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PERFORMANCE OF THE SMALLEST-VARIANCE-FIRST RULE

IN APPOINTMENT SEQUENCING

MADELON A. DE KEMP, MICHEL MANDJES, NEIL OLVER

Abstract. A classical problem in appointment scheduling, with applications in health care,

concerns the determination of the patients’ arrival times that minimize a cost function that

is a weighted sum of mean waiting times and mean idle times. One aspect of this problem is

the sequencing problem, which focuses on ordering the patients. We assess the performance

of the smallest-variance-first (svf) rule, which sequences patients in order of increasing

variance of their service durations. While it is known that svf is not always optimal, it

has been widely observed that it performs well in practice and simulation. We provide a

theoretical justification for this observation by proving, in various settings, quantitative

worst-case bounds on the ratio between the cost incurred by the svf rule and the minimum

attainable cost. We also show that, in great generality, svf is asymptotically optimal, i.e.,

the ratio approaches 1 as the number of patients grows large. While evaluating policies by

considering an approximation ratio is a standard approach in many algorithmic settings, our

results appear to be the first of this type in the appointment scheduling literature.

Subject classification. Health care: appointment scheduling. Scheduling: stochastic

appointment sequencing. Optimization: approximation algorithm.
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1. Introduction

Setting up appointment schedules plays an important role in health care and various

other domains. The main challenge lies in efficiently running the system, but at the same

time providing the customers an acceptable level of service. The service level can be expressed

in terms of the waiting times the customers are facing, and the system efficiency in terms of

the service provider’s idle time. The problem of generating an optimal schedule is generally

formulated as minimizing a cost function (or simply “cost”) that is a weighted average of the

expected idle time and the expected waiting times. As most literature on this topic focuses

on applications in health care, we refer throughout this paper to customers as patients, and

to the server as the doctor.

The problem of scheduling appointments can be split into two parts: one needs to

determine the amount of time scheduled for each appointment, and one needs to determine

in which order the patients should arrive. These problems are usually referred to as the

scheduling problem and sequencing problem, respectively. This paper will primarily focus on

the sequencing problem (but also includes results on the combined sequencing and scheduling

problem), in a context with a single doctor seeing a sequence of patients. We impose the

common assumptions that the service times of the patients form a sequence of independent

random variables, while they arrive punctually at the scheduled times (which we will refer to

as epochs). In this setting, a variety of techniques is available that determines for a given

order the optimal arrival epochs; see, e.g., [2, 25] and references therein. However, much less

is known about the efficient computation of “good” sequences. Already for a relatively modest

number of patients, the number of possible sequences is huge, thus seriously complicating the

search for an optimal order. An appointment scheduling review paper from 2017 [1] states

that the optimal sequencing problem is one of the main open problems in the area:

“[...] one of the biggest challenges for future research is to find optimal (or

near-optimal) solutions to more realistic appointment sequencing problems.”

A number of papers consider the sequencing (or combined sequencing and scheduling)

problem and develop various stochastic programming models for it [3, 10, 27, 29]. However,

the resulting optimization problems are very difficult to solve. Variants of the problem have

been shown to be NP-hard [24, 29], indicating that this difficulty is inherent.

In a popular alternative approach one considers simple heuristics for the sequencing

problem. The most frequently used heuristic is to order the patients by the variance of their

service times, from smallest to largest. Throughout this paper we refer to this sequence

as the svf (smallest-variance-first) sequence. The intuition for using the svf sequence is
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that an unusually long service time in the beginning could cause many later patients to

have to wait, and the svf sequence aims to reduce the risk of this occurring. An additional

appeal lies in the fact that svf is simple to implement, as it only requires knowledge of

the variances of the service times. Simulation experiments have revealed that the svf rule

typically performs remarkably well. In some cases it can be formally shown to be optimal;

for instance (imposing some distributional assumptions) in the case of two patients [14, 39].

Recently, however, Kong et al. [24] provided instances showing svf need not be optimal,

even for cases involving relatively simple service times (e.g., uniform or lognormal). Despite

the svf sequence appearing promising in simulations, little is known about its theoretical

performance, or of any other simple heuristic for that matter.

In this paper, we propose a new direction of research for the sequencing problem: finding

sequences that provably perform well. Instead of finding an optimal sequence, such research

aims at finding performance bounds on easily-computed sequences. Considering previous

research, the svf sequence is the obvious candidate for such an easily-computed and well-

performing sequence, and will therefore be our focus. The precise quantity of interest to us

will be the ratio of the cost of the schedule coming from the svf sequence, and the cost of

the schedule coming from the optimal sequence.

Our main goal in this paper is to prove upper bounds on this ratio – known as the

approximation ratio – in various settings. This direction of study is very standard in the

algorithmic community when considering intractable (NP-hard) problems, for example in

machine scheduling (see [16, 17, 35] and references therein). However, it has not been

studied in the appointment sequencing context. Note that for typical problem instances the

svf sequence could perform significantly better than suggested by an upper bound on the

approximation ratio, as the bound must also hold for worst-case instances.

1.1. Main contributions. In the first part of the paper we concentrate exclusively on the

effect of the sequence, using the simplest choice of schedule: each patient is assigned a slot of

length equal to its mean service time. In other words, the arrival time of any patient is set

equal to the sum of the mean service times of all preceding patients. This is certainly not

the optimal solution to the scheduling problem, in the sense of minimizing the cost function

introduced above, but it has the advantage of being very simple and easily applicable, and

also completely independent of the choice of tradeoff in the cost function between doctor idle

time and patient waiting time. Owing to these attractive properties, this “mean-based” type

of schedule is a commonly used approach in practice, as was stated in, e.g., the survey paper

[1] and in [12].
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We start, in Section 2, by arguing that without any restrictions on the service-time

distributions, no bound on the approximation ratio of svf is possible, both under mean-based

schedules and under optimally-spaced schedules (i.e., schedules in which the arrival epochs are

chosen so as to minimize the cost function). We do so by constructing an example involving

only two patients, but in which the service-time distributions are rather artificial. Then

we present the ordering assumption on the service-time distributions that will be required

for most of our results. Importantly, a large class of distributions meets this assumption,

including e.g. the exponential distribution, but also the lognormal distributions that are

frequently used in the health care context (such as the ones identified in [6]).

For the mean-based scheduling rule, we have performed an extensive set of numerical

experiments for exponential and lognormal service time distributions, to gain insight into the

performance of the svf rule for typical problem instances. These experiments indicate that

the svf sequence performs very well for these distributions, with approximation ratios being

below 1.01. However, an example at the start of Section 3 indicates that there are instances

that are covered by the ordering assumption where the approximation ratio is 1.52, implying

that it is not possible to prove a better bound than 1.52 if this assumption is in place.

Section 3 focuses on the mean-based scheduling rule. Under the ordering assumption we

prove that the approximation ratio of svf is at most 2 for symmetric service-time distributions,

and at most 4 in general. In other words, we show that for all instances (i.e., for all numbers

of patients and all service-time distributions satisfying the assumption imposed) the svf cost

is at most four times the optimal cost. We also consider two special cases:

• Service times are evidently nonnegative, but one could consider the situation that

normal distributions are used as an approximation of the actual distributions of

service times. In Section 3.2, we prove that then the approximation ratio is at most

4(
√
2− 1) ≈ 1.6569. While we do not believe that our result here is sharp, it indicates

that the performance of svf for well-behaved service-time distributions is most likely

substantially better than suggested by the bounds 2 and 4 mentioned above.

• In Section 3.3 we bridge the gap between the upper bound of 2 for symmetric

distributions and the general upper bound of 4, by developing a method that isolates

the effect of asymmetry. For the lognormal distributions fitted to real data in [6], this

method results in an approximation ratio of at most 3.43.

The problem of finding the optimal sequence becomes increasingly difficult as the number

of patients grows larger, and thus the need for considering heuristics such as the svf rule is

more important when a substantial number of patients is involved. In Section 4, we show for

mean-based schedules that as the number of patients grows large, the approximation ratio
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tends to 1. This result requires only a very weak assumption on the service-time distributions

(the ordering assumption is not needed here). The important practical implication of this

result is that svf is close to optimal in settings where the number of patients is substantial.

In Section 5 we shift our attention to the performance of svf when optimally-spaced

schedules (i.e., with arrival epochs minimizing the cost function), rather than mean-based

schedules, are being used. In this setting, our numerical experiments indicate that the svf

sequence tends to be optimal for exponential and lognormal service time distributions; we do

however present an example satisfying the ordering assumption in which svf is no longer

optimal.

We proceed by proving bounds on the approximation ratio of the svf rule for the

combined sequencing and scheduling problem. Here, we wish to compare a heuristic for this

combined problem to the overall optimal schedule, over all possible sequences and schedules.

Observe that the simple mean-based scheduling rule may in general lead to high cost, because

waiting times could easily propagate. We therefore consider a simple alternative scheduling

rule, suggested by Charnetski [8]: the slot assigned to a patient is equal to its mean service

time, plus some multiple α of the standard deviation of its service time (where this α is

optimized). Again under some assumptions, we show that this scheduling rule, combined

with the svf sequencing rule, yields a cost that is (relative to the optimal cost) off by at

most a constant factor. Because of its frequent use in health care contexts [6, 22], we pay

special attention to the case of lognormally distributed service times. Using a slightly different

scheduling heuristic (the interarrival time being a multiple of the mean service time), we find

an upper bound on the approximation ratio. Applying this result to the data in Çayırlı et

al. [6], we find an upper bound of 2.90 in the case that in the cost function the waiting and

idle times are equally important.

We finish Section 5 by giving an example to demonstrate that for optimally-spaced

schedules the svf sequence is no longer asymptotically optimal as the number of patients

tends to infinity, in contrast to the result for mean-based schedules that was presented in

Section 4.

1.2. Further related work. We proceed by providing an account of the related literature,

without attempting to give a full overview; for more extensive reviews on the appointment

scheduling and sequencing literature, we refer the reader to, e.g., Ahmadi-Javid et al. [1],

Çayırlı and Veral [5], and Gupta and Denton [15].

As we mentioned, Kong et al. [24] gave examples showing that svf is not in general

optimal. In some very specific cases, optimality of svf has been demonstrated. For only
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two patients, the svf sequence is optimal when the service times are both exponentially

distributed or both uniformly distributed [39], or more generally, when the two service times

are comparable according to a certain convex ordering [14]. For three patients, Kong et

al. [24] find sufficient conditions for the svf sequence to be optimal, when the time scheduled

for each appointment is equal to the mean service time. (We have verified that this result

can be extended to four patients using the same methods.)

Kemper et al. [19] analyze a sequential optimization approach, meaning that the arrival

time of a patient is optimized without taking into account its impact on later patients. They

show that under this rather different notion of optimality, and if the service times come from

the same scale-family, then svf does provide the best ordering.

One line of research focuses on comparing various sequencing heuristics (including svf)

through simulation. Denton et al. [11] consider a model similar to ours, and discuss the

effectiveness of a number of simple sequencing heuristics using simulation, based on real

surgery data. The svf heuristic performed best of all the heuristics they considered. Mak

et al. [27] consider a model where waiting time costs may be different for different patients;

by relying on tractable approximations, they also find that svf performs well. Klassen and

Rohleder [22] and Rohleder and Klassen [33] consider an appointment scheduling model where

not all patient information is known in advance; rather, patients must be scheduled as they

call in to make an appointment (and so without information about patients who call later).

Once again, it was empirically found that it worked best to put patients with low-variance

service times early in the schedule.

A number of papers model variants of the combined sequencing and scheduling problem as

stochastic integer or linear programming problems. Solving these programs is very challenging

however, and generally exact results were only obtained for small instances. Works along these

lines include Denton and Gupta [10], Mancilla and Storer [29] and Berg et al. [3]. For larger

instances, it was necessary to resort to heuristics such as svf for the sequencing problem.

We mention Vanden Bosch and Dietz [37] who propose instead a local search heuristic to

iteratively improve the sequence by finding pairs of patients who can be swapped to reduce

the cost.

There are also a number of papers which take a robust optimization approach [23, 28, 30].

Here, instead of working with explicitly given service-time distributions, the goal is to find a

schedule minimizing the worst-case expected cost given only that the distributions meet certain

constraints (such as certain given moments). The main advantage of robust optimization is

that only the constraints are needed rather than full distributional information. Note the
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difference with our approach: robust optimization minimizes the cost of solution for the worst-

case distributions satisfying the constraints, while our approach bounds the approximation

ratio. The bound on the approximation ratio indicates the performance compared to optimal

for any problem instance. In contrast, a robust optimization solution might not be anywhere

near optimal for a typical problem instance, but will be good for the worst-case instances.

Robust optimization results and bounds on approximation ratios could thus be seen as

complementary results.

Among the works on robust optimization, that by Mak et al. [28] is most relevant to

us, as they prove (under mild assumptions) that in their framework svf is optimal. In their

setup, the joint distribution of the service times could be any distribution matching known

moments for individual service times (e.g., means and variances). However, the worst-case

distributions corresponding to the optimal interarrival times are typically highly correlated;

these results do not carry over to a setup in which independence is assumed. Kong et al. [23]

consider a model in which not only the means and variances but also the covariances are

specified. However, only the scheduling problem is discussed, and sequencing is not taken

into account. Mittal et al. [30] discuss another robust model, in which each service time can

take any value in a given interval. They observe that a (1 + ǫ)-approximation algorithm for

the combined scheduling and sequencing problem can be obtained, for any ǫ > 0.

Finally, we would like to point out the relation with the area of machine scheduling

(see the book by Pinedo [31] for more background). The main difference between machine

scheduling and appointment scheduling is that in the former the arrival times of the jobs

(being the patients in our setting) are given, while in the latter these are decision variables.

The machine scheduling problem that is most closely related to the setup that we consider,

can be found in Guda et al. [13]. In the problem considered there, the due dates and sequence

of jobs are to be decided, in order to minimize a weighted average of expected earliness and

tardiness around the due dates. It is shown that the svf rule is optimal, under a specific

assumption on the service times of the jobs. It should be noted, though, that in the model

considered in Guda et al. [13] all jobs are present from the start, implying that there is no

idle time. Compared to our model, this greatly simplifies the evaluation of the cost function,

thus facilitating finding an optimal solution.

2. Model and preliminaries

Throughout this paper we consider a problem instance with n patients, numbered 1 up

to n. We denote the service time of patient i in this problem instance by Bi, which has mean

µi and variance σ2
i ; we assume that B1, . . . , Bn are independent random variables.



