
The Role of Personality Factors and Empathy in the 
Acceptance and Performance of a Social Robot for 
Psychometric Evaluations

ROSSI, Silvia, CONTI, Daniela <http://orcid.org/0000-0001-5308-7961>, 
GARRAMONE, Federica, SANTANGELO, Gabriella, STAFFA, Mariacarla, 
VARRASI, Simone and DI NUOVO, Alessandro <http://orcid.org/0000-0003-
2677-2650>

Available from Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/26370/

This document is the author deposited version.  You are advised to consult the 
publisher's version if you wish to cite from it.

Published version

ROSSI, Silvia, CONTI, Daniela, GARRAMONE, Federica, SANTANGELO, Gabriella, 
STAFFA, Mariacarla, VARRASI, Simone and DI NUOVO, Alessandro (2020). The 
Role of Personality Factors and Empathy in the Acceptance and Performance of a 
Social Robot for Psychometric Evaluations. Robotics, 9 (39). 

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html


robotics

Article

The Role of Personality Factors and Empathy in the
Acceptance and Performance of a Social Robot for
Psychometric Evaluations

Silvia Rossi 1,* , Daniela Conti 2 , Federica Garramone 3, Gabriella Santangelo 3,
Mariacarla Staffa 4 , Simone Varrasi 2 and Alessandro Di Nuovo 2

1 Department of Electrical Engineering and Information Technologies, University of Naples Federico II,
80125 Napoli, Italy

2 College of Business, Technology and Engineering, Sheffield Hallam University, Sheffield S1 1WB, UK;
d.conti@shu.ac.uk (D.C.); simone.varrasi@psypec.it (S.V.); a.dinuovo@shu.ac.uk (A.D.N.)

3 Department of Psychology, University of Campania L. Vanvitelli, 81100 Caserta, Italy;
federica.garramone@unicampania.it (F.G.); gabriella.santangelo@unicampania.it (G.S.)

4 Department of Physics E. Pancini, University of Naples Federico II, 80126 Napoli, Italy;
mariacarla.staffa@unina.it

* Correspondence: silvia.rossi@unina.it; Tel.: +39-081-679963

Received: 17 April 2020; Accepted: 19 May 2020; Published: 23 May 2020
����������
�������

Abstract: Research and development in socially assistive robotics have produced several novel
applications in the care of senior people. However, some are still unexplored such as their use as
psychometric tools allowing for a quick and dependable evaluation of human users’ intellectual
capacity. To fully exploit the application of a social robot as a psychometric tool, it is necessary to
account for the users’ factors that might influence the interaction with a robot and the evaluation
of user cognitive performance. To this end, we invited senior participants to use a prototype of a
robot-led cognitive test and analyzed the influence of personality traits and user’s empathy on the
cognitive performance and technology acceptance. Results show a positive influence of a personality
trait, the “openness to experience”, on the human-robot interaction, and that other factors, such as
anxiety, trust, and intention to use, are influencing technology acceptance and correlate the evaluation
by psychometric tests.

Keywords: social assistive robots; psychometric evaluation; personality factors; technology
acceptance; empathy; human friendly cognitive robotics

1. Introduction

The number of older people living alone and in need of care has grown to become one of the
great societal challenges of the most developed countries (e.g., Europe, USA, Japan, Australia). Indeed,
high-income countries have the oldest population profiles, with more than 20% of the population
predicted to be over 65 in 2050, when citizens older than 80 years old will be triple that of today. This is
a challenge for social care systems, which, as of now, are struggling to meet the demand of assistance
for vulnerable adults because of limitations in their budgets and in the difficulty of recruiting new
skilled workers. Socially assistive robots are increasingly seen as one possible new technology able
to address human resource and economic pressures on social care systems. Indeed, the scientific
research is increasingly providing evidence of the possible successful application, which is leading
the development of the robotic platforms focused on services for ageing well, with the specific aim
to support and accompany the elderly users. For instance, recent research, e.g., [1–3], shows that
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humanoid robots can be successfully employed in health-care environments due to their peculiarity of
being able to provide personalized treatments making use of adaptable social skills.

A promising area yet to be fully explored is the application of robotics in the diagnostic process.
To this end, preliminary studies have found that the application of humanoid social robots may support
professionals in the detection of initial signs of impairment being exploited also at patients’ homes.
The possibility to use them outside the clinic permit to reach more patients and thus allowing large-scale
screenings. For this reason, various researchers began to investigate this new field of application
for robotic, showing initial promising results. Humanoid social robots have been used, in fact, to
improve Autistic Spectrum Disorder (ASD) diagnosis in children [4] or to administer Patient-Reported
Outcome measurement questionnaires to senior adults [5]. The success of this approach can be
favoured by the preference of interacting with a humanoid social robot rather than a non-embodied
computer screen, as found in young children and older adults [6,7]. Users are more likely to consider
human-robot interaction more satisfying when the robot can exhibit human-like behaviours [7,8],
indeed, when people interact with an embodied physical agent, they are typically more engaged
and motivated by the interaction with respect to other technologies [9]. These characteristics make
social robots with human-like appearance and behaviours a viable solution to automatic psychometric
evaluation. Most importantly, previous work [10,11] suggested that a robot-led cognitive assessment
could have many advantages, such as test standardization and assessor neutrality [12], which is
naturally guaranteed, and good usability [13], which should be achieved with a correct design of
the interaction.

