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Abstract 
Mitigating climate change requires information about the inequality in energy consumption. 
Recent contributions (Banerjee and Yakovenko, 2010; Lawrence et al., 2013; Yakovenko, 
2010, 2013) have studied energy inequality through the lens of maximum entropy. They 
claim a weighted international distribution of total primary energy demand should approach a 
Boltzmann-Gibbs maximum entropy equilibrium distribution in the form of an exponential 
distribution, implying convergence to a Gini coefficient of 0.5 from above. The present paper 
challenges the validity of this claim and critically discusses the applicability of statistical 
equilibrium reasoning to economics from the viewpoint of social accounting. It is shown that 
the exponential distribution is only a robust candidate for a statistical equilibrium of energy 
inequality when employing one particular accounting convention for energy flows, the 
substitution method. But this method has become problematic with a higher renewable share 
in the international energy mix, and no other accounting method supports the claim of a 
convergence to a 0.5 Gini. We conclude that the findings based on maximum entropy 
reasoning are sensitive to accounting conventions and critically discuss the epistemological 
implications of this sensitivity for the use of maximum entropy approaches in social sciences. 
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1. Introduction
Understanding inequality in per capita energy consumption at the global level delivers key
insights for strategies to mitigate climate change.1 Economic growth and per capita energy
demand are tightly coupled (Csereklyei et al., 2016; Semieniuk, 2018), so energy inequality
can be an important indicator of uneven economic development. Moreover, climate change
mitigation now demands absolute reductions in the global average of energy per capita
consumption (Rogelj et al., 2018; Semieniuk et al., 2019). Achieving this requires an
understanding of the global energy consumption inequality. Current approaches such as
carbon taxes can disproportionately hit the poor because of their higher share of energy
consumption in expenditure (Boyce, 2018; Fremstad and Paul, 2019; Teixidó and Verde,
2017). Therefore, understanding the global distribution of energy consumption is key to
grappling with the political economy of climate change mitigation (Jenkins, 2014). Finally,

1 Strictly speaking and abiding by the First Law of Thermodynamics, energy cannot be consumed, just degraded. 
Sticking with common usage in social sciences we will nevertheless write consumption. We will also write energy 
inequality short for inequality in the per capita consumption of energy. 
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attempts at reducing global resource inequalities, which can render climate mitigation 
policies more feasible (Rao and Min, 2018), must know the extent of these inequalities. 
 
Given the systemic importance of energy inequality, it is surprising to see the dearth of 
research on the extent and evolution of global energy inequality by economists, in contrast 
with much more extensive work in the area of income and consumption (Anand and Segal, 
2015; Darvas, 2019; Galbraith and Berner, 2001; Lahoti et al., 2016; Milanovic, 2005; 
Milanović, 2016; Nino-Zarazua et al., 2016; Ravallion, 2019). The most recent analysis of 
global per capita energy inequality (proxied by taking country averages weighted by their 
population and therefore called weighted international inequality) appears to be over a 
decade old (Hedenus and Azar, 2005). Maza and Villaverde (2008) only consider electricity, 
and Duro (2015) does not weight observation by population. The theoretical blinder of 
‘convergence’ in economic growth theory, focuses attention away from the extent of 
inequality at the macro level, as inequality appears as a transitory phenomenon (Duro et al., 
2010); and at the micro level there are no global datasets. As far as climate change is 
concerned, one can also look ‘directly’ at greenhouse gas emissions (Chancel and Piketty, 
2015). But there is a fundamental difference between energy (an input into production) and 
emissions, an unwanted output. Constraints on the former can inform insight into the latter, 
and ignorance about energy inequality forgoes an important piece of information for policy. 
 
In light of this lacuna, the research by Victor Yakovenko and his co-authors stands out. In a 
series of papers, (Banerjee and Yakovenko, 2010; Lawrence et al., 2013; Yakovenko, 2010, 
2013), they analyse the weighted international energy inequality from 1980 to 2010, 
computing Gini coefficients and Lorenz curves. Furthermore, analysing the results through 
the lens of maximum entropy, Yakovenko et al. predict that the distribution of total primary 
energy supply should approach a microcanonical Boltzmann-Gibbs equilibrium distribution. 
This distribution has the exponential form and implies a unique Gini coefficient of 0.5. The 
data they analyse strongly confirms their hypothesis. Thus, the work is both descriptive of 
historical data and predictive, by combining maximum entropy reasoning with inequality 
measures. However, in this paper we show that their hypothesis is not robust. We compute 
and compare Gini coefficients over time for different methods of accounting for primary, final 
and territorial versus footprint energy measures – the first such exercise to our knowledge. 
We show that Ginis vary by up to 0.1 units for the same year, and there is no sign of 
convergence to a particular value. Hence the validity of the 0.5 Gini finding based on 
maximum entropy reasoning is sensitive to accounting conventions. We explain the 
accounting conventions behind the divergent results and critically discuss the 
epistemological implications of this sensitivity for the use of maximum entropy approaches in 
social sciences.  
 