8 MADELON A. DE KEMP, MICHEL MANDJES, NEIL OLVER

As pointed out in the introduction, one should distinguish between the scheduling

problem and the sequencing problem. The sequencing problem, on which we primarily focus,

is to decide which patient is assigned which appointment slot (given a certain scheduling

rule). The sequence is denoted by a permutation τ ∈ Sn (where Sn denotes the set of all

permutations on {1, . . . , n}). The value τ(i) will denote the index of the patient that is

assigned to appointment slot i. The scheduling problem is to decide the interarrival times

between patients, given the sequence in which they arrive. We use xj to denote the interarrival

time between patient j and the next patient, i.e., the length of the appointment slot reserved

for patient j. The vector x = (x1, x2, . . . , xn) will be referred to as the schedule.

2.1. Performance metrics. We proceed by introducing the cost function we work with in

this paper, which is based on the patients’ waiting times and the doctor’s idle times. Let Wi

denote the waiting time of the patient in appointment slot i. Let Ii be the idle time before

the start of appointment slot i after the previous patient has been served. Given a sequence τ

and interarrival times xi, the waiting times and idle times satisfy the Lindley recursions [26]:

Wi+1 = (Wi +Bτ(i) − xτ(i))
+, Ii+1 = (Wi +Bτ(i) − xτ(i))

−, (1)

where we use the compact notation x+ := max{0, x} and x− := max{0,−x}.
We use a parameter ω ∈ (0, 1) to indicate the relative importance of idle time and

waiting time. As a cost function, we seek to minimize

Cω(τ,x) := ω
n∑

i=1

EIi + (1− ω)
n∑

i=1

EWi, (2)

a weighted average of the expected total idle time and expected total waiting time. Observe

that this cost function depends on the sequence τ , on the schedule x, and on the patient

service-time distributions B = (B1, . . . , Bn). We generally suppress the dependence on B,

but we may write Cω(B, τ,x) if we wish to be explicit. As an aside, we mention that an

approach to estimate ω in a practical context can be found in [32].

Throughout this paper, without loss of generality we let the patients be indexed such

that σ2
1 6 σ2

2 6 . . . 6 σ2
n. The svf sequence is then the sequence given by the identity

permutation id given by id(i) = i, which we compare with the optimal sequence, i.e., the

sequence that minimizes (2). To compare these sequences, we study the ratio between the

cost functions under the svf sequence and the optimal sequence. If this ratio is close to 1,

then this is evidence that the svf sequence performs well.

In this paper we specifically focus on two settings. In the first place we consider the

performance of svf for mean-based schedules, which are given by x = µ. We then consider
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the approximation ratio

̺ω(B) :=
Cω(B, id,µ)

min{Cω(B, τ,µ) : τ ∈ Sn}
.

We will write just ̺ω when the service-time distributions under consideration are unambiguous.

In the second place, we consider the performance of svf for optimally-spaced schedules. In

this context we compare the svf sequence id along with a given schedule x with the optimal

combination of sequence and schedule (i.e., a sequencing τ and schedule y that minimize the

cost function). This means that here we consider the approximation ratio

rω(B,x) :=
Cω(B, id,x)

min{Cω(B, τ,y) : τ ∈ Sn,y ∈ Rn
+}

.

Once again, we will omit x and B when their choice is unambiguous.

The main objective of this paper is to prove, under specific assumptions, upper bounds

on ̺ω and rω. Such an upper bound then guarantees that the svf sequence always has a

cost function of at most such an upper bound times the optimal cost function. We also show,

under a mild condition, that ̺ω(B) converges to 1 as the number of patients tends to infinity,

thus proving that the svf sequence is asymptotically optimal when mean-based schedules are

used.

Remark 2.1. Service times are inherently nonnegative, but our framework (based on the

Lindley recursions (1)) carries over to situations where the Bi are allowed to take negative

values. This might be useful if the true distributions of service times can be approximated

using distributions that can take negative values (with some small probability), for example

normal distributions. If such distributions that can take negative values form a good fit to the

data in some application, the theoretical performance of the svf rule for these distributions

gives a meaningful indication for the performance of the svf rule in this application.

2.2. Preliminaries. We need the following well-known results concerning the waiting and

idle times. It follows by iterating the Lindley recursion (1) that Wk+1 is the maximum of a

random walk with steps Bτ(k) − xτ(k), Bτ(k−1) − xτ(k−1), . . . , Bτ(1) − xτ(1), that is,

Wk+1 = max



0,max





k∑

i=j

Bτ(i) − xτ(i) : j ∈ {1, . . . , k}







 . (3)

In the setting of mean-based schedules x = µ, we introduce the notation Xi := Bi − µi, and

the random walk

Sj :=

j∑

i=1

Xτ(k−i+1).
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Note that Sj also depends on k and τ , but we keep this dependence implicit to ease the

notation. We then find for the mean-based schedule that

Wk+1 = max{0, S1, . . . , Sk}. (4)

Note that (1) implies Wi+1 − Ii+1 = Wi + Bτ(i) − xτ(i). Summing over i we find the

identity

n∑

i=1

Ii +

n∑

i=1

Bi =

n−1∑

i=1

xτ(i) +Wn +Bτ(n), (5)

which corresponds to the total time until all n patients have been served (the “session end

time”). For a given schedule, this relation can be used to express the expected total idle time

in terms of the expected waiting time of the last patient. Therefore, we can focus on the

waiting times, and derive results for the idle time from (5).

The following example shows that, if one does not impose any conditions on the service-

time distributions, one can construct examples in which the approximation ratio is unbounded.

Example 2.2. Suppose we have two patients, and the service time of patient i is given by

Bi =





µi +
1
ai

with probability a2i

µi − 1
ai

with probability a2i

µi with probability 1− 2a2i ,

(6)

for some values µi > 0 and ai 6 1/
√
2. Then EBi = µi, and VarBi = 2, and so either of the

two possible sequences could be considered the svf sequence. We take the svf sequence to

be given by τ(i) = i; one can of course slightly perturb the distributions so that this is the

unique svf ordering.

Suppose we use the mean-based schedule given by x = µ. The cost function for the svf

sequence τ(i) = i is then

ωEI2 + (1− ω)EW2 = ωE(B1 − µ1)
− + (1− ω)E(B1 − µ1)

+ = ωa1 + (1− ω)a1 = a1.

In the same way, the cost function for the other sequence is equal to a2. If we take a1 to be

bigger than a2, we conclude ̺ω = a1/a2, which can be arbitrarily large. As a consequence, it is

necessary to impose assumptions on the service-time distributions in order to bound ̺ω. The

construction can easily be extended to one corresponding to any larger number of patients,

by introducing additional patients with deterministic service times. Therefore, this example

also shows that some assumption is necessary for the asymptotic result in Section 4.
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The example applies also when an optimally-spaced, rather than mean-based, scheduling

rule is used. Fixing ω = 1
2 , for two patients with service times as in (6), the cost function is

1
2E
(
Bτ(1) − xτ(1)

)−
+ 1

2E
(
Bτ(1) − xτ(1)

)+
.

By Lemma C.4, the xτ(1) that minimizes this cost function is given by xτ(1) = µτ(1), which is

the mean of Bτ(1). So the situation is unchanged, and also for the optimal scheduling rule no

bound on the approximation ratio can be found without imposing further assumptions.

Example 2.2 shows that it will be necessary to impose assumptions on the service-time

distributions in order to be able to bound the approximation ratio. Notice that the three-

point distributions used in the example can be considered as artificial, in the sense that they

substantially differ from distributions that are frequently used in the context of health care.

One would like to use an assumption under which the approximation ratio can be bounded,

but which does not rule out relevant, commonly used service-time distributions.

Not all service time distributions might be sufficiently comparable through their variance

alone. We will need the concepts of a convex ordering and dilation ordering on random

variables. More background on the convex ordering, dilation ordering and related concepts

can be found in [34].

Definition 2.3. The random variable A is said to be smaller in the convex order than the

random variable B if Eφ(A) 6 Eφ(B) for all convex functions φ : R → R for which the

expectations exist. This will be denoted by A 6cx B. If A− EA 6cx B − EB, then A is said

to be smaller than B in the dilation order, denoted as A 6dil B.

Note that A 6cx B implies A 6dil B, and A 6dil B implies VarA 6 VarB. Throughout

this paper, unless stated otherwise, we will make the following assumption on the service

time distributions.

Assumption 2.4 (dilation ordering). We have B1 6dil B2 6dil . . . 6dil Bn.

We remark that this is the condition under which [14] proves optimality of svf for

two patients. Note also that this assumption implies Var(B1) 6 . . . 6 Var(Bn). Examples

of instances satisfying this assumption include all Bi having exponential distributions (by

Theorem 3.A.18 in [34]), and all Bi having lognormal distributions such that both E[lnB1] 6

. . . 6 E[lnBn] and Var(lnB1) 6 . . . 6 Var(lnBn), as proved in Appendix D. The following

lemma, taken from [34], is useful when checking whether given random variables satisfy a

convex order.
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Lemma 2.5. The random variables A and B satisfy A 6cx B if and only if there exists a

coupling Â
d
= A and B̂

d
= B such that E

[
B̂
∣∣Â
]
= Â.

3. Bounds on performance under mean-based schedules

In this section we study ̺ω, the approximation ratio under the mean-based schedule. To

gain some insight as to what approximation ratio we can expect for typical problem instances,

we start by discussing the output of a series of numerical experiments, described in more

detail in Appendix E. It should be kept in mind that, as finding the optimal sequences in

principle requires comparing all n! candidates and is therefore computationally very expensive,

such experiments can only be done for relatively small values of n. We recall that this is also

the main reason why we study approximation ratios: computing the optimal sequence for

larger instances is prohibitively slow, which explains why it is useful to gain insight into the

performance of heuristics.

We considered exponential and lognormal service-time distributions. The exponential

distributions have the advantage of an efficiently computable cost function using the machinery

developed in [38]. For exponentially distributed service times the main conclusion is that the

svf sequence typically performs within 1% of optimal (̺ω 6 1.01). Lognormal distributions

are more realistic from a practical perspective [6, 22]. No exact computational scheme being

available, we resorted to a discrete-time approximation to evaluate the cost; see Appendix E for

more background on the implementation. In the experiments we performed the approximation

ratios were uniformly below 1.01.

The numerics discussed in the previous paragraph suggest that svf typically performs

very well. However, the service-time distributions featuring in the next example lead to a

much higher approximation ratio.

Example 3.1. Suppose the service time of patient i is given by

Bi =





m+ 1 with probability m/(m+ 1)

0 with probability 1/(m+ 1),

for i < n − 1, and Bn−1
d
= Bn

d
= KB1, for some parameters m and K. We set ω = 1. We

compare the svf sequence with the sequence τ given by τ(1) = n − 1, τ(n − 1) = 1 and

τ(i) = i for i 6= 1, n − 1. For n = 10 patients, m = 10 and K = 10 this results on a lower

bound of 1.29 on the approximation ratio ̺1. We can, however, obtain considerably higher

approximation ratios: for example for n = 50 000 patients, m = 500 and K = 5000 we

find that the approximation ratio is larger than 1.52. Further experiments revealed that

similar examples for even bigger values of n only marginally increase this lower bound. Note
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that this problem instance satisfies Assumption 2.4, the dilation ordering assumption. This

means that it is impossible to prove a better bound on ̺ω than 1.52 without imposing further

assumptions.

p

̺1

0.5 0.6 0.7 0.8 0.9 1
1

1.1

1.2

1.3

1.4

• • • • • • • • • • • •
•

•
•

•
• • •

•

Figure 1. The approximation ratio ̺1 as a function of the parameter p of Bernoulli random
variables. Each instance consists of 200 patients, with 198 of them having a Bernoulli
distributed service time with the probability to take the larger value being equal to p,
whereas the other two patients have a service time distributed as 50 times the same Bernoulli
distribution.

The distributions in Example 3.1 could be considered as quite extreme: they are two

point distribution that almost always take a value slightly larger than the mean, and very

rarely take a value much less than the mean. Our numerics indicate that this behavior seems to

be necessary to obtain a large gap between the performance of svf and the optimal sequence.

To further study the effect of such “skewness”, we performed the following experiment. We

evaluate the approximation ratio ̺1 for instances with n = 200 patients, with n− 2 of them

having a Bernoulli distributed service time with the probability to take the larger value being

equal to p, whereas the other two patients have a service time distributed as 50 times the

same Bernoulli distribution. Figure 1 shows the approximation ratio ̺1 as a function of p.

In this case we are able to compute the optimal sequence, despite the relatively large value

of n, due to the fact that many patients have the same service-time distribution, so that

the number of possible distinct sequences is drastically reduced. It can be seen that svf is

optimal for p 6 1/2, and then grows as p increases, until it decreases again for p very close to

one.

The above numerics suggest that svf performs very well with both exponential and

lognormal distributions. These distributions have tails only to the right, and not to the left.

If one “flips” the lognormal distributions, i.e., replace each service time Bi with −Bi, we can

obtain substantially larger approximation ratios; for one particular instance, we find 1.0345
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Theorem Assumptions on service time distributions Bound on ̺ω

3.3 dilation ordering and symmetry 2

3.4 dilation ordering 4

3.8 normal distributions 4(
√
2− 1) ≈ 1.66

3.11 dilation ordering between 2 and 4

Table 1. Summary of main results of Section 3

as opposed to 1.0086 (see Appendix E for more details). These examples suggest that some

measure of skewness is expected to be a key driver in whether svf performs near-optimally.

As this experiment intends to investigate the effect of skewness on the approximation ratio we

have not pursued using maximally realistic service times. Indeed, −Bi is not a realistic service

time as it is always negative. However, we can also use c−Bi instead of −Bi without affecting

the cost per sequence, and choose c so large that c−Bi will be positive with arbitrarily large

probability. Neglecting the probability mass c−Bi has on the negative numbers will not have

any substantial effect on the cost.

Now that we have developed some intuition on the performance of svf, we concentrate

in the rest of this section on obtaining upper bounds for ̺ω. This amounts to giving an upper

bound on the cost when using the svf sequence, and a lower bound on the cost that is valid

for any sequence, hence also for the optimal sequence. The waiting times and idle times

under the svf sequence will be denoted by W svf
i and Isvfi respectively, and the waiting times

and idle times under the optimal sequence will be denoted by W opt
i and Iopti .

The remainder of this section is structured as follows. In Section 3.1 we prove results

under rather general assumptions: Theorem 3.3 and Theorem 3.4. More specifically, these

theorems give bounds on the approximation ratio ̺ω, when we assume that the service times

are symmetrically distributed and follow a dilation order (Theorem 3.3), and when we only

assume that they follow a dilation order (Theorem 3.4). In Section 3.2 we consider the special

case of normally distributed service times. Theorem 3.8 gives an improved bound on ̺ω in

this case. In Section 3.3 we discuss a method for improving numerically upon the bound of

Theorem 3.4; informally, the more symmetric the service-time distributions, the closer the

resulting bound is to the value stated in Theorem 3.3. Table 1 provides a summary of the

results covered by this section.