Preliminary results, presented in [10,12], showed the viability of robotic-led data collection and
cloud AI evaluation for cognitive level screening. The studies found no statistical differences between
two paper-and-pencil tests, the Montreal Cognitive Assessment (MoCA) and the Addenbrooke’s
Cognitive Examination Revised (ACE-R), compared to a novel prototype of a robotic-led cognitive
test, administered by a social humanoid robot, the SoftBank Pepper. However, in this context, several
factors have to be accounted for that could affect Human-Robot Interaction (HRI), such as the user
cognitive profile. To this end, it is critical to consider individuals’ factors, such as the attitude when
assessing people’s responses to the interaction with a social robot, because they may be naturally
inclined to like or dislike robots as an entity, regardless of the actual interaction.

Basing upon previous literature showing the effect of personality factors, e.g., personal
innovativeness [14] and openness to experience [15] on the evaluation and intention to use new
technologies, in this work, we further analyze the influence of personality traits both on the acceptance
of robotic technology and also on users’ cognitive test performance. Moreover, we investigate the
impact that the subject’s ability to feel empathy has on both acceptance and performance. To this aim,
we recruited a sample of senior adults, who volunteered to complete a robotic-led cognitive assessment
test, and several traditional paper-and-pencil tests: the Addenbrooke’s Cognitive Examination Revised
(ACE-R) test [16]; the NEO Personality Inventory-3 (NEO-PI-3) [17]; the Empathy Quotient (EQ) [18];
the eye test [19]; and a questionnaire in Italian based on the constructs of the Unified Theory
of Acceptance and Use of Technology (UTAUT). The paper-and-pencil tests were administered
by a chartered psychologist and used to evaluate personality traits, empathy, and technology
acceptance, respectively.

Summarizing, starting from our preliminary study in [12], in which the psychometric assessment
evaluation process supported by a social robot has been presented, we extend this work by
(i) investigating the cognitive and personality factors that might influence the human-robot interaction
and user performance with a fully autonomous robot working as a cognitive assessment tool with
a population of 19 elderly; (ii) analyzing the influence of empathy both on the acceptance of robotic
technology and on users’ cognitive test performance; (iii) analyzing possible changes in technology
acceptance after the very first interaction with the robot.

Results showed that personality traits, as openness to experience that in literature has been shown
to correlate with robot acceptance, have influence also on the user’s performance during psychometric
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tests. Moreover, empathy has an impact on user acceptance showed a positive correlation with the
robot perceived sociability in the case of the EQ test, but a negative one with respect to the eye test due
to the lack of facial expression of the considered robot. Moreover, after this first interaction with the
robot, the perceived anxiety is reduced.

The rest of the paper is organised as follows: Section 2 introduces the background and some
related work; Section 3 describes the materials used in this work, while Section 4 describes the
methodology applied in our experiments. Section 5 presents and discusses the results. Finally,
Section 6 gives our conclusions.

2. Background and Related Works

In the last decade, many social robotics studies focused on the use of humanoid robots to support
educational and psychological interventions with children [20] or elderly people [21]. Particularly,
in support of elderly people with dementia or Mild Cognitive Impairment (MCI), social robots have
been proved to be effective in facilitating independence and improving both caregiver and senior
people’s well-being. People with MCI are generally more independent than those with dementia.
However, they are at a higher risk than the normal population of developing worse conditions if not
adequately supported and constantly monitored [22].

Currently, the literature in assistive robotics that tries to address the psychometric evaluation is
quite limited. Probably this is due to the skepticism of the practitioners [23] and to the perception
of users on the reliability shown by the robots [24]. However, we argue that, since an essential
characteristic of psycho-diagnostic tests is that the stimuli and the methods for their administration
should be just as rigorously standardized to guarantee the reliability (i.e., its repeatability in different
times and places) and the validity of the results, assistive robots can represent a valuable way to meet
these requirements and provide a reliable automatic tool for psychometric assessment [10–13,25,26].
Additionally, not only a psychometric test is as reliable and valid as the stimuli are representative
of the cognitive function or of the area of the personality that one wants to study [27], but also the
acceptability of the robotic tools is affected by the individual users’ personality and the psychological
variables [28,29]. This suggests that for a successful deployment of socially assistive robots [30] in this
context, it is of paramount importance the knowledge of personality factors being those able to affect
both reliability and acceptability.

The scientific literature increasingly suggests, in fact, that acceptance is related to the psychological
variables of individual, but also to the social and physical environment in which the robots
operate [31–33]. These variables interact with each other to positively or negatively influence the
acceptance of social robots [31,34,35]. For example, success factors for robots in the context of social
care include being enjoyable and easy-to-use [36–38] and full-filling their function without error [39,40].
For these reasons, to fully engage with a social robot, it is crucial that users feel at ease while interacting
with it [23]. Conversely to the majority of studies, which are more focused on the design of the robot
“personality” in terms of physical and expressive characteristics that it should have [41,42] and its
effects on human-robot interaction [43–45], we are mainly interested in the relationship between the
users’ personality traits and the acceptability of the robots by the users, e.g., [12,46].

It is a matter of fact that personality traits act as antecedents to users’ attitudes and cognitive
behaviours and, in turn, to their engagement with new technologies [47–49]. These factors have been
also evaluated with respect to the use of computer tools or social networks [50], less in relation
to the interaction with robotic devices [51]. In this paper, we propose the use of a robot as a
psychometric tool, that represents a new context in this field, by considering users’ personality
factors that can affect its acceptability and reliability. The relationship between personality traits
and computer acceptance investigated in previous studies typically consider the aspects of the “Five
Factors Model” [17,52], which defined five-dimensional structures for personality traits: extroversion,
agreeableness, consciousness, emotional stability, and openness to experience. According to current
literature review papers in this field [53,54] stating that additional personality factors (beyond the
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Big Five) should be necessary to capture how people differ qualitatively in their mental models for
advanced, intelligent and autonomous robots, in this work, we propose the use of NEO Personality
Inventory-3 test (NEO-PI-3) [17] that does not limit itself to investigating the five main personality
traits, but, for each of them, it considers six facets allowing a deeper understanding of the user profile.
This greater level of detail allowed us to better grasp the subjective nuances (sub-factors) related to
each dimension with respect to the state-of-the-art.

