
Requirements Engineering as Science in the Small
Munindar P. Singh

North Carolina State University
Raleigh, NC 27695, USA

singh@ncsu.edu

Amit K. Chopra
Lancaster University

Lancaster LA1 4WA, UK
amit.chopra@lancaster.ac.uk

Abstract—This paper identifies similarities between require-
ments engineering (RE) and the scientific method. It argues
that RE is concerned with the development of models of small
universes and thus relates to natural science despite RE having
a prescriptive rather than a descriptive nature. An explicitly
philosophical stance sheds light on RE processes and brings up
criteria for judging RE processes.

Index Terms—Philosophy of science; Foundations of require-
ments engineering; Requirements engineering process

I. INTRODUCTION

Requirements engineering (RE) is a science of the “artifi-
cial” [1]: it is concerned with engineering artifacts according to
stakeholder requirements. RE involves the efforts of eliciting
requirements from stakeholders and building effective specifi-
cations that enable software development. The question is not
simply whether a software solution is correct (i.e., whether it
meets requirements), but also whether we have a correct model
of the requirements themselves.

We contrast RE, as a science of the artificial, with the
“natural” sciences, which we take to include not just physics
and biology, but also the humanities (psychology and sociol-
ogy). Models and their correctness constitute the fundamental
concerns of the natural sciences. Well-known models include
of the solar system, atom, cell, and electricity. Models can
be shown to be incorrect by empirical evidence. Famous
discredited models include the Ptolemaic model of the cosmos,
the miasma (“bad air”) model of disease, and the four-humor
model of health and temperament.

Whereas the natural sciences are concerned with building
descriptive models that explain the environment, RE is con-
cerned with prescriptive models that would alter the environ-
ment. Whereas the validation criteria in the natural sciences
originate in nature, those in RE originate with stakeholders,
whose assessments moreover are inherently subjective. Despite
these differences, we posit that RE can be usefully understood
as science in the small, since it studies small, contingent
“universes” as constructed from stakeholder requirements.

This viewpoint suggests how key ideas from the philosophy
of science may be fruitfully adapted for RE and thereby help
improve RE research and practice. In particular, the core
ideas in the philosophy of science either apply directly or
have clear correlates in RE. These include validation; dealing
with assumptions, especially tacit ones; and understanding the
social processes involved in developing theories of the (in case
of RE, a) universe.

II. SOFTWARE DEVELOPMENT AND SCIENCE

Figure 1 shows broadly the methodology a natural scientist
follows. A scientist instruments and observes the universe,
and theorizes to produce a model that (purportedly) explains
the observations. The scientist evaluates the model against
observations and, in doing so, may uncover tacit assumptions.
Making the assumptions explicit serves to delimit the scope
of applicability of the model in that the model explains
observations only in those universes where the assumptions
hold.

Scientists use assumptions as a pragmatic separation of con-
cerns device—to limit the scope of the phenomena addressed.

Tacit
Assumptions

Theorize Model Evaluate

Assumptions Universe

Uncover

Observe

Inform

Fig. 1. Natural science. The scientist controls the model but the universe,
as instrumented and observed, is fixed. The assumptions scope out the
observations and the model.

Figure 2 shows that the methodology a software developer
follows is analogous. The developer’s job is to design a
solution that meets the stated stakeholder requirements. In
evaluating whether a solution meets the requirements, the
developer may uncover tacit assumptions and make them
explicit. Let us consider the example of building an elevator
control solution with the requirement that the elevator must
safely carry at least eight passengers. An assumption is intro-
duced that any eight passengers would weigh at most 680 kg
in total. Another assumption is that the physical construction
of the elevator enables it to safely move loads of up to 680
kg. The solution (software) consists of an elevator controller
that blocks elevator movement at the current floor if its load
exceeds 680 kg. To this end, the software reads the load from
a sensor installed in the elevator.

The elevator could violate the requirements if the sensors
malfunction. Therefore, the assumption that the sensors were
working reliably is now made explicit. The validity of this
assumption would, in practice, be supported by a maintenance

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lancaster E-Prints

https://core.ac.uk/display/323304481?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Tacit
Assumptions

Design Solution Evaluate

Assumptions Requirements

Uncover

Apply

Inform

Fig. 2. Software development. The developer controls the solution artifact
but not the requirements. The assumptions carry contractual force between
developers and stakeholders

contract between the elevator manufacturer and its client. The
requirement of safely carrying at least eight people is satisfied
by the software solution in those universes where no group
of eight passengers who can crowd into the elevator weighs
more than 680 kg; the elevator has a load bearing capacity of
680 kg; and the load sensors undergo regular maintenance.

