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Kinetic roughening of the urban skyline
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We analyze the morphology of the modern urban skyline in terms of its roughness properties. This is facilitated
by a database of 107 building heights in cities throughout the Netherlands which allows us to compute the
asymptotic height difference correlation function in each city. We find that in cities for which the height
correlations display power-law scaling as a function of distance between the buildings, the corresponding
roughness exponents are commensurate to the Edwards-Wilkinson and Kardar-Parisi-Zhang equations for kinetic
roughening. Based on analogy to discrete deposition models, we argue that these two limiting classes emerge
because of possible height restriction rules for buildings in some cities.
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There are three major strands of urban morphological
analysis, all of which give insight into the dynamical process
of urban change [1]. These respectively study the micromor-
phology, the relation between morphological periods and the
typological process, and finally the relation between decision
making and urban form. The first follows the intracity spatial
change, which has been shown to be clustered over time
and diffuses spatially [1]. The second strand lays out the
typological process of change in building types where the
latter are viewed as resulting from a process of learning from
adaptations of the previous building types. It also follows how
morphological characteristics are superseded by those of the
next. Last, the interplay between decisions has been shown
to lead to either intended or unintended fringe belts around
preserved historical zones as well as to delineating different
morphological periods [2,3].

The amount of change in urban form has been linked to
the neighborhood effect, which is itself dependent on the
dwelling density; in high-density environments the changes
tend to be imitative [1]. Moreover, the typological process
was investigated by Bernoulli, who came up with the notion
of property cycles, which follows the gradual filling of a lot
of land by buildings which in due course are replaced with
newer ones when their life cycle comes to an end [4]. The
cycle is divided into boom, slump, and recovery phases [1].
The high-density housing prevails in the booming phase while
the interplay between low land values and the geographical
constraints leads to fringe belts, which include vegetation
areas, landmark, and buildings of architectural importance.
The belt thus forms a boundary zone between historically and
morphologically distinct housing areas [2,3].

The city concept has been studied through the lens of
statistical physics as the dynamical processes at play in urban
allometry, mobility, urban form, and social segregation, to list
a few, and has parallels in the study of magnetic materials,
phase transitions, the Ising model, and many others [5–15].

The modern urban skyline, being an important city metric in
the assessment of the city’s solar energy, visual complexity,
and urban climatology, particularly the effect of its rough-
ness on scalar transfer coefficient [16–21], has been as well
followed empirically; however, no dynamical description has
been provided to explain its evolution [22].

Under the effect of the dynamical processes described
above, such as property cycles and the spatial diffusion of
morphological changes, the buildings’ heights are constantly
varying with alternating growth and decay linked to construc-
tion and destruction. Thus the local height function h(�r, t )
of the city at position �r = (x, y) at time t can be thought of
as a dynamic, spatiotemporally evolving stochastic quantity
describing growth phenomena (cf. Fig. 1). This is remi-
niscent of interface dynamics problems commonly studied
in contexts of film growth, flame front propagation, parti-
cle deposition, turbulent liquid crystals, growth of bacterial
colonies, and directed polymers in random media, just to
list a few [15,23–28]. In such systems, macroscopic observ-
ables, such as height fluctuations and relevant correlation
functions, often exhibit power-law dependence on system
size L and on time due to kinetic roughening of the height
correlations [29–31].

If the individual heights of the buildings evolved stochas-
tically and independently without any bounds, the interface
dynamics would be that of a simple random deposition (RD)
model, for which the surface width w2(L, t ) = ∫

d�r[h(�r, t ) −
h̄(t )]2/Lds simply grows as w(t ) ∝ t1/2 in time. Here, h̄(t )
is the spatially averaged instantaneous height over a system
of linear size L, and ds = 2 is the spatial dimension of the
front. For cases where there are nontrivial correlations be-
tween the heights, the Family-Viscek scaling ansatz is often
obeyed as

w(L, t ) ∝ Lα f

(
t

Lz

)
, (1)
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FIG. 1. A schematic of the urban skyline modeled as a moving
interface. The figure is adapted from Ref. [33].

where the scaling function

f (x) ∝
{

xβ, for x � 1,

const, for x � 1.
(2)

The quantities β, α, and z = α/β define the growth, rough-
ness, and dynamical scaling exponents, respectively. These
can also be determined from the height difference pair cor-
relation function [30] which is commonly used to measure
the standard deviations in the underlying height probability
distribution function as

G(r, t ) = 〈[h(�r + δ�r, t ) − h(�r, t )]2〉r, (3)

where 〈·〉r denotes (isotropic) averaging over space. The
asymptotic limit of the isotropic G(r, t ) is given by

G∞(r, t ) ∝
{

r2α, if rc � t1/z
∞ ,

t2β
∞ , if rc � t1/z

∞ ,
(4)

where t∞ and rc are respectively the saturation time and
saturation distance of the function, that is, the time and
distance at which the function plateaus which measures the
extent of correlations between the heights. More complicated
anomalous and multiscaling behavior has also been reported
in some models [32].