2. Energy Inequality Re-estimated 
A statistical mechanic perspective on economic inequality suggests to explain the 
equilibrium distribution as the result of a process whereby the economic resource is 
exchanged between agents under certain constraints (Banerjee and Yakovenko, 2010). An 
analogy with the microcanonical ensemble in statistical mechanics is made by assuming that 
the total amount of the resource and the number of agents over which the resource is 
partitioned are held constant and that the process is ergodic. By far the most likely and 
hence maximum entropy or ‘statistical equilibrium’ distribution is the Boltzmann-Gibbs 
distribution. Under the given assumptions it is exponentially distributed. Evidence that this 
predicts many national income distributions apart from the richest few percent is in Tao et al. 
(2019). What makes the exponential prediction particularly powerful from an inequality 
perspective is that it implies a Gini coefficient of 0.5, regardless of the distribution’s 



parameter, the mean (Dragulescu and Yakovenko, 2001), which is unique among the 
canonical probability distributions.2 
 
Extending the maximum entropy reasoning to a global income distribution is difficult, 
however, as there is no single correct exchange rate, and purchasing power parity estimates 
vary between methods and over time (Anand and Segal, 2015; Shaikh and Weber, 2018).  
Yakovenko and co-authors therefore propose that focussing instead on energy consumption 
circumvents this accounting problem: a Joule is a Joule regardless of context (Lawrence et 
al. 2014). This paper, however, shows that the statistical equilibrium results for energy 
consumption depend on the choice of method of accounting for energy consumption: what 
counts as a Joule depends on how we decide to count. 
 
 
Figure 1: Time series of weighted international inequality in energy consumption measured 
by the Gini coefficient for various ways of accounting for energy consumption. See appendix 
A for data sources. 

 
 
Empirical analysis in Lawrence et al. (2014) of the Energy Information Agency (EIA) dataset 
shows that weighted international inequality in energy consumption is indeed converging to 
a 0.5 Gini along an S-curve trajectory from above. This pattern is confirmed by more recent 

 
2 This is because the Gini coefficient is scale invariant, i.e. if all incomes are scaled by the same factor (and so is 
the mean), the Gini coefficient stays constant. Since the exponential distribution’s only parameter is the mean, 
the Gini is the same for this family of distributions. Note that this holds for all scale invariant inequality measures: 

for instance, the Atkinson measure of the exponential distribution is 𝐼	 = 	1	 −	(Γ(𝜂 + 1)	)
+
,		, only dependent on 

the inequality aversion parameter 𝜂 of Atkinson measure, but not on the distribution’s parameter. See the 
Appendix B for a derivation.  
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vintages of the EIA data that appeared after the publication of their results (see Figure 1). 
However, our analysis of five other datasets that use different methods of accounting for 
energy consumption shows that the Gini does not converge to 0.5. Instead, all five datasets 
start with Gini coefficients above 0.5 but fall to values significantly below 0.5 between 2003 
and 2009 (also Figure 1, see appendix A for data source description). Therefore, the 
maximum entropy-based prediction of an exponential distribution cannot be confirmed 
across methods of accounting for energy consumption. 
 

3. Accounting for Energy Consumption 
The key to our finding that the statistical equilibrium prediction does not hold across datasets 
is that multiple reasonable methods exist for summing heterogeneous energy carriers such 
as coal, oil, hydro or wind. Just like for currencies, in the messy reality of economics, there is 
no one right way of accounting for energy. Unlike in physics, in social accounting for energy 
a Joule is not a Joule independent of the method of its generation, the form of its use or the 
point of measurement in the sequence of conversion.  
 
