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Abstract

Incentive constraints are constraints that are optimization problems themselves. If

these problems are non convex then the first order approach fails. We propose an al-

ternative solution method where we use the value function as an additional constraint.

This ensures that all solutions are incentive compatible. To get the value function we

use a function interpolator like sparse grids. We demonstrate our approach by solving

two examples from the literature were it was shown that the first order approach fails.

Keywords: incentive constraints, first order approach, parametric optimization, value

function approach.

JEL codes: C63, D80, D82.

1 Introduction

Incentive constraints are an important part of economic modelling. Whenever we encounter a

situation where one party cannot observe the other’s action, we need an incentive constraint to

model the resulting interaction, encompassing optimal taxation, manager remuneration and

mechanism design. We therefore need methods to deal with incentive constraints.

The general idea to handle these constraints, which are optimization problems themselves,

is to replace them with their first order conditions. However it is well known that if the lower

level is non-convex then the true solution might not even be amongst the stationary points of

the first order approach (Mirrlees 1999). Even if the lower problem is convex the optimization

problem resulting from the first order approach is difficult to deal with because the standard

constraint qualifications fail at every feasible point (Ye and Zhu 1995).
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Researchers have addressed this in multiple ways. First we can find conditions under which

the lower level is a convex optimization problem, see Rogerson (1985) or recently Chade and

Swinkels (2020). However, the trade-off is that either the assumptions are strict or that they

do not work for a numerical treatment.

Second is using the first-order conditions and doing a post verification like in Abraham

and Pavoni (2008). But this leaves us without an option if the verification fails. Furthermore

since we know that the true solution might not even be a stationary point, we therefore only

can certify feasibility and not optimality.

Lastly we can look for alternatives to the classical first-order approach. We showed in

Renner and Schmedders (2015) that if we assume that the agent’s problem is a rational

function in his variables then we can use techniques from real algebraic geometry to solve the

resulting bilevel optimization problem. There are two drawbacks to this approach. First, we

need the rational function assumption which is not satisfied for many popular models. Second,

the size of the problem goes up exponentially in the number of agent’s decision variables.

In this paper we propose to augment the first order approach by adding the constraint

that the agent’s payoff has to be at least the value of his value function. This is called the

value function approach in the mathematical programming literature and was first proposed

by Outrata (1990). All optimal solutions of the resulting problem will therefore be incentive

compatible.

An obvious problem is that we usually do not know the agent’s value function and in general

there is no closed form description of the value function. But if we regard the principal’s

choices as fixed then the agent’s optimization problem is easy to solve. Therefore we will use

an approximation of the agent’s value function computed by solving the agent’s problem at

fixed set of points. The domain of the approximation will be the choices of the principal, e.g.

if the principal has two variables to influence the agent then the agent’s value function needs

to be approximated over a two dimensional domain. Thus the complexity of the resulting

problem is mostly independent of the number of choices for the agent but instead depends on

the number of parameters.

The complexity of functional approximation depends on the dimension of the domain

and suffers from the curse of dimensionality. Fortunately there are advances in function

approximation that mitigate the curse and allow us to approximate several problems that

were previously untracktable. If the domain of approximation can be mapped to a square then

sparse grids (Smolyak 1963; Zenger 1991) can be used effectively to approximate even high

dimensional functions, as in Brumm and Scheidegger (2017). If the domain of approximation

is non square then we can use grid free methods from machine learning like Gaussian processes

or neural networks (Murphy and Bach 2012).
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We demonstrate the effectiveness of our approach on the two classical examples in the

literature. We solve the original counter example from Mirrlees (1999) and the example from

Araujo and Moreira (2001).

2 Value function approach for static principal agent

problems

We want to solve the following problem

max
x,a

F (x, a)

s.t. G(x, a) ≥ 0, H(x, a) = 0

a ∈ arg max
â∈Γ(x)

f(x, â)

(1)

where x ∈ Rnp , a ∈ Rna , Γ(x) = {â | g(x, â) ≥ 0, h(x, â) = 0} and F,G,H, f, g, h are twice

continuously differentiable functions.

The main issue is the incentive compatibility constraint

a ∈ arg max
â∈Γ(x)

f(x, â) (2)

which tells us that if the principal wants to induce the agent to take action a, she has to take

the agents preferences into account.

An immediate idea to solve (1) is to replace (2) with its first order conditions which yields

max
x,a

F (x, a)

s.t. G(x, a) ≥ 0, H(x, a) = 0

∇âL(x, â, λg, λh) = 0,

g(x, â) ≥ 0, h(x, â) = 0,

(λg)Tg(x, â) = 0, λg ≥ 0

(3)

where L(x, â, λg, λh) = f(x, â)+
∑

j λ
g
jgj(x, â)+

∑
i λ

h
i hi(x, â) is the Lagrangian of the agent’s

problem.