The foregoing account highlights that both software devel-
opment and science are empirical activities that involve the
iterative creation of suitable artifacts (model and solution, re-
spectively) and give key importance to the evaluation of these
artifacts. The above-mentioned similarity holds even though
the artifacts are differently understood. Scientific models are
descriptive whereas engineering solutions do not describe, but
necessarily alter, their operating environments.

III. REQUIREMENTS ENGINEERING

We understand the RE enterprise as a way of factoring
Figure 2 into two activities as shown in Figures 3 and 4, each
of which follows the same structure as Figure 1.

Adopting well-known terminology [2], Figure 3 shows how
RE involves the production of a specification that refines
and formalizes stated requirements. In essence, a specification
is realizable by a solution artifact. The requirements engi-
neer evaluates whether the specification meets stakeholder
requirements. This evaluation is nontrivial and may involve
humanistic methods such as ethnographic analysis or user
surveys. In doing so, the requirements engineer may uncover
tacit assumptions that help refine the specification.

Tacit
Assumptions

Specify Specification Evaluate

Assumptions Requirements

Uncover

Apply

Inform

Fig. 3. Refine requirements into specifications and assumptions. Requirements
can be informal and lack clear criteria for evaluating specifications.

Specifications of software normally take the form of formal
descriptions of actions that the software takes in particular

conditions. For example, (and eliding the formal language
aspects), the specification of the elevator controller might
say that the action moveTo(floor ) is a noop in the condition
that the variable load has a value greater than 680 (kg).
Let’s refer to this specification as Se. Actions and variables
in the specification designate actions taken by the software
at the software-universe interface and states of the universe,
respectively. The advantage of formal specifications is that
they lend themselves to automated verification. Thus, defects
in specifications can potentially be detected at this stage.
In common practice, however, the specifications are often
informal descriptions.

The specification serves as a basis for contractual software
development. The developer controls the solution but not the
specification. In Figure 4, the developer designs a solution
that meets the specification. The solution would normally
be a program that interfaces with input-output devices. The
evaluation could involve rigorous computational methods, such
as testing and verification.

Tacit
Assumptions

Design Solution Evaluate

Assumptions Specification

Uncover

Apply

Inform

Fig. 4. Solutions implement specifications. The assumptions delineate the
limitations of the solution artifact, and should be more general for a solution
than for the specification.

The assumptions in Figure 4 capture the conditions under
which the solution would satisfy the specification. In essence,
these assumptions suggest that the solution is imperfect and
characterize its limitations. Stating assumptions may be ap-
propriate as a way to capture whether an existing product
satisfies a specification, but not when we seek to implement a
specification. The need for assumptions on a solution indicates
a failure in creating an appropriate specification.

In contrast, Figure 5 describes the setting where the assump-
tions are paired with a specification. The assumptions associ-
ated with a specification would be part of the contract that the
specification identifies. Relying on additional assumptions on
a solution, as in Figure 4, risks breaching that contract.

IV. ADOPTING IDEAS FROM THE PHILOSOPHY OF SCIENCE

A scientific theory stakes claims about the way the universe
is. For RE, we motivate criteria on evaluability of models from
criteria on processes for their construction.

A. Specification Quality

The verifiability of a theory means that it makes claims that
address an observable part of reality, not metaphysical (e.g.,
religious) [3]. The falsifiability of a theory means that there



Tacit
Assumptions

Design Solution Evaluate

Assumptions Specification

Uncover

Apply

Inform

Fig. 5. Shifting the assumptions to the specification is crucial, else the contract
with the stakeholders is meaningless; the solution may fail; and different
solutions are incomparable.

is a phenomenon observing which would disprove the theory.
Otherwise, the theory does not discriminate between possible
states of affairs [4]. Both verifiability and falsifiability have
been proposed as essential properties of “meaningful” theories.

Although both proposals are controversial, the underlying
ideas are applicable to requirements. We posit the above crite-
ria apply to specifications, but because specifications mediate
requirements and solutions, the criteria apply in two forms.
First, a specification must be such that it should be possible
to judge whether a solution meets it: i.e., the specification must
be verifiable and falsifiable. For example, Se is verified by any
execution of the elevator system where the elevator is blocked
when the load is greater than 680 kg. Se is falsified by any
execution in which the elevator moves even when the load is
higher than 680 kg.

Second, a specification must be such that we can determine
whether it would meet stated requirements. So just as we asked
for specifications, we can ask if the requirements themselves
are verifiable and falsifiable. In general, requirements can be
understood only through empirical analysis of stakeholders’
needs, e.g., via ethnographic studies [5]. Hence, requirements
are not conducive to the above criteria. For example, the
requirement to “safely” carry at least eight persons is informal.
Whether Se and any solution that implements Se meets this
requirement relies on an interpretation of “safely.”