Energy values are calculated according to the heat content of an energy carrier, however, 
there are at least three different ways of accounting for primary energy. The first method 
asks what is the equivalent amount of fossil fuels needed to produce some amount of 
energy from non-combustible sources and is called the substitution method. This is the 
accounting method used by the Energy Information Agency (EIA) data underlying 
Yakovenko’s results. For instance, electricity from hydro is accounted for with the heat 
content of fossil fuels required to produce the same amount of electricity. With a conversion 
efficiency from chemical energy in coal to electricity of 37%, this implies hydro electricity is 
multiplied by almost three and then added to energy from fossil fuels. Second, the physical 
content method asks what is the first form in which the energy from an energy carrier can be 
used for multiple purposes. For example, for hydro the first form of energy that can be used 
for multiple purposes is electricity. For nuclear energy on the other hand, the thermal energy 
from fission is that first form: it could be converted into electricity but also used directly as 
heat. This method is employed by the International Energy Agency (IEA) whose data 
underpin all time series in Figure 1, other than that of Yakovenko’s EIA-based series. The 
third method called direct equivalent and used in the International Panel on Climate Change 
(IPCC) uses the heat content of electricity for all non-combustible energy carriers.  
 
Note, fossil fuels are accounted in the same way in all three methods as the reference 
energy carrier. So the key difference between the three methods is the treatment of non-
fossil fuels. Table 1 illustrates the different energy balances for a hypothetical situation with 
only fossil, hydro and nuclear power.3 For example, hydro power is accounted as 2.7 J/s 
when using the substitution method but only as 1 J/s with the physical content method. 
Though less stark, the two methods also yield different results for nuclear due to varying 
assumptions about conversion efficiencies. See Koomey et al. (2019) and Macknick (2011) 
for further discussion.  
 
Table 1: Hypothetical primary energy balance for three accounting methods 
 Substitution (e.g. 

EIA) in J/s 
Physical Content 
(e.g. IEA) in J/s 

Direct Equivalent 
(e.g. IPCC) in J/s 

Fossil fuels 1.00 1.00 1.00 
Hydro 2.70 1.00 1.00 
Nuclear 3.07 3.03 1.00 
Total 6.77 5.03 3 

 
3 The partial substitution primary energy to electricity conversion efficiencies of hydro (37.0%) and nuclear 
(32.6%) are calculated from Table A6 in (EIA, 2019) and the physical content 33% efficiency for nuclear from 
(Krey et al., 2014). 



 
When accounting for the primary energy demand of a country, the choice of method can 
make a dramatic difference. This is illustrated in Figure 2 for Norway, a country that 
generates 99% of its electricity from hydro. Using the substitution method of the EIA, Norway 
is found to consume more than 1.6 times as much energy per capita as compared to the 
physical content method employed by the IEA. But even for countries with a large nuclear 
share in their energy mix such as France the difference is significant. Given that rich 
countries tend to have a more diverse energy mix compared to a high degree of fossil fuel 
and combustible bio mass dependence of poor countries, the EIA data also ascribes higher 
values to energy rich countries and lower values to energy poor countries (see China and 
India in Figure 2). This explains the higher inequality for EIA data in Figure 1. Hence, the 
confirmation of the statistical equilibrium prediction of an exponential distribution hinges on 
the method of accounting and is therefore not a robust one. Importantly, the only method for 
which this prediction holds is precisely the one that is least suitable for accounting for 
renewable energy and hence informing climate policy’s attempts at improving energy 
efficiency, as it masks an improvement in conversion efficiency of primary to secondary 
energy (Koomey et al. 2019). As nuclear energy is consumed mainly in energy rich 
countries, the direct equivalent method of primary energy accounting is likely to produce 
even lower inequality estimates. 
 
 
Figure 2: Primary energy demand in a selection of countries as measured by the partial 
substitution method in the EIA (black) and physical content method in the IEA (red). 

 
 
But the problems with energy accounting do not stop with how we define primary energy. A 
further ambiguity stems from attributing primary energy either to the territory where it enters 
production (territorial measurement, used in all datasets discussed so far); or to the country 
where the final goods produced with the help of energy are consumed, the energy footprint 
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measurement (Peters et al., 2017). Which of these two measures is more suitable depends 
on the economic question one wishes to address. For our analysis, what matters is that both 
measurements refute the statistical equilibrium prediction: Akizu-Gardoki et al. (2018) have 
recently estimated the energy footprint for most of the world. Even though its inequality is 
higher than a territorial estimate for the same population, the footprint Gini also falls 
significantly below the 0.5 predicted value instead of converging to it (see black and grey 
lines in Figure 1).  
 