However, Dempe and Dutta (2012) show that even if the agent’s problem is a convex

optimization problem, there are two potential problems. If Slater’s constraint qualification

fails then global solutions to the reformulation do not necessarily correspond to global solutions

of the principal agent problem. Further even if Slater holds then local solutions of the first

order approach are not necessarily local solutions of the original problem.

More importantly if the agent’s problem is none convex then Mirrlees (1999) showed that

it is possible that the optimal solution to (1) is not amongst the stationary points of (3). The
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agent’s problem becomes non-convex if we assume that he has a von Neumann Morgenstern

utility where the probabilities depend on his own actions.

Therefore we desire alternative reformulations that allow us to solve problems where the

reformulation (3) fails. If we assume that f(x, a) attains its maximum on Γ(x) for all (x, a)

satisfying G(x, a) ≥ 0, H(x, a) = 0 then we can define the value function of the agent’s

problem

ϕ(x) = max
â∈Γ(x)

f(x, â) (4)

Outrata (1990) proposed using the value function to rewrite problem (1) into

max
x,a

F (x, a)

s.t. f(x, a) ≥ ϕ(x)

G(x, a) ≥ 0, H(x, a) = 0

g(x, a) ≥ 0, f(x, a) = 0

(5)

It is immediate that (5) is equivalent to (1).

Ye and Zhu (2010) propose to combine the value function (5) with the first order approach

(3) into the following problem

max
x,a

F (x, a)

s.t. f(x, a) ≥ ϕ(x)

G(x, a) ≥ 0, H(x, a) = 0

∇âL(x, â, λg, λh) = 0,

g(x, â) ≥ 0, h(x, â) = 0,

(λg)Tg(x, â) = 0, λg ≥ 0

(6)

However in this form standard constraint qualifications will always fail due to the value func-

tion as a constraint. To remedy this Ye and Zhu (2010) use the value function constraint as

a penalty and rewrite the problem to

max
x,a

F (x, a) + ξ(f(x, a)− ϕ(x))

s.t. G(x, a) ≥ 0, H(x, a) = 0

∇âL(x, â, λg, λh) = 0,

g(x, â) ≥ 0, h(x, â) = 0,

(λg)Tg(x, â) = 0, λg ≥ 0

(7)

Where ξ > 0 is a penalty parameter.
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In general the value function ϕ(x) is unknown to us. However for any given x the agent’s

optimization problem is often easily solved. Therefore we propose to replace the true value

function with a precomputed approximation where we use a function approximator. This

means that we need to approximate a multidimensional function, a seemingly difficult task.

However, there have been many advances in function approximation that make this originally

impossible task tractable. There are two major options we can choose from.

First there are the grid based methods, the most efficient of them being adaptive sparse

grids (Brumm and Scheidegger 2017). They have the advantage that they are well understood

in both theory and practice. Sparse grids perform especially well when used to approximate

Lipschitz continuous functions. The drawback is that we are restricted to a hypercube, i.e.

a set of the form Πn
i=1[ai, bi]. Fortunatley in many situations we can simply use a box that

contains all possible values of x that we want to plug in.

Second are the grid free methods that are used in Machine Learning, like Gaussian Pro-

cesses (Scheidegger and Bilionis 2019) or Deep Neural Networks (Azinovic, Gaegauf, and

Scheidegger 2019). Their advantage is that we can choose the points at which we approx-

imate our function arbitrarily and therefore we can use them to approximate functions on

any domain. However, they have worse theoretical properties in thus far that where we pick

the sample points significantly influence the quality of our approximation and there are no

theoretical save ways to efficiently pick these points.

Unfortunalty the value function ϕ is non-differentiable in all relevant cases and so we need

to look to non-smooth analysis to study its properties. For this we first need a new notion of

a derivative.

Definition 1. Let f : Rn → R̄ = R ∪ {−∞,∞} be an extended value function, x̄ ∈ Rn and

f(x̄) finite. Then the regular subdifferential of f at x̄ is defined as

∂̂f(x̄) = {v ∈ Rn|f(x) ≥ f(x̄)+ < v, x− x̄ > +o(‖x− x̄‖)}.

The limiting subdifferential of f at x̄ is

∂f(x̄) = {v ∈ Rn|∃(vk), v = lim
k
vk, vk ∈ ∂̂f(xk), xk → x̄, f(xk)→ f(x̄)}.

Note when f is convex then the above definitions are equivalent and equal to the subgradient

from convex analysis, i.e.

∂f(x̄) = {v ∈ Rn|f(x) ≥ f(x̄)+ < v, x− x̄ >}.

