

assumptions of Theorem 2.5, the flow map is well defined and satisfies1025

S(s,t)y = y +

∫ t

s
F [ξ, S(s,ξ)y] dξ,(D.4a)1026

S(s,t) ◦ S(r,s) = S(r,t) ∀r, t, s : t0 ≤ r ≤ s ≤ t.(D.4b)10271028

The function (t, s, y) 7→ S(s,t)y is uniformly continuous with respect to both s and y for t1029

in compact time intervals; see, for instance, [30, Chapter V, Theorem 2.1]. It also is locally1030

Lipschitz in the sense of the following Lemma, which is proved in Appendix D.2.1031

Lemma D.1. Suppose the assumptions of Theorem 2.5 hold and let [a, b]×K be a compact1032

subset of [t0, t1]× Y . There exist positive constants C1 and C2, dependent only on a, b, K, t01033

and t1, such that:1034

(i) ‖S(t,ξ)x− S(t,ξ)y‖ ≤ C1‖x− y‖ for all x, y ∈ K, all t ∈ [a, b], and all ξ ∈ [t, t1].1035

(ii) ‖S(t,ξ)x− S(s,ξ)x‖ ≤ C2 |t− s| for all x ∈ K, all t, s ∈ [a, b], and all ξ ∈ [max(t, s), t1].1036

This manuscript is for review purposes only.



BOUNDING EXTREME EVENTS IN NONLINEAR DYNAMICS 33

We also need the following Lemma, proved in Appendix D.3, which states that the optimal1037

but possibly discontinuous auxiliary function defined by (2.40) can be approximated by a1038

locally Lipschitz function.1039

Lemma D.2. There exist t2 ∈ (T, t1) and a locally Lipschitz function U : [t0, t2] × Y → R1040

that satisfies1041

Φ(t, x) ≤ U(t, x) +
δ

5
on Ω,(D.5a)1042

sup
x0∈X0

U(t0, x0) ≤ Φ∗T +
δ

5
,(D.5b)1043

1044

and, for each fixed (t, x) ∈ [t0, t2)× Y ,1045

(D.5c) U(t+ ε, S(t,t+ε)x) ≤ U(t, x) ∀ε ∈ (0, t2 − t).1046

A function W ∈ C1(Ω) that satisfies (D.2a,b,c) can be constructed by mollifying U “for-1047

ward in time” on Ω. Precisely, fix any nonnegative differentiable mollifier ρ(t, x) that is1048

supported on the closed unit ball of R× Rn and has unit integral. For each k ≥ 1 define1049

(D.6) ρk(t, x) := kn+1ρ(kt+1, kx).1050

Observe that ρk is supported on Rk = [−2k−1, 0] × Bn(0, k−1), where Bn(0, r) denotes the1051

closed n-dimensional ball of radius r centered at the origin, and has unit integral. Let k be1052

large enough that [t0, t2]× Y contains the compact set1053

(D.7) N = {(t− s, x− y) : (t, x) ∈ Ω, (s, y) ∈ Rk}.1054

Note that Ω ⊂ N . For each (t, x) ∈ Ω, define1055

(D.8) W (t, x) := (ρk ∗ U)(t, x) =

∫
Rk

ρk(s, y)U(t− s, x− y) ds dny.1056

Since Rk contains only nonpositive times s ≤ 0, W is a forward-in-time mollification of U .1057

Standard arguments [19, Appendix C.4] show that W is continuously differentiable on Ω.1058

Because Ω is compact and U is continuous, W → U uniformly on Ω as k →∞. Thus we can1059

choose k large enough to ensure1060

(D.9) ‖U −W‖C0(Ω) ≤
δ

5
,1061

To see that W satisfies (D.2c), combine (D.9) with (D.5b) to estimate1062

(D.10) sup
x0∈X0

W (t0, x0) ≤ sup
x0∈X0

U(t0, x0) + ‖U −W‖C0(Ω) ≤ Φ∗T +
2

5
δ.1063

We similarly obtain (D.2b) by estimating the righthand side of (D.5a) as1064

(D.11) Φ(t, x) ≤ U(t, x) +
δ

5
≤W (t, x) + ‖U −W‖C0(Ω) +

δ

5
≤W (t, x) +

2

5
δ.1065
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To prove (D.2a), fix (t, x) ∈ Ω and bound1066

LW (t, x) = lim
ε→0

W (t+ ε, S(t,t+ε)x)−W (t, x)

ε
(D.12)1067

= lim
ε→0

1

ε

∫
Rk

ρk(s, y)
[
U(t+ ε− s, S(t,t+ε)x− y)− U(t− s, x− y)