Finally, energy can also be measured at different stages in the conversion chain (somewhat 
analogous to pre or post tax income). Primary energy, which has been discussed so far 
considers both the energy needed by the energy sector to convert energy to the state in 
which it is used by end users, e.g. the energy needed to refine oil and transmit and distribute 
electricity, and the energy consumed by end users. Final energy on the other hand counts 
only the energy reaching end users. Figure 1 also shows inequality in final energy 
consumption which is even lower as it disproportionately reduces energy consumption in 
very high primary energy per capita countries such as OPEC oil producers.  
 
The overarching insight is that the maximum-entropy derived prediction of an exponential 
distribution is not robust. Different data sources, and different accounting conventions 
produce various results, and all but one measure do not converge to the unique Gini 
predicted with maximum-entropy reasoning.4  
 

4. Discussion 
The results about the distribution of energy consumption that emerge by viewing the 
problem through a maximum entropy lens provide a starting point for an urgently needed 
better understanding of the patterns of global energy inequality. This paper has shown, 
however, that the bold hypotheses from statistical mechanics about the equilibrium energy 
inequality are not robust when confronted with different methods of constructing the data. 
Only for primary energy that is accounted for according to the substitution method do the 
results hold, but this is precisely the method least suited for climate policy analysis as it 
poorly represents renewable energy sources. The sensitivity to accounting methods is 
particularly problematic for a maximum entropy approach, since it claims that its predictions 
only rely on combinatorial reasoning under given constraints. The selection of an accounting 
method and introduction of a new constraint to represent it cannot be resolved in any 
objective way by more information as the principle of maximum entropy would postulate 
(Yang, 2018). Unlike in physics, accounting for social phenomena relies heavily on 
conventions without any clear ‘right’ or ‘wrong’ method, which has been illustrated here for 
the case even of a seemingly homogenous, physical quantity. This reflects the differences in 
the basic nature and structure of social and physical reality that requires different ontologies 
in the social and natural sciences including economics (see e.g. Lawson, 2019 pp. 2-28). 
Without a study of the nature of the things being measured, empirical knowledge about the 
things that matter and an economic or other social theory that connects them to the problem 
at hand (e.g. climate change), maximum entropy reasoning cannot decide what accounting 
method is more suited to the problem of energy consumption inequality or, for that matter, 
any social accounting problem. 
 
Lawrence et al. (2014) attempt to circumvent the ambiguity of an income measure by finding 
another measure. We have demonstrated in this paper that this other ostensibly determinate 

 
4 Additional complications would arise from taking into account inequality in access to certain energy carriers 
(e.g. electricity) and services (clean cooking stoves), i.e. energy quality (Dubois and Meier, 2016; Fouquet, 2016; 
Rao and Pachauri, 2017). And while final energy is currently the best approximation to energy services, for which 
data is available for most countries, useful exergy would be a more accurate measure of the energy inequality 
that ultimately matters (Heun and Brockway, 2019; Sousa et al., 2017). 



measure is not unambiguous either. Given the fundamental reliance on social accounting, 
which is conventional, rather than exact, we are sceptical that any one measure can be 
found that would be unambiguous. In sum, a maximum entropy approach to economic 
problems only has a chance at predicting, when it is embedded in the appropriate social 
context which needs to be detected with knowledge of the concrete empirical problem 
understood via a social theory. Therefore, maximum entropy reasoning can be a tool to 
operationalize economic theory but cannot substitute for either theory or context-driven 
empirical analysis.5  
 
Apart from these epistemological aspects, the great variation of Ginis across different 
accounting methods also highlights more general, practical difficulties for policy making 
towards climate change mitigation. The variance in Ginis implies that at present there is no 
way of objectively determining the distribution of energy consumption levels across 
countries. If mitigation policies are meant to be in relation to current consumption levels, this 
means that we are lacking a reliable point of reference. Beyond the lack of knowledge about 
the present state of global energy inequality, the failure of the maximum entropy programme 
to robustly predict the Gini value to which the world is converging also means that we lack 
predictive tools needed for policy projections.  
 