Attitudes to social robots can be influenced not only by its ability to act upon things (mind agency)
but also to feel (mind experience), which also influences the degree of emotional response that robots
may evoke. For this reason, we also evaluate the emotional aspects of participants when interacting
with the robot via the administration the Empathy Quotient and EQ-Eye Test.

Namely, we applied our robotic psychometric tool to a senior population, thus we had to take
into account that investigating the perception of robots by senior adults does not seem as simple as by
young adults. Indeed, identifying unmet needs and expectations is usually more complicated with
senior adults, who have reduced awareness of their own needs due to habituation and, more often,
they are unwilling to acknowledge limitations because of stigmatization or fear of independence
loss [55]. This may have an impact on robot acceptability by older individuals and disabled. In general,
before a person has their first direct experience of robots, users form a mental model about them, which
conditions their perception of the robot and the interaction with it. Mental models are influenced
by past personal experience with technology and second-hand sources of information external to
the individual, such as the information found on the internet, including social networks, the media
(newspapers, magazines), and science fiction [56–58]. Previous studies in human-robot interaction
reported the evidence regarding how gender, education, age, and prior computer experience impact
on attitude towards robots. In particular, Heerink [34] explored the influence of these variables on
acceptance by senior adults and showed that participants with more education were less open to
perceive the robot as a social entity. Nomura et al. [59] found that different age groups adopted
alternative approaches when learning how to use unfamiliar technologies: young people used trial
and error, adults read instructions whereas senior adults preferred to ask for help. Stafford et al. [60]
investigated whether perceptions about the robot’s artificial mind can predict the Healthbot robot usage
and how these perceptions may affect attitudes towards robots. The results show that participants who
attributed more autonomy to the robot were more cautious and less willing to use it, but their attitudes
improved while interacting with the robots, as they realised the limited ability to think and remember.
In this work, the attitude toward robots and technology, in general, are evaluated by the administration
of the UTAUT questionnaire before and after the interaction to evaluate how the acceptance of such
technology may vary after the very first interaction with a robot. For information about the UTAUT
see [61,62].

3. Materials

To perform the cognitive assessment, we relied on the use of the following standard
neuro-psychological tests: (i) the Montreal Cognitive Assessment test (MoCA), (ii) the Addenbrookes
Cognitive Examination Revised (ACE-R) test, whose details are described in the following subsections.
In particular, the MoCA test was conducted by the Robotic Platform, a social humanoid robot, which
was programmed to administer and score some MoCA’s cognitive tasks, while the ACE-R was
performed by expert neuro-psychologists.

Additionally, we considered three additional tests aiming at evaluating the personality and
emotional aspects, which are considered as factors that can affect the interaction with the robotic
platform. More precisely, we used respectively, the NEO Personality Inventory-3 (NEO-PI-3) test
for the personality assessment and the Empathy Quotient and Eye Test for the evaluation of the
emotional aspects. Finally, we used the Unified Theory of Acceptance and Use of Technology (UTAUT)
questionnaire [63] to evaluate the elderly intention to accept the robotic platform as a psychometric tool.
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3.1. Montreal Cognitive Assessment (MoCA)

The MoCA test is a brief screening tool for Mild Cognitive Impairment [64] widely used in the
world (about 100 countries use it and it is available in 46 languages). It evaluates several cognitive
abilities, including language abilities, short-term memory, attention (digit span, vigilance, serial),
executive functions (drawing of the clock), orientation, abstraction, visuospatial capabilities (alternating
trail making, copying a cube). Scores on the MoCA range from 0 to 30, with a score of 26 and
higher generally considered normal. It is very useful to the extent that it helps to quickly determine
whether a person has an abnormal cognitive function or not, and so to early predict a possible
cognitive impairment.

3.2. Addenbrookes Cognitive Examination Revised (ACE-R)

The ACE-R [16] is a widely recognized instrument to identify cognitive impairment. It relies
on a brief cognitive screening battery to assess five cognitive domains: attention/orientation, verbal
fluency, memory, language, and visuospatial abilities. It extends the Mini-Mental State Examination
(MMSE) by including 11 MMSE’s items and adds 15 tasks for generating the five sub-scores listed
above. These cognitive domains are similar to those evaluated in the MoCA. The results of each activity
are scored to give a total score out of 100 (score range: 0–18 for attention, 0–26 for memory, 0–14 for
fluency, 0–26 for language and 0–16 for visuospatial processing).

3.3. NEO Personality Inventory-3 (NEO-PI-3)

The NEO-PI-3 [17] represents irreplaceable support whenever a thorough assessment of
the personality is required. Indeed, conversely to other standard personality questionnaires
(e.g., the Big Five Questionnaire), it does not limit itself to investigating the five main personality traits
(i.e., neuroticism, extraversion, openness, agreeableness, and conscientiousness) but, for each of them,
it considers six facets that allow to deepening and better understand the configuration of the profile.
For this reason, it is considered the gold standard instrument with which to measure personality.
In particular, NEO-PI-3 offers general items related to the daily life of the person, allowing a more
focused vision on the functioning of the person in the different areas of life.