3.1. General results. Recall that we impose Assumption 2.4 (the dilation ordering assump-

tion). For the bound on ̺ω that is presented in Theorem 3.3 we also make the following

assumption.

Assumption 3.2 (symmetry). The Bi have symmetric distributions around their mean.
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Examples of instances satisfying both the ordering and symmetry assumption include all

Bi having normal distributions, all Bi having uniform distributions and all Bi having Laplace

distributions. For all three examples, the ordering assumption follows from [34], Theorem

3.A.18. Note that Example 2.2 consists of symmetric service time distributions, so even under

the symmetry assumption it is necessary to impose the dilation ordering assumption in order

to obtain any bound on ̺ω.

In this section, we prove the following theorems. Recall that Example 3.1 discusses an

instance satisfying the dilation ordering assumption where ̺ω > 1.52.

Theorem 3.3. Under the dilation ordering and symmetry assumptions, we have ̺ω 6 2.

Theorem 3.4. Under the dilation ordering assumption, we have ̺ω 6 4.

A first key insight is that it suffices to prove bounds on EWk+1 for given k when the first

k slots are constrained to contain patients 1, . . . , k. This is made explicit in the next lemma.

Lemma 3.5. Let EW opt′

k+1 denote the expected waiting time of the patient in appointment

slot k + 1, under the sequence that minimizes this expected waiting time, subject to the

constraint that τ(i) 6 k for all i = 1, . . . , k, i.e. the first k patients are assigned to the first k

slots. Suppose EW svf
k+1/EW

opt′

k+1 6 ̺′ for all k. Then, under the dilation ordering assumption,

̺ω 6 ̺′.

Proof. Taking expectations in (5) and using that xi = µi, we find that
∑n

i=1 EIi = EWn.

Hence, the cost function (2) equals ωEWn + (1− ω)
∑n

i=1 EWi. Our goal is thus to bound

the ratio

̺ω =
ωEW svf

n + (1− ω)
∑n

i=1 EW
svf
i

ωEW opt
n + (1− ω)

∑n
i=1 EW

opt
i

. (7)

Now note that Wk+1 = max{0, S1, . . . , Sk} is a convex function in each of the Xi,

as it is the maximum of linear functions in Xi. Under Assumption 2.4 this implies that

EW opt
k+1 > EW opt′

k+1 , as each step Xi with i > k can be replaced by some Xj with j 6 k and as

Xj 6cx Xi this lowers the expected waiting time. Now

EW svf
k+1/EW

opt
k+1 6 EW svf

k+1/EW
opt′

k+1 6 ̺′,

and so also the ratio in (7) is bounded by ̺′, which completes the proof. �

The following lemma is a second key insight to be used in the proofs of both Theorem 3.3

and Theorem 3.4.
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Lemma 3.6. Under the symmetry assumption, the random variable Wk+1 is stochastically

dominated by |Sk|, and thus

EWk+1 6 E|Sk| = E|Xτ(1) +Xτ(2) + · · ·+Xτ(k)|.

Proof. Recall that we have Wk+1 = max{0, S1, . . . , Sk} from (4). Under the symmetry

assumption, the steps Xi of the random walk S have a symmetric distribution around zero,

and hence the same is true for the Si.

Let T (a) = inf{i : Si > a}, and note that P(Wk+1 > a) = P(T (a) 6 k). To bound this

probability, we look at the random walk reflected in a after T (a). This reflected process Ŝi is

defined by

Ŝi =





Si if i < T (a)

2a− Si if i > T (a).

(8)

We have ST (a) > a, so ŜT (a) = 2a − ST (a) 6 a 6 ST (a). As the Xi have symmetric

distributions, the increments of Si and Ŝi for i > T (a) have the same distribution. Therefore,

we see that Ŝi is stochastically dominated by Si, for every i. We conclude that P(Ŝk > a) 6

P(Sk > a) for all a.

Now note that Wk+1 > a implies that either Sk > a or Ŝk = 2a− Sk > a. As these are

disjoint events we now have

P(Wk+1 > a) = P(Sk > a) + P(Ŝk > a) 6 P(Sk > a) + P(Sk > a) 6 P(|Sk| > a).

This holds for any a > 0, so Wk+1 is stochastically dominated by |Sk|, as was claimed. �

Proof of Theorem 3.3. As Wk+1 = max{0, S1, . . . , Sk}, we have

Wk+1 > S+
k = (Xτ(1) + · · ·+Xτ(k))

+.

Note that τ(i) 6 k for all i 6 k when we consider EW opt′

k+1 , so now

EW opt′

k+1 > E(X1 + · · ·+Xk)
+. (9)

On the other hand, by Lemma 3.6,

EW svf
k+1 6 E|X1 + · · ·+Xk| = 2E(X1 + · · ·+Xk)

+
6 2EW opt′

k+1 .

As EW svf
k+1/EW

opt′

k+1 is now bounded by 2, Theorem 3.3 follows from Lemma 3.5. �

Proof of Theorem 3.4. Note that Lemma 3.5 and the lower bound (9) are valid without the

symmetry assumption being needed. We therefore only need an upper bound on EW svf
k+1.
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Let X ′
1, X

′
2, . . . , X

′
n have the same distributions as respectively X1, X2, . . . , Xn such that

all these random variables are independent. Let W ′
k+1 be the maximum of the random walk

with steps Xk −X ′
k, Xk−1 −X ′

k−1, . . . , X1 −X ′
1. As

E[Xi −X ′
i|Xi] = Xi,

we see using Lemma 2.5 that Xi 6cx Xi − X ′
i. Note that Wk+1 = max{0, S1, . . . , Sk} is a

convex function in Xi, as it is the maximum of functions linear in Xi. Therefore, each time

we replace a step Xi with a step Xi −X ′
i the expected maximum of the random walk will

increase, so EW svf
k+1 6 EW ′

k+1.

Now note that the steps Xi −X ′
i all have a symmetric distribution, so we can apply

Lemma 3.6 to find

EW svf
k+1 6 EW ′

k+1 6 E|X1 + · · ·+Xk − (X ′
1 + · · ·+X ′

k)|

6 2E|X1 + · · ·+Xk| = 4E(X1 + · · ·+Xk)
+
6 4EW opt′

k+1 .

As EW svf
k+1/EW

opt′

k+1 is now bounded by 4, the result follows from Lemma 3.5. �

Remark 3.7. In case the scheduled session end time equals the expected total service time,

the overtime reads

Wn+1 =
(
Wn +Xτ(n)

)+
,

which can also be included in the cost function. As such, overtime is handled similarly to

waiting time, and consequently the results of Theorems 3.3 and 3.4 remain valid when some

extra term cEWn+1 with c > 0 is added to the cost function.

3.2. Normally distributed service times. The results of Theorems 3.3 and 3.4 can be

strengthened for specific service-time distributions. One such result is the following.

Theorem 3.8. When the Bi are all normally distributed we have ̺ω 6 4(
√
2− 1).

In order to prove Theorem 3.8, we need the following two lemmas, giving stronger

bounds on EW svf
k+1 and EW opt′

k+1 . The proofs of these lemmas, that hold for any symmetrically

distributed service times, can be found in Appendix A.

Lemma 3.9. Under the symmetry assumption,

EWk+1 6 E
(
Xτ(1) + · · ·+Xτ(k)

)+
+ E

(
Xτ(1) + · · ·+Xτ(k−1)

)+
.
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Lemma 3.10. Under the symmetry assumption, for any ℓ,

EWk+1 >
1

2

(
E
(
Xτ(1) + · · ·+Xτ(k)

)+
+ E

(
Xτ(1) + · · ·+Xτ(ℓ)

)+

+ E
(
Xτ(ℓ+1) + · · ·+Xτ(k)

)+
)
.

Proof of Theorem 3.8. Note that normal distributions satisfy both the dilation ordering and

symmetry assumption. Now the sum X1 + · · ·+Xi again has a normal distribution, with

mean zero and variance Σ2
i := σ2

1 + · · · + σ2
i . For the svf sequence we now have, using

Lemma 3.9, that

EW svf
k+1 6

1√
2π

(Σk +Σk−1) . (10)

Now we still need an expression for a lower bound on EW opt′

k+1 . Let Σ̃2
i := σ2

τ(1)+· · ·+σ2
τ(i)

be the variance of Xτ(1) + · · ·+Xτ(i). From Lemma 3.10 it then follows that

EWk+1 >
1

2

(
Σ̃k + Σ̃ℓ +

√
Σ̃2
k − Σ̃2

ℓ

)
.

Recall that EW opt′

k+1 was the optimal expected waiting time when τ(i) 6 k whenever

i 6 k. Therefore, we have Σ̃k = Σk and σ2
k = max{σ2

τ(1), . . . , σ
2
τ(k)}. Now note that

Σk + Σ̃ℓ +

√
Σ2
k − Σ̃2

ℓ

is largest when Σ̃2
ℓ is as close to 1

2Σ
2
k as possible. As σ2

k is largest of the σ2
τ(i) with i 6 k, we

can always choose ℓ such that

1

2
Σ2
k−1 6 Σ̃2

ℓ 6
1

2
Σ2
k−1 + σ2

k.

This choice of ℓ provides us with the lower bound

EW opt′

k+1 >
1

2

1√
2π

(
Σk +

√
1

2
Σ2
k−1 +

√
1

2
Σ2
k−1 + σ2

k

)
,

valid for any sequence. Comparing with (10), we obtain

EW svf
k+1

EW opt′

k+1

6 2(Σk +Σk−1)

/(
Σk +

√
1

2
Σ2
k−1 +

√
1

2
Σ2
k−1 + σ2

k

)
.

As Σ2
k = Σ2

k−1 + σ2
k, this fraction only depends on the relative size of Σ2

k−1 compared to σ2
k.

Suppose that Σ2
k−1 = cσ2

k, for some c > 0. Then Σ2
k = (c+ 1)σ2

k, and the fraction becomes

2(
√
c+ 1 +

√
c)

√
c+ 1 +

√
1
2c+

√
1
2c+ 1

=: f(c).

It can easily be seen that f is increasing, and that f(c) → 4(
√
2− 1) as c → ∞.
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We now know that EW svf
k+1/EW

opt′

k+1 6 4(
√
2− 1) ≈ 1.6569. By Lemma 3.5 the same is

then also true for the cost function. This proves Theorem 3.8. �

3.3. Numerically improving the bound of Theorem 3.4. Under the dilation ordering

assumption, we have proved that ̺ω 6 4, and we also proved that ̺ω 6 2 when the service

times have symmetric distributions. This suggests that one can find an upper bound on ̺ω

between 2 and 4 for service-time distributions that have some degree of symmetry, but are

not fully symmetric.

Here we introduce a method to split the service time distributions into a symmetric and

a nonsymmetric part, thus isolating the effect of the asymmetry on the upper bound. This

can be used to numerically compute an upper bound on ̺ω (lower than 4, that is) for given

problem instances. In this section we do so for lognormal service time distributions that fit

real data in [6]. We still impose the dilation ordering assumption.

We introduce the method for continuously distributed service times to simplify the expo-

sition, noting that extending the method to non-continuous distributions is straightforward.

Suppose Xi has density fi(x). We set gi(x) := min{fi(x), fi(−x)}, hi(x) := fi(x)− gi(x) and

pi :=
∫
R
hi(x)dx. Then we let Ui be a random variable with density gi(x)/(1− pi). We let

Ai be a random variable, independent of Ui, with density hi(x)/pi. Let Ji be a Bernoulli

variable taking the value one with probability pi, independent of Ai and Ui. We thus have

Xi
d
= Ui(1− Ji) +AiJi.

Note that this construction is such that Ui has a symmetric distribution around zero. One thus

has that Ui corresponds to the symmetric part of Xi, whereas Ai to the nonsymmetric part.

Note that EXi = 0 and EUi = 0, so we must have EAi = 0. Let A′
i have the same distribution

as Ai, so that A′
i is independent of all the other random variables. Since E[A′

iJi | Ji] = 0, we

have

E
[
Ui(1− Ji) + (Ai −A′

i)Ji
∣∣Ui(1− Ji) +AiJi

]
= Ui(1− Ji) +AiJi.

By Lemma 2.5 we conclude

Xi 6cx Ui(1− Ji) + (Ai −A′
i)Ji.

As Wk+1 is a convex function in each of the Xi, we can then replace each Xi by this upper

bound in convex order to get an upper bound on EW svf
k+1. Using Lemma 3.6, we then find the

following upper bound:

EW svf
k+1 6 E|X1 + · · ·+Xk|+ E|A1J1 + · · ·+AkJk|. (11)
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Group Mean Standard deviation

Return 15.50 5.038

New 19.09 6.85

Table 2. Parameters of the lognormal distributions fitted by [6].

Note that the second term in the right-hand side of (11) can be numerically evaluated

to any desired level of precision, e.g. by simulation. The resulting upper bound can thus be

compared numerically to the lower bound EW opt′

k+1 > E(X1 + · · · +Xk)
+, for each k, valid

under the dilation ordering assumption. Combining the above with Lemma 3.5, this leads to

the bound given in the next theorem.

Theorem 3.11. Under the dilation ordering assumption, we have

̺ω 6 2 + 2max
{
E|A1J1 + · · ·+AkJk|/E|X1 + · · ·+Xk| : k = 1, . . . , n

}
. (12)

The more symmetric the service times and thus the random variables Xi, the smaller the

pi and hence also the upper bound in (12). When the service times are completely symmetric,

the asymmetric parts Ai will be zero, and we recover the upper bound of 2 of Theorem 3.3.

Note that the upper bound in Theorem 3.11 is much easier to numerically compute or

simulate than ̺ω itself, as for the latter one needs to go over all n! possible sequences to

find the optimal one. Also, this method can be used to find an upper bound on ̺ω for any

problem instance where the service times come from a finite set of distributions and an upper

bound on n is given, as illustrated in the next example.

Example 3.12. We base this example on the distributions fitted to health care data in

[6]. There, patients were divided in two groups: new and return patients. For both groups,

lognormal distributions were found as a good fit to the data used in the paper, with parameters

as shown in Table 2. We checked that problem instances coming from these two distributions

satisfy both E[lnB1] 6 . . . 6 E[lnBn] and Var(lnB1) 6 . . . 6 Var(lnBn), and therefore

satisfy the dilation ordering assumption. It was also mentioned that the doctor that provided

the data sees 10 patients per session.