]
dsdny1068

≤ lim
ε→0

1

ε

∫
Rk

ρk(s, y)
{
U(t+ ε− s, S(t,t+ε)x− y)1069

−U [t+ ε− s, S(t−s,t−s+ε)(x− y)]
}

ds dny1070

≤ lim
ε→0

C

ε

∫
Rk

ρk(s, y)
∥∥S(t,t+ε)x− y − S(t−s,t−s+ε)(x− y)

∥∥ds dny,1071

1072

where C is a positive constant independent of t and x. The two inequalities above follow,1073

respectively, from (D.5c) and the uniform Lipschitz continuity of U on compact sets.1074

Since t ≤ T < t2, forward-in-time trajectories are well defined for sufficiently small ε.1075

Moreover, reasoning as in the proof of Lemma D.1 in Appendix D.2 shows that trajectories1076

starting from the compact neighborhood N of Ω defined in (D.7) are uniformly bounded1077

up to time t2. Thus the rightmost integrand in (D.12) is uniformly bounded and, by the1078

dominated convergence theorem, we can exchange the limit and the integral. Then, we can1079

further estimate LW using the fact that ρk has unit integral over Rk, the relation (D.4a), and1080

the mean value theorem:1081

LW (t, x) ≤ C max
(s,y)∈Rk

lim
ε→0

1

ε

∥∥S(t,t+ε)x− y − S(t−s,t−s+ε)(x− y)
∥∥(D.13)1082

= C max
(s,y)∈Rk

lim
ε→0

1

ε

∥∥∥∥∫ t+ε

t
F (ξ, S(t,ξ)x) dξ −

∫ t−s+ε

t−s
F [ξ, S(t−s,ξ)(x− y)] dξ

∥∥∥∥1083

= C max
(s,y)∈Rk

‖F (t, x)− F (t− s, x− y)‖ .1084
1085

Both (t, x) and (t−s, x−y) lie in the compact setN . Since F is locally Lipschitz by assumption,1086

it is uniformly Lipschitz on N . Consequently, there exist a constant C ′, independent of t and1087

x, and a k sufficiently large such that1088

(D.14) LW (t, x) ≤ C ′ max
(s,y)∈Rk

(|s|+ ‖y‖) =
3C ′

k
≤ δ

5(T − t0)
,1089

meaning that W satisfies (D.2a) as claimed. This concludes the proof of Theorem 2.5.1090

Remark D.3. Defining ρk such that the mollification (D.8) is forward in time, so s ≤ 0 on1091

Rk, is key to prove (D.14) for all (t, x) ∈ Ω = [t0, T ] × X. If s > 0 anywhere on Rk, given1092

any finite k we would have t − s < t0 for all t ∈ [t0, tk] and some tk > t0. In this case, we1093

would not have the first inequality in (D.12) for all (t, x) ∈ Ω because (D.5c) holds only after1094

time t0.1095
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D.2. Proof of Lemma D.1. To establish part (i) of Lemma D.1, observe that assumption1096

(A.2) in Theorem 2.5 guarantees that the trajectory starting from any x ∈ K at any time1097

t ∈ [a, b] exists up to time t1, so in particular ‖S(t,ξ)x‖ is bounded for all ξ ∈ [t, t1]. Combining1098

the compactness of [a, b]×K with the continuity of trajectories with respect to both the initial1099

point and the initial time [30, Chapter V, Theorem 2.1] shows that trajectories are uniformly1100

bounded in norm. Precisely, there exists a constant M , depending only on a, b, K and t1, such1101

that ‖S(t,ξ)x‖ ≤M for all (t, x) ∈ [a, b]×K and all ξ ∈ [t, t1]. We therefore can apply Lemma1102

2.9 from [68] and the local Lipschitz continuity of F (·, ·) to find a constant Λ1, dependent only1103

on a, b and K, such that1104

(D.15)
d

dξ
‖S(t,ξ)x− S(t,ξ)y‖ ≤ ‖F (ξ, S(t,ξ)x)− F (ξ, S(t,ξ)y)‖ ≤ Λ1‖S(t,ξ)x− S(t,ξ)y‖1105

for all x, y ∈ K, all t ∈ [a, b], and all ξ ∈ [t, t1]. Assertion (i) then follows with C1 = eΛ1t11106

after applying Gronwall’s inequality to bound1107

(D.16) ‖S(t,ξ)x− S(t,ξ)y‖ ≤ eΛ1ξ‖x− y‖ ≤ eΛ1t1‖x− y‖.1108

To prove part (ii) of Lemma D.1, assume without loss of generality that s < t. For all1109