Perhaps the best known examples of models of kinetic
roughening following Family-Viscek scaling are the nonlinear
Kardar-Parizi-Zhang (KPZ) equation and its linear Edwards-
Wilkinson (EW) counterpart [34,35]. The KPZ equation in-
cludes a term playing the role of surface tension in the
Hamiltonian picture, a nonlinear driving force that accounts
for slope-dependent growth velocity, and a stochastic term,
respectively, given by

∂h

∂t
= ν∇2h + λ

2
(∇h)2 + η(�r, t ), (5)

where η is uncorrelated Gaussian noise whose Fourier
transformation satisfies 〈η̂(�k, t )η̂(�k′, t ′)〉 = D(2π )dsδds (�k +
�k′)δ(t − t ′), and �k is the momentum. It reduces to the exactly
solvable linear EW equation when λ = 0, for which the
growth exponents are α = β = 0 (logarithmic), and z = 2 for
ds = 2 [36]. For the KPZ case, the exponents are known ex-
actly only in ds = 1, and in ds = 2 they have been numerically
estimated to be α ≈ 0.39, β ≈ 0.24, and z = 2 − α ≈ 1.61
[37].

In this Rapid Communication we utilize a large database
of ≈10 000 000 building heights in cities throughout the

FIG. 2. Clustering of the cities according to their corresponding
values of α and R2 from a linear fit of the G∞(r) vs r on a logarithmic
scale.

Netherlands [38] to study the roughness of the height func-
tion for each city. Such height functions form compact two-
dimensional surfaces that are naturally single valued due to
the lack of voids and overhangs. The building heights are
expected to be somehow correlated due to structural engi-
neering constraints and possible city specific zoning regula-
tions that may restrict both the absolute heights and height
differences between nearby buildings. Thus, we expect to
find well-defined scaling exponents at least in some cases,
and their values should reflect the influence of the different
scenarios.

The data set that we use includes city names, their build-
ings’ footprints, construction years, and heights at given co-
ordinates. The bag3d geopackage data set was split according
to the attribute NAMES_2, corresponding to the city’s name,
which allowed us to generate a separate geopackage for 491
cities. The buildings’ centroids were retrieved for them in
order to compute the pairwise distance r between buildings
which is necessary to compute G(r, t ). While it is easy to
consider the spatial correlations, the data represent the cities’
current configurations and age distributions, and therefore the
time variable (growth dynamics) is not well defined. Thus,
we have to assume that the correlation function has already
saturated in 2020 and we then compute G∞(r) to extract the
roughness exponent α.

Our code was parallelized to run on GPUs and G∞(r)
was computed for each city. We immediately found that,
although there is some degree of crossover apparent, the
cities can be reasonably clustered according to their values
of α and the goodness of the linear fit, measured by the
R2 value of fitting to log G∞(r) vs log r. The clustering is
shown in Fig. 2. We note that clusters 1,4,5 have a low R2

and thus we neglect them from further analysis. We focus
on the cities belonging to clusters 2 and 3, which com-
prise 117 and 15 cities, respectively. The correlation func-
tions G∞ for these cities are shown in Figs. 3(b) and 3(a),
respectively.
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FIG. 3. Saturated spatial correlation functions G∞(r) for the two
clusters with high values of R-squared. In (a) we show the functions
for cluster No. 3 of 15 cities for which α = 0.47 ± 0.09, while in
(b) the functions are shown for cluster No. 2 of 117 cities with
α = 0.05 ± 0.05. The insets show data for the averaged correlation
function of the cities analyzed in each cluster. The correlation
function data have been shifted vertically for clarity of presentation.
See text for details.

The inset shows the average G∞ for both clusters. The
data indicate a relatively well-defined power-law dependence
on the distance, with saturation occurring at about 8 km.
In each case shown here we included only cities that had
at least 10 data points in the power-law regime. The cor-
responding average roughness exponents in the two clusters
are given by ᾱ = 0.05 ± 0.05 (R2 = 0.76 ± 0.13), and ᾱ =
0.47 ± 0.09 (R2 = 0.79 ± 0.18). This indicates that the cities
with high confidence in the fitting to the correlation function
vary between two classes (there is considerable variation at
the highest confidence levels close to R2 = 1), where within
the error bars the scaling exponent α is consistent with the
EW equation for cluster No. 2 (α = 0), and the KPZ equation
for cluster No. 3 (α ≈ 0.4), although for the latter case the
average exponent is somewhat larger than the actual KPZ
value. It is worth mentioning that the 15 cities that fall in the
KPZ class here account for 168 321 buildings and extend over
an area of 367 km2.
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FIG. 4. The ratio ln G∞/ ln rc = 2βz ln A ≈ const from the cor-
relation functions for cities in cluster No. 3. The red line is the
average value of 0.76, which gives A ≈ 2.2 using α = 0.47.

