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Abstract  15 

 16 

Remyelination is the regeneration of myelin sheaths following demyelination. This 17 

regenerative process is critical for the re-establishment of axonal conduction velocity and 18 

metabolic support to the axons.  Successful remyelination in the central nervous system (CNS) 19 

generally depends on the activation, proliferation and differentiation of oligodendrocyte 20 

progenitor cells (OPCs). However, other cell types play critical roles in establishing where a 21 

lesion is conducive for regeneration. In the last few years, several studies have described 22 

beneficial and detrimental roles played by astrocytes in remyelination.  This review will discuss 23 

recent developments in the concept of astrocyte reactivity, what is known about the astrocytic 24 

contribution to remyelination and highlight future avenues of investigation.   25 

 26 
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Myelin and the importance of remyelination 44 

In the CNS, myelin is generated by oligodendrocytes and is composed of lipid-rich, tightly 45 

overlapping membranous extensions which ensheath axons. This provides the axon with an 46 

insulating layer, increasing its resistance and decreasing its capacitance, thereby reducing radial 47 

loss of electrical current during the propagation of action potentials along the axon. As a result, 48 

action potentials only need to be actively regenerated at specialised high-density clusters of ion 49 

channels between segments known as nodes of Ranvier. Therefore, myelination of axons both 50 

greatly reduces the energy required and increases the speed with which axons can propagate 51 

action potentials per unit distance [1]. Monocarboxylate transporters on the oligodendrocyte cell 52 

membrane allow lactate transport to the axon, facilitating ATP production via oxidative 53 

phosphorylation [2].  54 

 55 

Unlike neurons, oligodendrocytes and their myelin sheaths can be regenerated following their 56 

loss, a process known as remyelination. Remyelination occurs in both animal models of 57 

demyelination and in humans with demyelinating diseases such as multiple sclerosis (MS) [3]. 58 

The regenerative response following demyelination often involves the generation of new 59 

oligodendrocytes and subsequent formation of new myelin sheaths. In contrast to most other 60 

neural cell types, new oligodendrocytes can be generated throughout life via the activation of a 61 

pool of tissue resident adult progenitor cells known as oligodendrocyte progenitor cells (OPCs). 62 

Upon demyelination, OPCs in the vicinity of the lesioned area become “activated” – an umbrella 63 

term for a series of changes which allow them to migrate to and proliferate within the lesion and 64 

differentiate into new mature oligodendrocytes.  Activation of OPCs involves, inter alia, the 65 

upregulation of transcription factors such as Sox2 and Tcf4, the former of which sustains 66 

proliferation with the latter being critical for differentiation [4-7]. The increased expression of 67 

growth factors within the lesion, such as fibroblast growth factor 2 (FGF2) and platelet-derived 68 

growth factor (PDGF), promotes the proliferation of OPCs, which differentiate into 69 

oligodendrocytes, expressing myelin genes in a manner dependent on the enhancer binding 70 

activity of myelin regulatory factor [8, 9].  These newly formed oligodendrocytes then ensheath 71 

demyelinated axons with new myelin [10, 11].  Although remyelination often occurs through the 72 
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proliferation and differentiation of OPCs into oligodendrocytes, two recent studies have 73 

indicated an alternative mechanism in which remyelination occurs via new process formation by 74 

existing oligodendrocytes [12, 13].  Relatively little is known yet about this form of remyelination, 75 

and in this review we will focus on the former, more thoroughly understood process of 76 

remyelination by differentiating OPCs.   77 

 78 

Many other cell types play key roles in regulating the process by which OPCs give rise to new 79 

remyelinating oligodendrocytes. Activated microglia and infiltrating monocyte-derived 80 

macrophages are essential for remyelination as they secrete important growth factors for OPC 81 

proliferation and differentiation as well as the phagocytic removal of remyelination-inhibiting 82 

myelin debris [14, 15].  In addition to the involvement of innate immunity, regulatory T cells, 83 

pericytes, and axons also influence remyelination [16-18].   84 

 85 

This article will review the recent literature examining the contribution of astrocytes to 86 

remyelination.  It will include an overview of the latest developments in astrocyte reactivity and 87 

polarisation, a discussion of the permissive and inhibitory roles played by astrocytes during 88 

remyelination, and highlight age-related changes in astrocyte function that may impact 89 

remyelination. We propose a model reconciling when the detriments of astrocytes may outweigh 90 

their benefits and outline potential therapeutic strategies to harness these cells for regeneration.   91 