ξ ∈ [t, t1], identity (D.4b) gives ‖S(t,ξ)x − S(s,ξ)x‖ = ‖S(t,ξ)x − S(t,ξ)S(s,t)x‖. Proceeding as1110

above with y = S(s,t)x shows that1111

(D.17) ‖S(t,ξ)x− S(s,ξ)x‖ ≤ Λ2

∥∥x− S(s,t)x
∥∥1112

for some positive constant Λ2. Moreover, we can use (D.4a) to estimate1113

(D.18)
∥∥S(s,t)x− x

∥∥ =

∥∥∥∥∫ t

s
F (ξ, S(s,ξ)x) dξ

∥∥∥∥ ≤ √n ∫ t

s
‖F (ξ, S(s,ξ)x)‖ dξ.1114

Since F is continuous and, as noted above, ‖S(s,ξ)x‖ ≤ M for all (s, x) ∈ [a, b] × K and all1115

ξ ∈ [s, t1] ⊂ [a, t1],1116

(D.19)
∥∥S(s,t)x− x

∥∥ ≤ √n max
ξ∈[a,t1]
‖y‖≤M

‖F (ξ, y)‖ |t− s| .1117

Combining this with (D.17) proves the claim for a suitable choice of C2.1118

D.3. Proof of Lemma D.2. Fix t2 = T + γ for some γ > 0 sufficiently small and to be1119

determined later. Arguing as in the proof of Lemma D.1(i), trajectories starting from x0 ∈ X01120

remain bounded uniformly in the initial condition and time. Precisely, there exists a constant1121

M such that ‖S(t0,t)x0‖ ≤ M for all x0 ∈ X0 and t ∈ [t0, t2]. If B denotes the n-dimensional1122

ball of radius M centered at the origin, we conclude that the compact set [t0, t2]×B contains1123

Ω = [t0, T ] × X, the spacetime set in which trajectories starting from x0 ∈ X0 at time t01124

remain up to time T .1125

Let Ψ : R× Rn × Y → R be a Lipschitz approximation of Φ satisfying1126

(D.20) ‖Φ−Ψ‖C0([t0,t2]×B) ≤
δ

10
.1127
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Such Ψ may be constructed in a number of ways, for instance by using the Stone–Weierstrass1128

theorem to approximate Φ uniformly on the compact set [t0, t2] × B by a polynomial, and1129

extending such polynomial to a Lipschitz function on R×Rn. We claim that t2 can be chosen1130

such that the function U : [t0, t2]× Y → R defined as1131

(D.21) U(t, x) := sup
τ∈[t,t2]

Ψ[τ, S(t,τ)x]1132

satisfies (D.5a–c). This U cannot be computed in practice but is well defined. Note that if1133

Φ is Lipschitz we can choose Ψ = Φ and the restriction of U to Ω tends to the optimal but1134

possibly discontinuous auxiliary function defined in (2.40) as γ = t2 − T tends to zero. If γ is1135

finite but small, then U approximates this optimal auxiliary function. The same is true when1136

Ψ only approximates Φ.1137

To see that (D.5a) holds, note that U(t, x) ≥ Ψ(t, x). Since Ω ⊂ [t0, t2] × B we conclude1138

from (D.20) that, for all (t, x) ∈ Ω,1139

(D.22) Φ(t, x) ≤ Ψ(t, x) + ‖Φ−Ψ‖C0([t0,t2]×B) ≤ U(t, x) +
δ

10
< U(t, x) +

δ

5
.1140

To prove (D.5b), we will choose γ = t2 − T such that1141

(D.23) U(t0, x0) = sup
τ∈[t0,t2]

Ψ[τ, S(t0,τ)x0] ≤ Φ∗T +
δ

5
1142

uniformly in the initial condition x0 ∈ X0. To do this, fix x0 ∈ X0 and observe that the supre-1143

mum over τ ∈ [t0, t2] must be attained because the function τ 7→ Ψ[τ, S(t0,τ)x0] is continuous.1144

If the supremum is attained on the interval [t0, T ], then1145

sup
τ∈[t0,t2]

Ψ[τ, S(t0,τ)x0] = sup
τ∈[t0,T ]

Ψ[τ, S(t0,τ)x0](D.24)1146

≤ sup
τ∈[t0,T ]

Φ[τ, S(t0,τ)x0] + ‖Φ−Ψ‖C0([t0,t2]×B)1147

≤ Φ∗T +
δ

10
.1148

1149

Instead, if the supremum is attained at time t∗ ∈ [T, t2], then we can use the Lipschitz1150

continuity of Ψ, the group property (D.4b) of the flow map, and Lemma D.1(ii) to find1151

constants C and C ′, dependent on t0, t1 and the set X0 but not on the choice of x0 ∈ X0,1152

such that1153

sup
τ∈[t0,t2]