However, the value of the exponent alone is not sufficient to
determine whether or not these equations are relevant for the
city skyline roughness. For the KPZ equation there is a univer-
sal amplitude ratio that can be used to identify the universality
class [30]. To this end we note that for the cities in cluster
No. 3 the computation of G∞(r, t ) for rc � t1/z

∞ requires
knowing t∞, which is available from our data through rc from
the relation t∞ ∝ rz

c . The correlation function in time scales
as G∞(t ) = Bt2β

∞ which then allows the determination of
the nonuniversal amplitude A associated with G∞(r) = Ar2α

[30]. Thus, in the saturated regime, ln G∞/ ln rc = 2βz ln A
should be a constant. In Fig. 4 we show the ratio ln G∞/ ln rc

from the individual cities’ correlation functions for cluster
No. 3. Although there is some scatter in the data, we find
that the ratio is roughly constant and its average value is
0.76, which gives A ≈ 2.24, in qualitative agreement with
values found for discrete growth models in the KPZ class
[27,30].

In Fig. 5 we show the spatial distribution of the cities in
the Netherlands from clusters No. 2 and No. 3 whose skyline
roughening is commensurate with in the two possible EW
(red) and KPZ (blue) universality classes. To understand why
kinetic roughening equations of the EW or KPZ type could be
relevant to the roughness in urban city skylines, it is instructive
to look at the relevant discrete deposition models that are
in these two classes. Perhaps the simplest such models for
the present case are the RD model with surface relaxation
(RDSR) and restricted solid-on-solid (RSOS) models in the
EW and KPZ classes, respectively [24,39–42]. Figure 6 shows
schematically how interface roughness evolves in these two
models. In the RDSR model the particles randomly deposited
can relax to their nearest-neighbor sites in the lattice if these
sites are lower in height, while in the RSOS class of models
there is a strict height difference restriction between nearest
neighbors.

Based on the above we speculate that the difference in
the behavior of the asymptotic correlation function G∞(r) is
related to urban planning constraints as we have also explored
the dependence of α on a handful of additional geospatial fac-

050301-3



NAJEM, KRAYEM, ALA-NISSILA, AND GRANT PHYSICAL REVIEW E 101, 050301(R) (2020)

FIG. 5. The cities from cluster No. 3 whose skyline roughness
is commensurate with the KPZ equation are shown in blue, while
those from cluster No. 2 that display EW type of behavior are shown
in red. For the rest of the cities in the database the R2 values are
two low to reliably indicate power-law behavior of the correlation
function.

tors, including the area of the city, its perimeter, and the den-
sity of the built environment, all of which proved to have no
correlation to the observed scaling. The simplest explanation
why EW or KPZ type of roughness may evolve in city skylines
is based on building height restrictions: Without any explicit
restrictions the skyline tends to form a somewhat smoothed
EW type of an interface due to natural construction and urban
zoning related factors, while strict height restrictions lead
to correlations akin to those in the RSOS model. However
plausible, we have not been able to identify any explicit

(a) (b)

FIG. 6. A schematic of the deposition rules in (a) the RDSR
and (b) in the restricted solid-on-solid model with nearest-neighbor
height differences |
h| � 2 [25]. The former is in the EW class while
the RSOS models have slope-dependent growth velocity leading to a
finite value of λ in the KPZ equation.

building code height restrictions between these populations in
the data.

To summarize, in this Rapid Communication we have
considered the morphology of the urban skyline in terms
of kinetic roughening of growing fronts. A huge database
of about 10 000 000 building heights in cities throughout
the whole of Netherlands has allowed us to analyze the
morphology of the city skylines in terms of their roughness
exponent α. Interestingly enough, for the cases where there
is a relatively well-defined power-law behavior of the height
difference correlation function, we find that the exponents
observed fall into and in between two categories which seem
commensurate with the EW and KPZ universality classes. A
qualitative explanation why this is the case is based on natural
smoothing of the skyline for the EW class, and explicit height
restriction rules set in some cities which may lead in KPZ
types of correlations between the heights.
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