We now consider 11 problem instances, each of them corresponding to n = 10 patients.

In the k-th instance k− 1 patients have the first lognormal service-time distribution, whereas

the remaining 11 − k patients have the other lognormal distribution, with k = 1, . . . , 11.

We compute the upper bound in (12) for each of these instances through simulation. Note

that we can simulate AiJi by first drawing a random instance of Xi, and then setting

Ai equal to Xi with probability hi(Xi)/fi(Xi) and equal to zero otherwise. Simulating
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1 000 000 random instances of X1, . . . , Xn then allows us to compute E|X1 + · · ·+Xk| and
E|A1J1 + · · ·+AkJk| for k = 1, . . . , n, and thus the upper bound in (12) for each of the 11

problem instances. Note that smaller problem instances are automatically included because

we compute E|X1 + · · · + Xk|/E|A1J1 + · · · + AkJk| for all k. We find that ̺ω 6 3.43 for

any problem instance consisting of at most 10 patients, with service times that follow one of

the two lognormal distributions. We thus conclude that in this example ̺ω 6 3.43 for any

problem instance.

4. Asymptotic optimality of svf under mean-based schedules

The problem of finding the optimal sequence gets increasingly difficult as the number

of patients grows large. In the numerical experiments described in Appendix E we could

only find the optimal sequence for up to 10 or 11 patients, but in some applications more

than 20 patients need to be scheduled in a session (see e.g. [22]). Therefore, we would like to

know how the approximation ratio behaves as n grows larger. In this section we assess the

performance of the svf sequence as the number of patients tends to infinity. Throughout this

section we assume that the schedule is mean-based: the time planned for each appointment

is equal to the corresponding mean service time. The goal in this section is to prove that the

svf sequence is asymptotically optimal as the number of patients tends to infinity, under a

weak assumption.

We consider the setting in which we are given, for each value of n, a vector Bn =

(Bn,1, Bn,2, . . . , Bn,n) of service-time distributions. For i 6 n, let µn,i and σ2
n,i denote the

mean and variance of Bn,i, and let Xn,i := Bn,i − µn,i for all i 6 n. Similarly, Wn,i, and In,i

are all with respect to the service-time distributions Bn, and an implicit fixed permutation

τ ∈ Sn. Note that Example 2.2 shows that ̺ω cannot be bounded without imposing some

assumption, even when n tends to infinity. We do not need Assumption 2.4 (dilation ordering

assumption) in this section. Instead, we impose the following assumption, similar to the

Lyapunov condition of the Lyapunov-version of the central limit theorem (CLT), concerning

the order of magnitude of the (2+ δ)-th moments of the service times. The difference between

our assumption and the conventional Lyapunov condition is the supremum over all n > k

and all sequences τ .

Assumption 4.1. We assume that there exists a δ > 0 such that, as k → ∞,

qk := sup
n>k,τ∈Sn

1
√∑k

i=1 σ
2
n,τ(i)

2+δ

k∑

i=1

E|Xn,τ(i)|2+δ → 0.

The main result of this section is the following.
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Theorem 4.2. Under Assumption 4.1, ̺ω(Bn) → 1 as n → ∞.

To obtain some intuition about why such a result is reasonable, consider normally

distributed service times. Fix some n and k 6 n (both large), and consider the waiting time

Wn,k+1 corresponding to some fixed permutation τ . Let (Sj)j6k be the random walk for which

Wn,k+1 is the maximum; so Sj =
∑j

i=1Xn,τ(k+1−i). Because the steps are normally distributed,

we can embed this random walk within a standard Brownian motion V (t). More precisely, we

can define the coupling Sj = V (θj), where θj :=
∑j

i=1 σ
2
n,τ(k+1−i). Assumption 4.1 then tells

us simply that no individual service time has a non-negligible fraction of the total variance, in

the large n limit. Thus the gaps θj+1 − θj between sample times become negligibly small in

comparison to the interval of interest, namely [0, θk]. So the maximum Wn,k+1 of the random

walk is very well approximated by the supremum of the Brownian motion on the interval

[0, θk].

This supremum is of course completely understood. By the reflection principle, we know

that sup06t6θk
V (t) has the distribution of the absolute value of a normal with variance θk

and mean zero. Since the svf ordering minimizes θk (simultaneously for all choices of k), it

is thus optimal in the limit.

Extending this intuition to general distributions and making it rigorous requires care.

The plan is to apply the reflection principle to the random walk, so that hopefully the

magnitude of the final position of the walk is a good estimate of the maximum of the

unreflected walk. More precisely, fix some value a > 0, and let T (a) denote the first step at

which the random walk (Sj)j6k reaches a (or T (a) = ∞ if this event does not occur). Now

define

Ŝj(a) =





Sj if j < T (a)

2a− Sj if j > T (a)

and S̃j(a) =





Sj if j < T (a)

2ST (a) − Sj if j > T (a);

cf. (8). So Ŝj(a) is the walk reflected immediately as it “crosses” a for the first time, and S̃j

the walk reflected from the first step after crossing a (see Figure 2).

The event that Wn,k+1 is at least a occurs precisely when T (a) is finite, which implies

that either Sk > a or Ŝk(a) = 2a− Sk > a. As these are disjoint events, we have

P(Wn,k+1 > a) = P(Sk > a) + P(Ŝk(a) > a);

this is along similar lines to the proof of Lemma 3.6. Note that the processes Ŝj(a) and

S̃j(a) have the same increments, except for step T (a). In this step the increments differ

by 2(ST (a) − a), twice the amount by which the random walk “overshoots” level a. As this
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a

S̃j(a)

Sj

̂Sj(a)

Figure 2. The processes Sj , Ŝj(a) and S̃j(a). The upper horizontal line indicates level a.

overshoot is nonnegative and bounded by max16i6k Xn,τ(i), we find that

S̃k(a) > Ŝk(a) > S̃k(a)− 2 max
16i6k

Xn,τ(i). (13)

This leads to the estimates

P (Sk > a) + P

(
S̃k(a) > a

)
> P (Wn,k+1 > a)

> P (Sk > a) + P

(
S̃k(a) > a+ 2 max

16i6k
Xn,τ(i)

)
. (14)

We now come to the first difficulty: we would like to estimate the probabilities P(Sk > a)

and P(S̃k(a) > a) by applying a CLT result. However, the reflected process (S̃j) does not

have independent steps (unless the service time distributions are symmetric around their

mean, which we do not assume). Fortunately, (S̃j) is a martingale, and so we can apply

the following CLT-type result for martingales. Here and in the remainder of this section, Z

denotes a standard normal random variable.

Theorem 4.3 (Heyde and Brown [18]). Let (ξi,Fi) be a sequence of martingale differences,

and let Yj = ξ1 + · · · + ξj be the corresponding martingale. Suppose that the conditional

variance, given by
k∑

i=1

E[ξ2i | Fi−1],

is equal to one for some k. Then for any δ > 0 there exists a constant Cδ that depends on δ

only, such that

sup
x∈R

|P(Yk > x)− P(Z > x)| 6 Cδ

(
k∑

i=1

E|ξi|2+δ

)1/(3+δ)

.
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This is exactly what we need to obtain the following proposition (the full derivation can

be found in Appendix B).

Proposition 4.4. For any k, n > k and permutation τ , we have

EWn,k+1√∑k
j=1 σ

2
n,τ(j)

6 E|Z|+ 2(Cδ + 1)
√
qk

1/(3+δ),

and Cδ is as in Theorem 4.3.

Next, we come to the lower bound. Considering (14), the second difficulty becomes

apparent: we do not make any boundedness assumptions on the service time distributions,

and so max16i6k Xn,τ(i) could be very large. This is remedied with a truncation argument.

We will consider the random walk (S′
j)j6k with steps Xn,τ(i)✶Xn,τ(i)6cn,k

instead of Xn,τ(i)

(where ✶E denotes the indicator of an event E). Here, cn,k is a bound depending on n and k,

but not i. Let W ′
n,k+1 be the maximum of the new random walk; clearly EWn,k+1 > EW ′

n,k+1.

Further, defining Ŝ′
j(a) and S̃′

j(a) analogously to Ŝj(a) and S̃j(a) but with respect to the

walk (S′
j), (13) now yields

Ŝk(a) > S̃k(a)− 2cn,k.

This allows us to apply Theorem 4.3 to obtain a lower bound on EW ′
n,k+1 and hence EWn,k+1.

(A technical complication is that S′
j and S̃′

j(a) are no longer quite martingales; however, this

can be overcome.) The value cn,k must be chosen carefully in a way that balances the need

to sufficiently bound the overshoot (thus making (14) effective) and the need to not affect

the steps too much (since this would decrease the maximum significantly). The result is the

following proposition; further details can be found in Appendix B.

Proposition 4.5. Under Assumption 4.1, for each ε > 0 there exists a K depending on ε

only, such that for all k > K, n > k and permutations τ ,

EWn,k+1√∑k
i=1 σ

2
n,τ(i)

> (1− ε)E|Z|.

Combining Proposition 4.4 and Proposition 4.5 yields Theorem 4.2 in a straightforward

manner. For completeness, the details can be found in Appendix B.

Remark 4.6. As in Remark 3.7, when the scheduled session end time is equal to the expected

total service time, the expected overtime EWn,n+1 can be handled similarly to waiting time,

and the result of Theorem 4.2 is also valid when some extra term cEWn,n+1 (with c > 0) is

added to the cost function.
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Remark 4.7. In this remark we assess the rate at which ̺ω(Bn) converges to 1. Suppose

that infn,i{σ2
n,i} > 0 and supn,i{E|Xn,i|2+δ} < ∞. Then qk = O(k−δ/2) indeed converges to

zero. Following the steps of the proof of Theorem 4.2 we then find

̺ω(Bn) = 1 +O

(
K

n

)
+O

(√
qK

1/(3+δ)
)
= 1 +O

(
K

n

)
+O

(
K−δ/(12+4δ)

)
.

To obtain some insight into the convergence rate, observe that by choosing K in a way that

these terms are balanced, it follows that

̺ω(Bn) = 1 +O
(
n−δ/(12+5δ)

)
.

Note that for many practical distributions, including lognormal distributions, all moments

exist. In such a case, Theorem 4.2 can be applied with any choice of δ.

5. Bounds on performance for optimally-spaced schedules

The previous sections focused on mean-based schedules, i.e. schedules where the inter-

arrival times are equal to the mean service times. Rather than mean-based schedules, one

would preferably use optimally-spaced schedules. The problem of finding optimally-spaced

schedules is well understood (see e.g. [2, 25]). In this section we consider the performance

of the svf sequence compared to the optimal combination of sequence and schedule. For

this case we have also performed extensive numerical experiments to gain insight into what

performance can be expected for svf for practical distributions, described in more detail in

Appendix F. As in the mean-based case, we focused on exponential and lognormal service

times. Our main finding was that for all experiments we performed, the svf sequence was

the optimal sequence for all experiments with these distributions. It is noted, though, that

such experiments can only be done for relatively small numbers of n, due to the complexity

involved in computing the optimal sequence and schedule.

Kong et al. [24] give an example demonstrating that svf is not always optimal for

optimally-spaced schedules, but their example does not satisfy the dilation ordering assumption

(Assumption 2.4). The following example shows that even when Assumption 2.4 applies, svf

may not be optimal.

Example 5.1. Suppose we have n = 7 patients, and we set ω = 1
2 . The first three patients

have service times that take value 0 or 2, each with probability 1
2 . The other four patients

have service times that take values 0 or 4 each with probability 1
4 and that take value 2

with probability 1
2 . As Bi − 2, for i = 4, 5, 6, 7, has the same distribution as B1 − 1 + A,

where A takes values −1 or 1 each with probability 1
2 independent of B1, we can see through

Lemma 2.5 that B1 6dil Bi. So this example satisfies the dilation ordering assumption.
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We computed the optimal interarrival times and corresponding cost for each possible

sequences (per the method described in Appendix F). The ratio between the optimal cost for

the svf sequence and the optimal cost overall was found to be 1.0787, so the svf sequence is

not optimal.

The goal of the remainder of this section is to prove upper bounds on the approximation

ratio rω. In Section 5.1, we will do so when the service-time distributions are from the same

location-scale family, leading to Theorem 5.3. In Section 5.2, we discuss the implications

of this theorem for specific location-scale families of interest. Then in Section 5.3, we move

beyond location-scale families and consider the lognormally distributed service times, which

are of particular interest in practice [6, 22]. Finally, in Section 5.4 we show that for optimally-

spaced schedules svf is not asymptotically optimal, in stark contrast to the situation for

mean-based schedules.

5.1. Location-scale family of service times. We impose the following assumption.

Assumption 5.2. The distributions (Bi)16i6n form a location-scale family. In other words,

there exists a random variable B having mean zero and variance one such that Bi
d
= µi + σiB.

Note that, by [34], Theorem 3.A.18, this assumption implies Assumption 2.4. Due to

Example 2.2, no bound on the approximation ratio rω can be found without imposing some

assumption on the service-time distributions.

As well as using svf as a sequencing rule, we must now specify an (ideally simple)

scheduling rule as well. We use a schedule of the form x = µ+ ασ for some α > 0, in line

with a suggestion by [8]. So we include additional slack in the schedule after each patient

proportional to its standard deviation, in order to prevent the propagation of delays. We will

choose

α =

√
1− ω

2ω
+

σn−1

2
∑n−1

i=1 σi
; (15)

the rationale behind this choice will become clear from the proof, where it will turn out to

optimize the bound we obtain. Let QB denote the quantile function of B, i.e. QB(y) = inf{x :

y 6 P(B 6 x)}. Define B(ω) = B −QB(1− ω), and

K(B,ω) =
√
2ω/

[
ωEB(ω)− + (1− ω)EB(ω)+

]
.

The main result of this section is the following.

Theorem 5.3. Suppose that, for the svf sequence, we use the schedule x = µ+ ασ, with α

given by (15). Under Assumption 5.2, we have rω 6 K(B,ω).
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This result follows immediately from the bounds on the cost function Cω(τ,x) given in

the following two propositions, that are proved in Appendix C.

Proposition 5.4. Suppose α is given by (15). Under Assumption 5.2,

Cω(id,µ+ ασ) 6
√
2ω

n−1∑

i=1

σi.

Proposition 5.5. Under Assumption 5.2, for any sequence and schedule,

Cω(τ,x) >
[
ωEB(ω)− + (1− ω)EB(ω)+

] n−1∑

i=1

σi.