Ψ[τ, S(t0,τ)x0] = Ψ[t∗, S(t0,t∗)x0](D.25)1154

≤ Ψ[T, S(t0,T )x0] +
∣∣Ψ[t∗, S(t0,t∗)x0]−Ψ[T, S(t0,T )x0]

∣∣1155

≤ Ψ[T, S(t0,T )x0] + C |t∗ − T |+ C‖S(T,t∗)S(t0,T )x0 − S(t0,T )x0‖1156

≤ Φ[T, S(t0,T )x0] + ‖Φ−Ψ‖C0([t0,t2]×B) + (C + C ′) |t∗ − T |1157

≤ Φ∗T +
δ

10
+ (C + C ′)γ.1158

1159
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Upon setting γ = δ/[10(C +C ′)], (D.24) and (D.25) prove that (D.23) holds uniformly in the1160

initial condition x0 irrespective of whether the sup over τ is attained before or after time T .1161

Finally, to obtain (D.5c), fix (t, x) ∈ [t0, t2)× Y and observe that, for all ε ∈ (0, t2 − t),1162

U(t+ ε, S(t,t+ε)x) = sup
τ∈[t+ε,t2]

Ψ[τ, S(t+ε,τ)S(t,t+ε)x](D.26)1163

= sup
τ∈[t+ε,t2]

Ψ[τ, S(t,τ)x]1164

≤ sup
τ∈[t,t2]

Ψ[τ, S(t,τ)x]1165

= U(t, x).11661167

To conclude the proof of Lemma D.2, we must prove that U is locally Lipschitz on [t0, t2]×1168

Y , meaning that for each compact subset [a, b] ×K of [t0, t2] × Y there exists a constant C1169

(dependent only on a, b, K, t0, and t2) such that1170

(D.27) |U(t, x)− U(s, y)| ≤ C (|s− t|+ ‖x− y‖) ∀ (t, x), (s, y) ∈ [a, b]×K.1171

Clearly, it suffices to find constants C ′ and C ′′ such that1172

U(t, x)− U(s, y) ≤ C ′ (|t− s|+ ‖x− y‖) ,(D.28a)1173

U(s, y)− U(t, x) ≤ C ′′ (|t− s|+ ‖x− y‖) ,(D.28b)11741175

To simplify the presentation below, we let C to denote any absolute constant; its value may1176

vary from line to line. We also assume without loss of generality that s ≤ t.1177

To prove (D.28a) observe that, since s ≤ t,1178

U(t, x)− U(s, y) = sup
τ∈[t,t2]

Ψ[τ, S(t,τ)x]− sup
τ∈[s,t2]

Ψ[τ, S(s,τ)y](D.29)1179

≤ sup
τ∈[t,t2]

Ψ[τ, S(t,τ)x]− sup
τ∈[t,t2]

Ψ[τ, S(s,τ)y]1180

≤ sup
τ∈[t,t2]

{
Ψ[τ, S(t,τ)x]−Ψ[τ, S(s,τ)y]

}
.1181

1182

The term inside the last supremum can be bounded uniformly in τ . The Lipschitz continuity1183

of Ψ and Lemma D.1 imply1184

Ψ[τ, S(t,τ)x]−Ψ[τ, S(s,τ)y] ≤ C‖S(t,τ)x− S(s,τ)y‖(D.30)1185

≤ C‖S(t,τ)x− S(t,τ)y‖+ C‖S(t,τ)y − S(s,τ)y‖1186

≤ C (‖x− y‖+ |t− s|) .11871188

Combining this estimate with (D.29) yields (D.28a).1189

To show (D.28b) we seek an upper bound on1190

(D.31) U(s, y)− U(t, x) = sup
τ∈[s,t2]

Ψ[τ, S(s,τ)y]− sup
τ∈[t,t2]

Ψ[τ, S(t,τ)x].1191
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If the first supremum can be restricted to [t, t2] without affecting its value, then we proceed1192

as before. Otherwise, we restrict the supremum to [s, t] and estimate1193

(D.32) U(s, y)− U(t, x) ≤ sup
τ∈[s,t]

Ψ[τ, S(s,τ)y]−Ψ(t, x) = sup
τ∈[s,t]

{
Ψ[τ, S(s,τ)y]−Ψ(t, x)