As a silver lining, another regularity robustly manifests across all measures of energy 
consumption: the s-curve shape of Gini values from about the 1990s onwards which 
Yakovenko and co-authors found based on their maximum entropy reasoning. All measures 
display an s-curve, only at different levels. Crucially, while the maximum entropy perspective 
is frequently employed searching for equilibria, the actual data seems to suggest that there 
are repeated s-curves or transitions (see the series based on Semieniuk 2018 for an 
additional one in the 1950s). To further theorise this finding, it could be linked to 
developmental patterns and processes of evolutionary change rather than convergence to 
some unique and stable equilibrium. The new ways of looking at data that maximum entropy 
reasoning encourages are instrumental in discovering such patterns. But to gain an 
understanding of the underlying drivers we need to also draw on insights from economic 
history and theory.  
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Appendix A: Data Sources 
This paper uses energy balances data from the International Energy Agency (IEA), the 
Energy Information Agency (EIA) and the United Nations (UN), which are detailed below. 
Population data is taken from the ‘indicators’ supplied both by the IEA and EIA databases, 
and from Penn World Table and Maddison Project Statistics for periods non available in the 
IEA dataset (for details see Semieniuk 2018). 

 
5 For attempts to join maximum entropy reasoning about observed distributions with economic theory see 
Scharfenaker & Semieniuk (2017) and dos Santos & Scharfenaker (2019), and to provide a general principle dos 
Santos (2017). Farjoun and Machover (1983) and Foley (1994) discuss conceptual foundations. 



 
EIA: Primary Energy 
Primary energy data from the EIA is available freely from its website (EIA 2019), and has the 
widest coverage of countries (nearly 100% of the world’s population covered). Surprisingly 
the geographical coverage has actually decreased since the paper by Lawrence et al. (2014) 
has been published, for instance data for Bermuda in the current, 2019 web download 
interface, is only available from 1988, while the version on which Lawrence et al. (2014) run 
their calculation includes Bermuda’s data from 1980. The data has not been updated beyond 
2013. The three newest data points are from the 2019 data, the others from Lawrence et al. 
(2014) who have made available their data as open source supplementary material. 
 
IEA: Primary and Final Energy 
The IEA covers a comprehensive set of countries’ energy balances both for primary and final 
energy starting in 1971. In the last year of data, 2016, about 95.5% of global population are 
covered. Data are available against a fee from International Energy Agency (2018). 
 
IEA and UN: Primary Energy 
To extend the data series in the IEA to more countries and backwards in time beyond the 
year 1971, Semieniuk (2018) has spliced the data with the United Nations Energy Statistics 
(2016) database which contains primary energy data starting in 1950, and from additional 
sources for non-commercial use of biomass. The resulting dataset covers upward of 98% of 
population for every year after 1970 and above 92% before that. Note that the one-time low 
energy inequality in 1961 is due to China’s rapid increase that year in energy consumption 
under the ‘Great Leap Forward’ programme (Semieniuk 2018).  
 
Territorial and Consumption-Based Primary Energy 
Akizu-Gardoki et al. (2018) have used the 26 sector multi-sectoral input-output database 
from Eora and IEA sectoral energy demand to reconstruct the flows of embodied energy in 
trade, and arrive at the footprint of energy consumption, i.e. the sum of a country’s 
consumption of energy directly on its territory and the net imports of energy embodied in 
manufactured commodities and international services. Due to merging different databases 
they arrived at an intersection of 126 countries, which cover 94.4% of population on 
average. 
 

Appendix B: Derivation of the Atkinson Inequality for the Exponential Distribution 
The Atkinson index of inequality, I, is defined as 

𝐼	 = 	1	 −	
𝑦./.
𝜇
													(1) 

where 𝜇 is the mean holding per person of the resource over which inequality is measured, 
e.g. income or energy, and 𝑦./. is the equally distributed equivalent income that would 
suffice to make society as well off as the actual, unequally distributed income according to a 
social welfare function (Atkinson, 1970). It is defined as  
 

	𝑦./. = 12 𝑓(𝑦)𝑦4	𝑑𝑦
6	

7
	8

9
4
								(2) 

 
where 𝑦 is income, 𝜂 is the inequality aversion parameter of the social welfare function and 
f(y) the density. If f(y) is exponential then 

𝑦./. = 	12 𝜆𝑒=>?𝑦4	𝑑𝑦
6	

7
	8

9
4
								(3) 

  
where the integral is the Gamma function Γ(𝑥), therefore 



𝑦./. = 	 (𝜆=9Γ(𝜂 + 1))
9
4												(4) 

 
Plugging this back into the inequality measure in (1) and noting that the exponential 
distribution parameter is the inverse of the distribution's mean 𝜆	 = 	1/𝜇, we have 

𝐼	 = 	1	 −	DΓ(𝜂 + 1)E
9
4												(5) 
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