The idea behind the proof of Proposition 5.4 is as follows. We use that the waiting time

can be expressed as the maximum of a random walk, as per (3). An upper bound for this

maximum can now be found by using a comparison with another random walk that has i.i.d.

steps, each distributed as the step of the original random walk with the largest variance. This

upper bound is found by noting that if one (i) splits the steps in two parts, and (ii) multiplies

the last part by some constant larger than one (leaving the first part unchanged), then the

maximum increases. For the maximum of the new i.i.d. random walk, the classical Kingman’s

bound can be applied. After thus finding an upper bound on the expected waiting time, the

expected idle time can then also be bounded using (5).

The idea behind the proof of Proposition 5.5 is to write

ωEIk+1 + (1− ω)EWk+1 = ωE(Wk +Bτ(k) − xτ(k))
− + (1− ω)E(Wk +Bτ(k) − xτ(k))

+,

and minimize this over Wk − xτ(k). This minimization problem is the classical newsvendor

problem, which has a known solution. This results in a lower bound on the cost function

that is independent of the schedule. This lower bound can also be easily minimized over the

sequences, resulting in Proposition 5.5.

When ω = 1
2 , i.e. when waiting time and idle time are equally important, we know that

QB(
1
2) is equal to the median of B. In this case, we have K

(
B, 12

)
= 2/E|B −m|, where m

is the median of B.

5.2. Examples. In this subsection we present examples of location-scale families for which

we can compute K(B,ω) or K
(
B, 12

)
from Theorem 5.3, so as to obtain insight into the

magnitude of the constant K(B,ω). For the location-scale families of normal, uniform,

shifted exponential and Laplace distributions, the results are shown in Table 3. For normal

distributions K(B,ω) is not shown, as the expression does not simplify (with respect to the

one presented in Theorem 5.3).
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Location-scale family K(B,ω) K
(
B, 12

)

Normal See Theorem 5.3
√
2π ≈ 2.51

Uniform
1

1− ω

√
2

3ω
4
3

√
3 ≈ 2.31

Shifted exponential −
√
2√

ω ln(ω)
2/ln(2) ≈ 2.89

Laplace
2
√
ω

min{ω, 1− ω}(1− ln(2min{ω, 1− ω})) 2
√
2 ≈ 2.83

Table 3. The values of K(B,ω) and K
(
B, 12

)
for some location-scale families.

Now consider the case of Pareto (of type II, that is) distributions. A random variable X

has such a distribution if

P(X > x) =

(
1 +

x− µ

σ

)−β

for x > µ,

for certain parameters µ, σ > 0, β. The Pareto distributions with fixed parameter β form a

location-scale family. Suppose that the Bi have Pareto distributions with fixed parameter

β > 2. Then

K(B,ω) =

√
2ωβ

β − 2

/[
−2ω−β(β−1)+1 + ω−β(β−1) − (β − 1)ωβ+1 + βω

]
.

In addition,

K
(
B, 12

)
= 2

√
β

β − 2

/[
β −

(
1
2

)β
(β − 1)

]
.

For most typical location-scale families, the value of K
(
B, 12

)
is between 2 and 3.

However, in the Pareto case the value becomes much larger when β approaches two. Also, for

ω close to either one of the extremes 0 or 1, the constant K(B,ω) blows up.

5.3. Lognormally distributed service times. In this subsection we focus on the case of

lognormal service times. The scheduling rule that we use here is such that the interarrival times

are a multiple (larger than 1) of the mean service times, rather than the mean service times

increased by a multiple of the corresponding standard deviations. As will become clear below,

this type of scheduling rule turns out to be convenient for the case of lognormal distributions.

Note that, with mi := E[lnBi] and s2i := Var(lnBi), we have that EBi = exp(mi + s2i /2), so

that the rule involves both parameters of the lognormal distribution. We have the following

result.
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Theorem 5.6. Suppose the Bi are lognormally distributed with m1 6 . . . 6 mn and s21 6

. . . 6 s2n. When we use the schedule x = (1 + α)µ for the svf sequence, with

α =
1√
2ω

√
(exp(s2n−1)− 1),

then

rω 6 2ωα ·
[
(1− ω)P(Z > QZ(1− ω)− s1)− ω P(Z 6 QZ(1− ω)− s1)

]−1
.

The proof can be found in Appendix C. It is based on a similar idea as the one used in

the proof of Theorem 5.3. The main difference is in the upper bound, where it needs to be

proved that the i.i.d. random walk used for comparison indeed has a larger expected maximum.

For lognormal distributions, we use a convex ordering among the stepsize distributions to

prove this, noting that the maximum of a random walk is a convex function in the stepsizes.

As an example, we apply Theorem 5.6 to the data found in [6]. Recall from Section 3.3

that the patients were divided into “new” and “return” patients, with service times fitted by

lognormal distributions with parameters given in Table 2. It can be checked that any problem

instance containing a mix of these patient groups satisfies the assumptions of Theorem 5.6.

For any such problem instance, the largest possible sn−1 corresponds to a new patient, and

the smallest possible s1 corresponds to a return patient. When setting ω = 1
2 , calculating the

upper bound in Theorem 5.6, we find for this example that r 1
2
6 2.90.

5.4. Example where svf is not asymptotically optimal. In Section 4 we showed that

the svf sequence is asymptotically optimal as n → ∞ when mean-based schedules are

used. Perhaps surprisingly, this is no longer true when optimally-spaced schedules are used.

The example described in this section satisfies the condition used in the mean-based case,

Assumption 4.1. Note that the example does not satisfy Assumption 2.4 (the dilation ordering

assumption).

The example is as follows. We set ω = 1
2 , and we have two groups of patients, each

consisting of n/2 patients (where n will be large). Let c be some positive integer that we will

eventually allow to grow very large, and let a be a fixed constant larger than 1 that we will

choose later. The service time distributions of the two groups are given by

B(1) =





c with prob. p := 1
1+c2

,

−1
c with prob. 1− p,

B(2) =





a with prob. 1
2 ,

−a with prob. 1
2 .

These are chosen to have mean zero for convenience; by shifting them (which would shift the

optimal schedule by the same amount), these can be adjusted to have nonnegative support.
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The variance of the service times of the group 1 (group 2) patients is 1 (a2 > 1,

respectively). This means that the svf sequence first serves all patients of group 1, followed

by all patients from group 2. We will compare the svf sequence with the mixed sequence,

where patients of group 1 and 2 are served alternatingly starting with group 1. As we will

see, for large enough c the mixed sequence will be cheaper under optimal scheduling, thus

refuting the asymptotic optimality of svf. Since we will consider a large-n limit, we will

consider the average per-patient cost, consisting of the average expected waiting time and

idle time per patient.

We begin by analyzing the svf sequence. As we need a lower bound on its cost, we

need to determine the optimal schedule. Fortunately, in the limit of large n, the situation

simplifies. Each group can be treated as a stationary queue, with an associated expected

waiting and idle time for each group at stationarity (patients at the beginning of the group,

before stationarity is achieved, make a negligible contribution to the total cost). We use

W (i) and I(i) to denote the distributions of waiting time and idle time for patients in group i.

We need to determine the optimal stationary interarrival times x(1) and x(2) for patients in

groups 1 and 2, respectively. As a first remark, the average expected idle time of a patient

in group i is simply x(i); this is a consequence of the Lindley recursions (1) combined with

stationarity, which yields

E

[
W (i) − I(i)

]
= E

[
W (i) +B(i) − x(i)

]
= EW (i) − x(i).

The average expected waiting time is more challenging, but we can compute it exactly in the

limit as c → ∞; we defer the argument to Appendix C.2.

Lemma 5.7. For the svf sequence in the limit c → ∞, the optimal interarrival times for

groups 1 and 2 are x(1) = 1
2

√
2 and x(2) = a respectively. Patients in group 1 incur an average

expected waiting time of EW (1) = 1
2

√
2, whereas patients in group 2 incur no waiting time.

This yields an average total cost of 1
2(a+

√
2).

We now move to the mixed sequence. Here, we need an upper bound on the cost,

and so we can use any scheduling rule we like. We will simply use the same interrarival

times as were used in the svf sequence: a patient in group i has an interarrival time of

x(i). Just as with the svf sequence, in the limit as n → ∞ the average expected idle time is

1
2(x

(1) + x(2)) = 1
2(a+

1
2

√
2). The main challenge is to bound the average expected waiting

time.

Let V (i) be the waiting time experienced by a group i patient at stationarity. Then V (i)

is the maximum of the random walk with alternating steps distributed as B(1) − x(1) and
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B(2) − x(2). The random walk for V (1) starts with a step B(2) − x(2) and the random walk

for V (2) starts with a step B(1) − x(1). This difference vanishes in the limit as c grows large

(see Appendix C.2 for the proof).

Lemma 5.8. limc→∞ EV (1) = limc→∞ EV (2).

So we focus on limc→∞ EV (1). Note that the group 2 steps, distributed as B(2) − a, are

never positive, so the maximum of the alternating walk can only be attained after a group

1 step. Therefore, we can combine the two alternating steps into one step, and V (1) is the

maximum of a random walk (S
(1)
j )j>0 with steps B

(1)
j +B

(2)
j − (a+ 1

2

√
2). (Here, B

(i)
j is an

independent copy of B(i), for each i ∈ {1, 2} and j ∈ N.) Observe that EV (1) is never bigger

than EW (1), the expected maximum of a random walk with steps distributed as B(1) − 1
2

√
2,

as B(2) − a 6 0, so as a preliminary bound we have EV (1) 6 EW (1) = 1
2

√
2. Recalling that in

the svf sequence the group 2 patients experience no waiting time, we see that our goal is to

show that in fact EV (1) < 1
2EW

(1) = 1
4

√
2.

The simplest way to bound EV (1) is via a bound by [21], which says that if (Si)i>0 is a

random walk with i.i.d. steps distributed according to Z, where EZ < 0, then

Emax
i>0

Si 6 −Var Z

2EZ
.

Applied to the random walk S(1),

EV (1)
6

Var[B(1) +B(2)]

2(a+ 1
2

√
2)

=
1 + a2

2a+
√
2
.

This is always larger than 1
2

√
2, for any a > 1, so this bound does not suffice. Instead, let

us consider the random walk (S̃j)j>0 with steps B
(1)
i − (a + 1

2

√
2); let Ṽ be its maximum.

Kingman’s bound for this random walk yields

EṼ 6
Var B(1)

2(a+ 1
2

√
2)

=
1

2a+
√
2
.

As long as we choose a > 3
2

√
2, this is below 1

2EW
(1). All that remains is to show the following

lemma.

Lemma 5.9. limc→∞ EV (1) 6 limc→∞ EṼ .

We sketch the proof here, and relegate the details to Appendix C.2. Consider a typical

realization of (S̃j)j>0. It consists primarily of downward steps of size a+ 1
2

√
2+1/c ≈ a+ 1

2

√
2,

with occasional large upwards jumps of size c. These upwards jumps, occurring with probability

p = 1/(1 + c2) ≈ 1/c2 are very rare. One can prove that with overwhelming probability, the

maximum of S(1) occurs within the first 2c steps; condition on this for the remainder. If
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there are no upwards jumps in the first 2c steps, then Ṽ and V (1) are both zero; this happens

with probability (1− p)2c ≈ 1− 2pc ≈ 1− 2/c. Independently of whether there are any such

upwards jumps, the difference between the random walks for Ṽ and for V (1) after j steps is
∑j

i=1B
(2)
i . By an appropriate concentration bound, we can deduce that S

(1)
j 6 S̃j + c2/3 for

all j 6 2c, with extremely high probability. So with probability about 1− 2/c, V (1) = Ṽ = 0,

and with probability about 2/c, V (1) 6 Ṽ + c2/3. This implies that EV (1) 6 EṼ + c−1/3,

yielding the lemma.

With the optimized choice a = 1
2

√
2+

√
3, a quantitative lower bound of r1/2 >

1
2+

1
4

√
6 >

1.11 can be obtained.

6. Discussion and directions for further research

We have shown that under quite general conditions, the svf sequence yields a constant-

factor approximation. Furthermore, we have seen that additional information about the

instance, such as knowing that the service-time distributions fall within a certain class, or

that the number of patients is large, can lead to substantial improvements of our worst-case

bounds.

For mean-based schedules, Example 3.1 and Theorem 3.4 show that the worst-case

approximation ratio lies between 1.52 and 4; for symmetric service-time distributions we

found the upper bound 2. It would be interesting to reduce the gap between the lower and

upper bound; we suspect neither bound is tight. In particular, the upper bound on the cost

of the svf sequence appears to be a strong bound only in the regime of many patients, with

service times of similar variances; the lower bound on the cost of arbitrary sequences, on the

other hand, appear strong in situations where only a few service times with large variance

have a significant impact on the cost function. This suggests that more refined arguments,

possibly considering multiple regimes, could lead to an improved upper bound. Improving

our bounds for special cases (such as normal and lognormal distributions), or considering

other practically relevant service-time distributions, would also be of interest.

When optimizing over both the sequence and the schedule, we obtained bounds for

location-scale families and for lognormally-distributed service times. These bounds obtained

are not uniform: in the former case, the bounds depend on ω and the location-scale family,

and in the latter case, on the parameters of the lognormal distributions. A constant-factor

approximation that does not depend on these quantities, or that holds in greater generality

(e.g., to all distributions satisfying the dilation ordering assumption), remains an open question.

The svf sequencing rule remains a promising candidate, but a more sophisticated choice of

scheduling rule will certainly be needed.
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We found that the svf sequence is asymptotically optimal as the number of patients

tends to infinity under a mild Lyapunov-type assumption, but that this is no longer the case

when optimally-spaced schedules are used, as shown in Section 5.4. Such an asymptotic

optimality for optimally-spaced schedules might still hold under more strict assumptions

on the service times. Finding what these assumptions should be and proving asymptotic

optimality under these assumptions is an interesting open problem.

To the best of our knowledge, this is the first paper that assesses whether an easily

computed sequence performs provably well, rather than trying to find the optimal sequence

for a special (typically low-dimensional) instance, or comparing heuristics through simulation.

Finding the optimal sequence is an important (but inherently difficult) problem, and we hope

our approach triggers more research in this direction.

Appendix A. Proofs corresponding to Section 3

Here we prove Lemma 3.9 and Lemma 3.10, that are used in Section 3.

Lemma 3.9. Under Assumption 3.2,

EWk+1 6 E
(
Xτ(1) + · · ·+Xτ(k)

)+
+ E

(
Xτ(1) + · · ·+Xτ(k−1)

)+
.

Proof. By Lemma 3.6, Wk is stochastically dominated by |Xτ(1) + · · · + Xτ(k−1)|. As a

consequence,

EWk+1 = E
(
Wk +Xτ(k)

)+
6 E

(
|Xτ(1) + · · ·+Xτ(k−1)|+Xτ(k)

)+
. (16)

If Y and Z are independent and both have symmetric distributions, then

E(|Y |+ Z)+ = E(Y + Z)+ + EY +.