3.4. Empathy Quotient and Eye Test

The evaluation of the emotional aspect of the theory of mind and empathy was performed by
the “Reading the Mind in the Eye” test [65] and the short version of the Empathy Quotient. The
“Reading the Mind in the Eye” test (Eyes test) was developed by Baron-Cohen [19]. This test evaluates
the ability to recognize the mental state of others using only the expressions around the eyes. This
is a simple emotion recognition test, which includes 36 still pictures of the eye regions illustrating
emotionally charged or neutral mental states. The core of the Eyes test involves the matching of the
semantic definition of a mental state (e.g., worried, annoyed) to the picture of the eye-region expression
displayed in the screen (score range: 0–36). The short version of the Empathy Quotient (EQ) is a
self-report questionnaire developed to measure the cognitive, affective, and behavioural aspects of
empathy. The EQ comprises 40 questions; responses are given on a four-point Likert scale (score range
0 to 80) [18].

3.5. Unified Theory of Acceptance and Use of Technology (UTAUT)

The UTAUT is a technology acceptance model designed to measure the variety of perceptions
of information technology innovations. It aims at evaluating the user intentions to use a new
technology based on the impression the user has about the following parameters: (1) performance
expectancy, (2) effort expectancy, (3) social influence, and (4) facilitating conditions. It uses the
particular information of the user such as gender, age, experience, etc. to moderate the impact of the
above-mentioned parameters on the intention to use the proposed technology. Among all the revised
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versions of the UTAUT questionnaire, we adopted that proposed by [66] since it is tailored for the
context of assistive robotics applied to elderly users. This UTAUT questionnaire consists of 41 items
and explores 12 constructs: Anxiety (ANX), Attitude (ATT), Facilitating Conditions (FC), Intention to
Use (ITU), Perceived Adaptability (PAD), Perceived Enjoyment (PENJ), Perceived Ease of Use (PEOU),
Perceived Sociability (PS), Perceived Usefulness (PU), Social Influence (SI), Social Presence (SP) and
Trust (TR). The Likert scale to score the items ranges from 1 to 5. The considered questionnaire was
translated from English to Italian to cope with the participants’ nationality. For information about the
translation procedure see [62]. Moreover, some questions have been adapted to be used also before
interacting with the robot. The translation was examined by two psychologists and an engineer in
a consensus meeting, back-translated, and approved in a second consensus meeting. The translation
passed a comprehension test, which was done by five individuals, aged 18–25 years old, who found
the questions easy to understand and had no difficulty in interpreting the answer modes. The final
Italian version of the questionnaire is available from the authors upon request.

4. Methodology

The study followed a within-subjects design with two stages. This design approach allows testing
the effects of the human-robot interaction by evaluating the performance of the same participant before
and after the interaction of the robot. The advantage of a within-subject design is that it requires fewer
participants, but it also required the use of two different psychometric instruments to avoid a learning
effect for the participants, a typical issue of this approach.

The robotic platform used in our experiments is the humanoid Pepper robot produced by Softbank
Robotics. Tests were performed in a large laboratory area, where common home-furnishing has been
used to simulate a home environment (see Figure 1). The idea was to put at ease the senior participants
by trying to simulate a domestic environment in view of the evaluation of the realized robotic platform
in in-house applications.

Figure 1. Pictures of the testing environment taken from different sides.

4.1. Experimental Procedure

The different stages of the experiments are summarized in Figure 2. Upon arrival, testers were
informed about the procedure and signed a consent form. In the first stage with a human psychologist,
the elderly participants were led to a first room, where were administered: (i) Cognitive Examination
Revised (ACE-R); (ii) NEO Personality Inventory-3 (NEO-PI-3); (iii) the Italian version of the “Reading
the Mind in the Eyes” test; (iv) the short Italian version of the Empathy Quotient test to evaluate
the emotional aspect of the theory of mind and various aspects of empathy, respectively. After the
completion of the abovementioned tests and questionnaires, all participants filled a questionnaire
based on UTAUT model. This questionnaire was administered to participants also at the end of the
experiment to evaluate the possible changes in acceptance before and after the physical and social



Robotics 2020, 9, 39 7 of 19

interaction with the robot. The order of the administrated tests is shown in Figure 2. It has been the
same for all subjects to not impact on performance evaluation. In particular, to avoid a possible effect
of fatigue, the most complex cognitive tests were administered first.

Figure 2. Testing procedure. The green parts were performed by a psychologist in a standard room.
The blue parts were performed with the Pepper robot in the testing environment.

After completing the psychological testing, participants were invited to enter the home-like
environment (Figure 1), then to interact with the humanoid robot Pepper . In the first task, Pepper
engaged the participants to administer the different psychometric tasks of the MoCA test [26] and
to record and store the users’ scoring. The MoCA robotic administration is performed by providing
verbal instructions for the tasks using text-to-speech and animated speech. To receive and analyze the
user’s input, we rely on speech recognition and face tracking facilities, image analysis, and the robot’s
tablet. See Figure 1 (left) for an example.

In the second task with Pepper (Test 2), the subject was asked to perform different activities in the
house environment, while the robot from time to time approached the user to monitor its behavior
(but without any interaction with him/her). The results of the second test can be found in [67].

Screen-shots of the first and the second tasks with the robot are shown in Figure 3 on the right.
At the end of the interaction with the robot, the UTAUT questionnaire was administrated by the
psychologists to evaluate the level of technology acceptance by the participants after the physical and
social interaction with the robot.