The good news is that even though ϕ is non-differentiable we can impose conditions under

which the function is Lipschitz continuous. We use the results from Guo, Lin, Ye, and Zhang

(2014) to ensure Lipschitz continuity. They require two conditions.
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Definition 2. We say restricted inf-compactness holds around x if ϕ(x) is finite and there

is a compact set A ⊂ Rna and a ε > 0 such that, for all x with ‖x − x‖ < ε for which

ϕ(x) > ϕ(x)− ε, the agent’s problem (4) has a solution in A.

Note this is a very weak condition and it is trivially satisfied if for all x, Γ(x) ⊂ A for some

compact set A.

Definition 3. A point (x, a) with a ∈ Γ(x) is called quasi-normal if there is no nonzero vector

(λg, λh) such that

0 = ∇g(x̄, ā)Tλg +∇h(x̄, ā)Tλh, λg ≥ 0

and there exists (xk, ak)→ (x̄, ā) such that

λgi > 0⇒ λgi gi
(
xk, ak

)
> 0,

λhi 6= 0⇒ λhi hi
(
xk, ak

)
> 0.

This is a weaker version of the Mangasarian-Fromovitz constraint qualification and there-

fore is easily satisfied.

Theorem 1. (Guo, Lin, Ye, and Zhang 2014, Cor. 4.8) Let S(x̄) denote the optimal solution

mapping for the agent’s problem (4). If restricted inf-compactness holds around x̄ and for each

ā ∈ S(x̄), (x̄, ā) is quasi-normal, then the value function ϕ(x) is Lipschitz continuous around

x̄. Furthermore the limiting subdifferential of ϕ satisfies

∂ϕ(x̄) ⊆ W̃ (x̄)

where

W̃ (x̄) :=
⋃

ā∈S(x̄)

{
∇xf(x̄, ā) +∇xg(x̄, ā)Tλg +∇xh(x̄, ā)Tλh :

(
λg, λh

)
∈M(x̄, ā)

}
where M(x̄, ā) is the set of quasi-normal multipliers defined as

M(x̄, ā) :=


0 = ∇af(x̄, ā) +∇ag(x̄, ā)Tλg +∇ah(x̄, ā)Tλh, λg ≥ 0(

λg, λh
)
| there exists

(
xk, ak

)
→ (x̄, ā) such that

λgi > 0⇒ λgi gi
(
xk, ak

)
> 0

λhi 6= 0⇒ λhi hi
(
xk, ak

)
> 0

 .

Lastly if W̃ (x̄) = {ζ} is a singleton then ϕ(x) is strictly differentiable with ∇ϕ(x) = ζ.

3 Classical static examples

To show the viability of our approach we compute the solution to two examples from the

literature where it is known that the first-order approach fails.
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First we look at the example from Mirrlees (1999), that is also discussed in Ye and Zhu

(2010).

max
x,y
− (x− 2)2 − (y − 1)2

s.t. y ∈ arg max
ỹ∈[−2,2]

xe−(ỹ+1)2 + e−(ỹ−1)2
(8)

It is known that the optimal solution to this problem is at (1, 0.95753). Using the first-order

approach we obtain

max
x,y
− (x− 2)2 − (y − 1)2

s.t. − 2e−(−1+y)2(−1 + y)− 2e−(1+y)2x(1 + y) + λg1 − λ
g
2 = 0

λg1(2 + y) = 0

λg2(2− y) = 0

− 2 ≤ y ≤ 2

(9)

We use SNOPT (Gill, Murray, and Saunders 2005) to solve the optimization problem and

find the local solution (1.991209, 0.8947100). Next we approximate the value function with an

adaptive sparse grid with 315 points and resolve the problem with the value function approach

(7). We find the solution (0.9985342, 0.9575735) which is close to the true solution.

Next we look at the example from Araujo and Moreira (2001).

max
x1,x2,y

(1− y3)(1− x1) + y3(5− x2)

s.t. y ∈ arg max
ỹ∈[0,0.9]

(1− y3)(
√
x1 − y2) + y3(

√
x2 − y2)

(10)

The optimal solution is found at (0, 1.23457, 0.9). Using the first-order conditions we get the

following problem

max
x1,x2,y

(1− y3)(1− x1) + y3(5− x2)

s.t. − 3y2
(√

x1 − y2
)

+ 3y2
(√

x2 − y2
)
− 2y4 − 2

(
1− y3

)
y + λg1 − λ

g
2 = 0

λg1y = 0

λg2(0.9− y) = 0

0 ≤ y ≤ 0.9

(11)

Without the value function we get the stationary point (0, 0.5489, 0.9), which is not a feasible

solution to the original problem. We approximate the agent’s valuefunction with a grid with

258 points and get the solution (0.0, 1.236787, 0.9).
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