This is easily checked by conditioning on |Y | = a and |Z| = b, as then Y is either a or −a

with probability 1
2 , and similarly for Z. Applying this result to the upper bound in (16), we

find the upper bound in the lemma. �

Lemma 3.10. Under Assumption 3.2, for any ℓ,

EWk+1 >
1
2

(
E
(
Xτ(1) + · · ·+Xτ(k)

)+
+ E

(
Xτ(1) + · · ·+Xτ(ℓ)

)+

+E
(
Xτ(ℓ+1) + · · ·+Xτ(k)

)+
)
.
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Proof. Let S′
ℓ = Xτ(1)+Xτ(2)+· · ·+Xτ(ℓ), so that S

′
ℓ = Sk−Sk−ℓ. AsWk+1 = max{0, S1, . . . , Sk},

we then have

Wk+1 > max{0, Sk−ℓ, Sk} = max{0, Sk−ℓ, Sk−ℓ + S′
ℓ} = (Sk−ℓ + (S′

ℓ)
+)+. (17)

If Y and Z are independent and both have symmetric distributions, then

E(Y + Z+)+ = 1
2

(
E(Y + Z)+ + EY + + EZ+

)
.

Again, this is easily checked by conditioning on |Y | = a and |Z| = b, as then Y is either a or

−a with probability 1
2 , and similarly for Z. Applying this result to the lower bound in (17),

we find the lower bound in the lemma. �

Appendix B. Proofs corresponding to Section 4

In this appendix we prove Proposition 4.4, Proposition 4.5, and hence deduce Theorem 4.2,

building on the ideas presented in Section 4.

Proof of Proposition 4.4. For ease of notation, we assume throughout this proof that patients

are renumbered so that τ(i) = i. Note that Σ2
k :=

∑k
i=1 σ

2
n,i is the variance of both Sk

and S̃k(a). In order to apply Theorem 4.3 we scale all steps, and hence Sk and S̃k(a), by a

factor 1/Σk. For both martingales the squared increments (Xn,k−i+1)
2 are independent of

the previous increments, so that after rescaling the conditional variance after k steps equals

one for both martingales. Note that we can recognize the qk from Assumption 4.1 in the

upper bound, so we find for any x that

∣∣∣∣∣P
(
Sk

Σk
> x

)
− P(Z > x)

∣∣∣∣∣ 6 Cδq
1/(3+δ)
k , (18)

∣∣∣∣∣P
(
S̃k(a)

Σk
> x

)
− P(Z > x)

∣∣∣∣∣ 6 Cδq
1/(3+δ)
k . (19)

Using inequality (18) and Chebyshev’s inequality, we find

1

Σk

∫ ∞

0
P(Sk > a)da =

∫ ∞

0
P

(
Sk

Σk
> x

)
dx

6

∫ 1/
√
qk

1/(3+δ)

0

(
P(Z > x) + Cδq

1/(3+δ)
k

)
dx+

∫ ∞

1/
√
qk

1/(3+δ)

1

x2
dx

6 EZ+ + (Cδ + 1)
√
qk

1/(3+δ).

A similar reasoning using (19) finds the same upper bound for

1

Σk

∫ ∞

0
P(S̃k(a) > a) da.
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Finally,

EWn,k+1 6

∫ ∞

0

(
P(Sk > a) + P(S̃k(a) > a)

)
da =

∫ ∞

0

(
P(Sk > a) + P(S̃k(a) > a)

)
da

6 2EZ+ + 2(Cδ + 1)q
(3+δ)/2
k .

�

Proof of Proposition 4.5. We will first lay out the technical groundwork that we need for this

proof.

Fix any n and k 6 n (later we will take limits). As in the proof above, assume that

τ(i) = i. Recall from Section 4 that (S′
j)j6k is the random walk with steps Xn,i✶Xn,i6cn,k

instead of Xn,i; and Ŝ′
k(a), S̃

′
k(a) are defined based on this random walk in the same way

that Ŝk(a) and S̃k(a) were defined based on (Sj). For now, cn,k can take any positive value.

We thus have

P(W ′
n,k+1 > a) > P(S′

k > a) + P(Ŝ′
k(a) > a) > P(S′

k > a) + P(S̃′
k(a) > a+ 2cn,k).

Note that the steps no longer have mean zero, and so S̃′
j(a) is no longer a martingale.

To repair this issue, we must know how much the change in steps due to the indicator

affects the mean and variance of all the steps. For this we have the following lemma. Define

Σ2
n,k := VarSk, (Σ

′
n,k)

2 := VarS′
k and γn,k := (Σn,k/cn,k)

δ.

Lemma B.1.

(1)

∑k
i=1 E

[
(Xn,i)✶Xn,i>cn,k

]

Σn,k
6 qkγ

(1+δ)/δ
n,k ; and

(2)
(Σ′

n,k)
2

Σ2
n,k

> 1− 2qkγn,k .

Proof. 1 Using that Xn,i > cn,k implies |Xn,i|1+δ/c1+δ
n,k > 1, we find

E
[
(Xn,i)✶Xn,i>cn,k

]
6 E

[(
|Xn,i|2+δ/c1+δ

n,k

)
✶Xn,i>cn,k

]
6 E|Xn,i|2+δ/c1+δ

n,k .

Summing over i and dividing both sides by Σn,k we find

∑k
i=1 E

[
(Xn,i)✶Xn,i>cn,k

]

Σn,k
6

∑n
i=1 E|Xn,i|2+δ

Σn,kc
1+δ
n,k

=

∑n
i=1 E|Xn,i|2+δ

Σ2+δ
n,k

(
Σn,k

cn,k

)1+δ

6 qkγ
(1+δ)/δ
n,k ,

as was claimed.

2 Analogous to the proof of part (1), we can also deduce that

∑k
i=1 E

[
X2

n,i✶Xn,i>cn,k

]

Σ2
n,k

6 qkγn,k. (20)
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Using that EXn,i = 0, we find

(Σ′
n,k)

2

Σ2
n,k

=

∑n
i=1 E

[
X2

n,i✶Xn,i6cn,k

]

Σ2
n,k

−
∑n

i=1

(
E
[
Xn,i✶Xn,i6cn,k

])2

Σ2
n,k

=
Σ2
n,k −

∑n
i=1 E

[
X2

n,i✶Xn,i>cn,k

]

Σ2
n,k

−
∑n

i=1

(
E
[
Xn,i✶Xn,i>cn,k

])2

Σ2
n,k

.

Now applying Jensen’s inequality to the last term and (20),

(Σ′
n,k)

2

Σ2
n,k

>

Σ2
n,k − 2

∑n
i=1 E

[
X2

n,i✶Xn,i>cn,k

]

Σ2
n,k

> 1− 2qkγn,k,

which is what we wanted to prove. �

Now we have the following result. Define, with Z a standard normal random variable

and Cδ the constant featuring in Theorem 4.3,

Dk :=

∫ 1/
√
qk

1/(3+δ)

0
P(Z > x)dx− Cδ

√
qk

1/(3+δ).

Lemma B.2. We have

EWn,k+1

Σn,k
> 2Dk

√
1− 2qkγn,k −

2cn,k
Σn,k

− 2qkγ
(1+δ)/δ
n,k .

Proof. Again we want to apply Theorem 4.3. This time we not only need to divide by the

standard deviation Σ′
n,k of S′

n,k, but also subtract the (negative) mean. We then find

1

Σ′
n,k

∫ ∞

0
P(S′

k > a) da =

∫ ∞

−ES′

k/Σ
′

n,k

P

(
S′
k − ES′

k

Σ′
n,k

> x

)
dx

>

∫ 1/
√
qk

1/(3+δ)

0

(
P(Z > x)− Cδq

1/(3+δ)
k

)
dx−

∫ −ES′

k/Σ
′

n,k

0
P

(
S′
k − ES′

k

Σ′
n,k

> x

)
dx

> Dk +
ES′

k

Σ′
n,k

,

where we used in the last step that probabilities are bounded by one.

Next, we need a bound for

1

Σ′
n,k

∫ ∞

0
P(S̃′

k(a) > a+ 2cn,k)da. (21)

Note that S̃′
j(a) is no longer a martingale, as the mean step size is no longer zero. However,

we can remedy this by noting that S̃′
k(a) is bounded below by

S̃k(a)−
k∑

i=1

(Xn,i)✶Xn,i>cn,k
= S̃k(a)− Sk + S′

k,
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and S̃j(a)− Sj + S′
j − ES′

j is again a martingale with mean zero. Applying Theorem 4.3 to

this martingale and taking into account the shift ES′
k and overshoot 2cn,k, we find that (21)

is bounded below by

Dk +
ES′

k

Σ′
n,k

− 2cn,k
Σ′
n,k

.

Now adding up these two lower bounds, we find

EW ′
n,k+1

Σ′
n,k

> 2Dk +
2ES′

k

Σ′
n,k

− 2cn,k
Σ′
n,k

.

Now note that, due to Lemma B.1 2, Σ′
n,k/Σn,k >

√
1− 2qkγn,k. In addition, EWn,k+1 >

EW ′
n,k+1. Consequently,

EWn,k+1

Σn,k
> 2Dk

√
1− 2qkγn,k +

2ES′
k

Σn,k
− 2cn,k

Σn,k
.

Applying Lemma B.1 1,

EWn,k+1

Σn,k
> 2Dk

√
1− 2qkγn,k − 2qkγ

(1+δ)/δ
n,k − 2cn,k

Σn,k
,

which is the bound we wanted to prove. �

We are now finally ready to proceed with the proof of Proposition 4.5. The freedom

remains to choose cn,k, which we have only assumed to be positive. We would like to have

cn,k/Σn,k → 0, qkγ
(1+δ)/δ
n,k → 0 and qkγn,k → 0 as k → ∞. A choice that achieves this goal is

cn,k :=
√
qk

1/(δ+1)Σn,k,

so that γn,k = q
−δ/(2δ+2)
k . We thus obtain, with q̄k :=

√
qk

1/(δ+1) +
√
qk,

EWn,k+1

Σn,k
> 2

(∫ 1/
√
qk

1/(3+δ)

0
P(Z > x)dx− Cδ

√
qk

1/(3+δ)

)√
1− 2

√
qk

2−δ/(δ+1) − 2q̄k.

Note that this converges to E|Z| as qk → 0, so this completes the proof of Proposition 4.5. �

Proof of Theorem 4.2. We first state an immediate consequence of combining Proposition 4.4

and Proposition 4.5. We use W svf
n,i and Isvfn,i to refer specifically to the waiting and idle times

for the svf sequence, and W opt
n,i and Ioptn,i for the optimal sequence.

Lemma B.3. Under Assumption 4.1, for any ε > 0 there exists a K depending on ε only,

such that for all k > K and for all n > k − 1,

EW svf
n,k 6 (1 + ε)EW opt

n,k .
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Proof. By Proposition 4.5, for any ε > 0, we can choose k sufficiently large such that

EWn,k+1 > (1− ε)

√√√√
k∑

i=1

σ2
n,τ(i) · E|Z| > (1− ε)

√√√√
k∑

i=1

σ2
n,i · E|Z|

for any sequence τ , in particular for the optimal sequence. Here we also used that σ2
n,1, . . . , σ

2
n,k

are the k smallest variances. For the svf sequence, Proposition 4.4 gives us that for sufficiently

large k we have

EW svf
n,k+1 6 (1 + ε)

√√√√
k∑

i=1

σ2
n,i · E|Z|.

Combining these two bounds completes the proof. �

By the Lindley recursion we have

EWn,k+1 = E(Wn,k +Xn,τ(k))
+
> E(Wn,k +Xn,τ(k)) = EWn,k,

so, for any n and τ , EWn,k is increasing in k. With K as in Lemma B.3, we consequently

have

n∑

k=1

EW svf
n,k 6 KEW svf

n,K +

n∑

k=K+1

EW svf
n,k 6 (1 + ε)

(
KEW opt

n,K +
n∑

k=K+1

EW opt
n,k

)
.

Again using that EWn,k is increasing in k, we also have

K EW opt
n,K

/ n∑

k=K+1

EW opt
n,k 6

K

n−K
,

which is smaller than ε for sufficiently large n. Then we have

n∑

k=1

EW svf
n,k 6 (1 + ε)

(
KEW opt

n,K +
n∑

k=K+1

EW opt
n,k

)

6 (1 + ε)2
n∑

k=K+1

EW opt
n,k 6 (1 + ε)2

n∑

k=1

EW opt
n,k .

Recall that the total expected idle time is equal to EWn,n. Since also EW svf
n,n 6 (1 + ε)W opt

n,n

for n > K,

ωEW svf
n,n + (1− ω)

n∑

k=1

EW svf
n,k 6 (1 + ε)2

(
ωEW opt

n,n + (1− ω)

n∑

k=1

EW opt
n,k

)

for n sufficiently large (independent of ω). As this holds for any ε > 0, we find ̺ω(Bn) → 1

as n → ∞, and Theorem 4.2 is proved. �
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Appendix C. Proofs corresponding to Section 5

C.1. Proofs corresponding to Section 5.1 and 5.3. Here we prove Proposition 5.4,

Proposition 5.5, and Theorem 5.6 from Section 5. In order to prove Proposition 5.4, we need

a number of lemmas. We will denote the waiting times and idle times under the svf sequence

with schedule x = µ + ασ by W svf
i and Isvfi respectively, and we will denote the waiting

times and idle times under the optimal combination of sequence and schedule by W opt
i and

Iopti .

Lemma C.1. Let M be the maximum of a random walk with steps Y1, . . . , Yk. Now let

i ∈ {1, . . . , k}, and let c > 1. Let M ′ be defined as the maximum of a random walk with steps

Y1, . . . , Yi, c Yi+1, . . . , c Yk. Then M 6 M ′.

Proof. Suppose that the maximum of the first random walk is attained at time j, that is,

M = Y1+ · · ·+Yj . If j 6 i, then the second random walk also attains the value Y1+ · · ·+Yj , so

M 6 M ′. If j > i, then the second random walk attains the value Y1+· · ·+Yi+cYi+1+· · ·+cYj .

Now Yi+1 + · · ·+ Yj > 0, as otherwise Y1 + · · ·+ Yi > Y1 + · · ·+ Yj , in contradiction with M

being the maximum. From this and c > 1 it follows that

Y1 + · · ·+ Yi + c Yi+1 + · · ·+ c Yj > Y1 + · · ·+ Yj ,

so M 6 M ′. �

Lemma C.2. Suppose Assumption 5.2 holds, and we use the schedule x = µ+ ασ. Let Mk

be the all-time maximum of a random walk with i.i.d. steps distributed as σk(B − α). Then

W svf
k+1 is stochastically dominated by Mk, for all k.