Figure 3. Screen-shots of Task 1: robotic administration of the MoCA Test (left); and of Task 2:
interaction and monitoring (right).
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To allow the experimenter monitoring the tests without interfering with the user-robot interaction,
two cameras were positioned within the testing environment to allow both real-time monitoring
(giving the experimenter the possibility to intervene in case of problems) and storing video recordings
for deeper posterior analysis. Additionally, Pepper took photos during the drawings tasks of the
MoCA and produced a dialogue file with the transcription of the verbal conversation between the
robot and participants. In this way, at the end of the experiments, psychologists were able to supervise
the automatic score computed by the robot supported by the additional data collected by the robot
(recordings, photos, transcriptions of the administrations), thus providing the actual score achieved by
the user.

4.2. Participants

A total of 21 Italian native-speaker senior adults were enrolled for this study and recruited
following ethical guidelines of the Department of Psychology of the University of Campania
“Luigi Vanvitelli”. All the participants signed a consent form. Among these, 19 subjects (eight females,
11 males) completed, in separate sessions, both the traditional paper-and-pencil cognitive and
personality evaluations and the robotic-led cognitive assessment. Participants’ average age was
61 years old (range = 53–82, standard deviation = 7), while the average of the years spent in education
was 12 (range = 8–18, standard deviation = 4).

4.3. Statistical Analysis

The SPSS software version 24 was used to analyse the data and calculate the statistics.
The statistical analysis comprises the usual descriptive statistics (mean, minimum, maximum,

standard deviation) for the psychometric (paper-and-pencil and robotic-led) tests’ scores. For deeper
analysis, we calculated the correlation among the variables. Spearman’s and Pearson’s correlations
were chosen according to the type of data group and the shape of its distribution. Once correlations
were found among variables, the regression analysis was used to confirm the predictive role of one
factor (predictor variable) to another (dependent variable).

Furthermore, we calculated the Cronbach Alpha (CA) coefficient. The CA estimates the internal
consistency of a composite score. This coefficient is considered a measure of reliability, which is
important to confirm the use of constructs as a single entity, like in the case of the UTAUT. T-tests were
performed to verify a significant difference in the UTAUT scores before and after the human-robot
interaction. T-test was chosen because it is not affected by the size of the sample, and its validity was
supported by the approximately normal distribution of the differences between the paired pre- and
post-interaction scores, the type of variable and the absence of outliers in the differences between the
two dependent samples.

5. Results Analysis

In this section, we present and analyse the results of our test by firstly considering the impact of
personality on the scores of the psychometric tests (both paper and pencil and administered by the
robot). We then analyze such values concerning the UTAUT results before and after the interaction
with the robot. Finally, we discuss the effect of empathy.

5.1. Descriptive Statistics: NEO-PI-3, Empathy, and Eye Test

Figure 4 shows average global scores of the NEO-PI-3 personality factors. Table 1 reports the
mean and standard deviation of the sub-factors for each personality dimension. The average of the
Eyes test is 22.67 (range = 16–29; SD = 3.49) and the average of EQ is 45.14 (range = 35–61; SD = 8.44).
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Figure 4. Average global scores of NEO-PI-3 personality factors.

Table 1. Mean and standard deviation for sub-factors of each personality dimension.

Neuroticism avg std Extraversion avg std

Anxiety 24.94 4.83 Warmth 30.84 5.42
Hostility 18.26 4.96 Gregariousness 21.21 6.29
Depression 22.36 5.77 Assertiveness 22.68 5.43
Self-consciousness 20.15 6.41 Activity 24.10 3.97
Impulsiveness 22.63 5.17 Excitement Seeking 21.15 5.70
Vulnerability to Stress 19.94 5.39 Positive Emotion 24.31 6.85

Openness to experience avg std Agreeableness avg std

Fantasy 25.00 7.00 Trust 24.94 4.62
Aesthetics 25.47 5.54 Straightforwardness 29.42 4.23
Feelings 26.63 3.84 Altruism 31.89 5.34
Actions 22.73 4.20 Compliance 20.78 5.19
Ideas 23.47 5.41 Modesty 26.57 5.16
Values 23.36 4.80 Tendermindedness 32.63 3.86

Conscientiousness avg std

Competence 30.21 3.90
Order 28.00 7.34
Dutifulness 31.84 3.65
Achievement Striving 26.42 5.64
Self-Discipline 29.68 4.94
Deliberation 28.84 4.51

5.2. Descriptive Statistics: ACE-R and Robotic Assessment

The results of the paper and pencil administration of the ACE-R resulted in a mean total score of
90.42 (range = 78–96; SD = 4.17). The automatic scoring for the robotic test gave a global mean score
of 13.74 (range = 7–20; SD = 3.43), which, after the professional revision of the data collected by the
robot, was increased to 21.16, which is the mean of the supervised global score for the robotic cognitive
assessment (range = 13–27; SD = 3.98). Table 2 shows the results for each subset of the supervised and
automatic subsets scores.
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Table 2. Supervised and automatic subsets scores.