 92 

Astrocyte development and phenotypic plasticity 93 

In mammals, astrocytes arise from radial glial cells in the ventricular zone [19].  In mice, this 94 

differentiation occurs at approximately embryonic day 12.5 in the mouse spinal cord and 95 

embryonic day 16 in the mouse brain in which migration and asymmetric proliferation produce 96 

clusters of immature astrocytes [19-21].  These immature astrocytes undergo a second wave of 97 

local symmetric proliferation to establish a mature population of astrocytes [19].  During 98 

development, astrocytes are critical for successful myelination, secreting several growth factors 99 

required for oligodendrogenesis [20].  In adulthood, astrocytes are regionally diverse, forming 100 

non-overlapping tiles within the CNS and are important for many homeostatic functions such as 101 
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synapse formation, synaptic pruning and modulation of neurotransmitters such as glutamate [22, 102 

23]. Additionally, they contribute to the formation and maintenance of the blood-brain barrier 103 

and provide glucose, lactate, and trophic factors to neurons [23]. They are also important for the 104 

brain’s clearance mechanisms, such as the glymphatic system [24, 25].  Histological markers of 105 

astrocytes include nestin, vimentin, glial fibrillary acidic protein (GFAP), the glutamate 106 

transporter GLAST, the calcium binding protein S100b, and aldehyde dehydrogenase 1 family, 107 

member L1 (Aldh1L1) [23].  All astrocytes express Aldh1L1, whereas only subsets of astrocytes 108 

express the other markers [23]. 109 

 110 

Astrocyte reactivity  111 

After injury to the CNS, astrocytes become reactive and upregulate cytoskeletal proteins such as 112 

GFAP and vimentin [22].  These reactive astrocytes, in which greater than one thousand genes 113 

are increased by more than twofold in mice, display cell body hypertrophy, upregulate various 114 

cytokines and chemokines, and can proliferate [26-28].  A study conducted in mice showed that 115 

this rapid response is transient, with most genes showing a decrease in expression within 1 week 116 

after injury [26].  Preventing the acute formation of reactive astrocytes in a traumatic injury 117 

mouse model results in greater axonal dieback, suggesting that the early formation of reactive 118 

astrocytes is neuroprotective and helps limit damage, if not directly supporting axonal 119 

regeneration [29].  The acute astrocyte response in demyelinating injuries can support myelin 120 

regeneration. For example, reactive astrocytes in acute MS lesions, many of which show some 121 

degree of remyelination, upregulate several remyelination-signalling factors [30]. However, in 122 

both traumatic and demyelinating injuries, reactive astrogliosis can evolve into the formation of 123 

a dense, complex and transcriptionally inactive astrocytic scar characterised by a dense 124 

meshwork of astrocytic processes with significant tissue reorganization that fails to resolve [22, 125 

30-32].  In neither traumatic nor demyelinating injury does the astrocytic scar support 126 

regeneration, but in the case of demyelinating injury it can be seen as the consequence of 127 

regeneration (remyelination) failure and not its cause.    128 

 129 
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Recent studies in mice have shown that the nature of the reactive astrocyte response depends 130 

on the initial stimulus [26, 33].  In a model of neuroinflammation, in which the bacterial endotoxin 131 

lipopolysaccharide (LPS) is administered, the formation of a neurotoxic astrocyte phenotype 132 

occurs which is dependent on LPS-stimulated microglia secreting tumour necrosis factor-a, 133 

complement component 1q (C1q), and interleukin-1a [33].  This astrocyte phenotype, which has 134 

been termed A1 (but see below discussion of controversies around this terminology), was shown 135 

to inhibit OPC proliferation and differentiation in addition to displaying toxicity to both neurons 136 

and oligodendrocytes.  In contrast, in a model  of ischemia, transcriptomic analysis demonstrates 137 