}
.1194

As before, the term inside the supremum can be bounded uniformly in τ using Lipschitz1195

continuity and Lemma D.1. Precisely, since τ ≤ t and S(τ,τ)y = y,1196

Ψ(τ, S(s,τ)y)−Ψ(t, x) ≤ C
(
|τ − t|+ ‖S(s,τ)y − x‖

)
(D.33)1197

≤ C
(
|t− s|+ ‖S(s,τ)y − S(τ,τ)y‖+ ‖y − x‖

)
1198

≤ C (|t− s|+ ‖x− y‖) .11991200

Combining these estimates with (D.32) yields (D.28b).1201

REFERENCES1202

[1] A. A. Ahmadi and G. Hall, Sum of squares basis pursuit with linear and second order cone programming,1203
in Algebraic and Geometric Methods in Discrete Mathematics, H. A. Harrington, M. Omar, and1204
M. Wright, eds., vol. 685 of Contemporary Mathematics, AMS, 2015, pp. 27–53, https://doi.org/10.1205
1090/conm/685/13712.1206

[2] A. A. Ahmadi and A. Majumdar, DSOS and SDSOS optimization: More tractable alternatives to1207
sum of squares and semidefinite optimization, SIAM J. Appl. Algebra Geometry, 3 (2019), pp. 1–8,1208
https://doi.org/10.1109/CISS.2014.6814141.1209

[3] M. Ahmadi, G. Valmorbida, and A. Papachristodoulou, Dissipation inequalities for the analysis of1210
a class of PDEs, Automatica, 66 (2016), pp. 163–171, https://doi.org/10.1016/j.automatica.2015.12.1211
010.1212

[4] M. Ahmadi, G. Valmorbida, and A. Papachristodoulou, Safety verification for distributed parameter1213
systems using barrier functionals, Syst. Control Lett., 108 (2017), pp. 33–39, https://doi.org/10.1016/1214
j.sysconle.2017.08.002.1215

[5] D. Ayala and B. Protas, On maximum enstrophy growth in a hydrodynamic system, Phys. D, 2401216
(2011), pp. 1553–1563, https://doi.org/10.1016/j.physd.2011.07.003.1217

[6] D. Ayala and B. Protas, Maximum palinstrophy growth in 2D incompressible flows, J. Fluid Mech.,1218
742 (2014), pp. 340–367, https://doi.org/10.1017/jfm.2013.685.1219

[7] M. Bardi and I. Capuzzo-Dolcetta, Optimal control and viscosity solutions of Hamilton–Jacobi–1220
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[51] J. Löfberg, Pre-and post-processing sum-of-squares programs in practice, IEEE Trans. Automat. Control,1327
54 (2009), pp. 1007–1011, https://doi.org/10.1109/TAC.2009.2017144.1328

[52] L. Lu and C. R. Doering, Limits on enstrophy growth for solutions of the three-dimensional Navier–1329
Stokes equations, Indiana Univ. Math. J., 57 (2008), pp. 2693–2727, https://doi.org/10.1512/iumj.1330
2008.57.3716.1331

[53] A. M. Lyapunov, Stability of motion: General problem, Internat. J. Control, 55 (1992), pp. 539–589,1332
https://doi.org/10.1080/00207179208934254. Translated by A. T. Fuller from a French translation of1333
Lyapunov’s original 1892 dissertation.1334

[54] V. Magron, P.-L. Garoche, D. Henrion, and X. Thirioux, Semidefinite approximations of reachable1335
sets for discrete-time polynomial systems, SIAM J. Control Optim., 57 (2019), pp. 2799–2820, https:1336
//doi.org/10.1137/17M1121044.1337

[55] A. Majumdar, R. Vasudevan, M. M. Tobenkin, and R. Tedrake, Convex optimization of nonlinear1338
feedback controllers via occupation measures, Int. J. Robot. Res., 33 (2014), pp. 1209–1230, https:1339
//doi.org/10.1177/0278364914528059.1340

[56] F. Marcotte and C. P. Caulfield, Optimal mixing in two-dimensional stratified plane Poiseuille flow1341
at finite Péclet and Richardson numbers, J. Fluid Mech., 853 (2018), pp. 359–385, https://doi.org/1342
10.1017/jfm.2018.565.1343

[57] S. Marx, T. Weisser, D. Henrion, and J. B. Lasserre, A moment approach for entropy solutions1344
to nonlinear hyperbolic PDEs. arXiv:1807.02306 [math-AP], 2018, http://arxiv.org/abs/1807.02306.1345

This manuscript is for review purposes only.