Automatic Supervised

Subset Avg Min Max Std Avg Min Max Std

Visuospatial 0.53 0 1 0.51 3.42 0 5 1.43
Naming 2.68 1 3 0.67 3.00 1 3 0.00
Attention 1.42 0 3 1.07 4.16 1 6 1.34
Language 1.74 0 3 0.93 2.05 1 3 0.78
Abstraction 1.37 0 2 0.68 1.16 0 2 0.77
Delayed Recall 2.74 0 5 1.49 2.68 0 5 1.73
Orientation 3.26 2 5 0.93 4.79 3 6 0.92

5.3. Correlations among Cognitive Scores and Personality Domains

The relationships between traditional/robotic cognitive assessments and NEO-PI-3 personality
domains were investigated via Spearman correlations (see Table 3). The only strong and significant
relationship was found between the openness to experience dimension and the robotic automatic
score (ρ = 0.58; p < 0.01). Going deeper, openness to experience strongly and significantly correlated
with the robotic automatic language sub-test (ρ = 0.52; p < 0.05). In addition, the automatic score
positively correlated with the sub-factors of openness, specifically the “fantasy” (r = 0.51; p < 0.05),
the “ideas” (r = 0.50; p < 0.05) and the “values” (r = 0.67; p < 0.01). This positive association between
openness to experience and the cognitive test performance on robot-assisted MoCA might indicate
that this specific trait can play a relevant contribution in increasing the performance of elderly people
when a neuro-psychological test is administered by a humanoid robot. This finding could be further
explained considering that openness is a personality domain related to the tendency to be receptive to
new ideas and experiences. Indeed, social and physical interaction with a social robot may represent
a novel experience for elderly participants. In other words, the correlation between the automatic
scoring and openness to experience suggests that a positive attitude toward the novel technology may
facilitate the unsupervised application of the robotic instrument for cognitive assessment. Moreover,
this specifically highlights the importance to effectively design the multi-modal interfaces of the robot
for the elderly, because it could not only facilitate those who are not inclined to use the social robot, but
also favour those who want to use it. The present results might also suggest that better performance
on cognitive tests is related to the tendency of having a vivid and active imagination contributing to
enrich their lives, too the development of new ideas, even unconventional ones.

Table 3. Spearman correlations among global scores and NEO-PI-3 personality domains.

Automatic Score Supervised Score ACE-R

Neuroticism −0.32 −0.22 −0.21
Extraversion 0.37 −0.02 0.09
Openness ** 0.58 0.44 0.34
Agreeableness 0.12 0.15 −0.14
Conscientiousness −0.08 −0.32 −0.08

** p < 0.01.

Moreover, the robotic automatic attention subtest strongly and significantly correlates with
extraversion (r = 0.63; p < 0.01), and the robotic automatic naming subtest with neuroticism (r = 0.47;
p < 0.05). No other significant correlations involving personality factors were found.

Linear Regression Analysis

We performed a linear regression analysis to confirm the relationship between personality
domains and robotic automatic score. As shown in the previous section, openness to experience was
the only factor that significantly correlated to the robotic automatic score. Therefore, we considered
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this domain as the only independent variable (prediction) for the regression analysis, which resulted
in the relation shown in Table 4, whereas the dependent variable is the automatic score of the robot-led
cognitive assessment. The regression analysis confirms that the openness to experience could facilitate
the interaction with the robot and therefore improved the accuracy of the automatic score calculated
without human supervision.

Table 4. Linear regression model.

Automatic Score (Dependent)

Personality Factor (Predictor) R2 β t p-Value

Openness to experience 0.394 0.632 3.331 < 0.01

5.4. UTAUT before and after the Interaction

First, we evaluated the reliability of the UTAUT questionnaire through the Cronbach’s alpha
analysis evaluated for each of the 12 constructs. Then, we presented the descriptive statistics where:
average, scores, minimum, maximum, standard deviation values are shown, respectively, for the
UTAUT responses before and after the interaction with the robot. Finally, we computed the parametric
statistical t-test on the UTAUT scores collected before and after the interaction with the robot. The test
compares the means that are from the same individual in two different times (e.g., pre-test and post-test
with the intervention of the robotic psychometric tool between the two-time points). The purpose of
the test is to determine whether there is statistical evidence that the mean difference between paired
observations on a particular outcome is significantly different. Additionally, we analyzed the possible
correlation between the UTAUT and the EQ-Eye Test to evaluate the emotional aspects of participants
when interacting with the robot.

5.4.1. Cronbach Alpha (CA) Analysis on the UTAUT Sub-Scores (before and after the Tests)

Before starting the analysis of the collected data, we computed the CA associated with the
subscales of the UTAUT test performed by the participants before and after the interaction with the
robot (see Table 5). We observed that the estimated CA was 0.946, which means that 95% was the
reliability of the composite score combining the 41 items submitted to the analysis, which corresponds
to the 41 scores of the UTAUT questions collected from participants before the interaction with the
robot. We thus calculated a composite score, where 95% percent of the variance inner score will be
considered what is called true score value or internally consistent reliable value.

The CA computed on the sub-scores of the UTAUT questionnaire filled by the participants after
the interaction with the robot presents the same high-reliability value. In particular, the CA was equal
to 0.938.

Table 5. Reliability statistics: Cronbach Alpha computed on UTAUT subscores before and after the
interaction with the robot.

UTAUT Cronbach’s Alpha (CA) CA on Standardized Items Number of Subjects

before 0.946 0.947 41
after 0.938 0.944 41

5.4.2. Descriptive Statistics: UTAUT Scores before and after the Interaction

UTAUT average constructs and their differences (before and after the interaction) are shown in
Table 6. In general, participants considered the robotic platform enjoyable and ease of use (high values
for PAD and PENJ). They had a fairly positive perception of the main characteristics of the robot, such
as adaptability, sociability (PS, SP), and usefulness, while the sense of trust and the social influence
of the robot were scored with lower values. In addition, the intention to use the technology and the
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facilitation conditions were scored with lower values. This could be due to the fact that participants
were not at all confident with robotic applications. Finally, the subjects showed moderate anxiety
(ANX) towards the robot before the interaction that increases a little bit after the interaction. Note that
an increased score in ANX corresponded to a decrease of perceived anxiety since this item is evaluated
with a reverse score.