an astrocytic signature that appears neuroprotective [26].  This distinct transcriptional state, 138 

sometimes termed A2, is associated with the upregulation of genes encoding thrombospondins 139 

and neurotrophic factors [33].  Although this genetic signature suggests it might be pro-140 

regenerative, no studies so far (to our knowledge) have provided any functional evidence that 141 

this is the case.  An in-depth proteomic analysis of the secretome would be critical to validate 142 

these transcriptomic signatures [34]. Moreover, the ischemic cues resulting in the A2 phenotype 143 

are not yet defined, and it is not known whether this state arises in other physiological or 144 

pathological contexts. It is unknown what astrocytic state naturally arises following 145 

demyelination, in which myelin debris, apoptotic cell bodies, and damage associated molecular 146 

patterns may induce the activation of a unique astrocytic phenotype not yet described. Indeed, 147 

there is ongoing debate as to whether the two A1/A2 astrocyte phenotypes provide a full and 148 

accurate description of all reactive astrocytes, or whether they exist along a spectrum beyond 149 

the two A1/A2 states already described [22].  A recent study in mice, for instance, showed that 150 

activation of the unfolded protein response in astrocytes results in a neurotoxic state that is 151 

distinct from the A1 and A2 signatures [35].  Moreover, a study comparing the molecular 152 

signature of astrocytes in Huntington’s disease and two mouse models of Huntington’s disease 153 

did not find any evidence of an A1 astrocyte signature [36].  Instead, this group found a unique 154 

astrocyte molecular signature consisting of 62 genes in both the mouse models and the human 155 

specimens.  Furthermore, as the microglia response following demyelination in mice transitions 156 

from a pro-inflammatory to an immunoregulatory state, it  is unknown whether such a transition 157 

between states occurs in the astrocyte response to demyelination [15]. This transition in the 158 
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murine microglia population seems to be dependent on the necroptosis of the initial wave of pro-159 

inflammatory cells, inviting further questions on how this sequence of events may influence the 160 

reactive astrocyte population [37]. 161 

 162 

Astrocytes in demyelinating diseases 163 

Astrocytes are thought to play a major role in MS and especially in neuromyelitis optica (NMO) 164 

[38].  In MS, the astrocytic signature is dependent on the type of lesion [39].  In acute active 165 

lesions, there is an immune cell infiltration along with hypertrophic astrocytes expressing 166 

increased levels of GFAP and upregulation of several pro-inflammatory cytokines, chemokines as 167 

well as remyelination-signalling molecules [30, 40].  Remyelination is observed to variable 168 

degrees in acute active lesions, suggesting that the astrocyte response is favourable for 169 

remyelination in these types of lesions [9]. In contrast, inactive lesions are associated with a lower 170 

degree of inflammation with extensive demyelination and axonal loss.  Astrocytes observed in 171 

these lesions typically have small somata with long filamentous processes forming an astrocytic 172 

scar and are transcriptionally inactive [30, 38].  NMO is another demyelinating disease 173 

characterized by antibodies against the aquaporin 4 water channel present on astrocytes [41].  174 

This disease is characterized by astrocyte loss, immune cell infiltration, demyelination, and axonal 175 

degeneration. Loss of astrocytic endfeet on blood vessels leads to vascular permeability. In 176 

addition to MS and NMO, astrocytes have also been implicated in a variety of leukodystrophies, 177 

as has been extensively reviewed elsewhere [42]. 178 

 179 

Beneficial roles of astrocytes in remyelination 180 

Several studies over the last three decades have explored the role astrocytes play in models of 181 

remyelination and have shown that astrocytes can be both beneficial and detrimental to the 182 

remyelination process (Table 1; Figure 1).  One of the first studies to show a pro-remyelinating 183 

role for astrocytes was one in which astrocytes were transplanted into an ethidium bromide-184 

induced model of CNS demyelination in rats characterised by loss of astrocytes and extensive 185 