Proof. By (3), we know that W svf
k+1 is the maximum of a random walk with steps Bk −

xk, Bk−1 − xk−1, . . . , B1 − x1. Now note that Bi
d
= µi + σiB and xi = µi + ασi, hence

Bi − xi
d
= σi(B − α). So W svf

k+1 can be represented as the maximum of a random walk with

steps distributed as σk(B − α), . . . , σ1(B − α).

We first multiply the last step of this random walk σ2/σ1. By Lemma C.1, we then

see that Wk+1 is stochastically dominated by the maximum of a random walk with steps

distributed as σk(B −α), . . . , σ2(B −α), σ2(B −α). The next step is to multiply the last two

steps with σ3/σ2. Again by Lemma C.1, W svf
k+1 is stochastically dominated by the maximum

of a random walk with steps σk(B − α), . . . , σ3(B − α), σ3(B − α), σ3(B − α). Continuing in

this way, we find that W svf
k+1 is stochastically dominated by the maximum of a random walk

with k steps distributed as σk(B − α).
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Now note that adding extra steps to a random walk can only increase the maximum.

Therefore, we now find that W svf
k+1 is stochastically dominated by Mk. �

Lemma C.3. Under Assumption 5.2, when using the schedule x = µ+ ασ, we have for all

k that

EW svf
k+1 6

σk
2α

.

Proof. We need the following bound by [21]. Let M be the all-time maximum of a random

walk with i.i.d. steps distributed as Y , with EY < 0. Then

EM 6
Var(Y )

2|EY | .

Let Mk be as in Lemma C.2. Then, by Lemma C.3 and Kingman’s bound, we have

EW svf
k+1 6 EMk 6

Var(σk(B − α))

2|E(σk(B − α))| =
σ2
k

2σkα
=

σk
2α

,

as claimed. �

Now we are ready to prove Proposition 5.4.

Proposition 5.4. Suppose α is given by (15). Under Assumption 5.2,

Cω(id,µ+ ασ) 6
√
2ω

n−1∑

i=1

σi.

Proof. We already have a bound on the mean waiting time in Lemma C.3, so we proceed

by considering the mean idle time. Taking expectations in (5) and using the fact that

xi = µi + ασi,

n∑

i=1

EIsvfi +

n∑

i=1

µi =

n∑

i=1

µi + α

n−1∑

i=1

σi + EW svf
n .

Hence, by virtue of Lemma C.3,

n∑

i=1

EIsvfi = α
n−1∑

i=1

σi + EW svf
n 6 α

n−1∑

i=1

σi +
σn−1

2α
.

Upon combining the bounds for the mean waiting times and the total mean idle time, we

find that

Cω(id,µ+ ασ) 6 αω
n−1∑

i=1

σi +
ω

2α
σn−1 +

1− ω

2α

n−1∑

i=1

σi.
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Through standard calculus we find that this upper bound is minimized for the α given in

(15). The corresponding upper bound for this α is

√
2ω(1− ω)

√√√√
n−1∑

i=1

σi

(
n−1∑

i=1

σi +
ω

1− ω
σn−1

)
.

Using the fact that σn−1 6
∑n−1

i=1 σi, we find the upper bound in Proposition 5.4. �

In order to prove Proposition 5.5, we need the following lemma, which is known from

the classical newsvendor problem (see e.g. [20]).

Lemma C.4. Let X be a random variable, with QX its quantile function. Then for ω ∈ (0, 1),

ωE(X − c)− + (1− ω)E(X − c)+

is minimal for c = QX(1− ω) = inf{x : 1− ω 6 P(X 6 x)}.

Proposition 5.5. Under Assumption 5.2, for any sequence and schedule,

Cω(τ,x) >
[
ωEB(ω)− + (1− ω)EB(ω)+

] n−1∑

i=1

σi.

Proof. Consider some arbitrary sequence τ and schedule x. Recall that the idle and waiting

times satisfy the recursions in (1). We consider

ωEIk+1 + (1− ω)EWk+1 = ωE
(
Wk +Bτ(k) − xτ(k)

)−
+ (1− ω)E

(
Wk +Bτ(k) − xτ(k)

)+
.

(22)

Now note that Wk + Bτ(k) − xτ(k) = Bτ(k) − (xτ(k) − Wk), so by minimizing (22) over all

possible values of xτ(k) −Wk, we find by Lemma C.4 that

ωEIk+1 + (1− ω)EWk+1 > ωE(Bτ(k) −QBτ(k)
(1− ω))− + (1− ω)E(Bτ(k) −QBτ(k)

(1− ω))+.

Because Bτ(k)
d
= µτ(k) + στ(k)B, it follows that QBτ(k)

(1− ω) = µτ(k) + στ(k)QB(1− ω).

Then

Bτ(k) −QBτ(k)
(1− ω)

d
= µτ(k) + στ(k)B − (µτ(k) + στ(k)QB(1− ω)) = στ(k)(B −QB(1− ω)),

which, recalling that B(ω) = B −QB(1− ω), leads to

ωEIk+1 + (1− ω)EWk+1 > στ(k)
[
ωEB(ω)− + (1− ω)EB(ω)+

]
.

Note that
∑n−1

i=1 στ(i) >
∑n−1

i=1 σi, as the σi were put in increasing order. Now summing

over k we find the lower bound of Proposition 5.5. �
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To prove Theorem 5.6 we need the following lemma, which fulfills the same role for

lognormally distributed service times as Lemma C.2 does for location-scale families. We then

prove the upper and lower bounds needed for Theorem 5.6 in two propositions.

Lemma C.5. Suppose the Bi are lognormally distributed with m1 6 . . . 6 mn and s21 6

. . . 6 s2n, and that we use the schedule x = (1 + α)µ. Let Mk be the all-time maximum of a

random walk with i.i.d. steps distributed as Bk − xk. Then EW svf
k+1 6 EMk.

Proof. Let M
(i)
k be the maximum of a random walk with steps distributed as Bk −xk, Bk−1−

xk−1, . . . , Bi+1 − xi+1 followed by i steps distributed as Bi − xi. We will prove that EM
(i)
k 6

EM
(i+1)
k for i = 1, . . . , k − 1. As EW svf

k+1 = EM
(1)
k and EM

(k)
k 6 EMk (adding extra steps

increases the maximum), it then follows that EW svf
k+1 6 EMk.

Consider the random walk with steps distributed as Bk−xk, Bk−1−xk−1, . . . , Bi+1−xi+1,

followed by i steps distributed as Bi−xi. Let Z be a standard normal random variable. Note

that

Bi − xi = Bi − (1 + α)µi
d
= exp(mi + siZ)− (1 + α) exp(mi + s2i /2)

= exp(mi)
[
exp(siZ)− (1 + α) exp(s2i /2)

]
.

Use Lemma C.1 to show we get an upper bound on M
(i)
k by replacing all steps distributed as

Bi − xi by steps distributed as

X ′
i := exp(mi+1 + (s2i+1 − s2i )/2)

[
exp(siZ)− (1 + α) exp(s2i /2)

]
.

Let Z ′ be another standard normal random variable independent of Z. Then

Bi+1 − xi+1
d
= exp(mi+1 + siZ + ǫZ ′)− (1 + α) exp(mi+1 + (s2i + ǫ2)/2)

with ǫ :=
√

s2i+1 − s2i , and

E[exp(mi+1 + siZ + ǫZ ′)− (1 + α) exp(mi+1 + (s2i + ǫ2)/2)|X ′
i]

= E[exp(mi+1 + siZ + ǫZ ′)− (1 + α) exp(mi+1 + (s2i + ǫ2)/2)|Z]

= exp(mi + ǫ2/2)
[
exp(siZ)− (1 + α) exp(s2i /2)

]
= X ′

i.

It follows by Lemma 2.5 that X ′
i 6cx Bi+1 − xi+1. As the maximum of a random walk is

a convex function in each of the individual stepsizes, we can replace each step distributed

as X ′
i by one distributed as Bi+1 − xi+1. Therefore, EM

(i)
k 6 EM

(i+1)
k , which completes the

proof. �
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Proposition C.6. Suppose the Bi are lognormally distributed with m1 6 . . . 6 mn and

s21 6 . . . 6 s2n. Suppose α is given by

α =
1√
2ω

√
(exp(s2n−1)− 1).

Then

Cω(id, (1 + α)µ) 6 2ωα
n−1∑

i=1

exp(mi + s2i /2).

Proof. With Mk as in Lemma C.5, we can now apply Kingman’s bound to find

EW svf
k+1 6 EMk 6

Var(Bk)

2|EBk − (1 + α)EBk|
=

1

2α
(exp(s2k)− 1) exp(mk + s2k/2)

6
1

2α
(exp(s2n−1)− 1) exp(mk + s2k/2).

By equation (5) we also have

n∑

i=1

EIsvfi = α

n−1∑

i=1

EBi + EW svf
n

6 α

n−1∑

i=1

exp(mi + s2i /2) +
1

2α
(exp(s2n−1)− 1) exp(mn−1 + s2n−1/2)

6 α
n−1∑

i=1

exp(mi + s2i /2) +
1

2α
(exp(s2n−1)− 1)

n−1∑

i=1

exp(mi + s2i /2).

In total, we then find

Cω(id, (1 + α)x) 6 ωα
n−1∑

i=1

exp(mi + s2i /2) +
1

2α
(exp(s2n−1)− 1)

n−1∑

i=1

exp(mi + s2i /2).

Minimizing this upper bound over α, we obtain the result. �

Proposition C.7. Suppose the Bi are lognormally distributed with m1 6 . . . 6 mn and

s21 6 . . . 6 s2n. Then, for any sequence and schedule,

Cω(τ,x) > [(1− ω)P(Z > QZ(1− ω)− s1)− ωP(Z 6 QZ(1− ω)− s1)]

n−1∑

i=1

exp(mi + s2i /2).

Proof. Similar as in the location-scale family case, we can use Lemma C.4 to find

ωEIk+1 + (1− ω)EWk+1 = ωE(Bτ(k) − (xτ(k) −Wk))
− + (1− ω)E(Bτ(k) − (xτ(k) −Wk))

+

> ωE(Bτ(k) −QBτ(k)
(1− ω))− + (1− ω)E(Bτ(k) −QBτ(k)

(1− ω))+.

Computing this lower bound, we find with Z being a standard normal random variable that

ωEIk+1 + (1− ω)EWk+1
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> exp(mτ(k) + s2τ(k)/2)
[
(1− ω)P(Z > QZ(1− ω)− sτ(k))− ωP(Z 6 QZ(1− ω)− sτ(k))

]
.

It can be easily seen that

(1− ω)P(Z > QZ(1− ω)− sτ(k))− ωP(Z 6 QZ(1− ω)− sτ(k))

is an increasing function in sτ(k), and so is minimal for sτ(k) = s1. Using this and summing

over k, we find the lower bound of the proposition. �

Proof of Theorem 5.6. This follows directly from Proposition C.6 and Proposition C.7. �

C.2. Proofs corresponding to Section 5.4. We proceed by providing a detailed argumen-

tation behind the results presented in Section 5.4.

Lemma 5.7. For the svf sequence in the limit c → ∞, the optimal interarrival times for

groups 1 and 2 are x(1) = 1
2

√
2 and x(2) = a respectively. Patients in group 1 incur an average

expected waiting time of EW (1) = 1
2

√
2, whereas patients in group 2 incur no waiting time.

This yields an average total cost of 1
2(a+

√
2).

Proof. First, consider group 1. Crucially, Kingman’s bound is known to be tight for this

distribution of B(1) as c → ∞ ([9]). Thus

lim
c→∞

EW (1) =
Var B(1)

2x(1)
=

1

2x(1)
.

The average cost for patients in group 1 is thus

EI(1) + EW (1) = x(1) +
1

2x(1)
,

which is minimized by the choice x(1) = 1
2

√
2.

Now consider group 2. Note that W (2) is the maximum of a random walk with steps

distributed as B(2) − x(2). As a lower bound, we take the value of the random walk right

before the step where B(2) takes value −a for the first time. The number of steps we take

then has a geometric distribution with probability 1
2 (i.e. the probability of taking k steps is

(1/2)k+1 for k = 0, 1, 2, . . . ), which has mean 1, and each of these steps has value a − x(2).

Therefore, we find

EI(2) + EW (2)
> x(2) + (a− x(2)) = a.

For x(2) = a, this lower bound is achieved, as all steps B(2) − a can never be positive and

so the waiting time is zero. In conclusion, the minimal average cost as c → ∞ is 1
2(a+

√
2),

attained with x(1) = 1
2

√
2 and x(2) = a. �
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Lemma 5.8. limc→∞ EV (1) = limc→∞ EV (2).

Proof. By the Lindley recursion we have EV (2) = E(V (1) +B(1) − x(1))+, and conditioning

on the two values that B(1) can take we then find

lim
c→∞

EV (2) = lim
c→∞

(1− p)E

(
V (1) − 1

c
− x(1)

)+

+ pE
(
V (1) + c− x(2)

)+

6 lim
c→∞

EV (1) + pc = lim
c→∞

EV (1) +
c

1 + c2
= lim

c→∞
EV (1).

We also have EV (2) > EV (1), since V (1) results from the same random walk but with an extra

step B(2) − x(2) 6 0 in the beginning. �

Lemma 5.9. limc→∞ EV (1) 6 limc→∞ EṼ .

Proof. Let M (1) be the maximum of S(1) over the first 2c steps only. We will first show that

E[V (1) −M (1)] → 0 as c → ∞. Recall that by Kingman’s bound, we have the rough estimate

EV (1) 6 K, where K = (1 + a2)/(2a+
√
2). Let E be the event that S

(1)
2c 6 −2c, and let Ē

be its complement. By Chebyshev’s inequality,

P(Ē) = P

(
S
(1)
2c − ES

(1)
2c > c(2a+

√
2− 2)

)
6

2c(1 + a2)

(c(2a+
√
2− 2))2

= O(c−1).

Let Z be the maximum of the random walk obtained by removing the first 2c steps from

(S(1))j>0. Clearly Z has the same law as V (1), and V (1) −M (1) 6 Z, so that

E

[
V (1) −M (1)

∣∣ Ē
]
6 EZ 6 K.

Condition now on E occurring. Then V (1) −M (1) 6 (Z − 2c)+. Let R be the event that

Z > c. When the random walk defining Z first crosses level c, it will still be below level 2c.