Table 6. UTAUT before-after descriptive statistics and significance of paired sample t-test (statistically
significant differences are highlighted in bold).

Construct Before–After Confidence Interval 2-Tails
(Range)

of the Difference 95%

Before After AVG STD ERR Lower Upper t df ρ

ANX (0–20) 13.90 15.38 −1.476 3.140 0.685 −2.906 −0.047 −2.154 20 0.044
ATT (0–15) 11.90 12.14 −0.238 2.488 0.543 −1.371 0.894 −0.439 20 0.666
FC (0–10) 5.76 6.00 −0.238 1.179 0.257 −0.775 0.299 −0.925 20 0.366
ITU (0–15) 8.71 8.52 0.190 2.786 0.608 −1.078 1.459 0.313 20 0.757
PAD (0–15) 11.90 10.90 1.000 2.280 0.498 −0.038 2.038 2.010 20 0.058
PENJ (0–25) 19.76 20.76 −1.000 5.468 1.193 −3.489 1.489 −0.838 20 0.412
PEOU (0–25) 17.90 17.95 −0.048 3.263 0.712 −1.533 1.438 −0.067 20 0.947
PS (0–20) 14.71 15.00 −0.286 4.361 0.952 −2.271 1.699 −0.300 20 0.767
PU (0–15) 11.67 11.76 −0.095 3.491 0.762 −1.685 1.494 −0.125 20 0.902
SI (0–10) 6.67 6.71 −0.048 2.376 0.519 −1.129 1.034 −0.092 20 0.928
SP (0–25) 13.67 15.33 −1.667 5.607 1.223 −4.219 0.885 −1.362 20 0.188
TR (0–10) 6.48 6.33 0.143 2.762 0.603 −1.114 1.400 0.237 20 0.815

5.4.3. t-Test on the UTAUT Scores before and after the Interaction with the Robot

This analysis aims at investigating if the interaction with the robot affected the UTAUT results.
Specifically, we adopted a t-test analysis on paired samples of the UTAUT items collected before
and after the HRI in order to observe if the mean value of the UTAUT items computed before the
interaction with the robot is statistically significantly different from that of the items computed after
the interaction.

In Table 6, the results of the t-test are summarized. We could observe that there were no significant
differences about the scores of the UTAUT before and after the HRI test, except for the Anxiety (ANX)
value that increased after the interaction with the robot and the Perceived Adaptability (PAD) of the
robot form the user’s point of view that decreased after the interaction. In particular, we observed a
negative correlation (t = −2.154 with p < 0.05) between the ANX value before and after, and a weak
positive correlation (t = 2.010 with p = 0.058) between PAD before and after the interaction with
the robot.

5.4.4. Correlations among UTAUT Constructs and Cognitive Scores

Table 7 reports the correlations among the UTAUT constructs and the cognitive scores, which
showed that the supervised evaluation score for visuospatial capabilities and anxiety had a significant
moderate correlation. This could indicate that a high-level of anxiety when using a novel system could
increase user attention and improve cognitive test performance. Indeed, literature [68] shows that
a state of moderate anxiety has not a negative impact on cognition in elderly people, but rather it
can improve the selectivity of attention [69]. In practice, the interaction with a robot was an unusual
and novel situation for elderly participants, who could have some performance anxiety before the
beginning of the interaction and that decreases at the end, as shown by the slight increase in the
ANX construct of the UTAUT. This could also have facilitated the selectivity of attention [70] on
visuospatial tasks.
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Table 7. Spearman significant correlations among UTAUT results and cognitive automatic scores (A)
and supervised (S). VS: Visuospatial, ATN: Attention, DR: Delayed Recall.

UTAUT VS (S) VS (A) ATN (S) DR (S)

ANX 0.470 *
SP −0.551 *
ITU 0.474 *
TR −0.489 *

* p < 0.05

Of interest is the inverse correlation between trust and the supervised evaluation of attention.
This might indicate that the elderly with good attention capabilities may tend to do not follow the
instructions of the robot. Moreover, a moderate correlation of delayed recall (DR) with the supervised
evaluation of the intention of use (ITU) suggests that senior people with higher memory performance
could be more willing to use the robot system over a longer period. This more positive intention of the
participants might be associated with the idea that the technology can improve their memory, stimulate
learning of new information and help people to preserve their mind against age-dependent decline
as previously noted by Tanaka et al. [71]. In addition, the social presence (SP) and the visuospatial
automatic score (VS(A)) were inversely correlated, but, the automatic visuospatial scoring was highly
affected by the robot’s low performance in recognizing the subject’s drawings, so these results should
be interpreted cautiously.

5.4.5. Correlation of UTAUT with EQ and Eye Test

We found a significant but negative correlation between the score on the Eyes test and Perceived
Sociability (PS) subtest of the UTAUT recorded after interaction with the robot (rho = −0.507; p = 0.019).
This result might indicate that after a direct social interaction with the robot, people with high levels
of emotion recognition (evaluated by the Eyes Test) perceive the robot as not social and not living
machine. Moreover, note that the Pepper robot does not have the capability to express emotions by
face and eye modifications. This could have an impact on this result.