Schwann cell remyelination [43]. Following astrocyte transplantation, a significant increase in 186 

host oligodendrocyte remyelination was observed, suggesting the ability of astrocytes to 187 
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promote remyelination by these cells.  Subsequent to this study, it was found that the astrocytic 188 

expression of GFAP correlated with the expression of growth factors implicated in OPC 189 

maturation.  Astrocytes responding to demyelination in the rat spinal cord displayed a similar 190 

spatial and temporal profile as platelet-derived growth factor-A, fibroblast growth factor 2, 191 

transforming growth factor-b, and insulin-like growth factor-1 [44].  In this study, GFAP mRNA 192 

was associated with these growth factors in the recruitment phase of remyelination, whereas at 193 

later stages growth factor expression was coupled to areas with low GFAP mRNA expression.  In 194 

a more recent study using dietary cuprizone to induce demyelination in the mouse corpus 195 

callosum, it was found that astrocyte-derived tissue inhibitor of metalloproteinases-1 promoted 196 

remyelination [45]. 197 

 198 

In addition to the secretion of favourable factors for remyelination, astrocytes may also play a 199 

role in recruiting phagocytic microglia in areas of demyelination [46].  Myelin debris inhibits 200 

remyelination, and the clearance of myelin debris by phagocytic macrophages/microglia is 201 

essential for remyelination to proceed efficiently [47-49].  Inactivation of astrocytes in mice led 202 

to reduced myelin clearance following demyelination and a subsequent reduction in 203 

remyelination efficiency [46].   204 

 205 

Although not definitively shown in the context of remyelination, astrocytes are critical 206 

components of cholesterol metabolism and provide cholesterol to neurons.  As astrocytes are 207 

the major source of cholesterol and its CNS carrier, apolipoprotein E, it is feasible that astrocytes 208 

may also transfer cholesterol to maturing OPCs during a phase of remyelination where 209 

cholesterol would be critical for myelin synthesis [50].  Indeed, a recent study in mice examining 210 

the role of reverse cholesterol transport in macrophages/microglia implicates a role for 211 

cholesterol mobilisation within the demyelinated lesion [51]. 212 

 213 

Astrocytes and Schwann cell remyelination of the CNS 214 

In some regenerative contexts, CNS remyelination can also be performed by Schwann cells in 215 

addition to oligodendrocytes [52]. It was long thought that Schwann cells within CNS lesions were 216 
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derived from the adjacent peripheral nerve roots after a loss in the integrity of the glia limitans. 217 

However, genetic fate mapping in mice showed that the majority of remyelinating Schwann cells 218 

are derived from OPCs residing in the CNS [11, 52].  Although Schwann cell remyelination re-219 

establishes conduction velocity within axons in the CNS, it is not known whether Schwann cells 220 

can offer the metabolic support that oligodendrocytes normally provide to CNS axons [53].  It is 221 

also not well understood what molecular cues dictate the fate choice of OPCs.  There is evidence 222 

to suggest that astrocytes can influence whether OPCs differentiate into oligodendrocytes or 223 

Schwann cells in the context of injury (Table 1, Figure 1).  Transplantation of OPCs into X-224 

irradiated ethidium bromide lesions in rats that are devoid of astrocytes results in Schwann cell 225 

remyelination [54].  When OPCs are transplanted together with astrocytes, the appearance of 226 

Schwann cells is greatly reduced.  Similarly, engraftment of OPCs overexpressing an inhibitor of 227 

bone morphogenetic proteins (BMP) reduced Schwann cell differentiation, suggesting that 228 

astrocytes may be influencing fate choice partially through BMP inhibition.  Another study made 229 

use of a conditional astrocyte-specific pStat3 knockout mouse to prevent the formation of 230 

reactive astrocytes following demyelination [55].  Inactivation of reactive astrocytes resulted in 231 

a significantly greater degree of Schwann cell remyelination, supporting the hypothesis that 232 

astrocytes favour oligodendrocyte remyelination over Schwann cell remyelination [55].  233 

Furthermore, it was recently shown that OPCs in proximity to the vasculature in the absence of 234 

astrocytes are more likely to differentiate into Schwann cells [56].  This study found that 235 

astrocytes express the dual BMP/Wnt antagonist Socstdc1 and the lack thereof favours a 236 