But how then are specifications related to requirements?
Specifically, how can we establish the validity of specifica-
tions? The validity of specifications is established statically
by systematically refining stakeholder requirements into spec-
ifications [2]. For example, the requirement to safely carry
at least eight passengers was refined into the requirement
that the elevator should block when overloaded. An engineer
can construct a formal refinement argument to show that the
specification meets the requirement. The crux of the argument
is that the requirement to carry passengers safely would be
met if the elevator does not move when overloaded—which is
itself an assumption. The same requirement could be refined
differently, e.g., instead of blocking, inform passengers of
the reason—under the different assumption that once the
passengers are informed, enough of them would step off.

B. Process Quality

The generality of a theory means it must capture more than
the phenomena that are explicitly observed. The parsimony
of a theory means that it must not introduce concepts and
features unnecessarily. Strong inference refers to developing
theories (specifically, hypotheses) in a manner that their eval-
uations help discriminate between potential states of affairs
[6], [7]. We associate these properties with process since they
characterize how a model is constructed.

A specification can be judged for generality based on how
the requirements morph and how it tackles them. For example,
suppose a new requirement were that the elevator safely ferry
passengers and crates. Then, an elevator controller built to Se

could be used for that purpose. However, an alternative specifi-
cation Sc that is based on counting the number of bodies in the
elevator would not be able to handle the changed requirement:
the controller would not block the elevator when of number
of passengers were low enough, but the crates took the weight
to above 680 kg. Thus, for the set containing the original and
morphed requirements, Se is more general than Sc. However,
for some other requirements, the situation may be reversed.
Since we cannot anticipate how requirements may change,
we cannot tell if a specification is more general than another
unless both support the same requirements but one calls for
weaker assumptions than the other. Additional knowledge,
such as about what uses an elevator may potentially be put
to, would be crucial in determining generality.

A specification can be judged for parsimony based on how
few concepts and relationship it involves. For example, an
elevator specification that involves assessing the heights of
passengers in addition to their weights is not parsimonious.
Parsimony involves identifying assumptions so that the re-
quirements are captured succinctly and no component of the
specification may be excised without violating a requirement.
Achieving parsimony therefore presumes a systematic process
of refinement from requirements to specifications. A specifi-
cation can be general or parsimonious, both, or neither.

Strong inference applies in two respects. First, it cor-
responds to refining a specification where each small set
of components of the specification may be comparatively
evaluated with respect to a competing set of components.
Doing so facilitates producing a specification that is general
and parsimonious. Second, closer to its original sense, strong
inference involves ensuring that a specification provides clarity
on whether a solution satisfies it.

V. RE AS SCIENCE IN THE SMALL

Both software engineering and science are social activities,
occurring in their respective communities of practice who
(seek to) establish the correctness of their representations
via communication among their members. Unlike natural
science, software engineering is a more explicitly sociopo-
litical activity, wherein the correctness of the representations
(requirements, specification, and solution) is negotiable and
wherein the specification not only separates requirements from
solutions but also provides a basis for a contract.



The foregoing discussion brings out the intuition that RE
has to do with the study and creation of small artificial
universes. An artificial universe comprises three main arti-
facts: requirements (the universe to be), assumptions, and
specifications (a way to realize the universe to be). Just as
natural science mediates between observations and theoret-
ical constructs, requirements engineering mediates between
requirements and solutions. However, natural science has little
loyalty to commonsense, whereas RE has primary loyalty to
stakeholder requirements.

The preceding discussion makes key simplifications. We
usually can’t evaluate a requirement (or specification) but in
terms of the solutions that emerge from it. Moreover, the avail-
able solutions often influence the requirements. For example,
before Otis, people may not have realized they required an
elevator, and skyscrapers may never have been built. Here, we
treat requirements as known to the stakeholders. In practice,
requirements may be elicited from stakeholders or possibly
even sold to stakeholders.

Evaluation is often difficult and expensive. It is imperfect
and delayed, thereby loosening or breaking the feedback cycle.
People tend to become entrenched in thought and practice—
for example, QWERTY keyboards remain the most dominant
even though superior text input methods exist.