However, contrariwise, we found a significant and positive correlation between EQ score and
Perceived Sociability (PS) and Social Presence (SP) subtests of the UTAUT recorded after interaction
with the Robot (rho = 0.492, p = 0.024; rho = 0.453, p = 0.039, respectively). The present results suggested
that people who perceived themselves as with high levels of empathy tended to perceive the robot as a
social agent capable of performing sociable behavior and perceiving the person.

5.5. Limitations

This study may have some limitations, also related to the small number of participants.
However, this is a common limitation of older people to visit the research labs for experiencing
the robotic systems.

The difference between the instruments administered by the psychologists (ACE-R) with respect
to the one administered by the robot could affect our results because of their different targets (ACE-R is
focused on dementia, while MoCA is generically for MCI). However, several comparative studies have
found that they have a similar performance in measuring the cognitive level, e.g., [72]. Moreover, it is
a standard method in validating a new psychometric test to use a different instrument that measures
the same variable [73]. Of course, it is expected that the result will not be identical but there should be
some differences like those we observed in our analyses.

Finally, the Hawthorne Effect, also known as the observer effect, which supposes the alteration of
subjects’ conduct, because of their awareness of being observed, may have an impact on the subject’s
performances during the tests as well as on their evaluation of the interaction. However, by analyzing
the subjects’ behaviors in the video, we noted a natural and relaxed attitude. Indeed, during our
experiments, two participants cheated by writing down the words that should have been recalled
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later. This, on the one hand, suggests that the Hawthorn effect does not influence all experimental
conditions and participants, and on the other hand draws the attention towards the investigation of
possible cheating behaviour during the robot assessment.

6. Conclusions

This article presented an approach to cognitive assessment that makes use of social robots
to administer psychometric tests and collect the data for the assessment via a pre-programmed
human-robot interaction. In particular, the investigation focused on the factors that might influence
the human-robot interaction and user performance. The approach was tested in a simulated home
environment by elderly participants, who (N=19) completed both the same test (MoCA) with the robot
and a human assessor, in the standard paper and pencil modality. The participants also completed
a personality test (NEO-PI-3), the Eyes and EQ tests, and filled a questionnaire aimed at investigating
the UTAUT factors.

The analysis of the results showed that the Openness to Experience personality trait has a positive
influence on the performance obtained during the interaction with the robot, and in particular in
the automatic MoCa evaluation as performed by the robot. Thus, while the interaction with a robot
may represent a novel experience for elderly people, in the case of subjects with a high openness trait
this can facilitate the unsupervised application of the robotic instrument for cognitive assessment.
Moreover, neuroticism and extraversion correlate respectively with the automatic evaluation of the
naming and attention tasks.

No statistically significant differences were found with respect to the UTAUT evaluation before
and after the interaction with the robot. The only exception is for the anxiety construct that slightly
increases after such first and novel interaction with the robot, so leading to a decrease in the perceived
anxiety after the interaction. Indeed, it has a moderate correlation with the evaluation of visuospatial
capabilities. This could indicate that a high level of anxiety experienced before using a novel system
could help cognitive test performance, but it requires a further investigation to assess the effect on
long-term interaction.

As expected, empathy has an impact on user acceptance. In particular, the results of the Eyes and
EQ tests both significantly correlate with the UTAUT results of the Perceived Sociability (PS) of the
robot after the interaction. In detail, EQ scores directly correlated with Perceived Sociability and Social
Presence meaning that the users still perceived the robot as a social agent capable of performing social
behaviors. However, Pepper’s lack of a face probably caused a negative correlation between PS and
the Eyes test.

In conclusion, the results of the present study suggest designing a novel psychometric test that
enhances the strengths and compensates for the weaknesses of the use of a social robot in cognitive
assessment. This new test should be validated in new trials with larger samples and for a longer time
also to provide further evidence and insights about the practical use of this new technological tool in
the clinical context. Indeed, in future work, we will further explore the use of the most advanced AI
Cloud services, which demonstrated to be beneficial to improve the automatic scoring of the tests [10].
The use of cloud services will enable automated storage and remote analysis by doctors. Therefore,
this will save time for both patients and doctors and allow increasing the number of people that have
access to mental health services.

Furthermore, future work should focus on a new psychometric instrument, which should be
created and tailored to be administered by social robots and evaluated by artificial intelligence
technologies. To fully take advantage of the opportunities given by these novel technologies, the new
system should be able to proactively engage the user, adapt to their technological level, and rely less
on speech recognition (because it not fully reliable at the moment). The novel instrument should
be co-designed with experts, refined with user evaluation feedback, then validated via clinical trials
with longitudinal study designs (e.g., administration of the instrument every 6 months to monitor
the subject’s cognitive condition). Comparisons with alternative computerised solutions should be
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performed, also considering user attitudes toward technologies along with cultural components and
differences in social habits.
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Abbreviations

The following abbreviations are used in this manuscript:

SAR Social Assistive Robots
ASD Autistic Spectrum Disorder
MoCA Montreal Cognitive Assessment
ACE-R Addenbrooke’s Cognitive Examination Revised
HRI Human-Robot Interaction
NEO-PI-3 NEO Personality Inventory
EQ Empathy Quotient
ET Eye Test
UTAUT Unified Theory of Acceptance and Use of Technology
MCI Mild Cognitive Impairment
ANX Anxiety
ATT Attitude
FC Facilitating conditions
ITU Intention to use
PAD Perceived adaptability
PENJ Perceived enjoyment
PEOU Perceived ease of use
PS Perceived sociability
PU Perceived usefulness
SI Social influence
SP Social Presence
TR Trust
CA Cronbach Alpha coefficient
VS Visuospatial
ATN Attention
DR Delayed Recall
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