Schwann cell fate choice by OPCs.  Revealing the molecular cues that lead to Schwann cell 237 

remyelination and its functional significance may lead to new therapeutic strategies to harness 238 

this cell type for CNS remyelination. 239 

 240 

Inhibitory roles of astrocytes in remyelination 241 

Some of the detrimental roles described for astrocytes is through secretion of inhibitory 242 

molecules and extracellular matrix components (Table 1; Figure 1).  After injury to the CNS, 243 

several cells including reactive astrocytes, microglia/macrophages and pericytes secrete 244 

extracellular matrix components [57].  Members of this extracellular matrix include the 245 
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chondroitin sulphate proteoglycans, hyaluronan, tenascin-C and fibronectin, all of which have 246 

been shown to inhibit remyelination and are present in lesions from MS patients [58].  Inhibiting 247 

the synthesis of chondroitin sulphate proteoglycans accelerates remyelination in a mouse model 248 

of demyelination [59].  Furthermore, a recent study conducted in both mice and rats described 249 

that the stiffness of the CNS increases with age and that this causes decreased OPC proliferation 250 

and differentiation [60].  In this study, when ageing OPCs were transplanted into young brains, 251 

they proliferated to a comparable extent as neonatal OPCs, while when young OPCs were 252 

transplanted into aged brains, their proliferation was significantly reduced.  It was further found 253 

that the mechanosensitive ion channel Piezo1 was a critical mediator of OPC response to 254 

substrate stiffness: silencing of the mechanosensitive channel Piezo1 in ageing OPCs resulted in 255 

the restoration of OPC proliferation and differentiation in the context of a stiffer substrate.  256 

Importantly, this study established that the age-related decline in OPC function is highly 257 

influenced by the extrinsic microenvironment.  Although not addressed in this study, the ageing 258 

astrocyte phenotype may be a critical contributor to the age-related increase in mechanical 259 

stiffness.  Indeed, some groups have reported an increase in astrocyte-associated extracellular 260 

matrix molecules with ageing in nonhuman primates, rats, and mice, such as hyaluronan and 261 

aggrecan, as well as reporting an increase in the expression of certain protease inhibitors [61-262 

64].  In addition to influencing the extracellular matrix, astrocytes express endothelin-1, a 263 

molecule which has been shown to be inhibitory to remyelination through notch activation in 264 

mice [65].  Astrocytes responding to endothelin-1 upregulate the Notch1 receptor ligand, jagged 265 

1, resulting in an inhibitory interaction between astrocytes and OPCs [65, 66].  266 

 267 

Beneficial or detrimental? 268 

It has been the convention to assign roles for astrocytes (and indeed other cells types) as being 269 

either beneficial or harmful. However, this is a rather binary view of what is likely to be a much 270 

subtler and complex reality that depends on the temporal and dynamic interplay between cells 271 

involved in remyelination. So, is it really helpful terminology? As remyelination is a tightly 272 

orchestrated sequence of events contingent on a multitude of cell types, astrocytes likely serve 273 

different functions at different stages of remyelination in synchrony with the other cell types.  274 
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Astrocytes potentially become detrimental when the timing and precision of this sequence of 275 

events is knocked out of synchrony, a concept we originally proposed as the ‘dysregulation 276 

hypothesis’ of remyelination failure (Box 1) [67].  Thus, what may appear to be detrimental may 277 

only be so in certain contexts. One such context where this precise control of remyelination could 278 

be dysregulated is ageing.  The following section will discuss the effect of ageing on remyelination 279 

and how the balance may be tipped towards a detrimental astrocytic phenotype.  280 

 281 

The effect of ageing on remyelination and astrocytes 282 

As with most other regenerative processes, remyelination efficiency declines with age [3, 68]; 283 

however, the endogenous mechanisms within glial cells which lead to this decline are still not 284 

well understood. Failure of remyelination is characteristic of the later stages of chronic 285 

demyelinating diseases, such as MS [69].  Indeed, lesions from chronic stages of MS often contain 286 

cells of the oligodendrocyte lineage which have failed to differentiate [70, 71].  Depending on 287 

age of onset, the progression of MS can involve a significant period of subclinical disease and a 288 

subsequent relapse remitting phase characterised by bouts of symptoms followed by recovery, 289 

reflecting the intrinsic ability of the younger brain to effectively regenerate lost myelin [69]. 290 