https://doi.org/10.1088/0034-4885/77/8/085901
https://doi.org/10.4310/DPDE.2008.v5.n3.a2
https://doi.org/10.1007/0-8176-4441-5
https://doi.org/10.3182/20130904-3-FR-2041.00002
https://doi.org/10.1016/j.automatica.2016.01.022
https://doi.org/10.1016/j.automatica.2016.01.022
https://doi.org/10.1016/j.automatica.2016.01.022
http://arxiv.org/abs/1804.07565
http://arxiv.org/abs/1804.07565
http://arxiv.org/abs/1804.07565
http://arxiv.org/abs/1807.08956
http://arxiv.org/abs/1807.08956
http://arxiv.org/abs/1807.08956
https://doi.org/10.1137/16M107801X
https://doi.org/10.1137/16M107801X
https://doi.org/10.1137/16M107801X
https://doi.org/10.1137/S1052623400366802
http://epubs.siam.org/doi/10.1137/S1052623400366802
http://epubs.siam.org/doi/10.1137/S1052623400366802
http://epubs.siam.org/doi/10.1137/S1052623400366802
https://doi.org/10.1017/CBO9781107447226
https://doi.org/10.1137/070685051
https://doi.org/10.1137/070685051
https://doi.org/10.1137/070685051
https://doi.org/10.1016/0022-247X(80)90143-2
https://doi.org/10.1016/S0304-0208(08)71442-7
https://doi.org/10.1016/S0304-0208(08)71442-7
https://doi.org/10.1016/S0304-0208(08)71442-7
https://doi.org/10.1109/CACSD.2004.1393890
https://doi.org/10.1109/CACSD.2004.1393890
https://doi.org/10.1109/CACSD.2004.1393890
https://doi.org/10.1109/TAC.2009.2017144
https://doi.org/10.1512/iumj.2008.57.3716
https://doi.org/10.1512/iumj.2008.57.3716
https://doi.org/10.1512/iumj.2008.57.3716
https://doi.org/10.1080/00207179208934254
https://doi.org/10.1137/17M1121044
https://doi.org/10.1137/17M1121044
https://doi.org/10.1137/17M1121044
https://doi.org/10.1177/0278364914528059
https://doi.org/10.1177/0278364914528059
https://doi.org/10.1177/0278364914528059
https://doi.org/10.1017/jfm.2018.565
https://doi.org/10.1017/jfm.2018.565
https://doi.org/10.1017/jfm.2018.565
http://arxiv.org/abs/1807.02306


BOUNDING EXTREME EVENTS IN NONLINEAR DYNAMICS 41

[58] Mosek ApS, The MOSEK optimization toolbox for MATLAB manual. Version 8.1, 2017, http://docs.1346
mosek.com/8.1/toolbox/index.html.1347

[59] K. G. Murty and S. N. Kabadi, Some NP-complete problems in quadratic and nonlinear programming,1348
Math. Program., 39 (1987), pp. 117–129, https://doi.org/10.1007%2FBF02592948.1349

[60] Y. Nesterov, Squared functional systems and optimization problems, in High performance optimization,1350
H. Frenk, K. Roos, T. Terlaky, and S. Zhang, eds., Springer, 2000, pp. 405–440, https://doi.org/10.1351
1007/978-1-4757-3216-0 17, http://link.springer.com/chapter/10.1007/978-1-4757-3216-0{ }17.1352

[61] K. Odani, The limit cycle of the van der Pol equation is not algebraic, J. Differential Equations, 1151353
(1995), pp. 146–152, https://doi.org/10.1006/jdeq.1995.1008.1354

[62] M. Onorato, S. Residori, U. Bortolozzo, A. Montina, and F. T. Arecchi, Rogue waves and1355
their generating mechanisms in different physical contexts, Phys. Rep., 528 (2013), pp. 47–89, https:1356
//doi.org/10.1016/j.physrep.2013.03.001.1357

[63] D. Papp and S. Yıldız, Sum-of-squares optimization without semidefinite programming, SIAM J. Optim.,1358
29 (2019), pp. 822–851, https://doi.org/10.1137/17M1160124.1359

[64] P. A. Parrilo, Semidefinite programming relaxations for semialgebraic problems, Math. Program. B, 961360
(2003), pp. 293–320, https://doi.org/10.1007/s10107-003-0387-5.1361

[65] D. Pelinovsky, Sharp bounds on enstrophy growth in the viscous Burgers equation, Proc. Roy. Soc. A,1362
468 (2012), pp. 3636–3648, https://doi.org/10.1098/rspa.2012.0200.1363

[66] S. Prajna, A. Jadbabaie, and G. J. Pappas, A framework for worst-case and stochastic safety1364
verification using barrier certificates, IEEE Trans. Automat. Control, 52 (2007), pp. 1415–1428,1365
https://doi.org/10.1109/TAC.2007.902736.1366