As the random walk after crossing level c has the same law as the random walk defining Z,

we find that

E
[
(Z − 2c)+

]
= E

[
(Z − 2c)+|R

]
P(R) 6 E[Z]P(R) 6 K P(R).

By Markov’s inequality, P(R) 6 EZ/c 6 K/c. Combining the above,

E

[
V (1) −M (1)

]
6 KP(Ē) +KP(R)P(E) = O(c−1),

which vanishes as c → ∞, as required.

Let M̃ be the maximum of S̃ over the first 2c steps. It now suffices to show that

E[M (1) − M̃ ] → 0 as c → ∞. Let F be the event that there is at least one upwards jump in
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the first 2c steps. Then,

P(F ) = 1− (1− p)2c = 2pc+O
(
(pc)2

)
=

2

c
+O(c−2).

If F does not occur, then M (1) = M̃ = 0. We therefore concentrate on the scenario that F

does apply. Note that the increments B
(2)
i are independent of F . We have

S
(1)
j − S̃j =

j∑

i=1

B
(2)
i .

By Hoeffding’s inequality, P(S
(1)
j − S̃j > t) 6 e−t2/(ja), and so by a union bound,

P(M (1) − M̃ > c2/3) 6 2c · e−c1/3/(2a).

Since it is always the case that M (1) − M̃ 6 2ca, we have that

E[M (1) − M̃ |F ] 6 4c2ae−c1/3/(2a) + c2/3 = O(c2/3).

We thus obtain that E[M (1) − M̃ ] = E[M (1) − M̃ |F ]P(F ) = O(c−1/3), which vanishes as

c → ∞, as required. �

Appendix D. Lognormal distributions that satisfy the dilation order

Proposition D.1. Suppose that A and B are lognormally distributed random variables, such

that E[lnA] 6 E[lnB] and Var(lnA) 6 Var(lnB). Then A 6dil B.

Proof. Let m1 = E[lnA], m2 = E[lnB], s21 = Var(lnA) and s22 = Var(lnB). Let Z and Z ′ be

two independent standard normal random variables, and let ǫ =
√
s22 − s21. Then

A− EA
d
= X̂ := exp(m1 + s1Z)− exp(m1 + s21/2),

B − EB
d
= Ŷ := exp(m2 + s1Z + ǫZ ′)− exp(m2 + (s21 + ǫ2)/2).

Now note that

E[Ŷ |X̂] = E[Ŷ |Z] = E
[
exp(m2 + s1Z + ǫZ ′)− exp(m2 + (s21 + ǫ2)/2)|Z

]

= exp(m2 + ǫ2/2)
(
exp(s1Z)− exp(s21/2)

)
= exp(m2 −m1 + ǫ2/2)X̂.

Thus by Lemma 2.5,

exp(m2 −m1 + ǫ2/2)(A− EA) 6cx B − EB.



THE SMALLEST-VARIANCE-FIRST RULE IN APPOINTMENT SEQUENCING 47

(This is similar to the argument that X ′
i 6cx Bi+1 − xi+1 in the proof of Lemma C.5.) Now

we can apply Theorem 3.A.18 from [34], that says that X 6dil aX for a > 1, to see that

A− EA 6cx exp(m2 −m1 + ǫ2/2)(A− EA) 6cx B − EB.

This proves that A 6dil B. �

Appendix E. Numerical experiments for mean-based schedules

In this appendix we describe numerical experiments for exponential and lognormal

service time distributions, in which the approximation ratio ̺ω is computed. The goal is to

gain insight into what performance can be expected for the svf sequence in practice. As

the mean-based schedule is in place, (5) implies that the total expected idle time is equal to

EWn, the expected waiting time of the last patient. The svf rule is expected to be good for

the patients in the beginning of the sequence, as then the previous patient is less variable,

but might not be as good for patients at the end of the sequence, as they have high variance

patients directly before them. Therefore, we expect the idle time to suffer more than the

waiting times when the svf sequence is used instead of the optimal sequence. This explains

why we set ω = 1 unless stated otherwise.

This choice of ω is further motivated by the results in [24]. They constructed examples

where svf is not optimal when mean-based schedules are used, for an objective function

that is a weighted average of expected waiting time and expected overtime. When waiting

time and overtime had equal weight, typically more than 50 patients were needed for their

counterexamples (refuting svf being optimal, that is). When the overtime cost was much larger

than the waiting time cost, much fewer patients were needed in creating counterexamples.

The following proposition reduces the complexity of finding the optimal sequence.

Proposition E.1. Under Assumption 2.4 (dilation ordering assumption) and when mean-

based schedules are used, there is an optimal sequence τ that satisfies τ(n) = n, i.e. the largest

variance should always be sequenced last.

Proof. Suppose τ is an optimal sequence. Note that Wk+1 = max{0, S1, . . . , Sk} is a convex

function in each of the Xi. If τ(n) = n we are done. If τ(n) 6= n, then under Assumption 2.4

we have Xτ(n) 6cx Xn, and so switching the positions of patient n and patient τ(n) can only

decrease EWk+1. As this is true for all k = 1, . . . , n− 1, and the total idle time equals EWn,

switching patients τ(n) and n can only decrease the cost. The resulting sequence after the

switch is therefore also optimal, and we are done. �
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n optimal sequence optimal cost cost for SVF approximation ratio

3 1,2,3 0.2646 0.2646 1

4 1,2,3,4 0.3098 0.3098 1

5 2,1,3,4,5 0.3388 0.3389 1.0003

6 3,1,2,4,5,6 0.3588 0.3590 1.0007

7 4,2,1,3,5,6,7 0.3735 0.3739 1.0011

8 5,3,1,2,4,6,7,8 0.3847 0.3853 1.0014

9 6,4,2,1,3,5,7,8,9 0.3936 0.3943 1.0017

10 7,5,3,1,2,4,6,8,9,10 0.4008 0.4015 1.0019

11 8,5,3,1,2,4,6,7,9,10,11 0.4067 0.4076 1.0021

Table 4. The optimal sequence, optimal cost, cost of the SVF sequence, and approximation
ratio ̺1 when patient i has an exponentially distributed service time with rate n+ 1− i, and
mean-based schedules are used.

This proposition still leaves (n− 1)! potential candidates for the optimal sequence. We

are not aware of any other generally applicable structural result that can help to further

reduce this number. As computing ̺ω thus requires checking all (n− 1)! potential candidates

to find the optimal sequence, this severely limits the numbers of n for which we can do this.

E.1. Exponential distributions. We first look at the case where the service times are

exponentially distributed, as this makes it possible to efficiently calculate the cost for a

given sequence and schedule [38]. We set the service rate of patient i to n + 1 − i, i.e.,

EBi = 1/(n+ 1− i). This way, the service rates are very different from one another, so that

not using the optimal sequence could potentially have a large impact. The optimal sequence

is found by complete enumeration over the (n− 1)! candidates. This allowed us to compute

the approximation ratio ̺1 for problem instances with n = 3, . . . , 11 (within a reasonable

amount of time). The results are given in Table 4. Choosing ω smaller than 1 resulted in

smaller approximation ratios, as suspected, with svf being optimal for all considered problem

instances when ω = 0.9.

For n = 9 patients we also computed the approximation ratio for 100 random problem

instances, where each service time was exponentially distributed with a service rate drawn

independently from a uniform distribution on [0, 1]. The largest approximation ratio found

this way was 1.0034. For exponentially distributed service times it thus seems that the svf

rule will typically perform within 0.5% of optimal.

From Table 4 we notice that the optimal sequence for each problem instance is “V-

shaped”: the variances first decrease, and later increase. We also checked that the optimal

sequences for our 100 random problem instances were all V-shaped. Restricting to V-shaped

schedules allows us to consider substantially larger values of n. For instances with service
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n optimal sequence optimal cost cost for SVF approximation ratio

3 1,2,3 18.0131 18.0131 1

4 2,1,3,4 32.6526 32.5799 1.0022

5 3,1,2,4,5 50.3769 50.1484 1.0046

6 4,2,1,3,5,6 70.8629 70.4453 1.0059

7 5,3,1,2,4,6,7 93.8700 93.2174 1.0070

8 6,4,2,1,3,5,7,8 119.210 118.302 1.0077

9 7,5,3,1,2,4,6,8,9 146.730 145.538 1.0082

10 8,5,3,1,2,4,6,7,9,10 176.305 174.803 1.0086

Table 5. The optimal sequence, optimal cost, cost of the SVF sequence, and approximation
ratio ̺1 when patient i has a service time that is a discrete approximation to a lognormal
distribution with mi = ln(50) + ln(i) and si = 0.33, and mean-based schedules are used.

times n+ 1− i for patient i, we obtained a bound of 1.0038 for n = 23, and for randomly

chosen rates, found nothing worse than 1.0048 for n = 17. However, we are aware of examples

with other distributions for which the optimal schedule is not V-shaped, and so the true value

of ρω may be slightly larger.

E.2. Lognormal distributions. Lognormal service times are intensively used in health care

[6, 22]. For these distributions there is no clear efficient way to exactly compute the cost. We

therefore work with its discrete counterpart, where service times are only allowed to take

integer values. The lognormal distribution for patient i has parameters mi := E lnBi and

s2i := Var lnBi. Motivated by the two lognormal distributions found to fit real data in [6]

(having si equal to 0.3169 and 0.3480), in our experiments we have fixed si = 0.33. We set

mi = ln(50) + ln(i), where the 50 is just a scaling parameter meant to improve the discrete

approximation. If the time unit would be minutes, this means we round to full minutes while

all mean service times are over 50 minutes, in line with the accuracy one expects to be found

in practice.

For these discrete random variables, we found the optimal sequence for problem instances

with n = 3, 4, . . . , 10. The results are reported in Table 5. For each of these problem instances

the approximation ratio was below 1.01. We also performed the same experiments for si = 0.75

for all patients (instead of 0.33), for n = 3, . . . , 10. The approximation ratios were even

smaller than in the si = 0.33 case, with the largest approximation ratio being 1.0021. When

the same experiments were repeated for ω = 0.9, we found that the svf sequence is optimal

for all problem instances. The experiments are indicative of svf performing quite well for

lognormal distributions, but not as well as for exponential distributions.

To gain insight into the effect of the service-time distribution having a tail on either the

left or the right, we also assessed the effect of replacing the service times Bi by the flipped
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distribution −Bi. For n = 10 and si = 0.33 we then found an approximation ratio of 1.0345,

which, while still very close to 1, is much larger than the 1.0086 reported for the non-flipped

lognormal distributions.

We also performed experiments based on the lognormal distributions fitted to data

in [6], distinguishing between “new” and “return” patients. Lognormal distributions with

parameters indicated in Table 2 were found to yield a good fit to the data for these two

groups. In line with [6], we consider a session consisting of 10 patients. For our numerical

experiments we used discrete approximations to these two lognormal distributions, with

service times being rounded to full minutes. We computed the approximation ratio ̺1 for 11

problem instances, each with 10 patients in total with 0 up to 10 of them corresponding to

new patients (and the others to return patients). The largest approximation ratio we found

was ̺1 = 1.0023 for 7 new patients and 3 return patients. We thus conclude that the svf

rule performs well for the practical distributions proposed in [6].

Appendix F. Numerical experiments for optimally-spaced schedules

Here we consider some numerical experiments when an optimally-spaced schedule is

used for each sequence. Similar to Appendix E, we will consider exponential service-time

distributions and a discrete approximation to lognormal distributions. In order to find the

optimal schedule, we note that each waiting time is a convex function in each of the xi, as

by (3) it is the maximum of linear functions in xi. Note that the case ω = 1 is no longer

interesting, as this results in an optimal schedule with xi = 0 for all i, resulting in a cost

of zero for any sequence. Instead, we consider the parameter values ω = 0.5, ω = 0.8 and

ω = 0.9.

Again we have, similar to Proposition E.1, the result that the largest variance always

should be sequenced last, as stated in the next proposition. This again leaves us with (n− 1)!

candidates, and again it seems no more structural results are known, so we can only find the

optimal sequence by enumerating over all (n− 1)! candidates.

Proposition F.1. Under Assumption 2.4 (dilation ordering assumption), there is an optimal

combination of sequence τ and schedule x that satisfies τ(n) = n, i.e. the largest variance

should always be sequenced last.

Proof. Suppose τ and x are an optimal combination of sequence and schedule. If τ(n) = n

we are done. If τ(n) 6= n, then under Assumption 2.4 we have Bτ(n) − EBτ(n) 6cx Bn − EBn.

We then propose a new sequence τ ′ with patients τ(n) and n switched (so now τ ′(n) = n),

and a new schedule y with yτ(n) = xn + EBτ(n) − EBn and yi = xi for i 6= τ(n). In the
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expression (3) for Wk+1 this change effectively makes it so that each term Bn − EBn gets

replaced by Bτ(n) − EBτ(n), and as Wk+1 is a convex function in this expression we see that

this change cannot increase the EWk+1. By expression (5) we see that the expected idle time

only changes through the term EWn, and so the total cost will not be increased after the

change. Therefore the sequence τ ′ with schedule y is also optimal, and as τ ′(n) = n we are

done. �

F.1. Exponential distributions. Suppose that, as in Appendix E, the service time of

patient i is exponentially distributed with rate n+ 1− i. The exponential service times allow

us to efficiently compute the cost for any given schedule, and the convexity of the cost in

each of the interarrival times xi then allows us to compute the optimal schedule. Due to the

extra complexity involved in computing the optimal schedule for each possible sequence, we

only computed the approximation ratio for n = 3, . . . , 8, for each of mentioned parameter

values of ω. For each of these problem instances, we found that the svf sequence is optimal.

F.2. Lognormal distributions. For lognormal distributions, we will use the same discrete

approximation as was used in Appendix E. For patient i, the underlying lognormal distribution

is set to have mi := E lnBi = ln(20) + ln(i), the 20 again being a scaling parameter. We need

to restrict ourselves to schedules with integer-valued interarrival times in order to be able to

effectively compute the cost function for a given schedule. Fortunately, this class of schedules

is known to contain the optimal schedule, and the cost function of the resulting discrete

optimization problem is L-convex [2]. We can thus use the odicon solver [36], that can

minimize L-convex functions, to find the optimal schedule for each sequence. For si = 0.33 (si

being the standard deviation of lnBi), we computed the approximation ratio for n = 3, . . . , 7,

for each of the mentioned values of ω. When si = 0.75, we did the same for n = 3, . . . , 6. For

all considered problem instances, we found that the svf sequence is optimal.

Remark F.2. The method to find the optimal interarrival times described here, with the

use of odicon, works for any discrete service-time distribution. It was also used to find the

optimal interarrival times in Example 5.1.
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