However, regardless of the age of onset, most patients transition to the progressive stage at 40-291 

45 years of age [72], which may reflect the remyelination efficiency declining below a critical 292 

point beyond which myelin is no longer being regenerated fast enough to prevent axon 293 

degeneration.   294 

 295 

Mouse and rat studies have shown that both OPC proliferation and differentiation become less 296 

efficient with age [73-75]. However, enhancing proliferation of OPCs does not lead to increased 297 

remyelination of lesions [76]. This led to the suggestion that the main bottleneck for OPCs in the 298 

remyelination response of the aged brain is their impaired ability to differentiate into functional 299 

oligodendrocytes [3].  Indeed, this reduced capacity of OPCs to differentiate and produce myelin 300 

is also observed during normal ageing [77, 78].  But non-cell autonomous mechanisms are also 301 

involved.  For example, macrophages exhibit an age-dependent decline in their ability to 302 

effectively clear myelin debris, both via phagocytosis [79, 80] and lysosomal degradation [81], 303 
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and ageing macrophages and microglia exhibit defective cytokine secretion following 304 

demyelinating injury [82].   305 

 306 

There are currently no studies (to our knowledge) which have directly investigated the ageing 307 

astrocyte response in the context of demyelination and remyelination.  However, several studies 308 

examining tissue from rodents, rhesus macaques, and humans have assessed the effects of 309 

normal ageing on the astrocyte population.  Most notably, ageing astrocytes appear more 310 

reactive, displaying an upregulation in cytoskeletal proteins associated with astrocytes 311 

responding to injury, in addition to displaying hypertrophic cell bodies with shorter processes 312 

[83-86].  In addition to these studies, recent investigations in mice have used RNA sequencing to 313 

examine the genetic changes that occur in astrocytes with ageing [87, 88].  Corroborating the 314 

morphological studies, these gene expression studies also show a shift in the astrocyte signature 315 

to a more reactive state, albeit with heterogeneity dependent on the CNS region analysed [87, 316 

88].  In addition to an upregulation in cytoskeletal protein genes such as GFAP, these studies 317 

noted an increase in genes associated with the complement components C3 and C4b.  These 318 

complement components are important for processes such as synapse elimination and have 319 

been implicated in age-related neuronal loss and several neurodegenerative diseases [89].  320 

Ageing astrocytes were also found to have a decrease in transcripts encoding cholesterol 321 

synthesis enzymes [87, 88] (Figure 2).  Given that cholesterol is important for myelin synthesis 322 

during remyelination, the decrease in enzymes regulating cholesterol synthesis would be 323 

predicted to have a negative effect during this regenerative process.  Overall, these studies 324 

suggest that like ageing microglia, ageing astrocytes may become more inflammatory, a state 325 

that has been termed “inflammaging” [82].  As mentioned above, however, future studies should 326 

examine the astrocyte secretome over the lifespan of the organism to validate many of the 327 

transcriptomic changes identified in these studies.  As astrocytes significantly modulate the 328 

various niches they occupy within the CNS through the secretion of various classes of molecules, 329 

identifying how these secreted products change with age will undoubtedly uncover new targets 330 

that might be harnessed to provide new therapeutic avenues.  Future studies using models of 331 

demyelination and remyelination are required to directly examine how the ageing astrocyte 332 
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response influences this regenerative process.  Given that ageing microglia are primed to be more 333 

pro-inflammatory after demyelination, it seems plausible that astrocytes may undergo a similar 334 

process, potentially contributing to greater tissue injury and reduced repair.   335 