[67] M. Putinar, Positive polynomials on compact semi-algebraic sets, Indiana Univ. Math. J., 42 (1993),1367
pp. 969–984.1368

[68] J. C. Robinson, Infinite-dimensional dynamical systems: An introduction to dissipative parabolic PDEs1369
and the theory of global attractors, Cambridge University Press, Cambridge, 2001.1370

[69] W. Tan and A. Packard, Stability region analysis using sum of squares programming, in Proc. Amer.1371
Control Conf., Minneapolis, MN, USA, June 14-16, 2006, IEEE, pp. 2297–2302, https://doi.org/10.1372
1109/ACC.2006.1656562.1373

[70] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag New1374
York, 2 ed., 1997, https://doi.org/10.1007/978-1-4612-0645-3.1375

[71] I. Tobasco, D. Goluskin, and C. R. Doering, Optimal bounds and extremal trajectories for time1376
averages in nonlinear dynamical systems, Phys. Lett. A, 382 (2018), pp. 382–386, https://doi.org/10.1377
1016/j.physleta.2017.12.023.1378

[72] L. N. Trefethen, A. E. Trefethen, S. C. Reddy, and T. A. Driscoll, Hydrodynamic stability1379
without eigenvalues, Science, 261 (1993), pp. 578–584, https://doi.org/10.1126/science.261.5121.578.1380

[73] G. Valmorbida, M. Ahmadi, and A. Papachristodoulou, Convex solutions to integral inequalities in1381
two-dimensional domains, in Proc. IEEE Conf. Decis. Control, Osaka, Japan, 2015, IEEE, pp. 7268–1382
7273, https://doi.org/10.1109/CDC.2015.7403366.1383

[74] G. Valmorbida, M. Ahmadi, and A. Papachristodoulou, Stability analysis for a class of partial dif-1384
ferential equations via semidefinite programming, IEEE Trans. Automat. Control, 61 (2016), pp. 1649–1385
1654, https://doi.org/10.1109/TAC.2015.2479135.1386

[75] G. Valmorbida and J. Anderson, Region of attraction estimation using invariant sets and rational1387
Lyapunov functions, Automatica, 75 (2017), pp. 37–45, https://doi.org/10.1016/j.automatica.2016.1388
09.003.1389

[76] G. Valmorbida and A. Papachristodoulou, Introducing INTSOSTOOLS : A SOSTOOLS plug-in for1390
integral inequalities, in Proc. of the 2015 Eur. Control Conf., Linz, Austria, 2015, IEEE, pp. 1231–1391
1236, https://doi.org/10.1109/ECC.2015.7330708.1392

[77] B. van der Pol, On relaxation-oscillations, The London, Edinburgh, and Dublin Philosophical Magazine1393
and Journal of Science, 2 (1926), pp. 978–992, https://doi.org/10.1080/14786442608564127.1394

[78] L. Vandenberghe and S. Boyd, Semidefinite Programming, SIAM Rev., 38 (1996), pp. 49–95, https:1395
//doi.org/10.1137/1038003.1396

[79] R. B. Vinter, Convex duality and nonlinear optimal control, SIAM J. Control Optim., 31 (1993), pp. 518–1397
538, https://doi.org/10.1137/0331024.1398

[80] R. B. Vinter and R. M. Lewis, A necessary and sufficient condition for optimality of dynamic pro-1399

This manuscript is for review purposes only.

http://docs.mosek.com/8.1/toolbox/index.html
http://docs.mosek.com/8.1/toolbox/index.html
http://docs.mosek.com/8.1/toolbox/index.html
https://doi.org/10.1007%2FBF02592948
https://doi.org/10.1007/978-1-4757-3216-0_17
https://doi.org/10.1007/978-1-4757-3216-0_17
https://doi.org/10.1007/978-1-4757-3216-0_17
http://link.springer.com/chapter/10.1007/978-1-4757-3216-0{_}17
https://doi.org/10.1006/jdeq.1995.1008
https://doi.org/10.1016/j.physrep.2013.03.001
https://doi.org/10.1016/j.physrep.2013.03.001
https://doi.org/10.1016/j.physrep.2013.03.001
https://doi.org/10.1137/17M1160124
https://doi.org/10.1007/s10107-003-0387-5
https://doi.org/10.1098/rspa.2012.0200
https://doi.org/10.1109/TAC.2007.902736
https://doi.org/10.1109/ACC.2006.1656562
https://doi.org/10.1109/ACC.2006.1656562
https://doi.org/10.1109/ACC.2006.1656562
https://doi.org/10.1007/978-1-4612-0645-3
https://doi.org/10.1016/j.physleta.2017.12.023
https://doi.org/10.1016/j.physleta.2017.12.023
https://doi.org/10.1016/j.physleta.2017.12.023
https://doi.org/10.1126/science.261.5121.578
https://doi.org/10.1109/CDC.2015.7403366
https://doi.org/10.1109/TAC.2015.2479135
https://doi.org/10.1016/j.automatica.2016.09.003
https://doi.org/10.1016/j.automatica.2016.09.003
https://doi.org/10.1016/j.automatica.2016.09.003
https://doi.org/10.1109/ECC.2015.7330708
https://doi.org/10.1080/14786442608564127
https://doi.org/10.1137/1038003
https://doi.org/10.1137/1038003
https://doi.org/10.1137/1038003
https://doi.org/10.1137/0331024