VI. CONCLUSIONS AND DIRECTIONS

The RE lifecycle involves continual negotiation—over re-
quirements and assumptions, specifications, and solutions.
Specifically, a negotiator would identify tacit assumptions and
ask to make them or their negation explicit. As requirements
evolve, so do the associated specifications, usually incre-
mentally. Because stakeholders would become entrenched in
certain practices, the process necessarily sacrifices generality
and parsimony, leading to suboptimal specifications. But some-
times incremental change to specifications is impossible. In
such cases, a rethinking of the solution is necessary, analogous
to a paradigm shift in science [8].

Requirements can conflict. The hardest cases of conflict
arise when requirements from different universes must be
consolidated because the universes abut each other. Coherence
across these universes is important even though in general
consistency may not be obtained between them. Current RE
generally doesn’t support building systems of multiple au-
tonomous parties, each as a separate locus of computation [9],
[10]. Such an ability is essential in achieving coherence with
different universes being modeled differently.

RE needs a renewed focus on verifiable and falsifiable
specifications. RE has embraced ideas such as the testability of
specifications (by testing solutions) and runtime monitoring of
solutions. These ideas intersect with verifiability. However, RE
has largely overlooked falsifiability. For example, some efforts
on adaptive RE describe adaptive requirements in such a way
that they can never be violated. And, strong inference can
guide both testing methodologies and work prioritization in a
project to uncover specifications with increasing confidence.

Achieving validity and generality of specifications calls for
a more complete understanding of the application domain and
stakeholder requirements. To this end, RE should leverage
various sources of information, e.g., user discussions on the
Web and interviews with stakeholders. Semantic approaches
for aggregating and querying such information to gain insight
into the domain are largely absent. More generally, we need
tool-assisted methodologies for mapping information sources
to plausible requirements. Then we could ask questions of
completeness (do the requirements capture the ideas implicit
in the information source?) and validity (are the requirements
supported by the information source?)

Systematically refining requirements into specifications is
crucial to establishing the validity and parsimony of a specifi-
cation. Recognizing a refinement as an assumption motivates
the question of its validity, which is crucial because a refine-
ment is usually context sensitive and not universal. Existing
approaches embed refinements in the process, whereas reifying
and representing a refinement is a precursor to expressing it
as an assumption.

The sciences seek to understand external phenomena: the
phenomena are in broad terms regular, although their regularity
is not fixed—consider the continuum from physics to biology
to the humanities (psychology and sociology). In contrast, RE
must deal not only with the subtleties of the social phenomena
in understanding where a solution would fit given stakeholder
requirements but must also create a (prescriptive) solution that
would realize the required outcome. To rise to this challenge
requires cultivating more rigorous methodologies in RE, some
facets of which we have outlined above.

ACKNOWLEDGMENTS

Singh thanks the US Department of Defense for partial
support under the Science of Security Lablet. Chopra thanks
the EPSRC for grant EP/N027965/1 (Turtles).

REFERENCES

[1] H. Simon, The Sciences of the Artificial, 3rd ed. Cambridge, Mas-
sachusetts: MIT Press, 1996.

[2] P. Zave and M. Jackson, “Four dark corners of requirements engineer-
ing,” ACM Transactions on Software Engineering and Methodology,
vol. 6, no. 1, pp. 1–30, Jan. 1997.

[3] A. J. Ayer, Language, Truth and Logic, 2nd ed. Mineola, New York:
Dover Publications, 1936, reprinted 1972.

[4] K. Popper, Conjectures and Refutations. London: Routledge & Kegan
Paul, 1963.

[5] H. Sharp, Y. Dittrich, and C. R. B. de Souza, “The role of ethnographic
studies in empirical software engineering,” IEEE Transactions on Soft-
ware Engineering, vol. 42, no. 8, pp. 786–804, 2016.

[6] J. R. Platt, “Strong inference,” Science, vol. 146, no. 3642, pp. 347–353,
Oct. 1964.

[7] R. H. Davis, “Strong inference: Rationale or inspiration?” Perspectives
in Biology and Medicine, vol. 49, no. 2, pp. 238–250, Apr. 2006.

[8] T. S. Kuhn, The Structure of Scientific Revolutions. Chicago: University
of Chicago Press, 1962.

[9] A. K. Chopra, F. Dalpiaz, F. B. Aydemir, P. Giorgini, J. Mylopoulos,
and M. P. Singh, “Protos: Foundations for engineering innovative
sociotechnical systems,” in Proceedings of the 22nd IEEE International
Requirements Engineering Conference (RE). Karlskrona, Sweden: IEEE
Computer Society, Aug. 2014, pp. 53–62.

[10] M. P. Singh, “Norms as a basis for governing sociotechnical systems,”
ACM Transactions on Intelligent Systems and Technology (TIST), vol. 5,
no. 1, pp. 21:1–21:23, Dec. 2013.