 336 

Harnessing astrocytes to promote remyelination  337 

Several groups have conducted drug screens to identify clinically-approved medications that can 338 

directly enhance OPC differentiation to promote remyelination [90-92].  Although such screens 339 

have resulted in several promising compounds, the approach does not take into account the 340 

inhibitory nature of the lesion microenvironment or the effect of ageing.  In fact, when several of 341 

these medications are added to ageing OPCs or to OPCs plated on CSPGS, they are unable to 342 

enhance OPC maturation [59, 74].  It is, therefore, critical to take the ageing microenvironment 343 

into account when attempting to enhance remyelination.  As astrocytes are essential 344 

components of the lesion microenvironment, therapeutic strategies which target astrocyte 345 

function offer additional opportunities to promote remyelination. Since astrocytes are secretory 346 

cells, one approach may be to target various aspects of the astrocytic secretome.  For instance, 347 

pharmacological inhibition of CSPG synthesis accelerated remyelination in a focal demyelination 348 

model in young adult mice [59].  Another approach is to neutralise the effect of astrocyte-derived 349 

endothlin-1 by administering a pharmacological antagonist against the endothelin receptor [65].  350 

This strategy also resulted in accelerated remyelination in young adult mice subject to lysolecithin 351 

demyelination.  As Stat3 signalling in astrocytes promotes trophic support, targeting this pathway 352 

may be a feasible approach in the ageing context, where it was shown in rats a delay in growth 353 

factor production [22, 68, 93].  A deeper understanding of the ageing astrocyte response in 354 

remyelination will most likely reveal further therapeutic targets to enhance remyelination. 355 

 356 

Concluding remarks 357 

Astrocytes play a critical role in supporting remyelination.  Activated astrocytes secrete several 358 

growth factors important for OPC proliferation and differentiation, and they signal to microglia 359 

to clear myelin debris.  As astrocytes provide cholesterol to neurons, they may also be an 360 

important source of cholesterol for maturing OPCs.  Despite these benefits, astrocytes have also 361 
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been associated with the secretion of factors which inhibit remyelination such as several 362 

extracellular matrix molecules.  As remyelination is a tightly regulated process influenced by 363 

several cell types, astrocytes likely serve different roles at different stages to allow remyelination 364 

to proceed efficiently.  Dysregulation of this sequence of events leads to remyelination failure 365 

and is likely influenced by an astrocyte phenotype that is more detrimental than beneficial.  The 366 

ageing CNS is an example where remyelination becomes dysregulated. Addressing how the 367 

ageing astrocyte responds to demyelination may reveal new therapeutic targets to enhance 368 

remyelination in this context (see Outstanding Questions). 369 

 370 

Box 1 – Reconciling the differing roles of astrocytes in remyelination 371 

 372 

Astrocytes have been shown to be both beneficial and detrimental in remyelination. What 373 

determines when these cells are permissive or inhibitory? One hypothesis is the ‘dysregulation 374 

hypothesis’ [67].  As remyelination proceeds efficiently in the young CNS, reactive astrocytes are 375 

presumably beneficial to the process through the secretion of both permissive and inhibitory 376 

factors at different stages in a tightly regulated sequence of events. Moreover, the timely 377 

interaction of reactive astrocytes with other cells such as microglia and infiltrating macrophages 378 

is critical in establishing a microenvironment that is conducive for OPC proliferation and 379 

differentiation. As remyelination starts with the sufficient proliferation of OPCs to provide 380 

enough oligodendrocytes for myelin regeneration, it is important that mitogens and 381 

differentiation inhibitors would be upregulated in this first stage.  Indeed, reactive astrocytes and 382 

macrophages/microglia are a major source of these molecules. Once enough OPCs have 383 

proliferated to allow for a sufficient number of oligodendrocytes to be produced, differentiation 384 

inhibitors are suppressed and instead molecules that promote differentiation are upregulated.  385 

An example of such a factor is activin-A, a molecule secreted by immunoregulatory microglia at 386 

the onset of differentiation following the initial peak of pro-inflammatory cells [15].  387 

Furthermore, as both pro- and anti-inflammatory microglial factors such as tumour necrosis 388 

factor-a, complement component 1q (C1q), interleukin-1a,  nitric oxide, extracellular vesicles, 389 

and other molecules influence astrocyte polarization as well as survival, it is conceivable that the 390 
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astrocytic phenotypic state may change as a consequence of microglia polarization [33, 94-98].  391 