42 G. FANTUZZI AND D. GOLUSKIN

gramming type, making no a priori assumptions on the controls, SIAM J. Control Optim., 16 (1978),1400
pp. 571–583, https://doi.org/10.1137/0316038.1401

[81] R. B. Vinter and R. M. Lewis, The equivalence of strong and weak formulations for certain problems in1402
optimal control, SIAM J. Control Optim., 16 (1978), pp. 546–570, https://doi.org/10.1137/0316037.1403

[82] H. Waki, M. Nakata, and M. Muramatsu, Strange behaviors of interior-point methods for solving1404
semidefinite programming problems in polynomial optimization, Comput. Optim. Appl., 53 (2012),1405
pp. 823–844, https://doi.org/10.1007/s10589-011-9437-8.1406

[83] J. C. Willems, Dissipative dynamical systems part I: General theory, Arch. Ration. Mech. Anal., 451407
(1972), pp. 311–314, https://doi.org/10.1007%2FBF00276493.1408

[84] D. Yun and B. Protas, Maximum rate of growth of enstrophy in solutions of the fractional Burgers1409
equation, J. Nonlinear Sci., 28 (2018), pp. 395–422, https://doi.org/10.1007/s00332-017-9412-3.1410

[85] P. Zhao, S. Mohan, and R. Vasudevan, Control synthesis for nonlinear optimal control via convex1411
relaxations, in Proc. Amer. Control Conf., Seattle, WA, USA, 2017, IEEE, pp. 2654–2661, https:1412
//doi.org/10.23919/ACC.2017.7963353.1413

[86] Y. Zheng, G. Fantuzzi, and A. Papachristodoulou, Exploiting sparsity in the coefficient matching1414
conditions in sum-of-squares programming using ADMM, IEEE Control Syst. Lett., 1 (2017), pp. 80–1415
85, https://doi.org/10.1109/LCSYS.2017.2706941.1416

[87] Y. Zheng, G. Fantuzzi, and A. Papachristodoulou, Fast ADMM for sum-of-squares programs using1417
partial orthogonality, IEEE Trans. Automat. Control (Early Access), PP (2018), pp. 1–8, https:1418
//doi.org/10.1109/TAC.2018.2886170.1419

This manuscript is for review purposes only.

https://doi.org/10.1137/0316038
https://doi.org/10.1137/0316037
https://doi.org/10.1007/s10589-011-9437-8
https://doi.org/10.1007%2FBF00276493
https://doi.org/10.1007/s00332-017-9412-3
https://doi.org/10.23919/ACC.2017.7963353
https://doi.org/10.23919/ACC.2017.7963353
https://doi.org/10.23919/ACC.2017.7963353
https://doi.org/10.1109/LCSYS.2017.2706941
https://doi.org/10.1109/TAC.2018.2886170
https://doi.org/10.1109/TAC.2018.2886170
https://doi.org/10.1109/TAC.2018.2886170

	Introduction
	Bounds using auxiliary functions
	Bounding framework
	Example 2.1
	Example 2.2

	Global versus local auxiliary functions
	Example 2.3
	Example 2.4

	Sharpness of optimal bounds
	Sharp bounds for ODEs with finite time horizon
	Example 2.6

	Nondifferentiable auxiliary functions
	Example 2.7



	Optimal trajectories
	Optimal auxiliary functions
	General auxiliary functions

	Computing bounds for ODEs using SOS optimization
	Example 4.3
	Example 4.4
	Example 4.5

	Extensions
	Conclusions
	Acknowledgements
	Appendix A. Optimality of the quadratic V in Example 2.1
	Appendix B. Sharp bounds for nonzero initial conditions in example 2.3
	Appendix C. Improving bounds iteratively with polynomial V of fixed degree
	Appendix D. An elementary proof of Theorem 2.5
	Construction of near-optimal V
	Proof of Lemma D.1
	Proof of Lemma D.2

	References