Remyelination likely fails when this tightly regulated process and intercellular interaction 392 

becomes dysregulated.  Such an instance where this occurs is during ageing, where several cells 393 

in the microenvironment become senescent and dysfunctional. The age-related delay in 394 

macrophage/microglia recruitment, growth factor secretion, and phagocytosis not only delays 395 

the OPC response, but also likely alters the reactive astrocyte response [48, 80, 93, 99, 100].  396 

Furthermore, as ageing microglia have a propensity to be more pro-inflammatory, they likely also 397 

promote a reactive astrocyte phenotype that is more pro-inflammatory, tipping the balance of 398 

when astrocytes are toxic rather than regenerative [87, 101]. According to the dysregulation 399 

hypothesis, it is in this context when normal permissive or inhibitory cues important for efficient 400 

remyelination become unsynchronised, resulting in cells appearing more detrimental than 401 

beneficial.  402 
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Figure Legends 632 

 633 

Figure 1. Astrocytes secrete several factors that either promote or inhibit remyelination.  634 

Astrocytes have been characterized to secrete several factors that are important for the 635 

proliferation of oligodendrocyte progenitor cells (OPCs), including the growth factors platelet-636 

derived growth factor-AA (PDGF-AA) and fibroblast growth factor 2 (FGF2), as well as the 637 

cytokines interleukin-1b (IL-1b) and tumor necrosis factor (TNF).  Astrocytes also promote OPC 638 

differentiation by producing ciliary neurotrophic factor (CNTF), brain-derived neurotrophic factor 639 

(BDNF), leukemia inhibitory factor (LIF), insulin-like growth factor-1 (IGF-1), CXCL1, and tissue 640 

inhibitor of metalloprotese-1 (TIMP-1).  Astrocytes are known to be involved in cholesterol 641 

metabolism of neurons and other CNS cell types, but it remains to be tested whether astrocytic 642 

production of cholesterol positively impacts myelin synthesis in remyelinating oligodendrocytes.  643 

Astrocytes also produce inhibitory molecules such as chondroitin sulphate proteoglycans 644 

(CSPGs), hyaluronan, endothelin-1 (ET-1), fibronectin, tenascin-c, and jagged-1.  Furthermore, 645 

astrocytes suppress Schwann cell differentiation from OPCs through the production of Socstdc1.  646 

Astrocytes also recruit monocytes through the production of CCL2 and microglia through the 647 

secretion of CXCL10.  648 

 649 

Figure 2. Ageing modulates the astrocyte phenotype and may contribute to the age-related 650 

decrease in remyelination efficiency.  Ageing has been shown to modulate the astrocyte 651 

phenotype in various ways. Ageing astrocytes display an altered morphology (top schematic).  652 

Genomic analyses of ageing astrocytes display an upregulation of several markers characteristic 653 

of a pro-inflammatory astrocyte phenotype, including glial fibrillary acidic protein (GFAP), serine 654 

protease inhibitor 3n (Serpina3n), complement components C3 and C4b, the chemokine Cxcl10, 655 

and molecules involved in antigen presentation (H2-D1, H2-K1).  Ageing astrocytes display a 656 

downregulation of genes associated with mitochondrial function and energy production (Ucp2, 657 

Cox8b, Atp5g1), antioxidant defence-related genes (Gpx8, Atox1), as well as cholesterol synthesis 658 

genes (Hmgcr).  Furthermore, ageing decreases the efficiency of remyelination, and it is possible 659 
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that a detrimental ageing astrocyte phenotype contributes to this reduction in remyelination 660 

capacity.  661 
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 662 

Table 1. Permissive and inhibitory roles of astrocytes in remyelination 663 

 664 

 665 

 666 

Permissive roles of astrocytes in remyelination 
Function Experiment Reference 
Provide a conducive 
microenvironment for 
oligodendrocyte 
remyelination 

Transplantation of astrocytes into ethidium 
bromide-induced lesions in the rat spinal cord 

[43] 

Source of PDGF-A, FGF-2, 
TGF-B, and IGF-1 to 
promote OPC maturation 

Spatial and temporal examination of mRNA 
expression of growth factors following focal 
lysolecithin demyelination in the rat spinal cord 

[44] 

Recruit microglia to clear 
inhibitory myelin debris 

Astrocyte ablation using GFAP-TK mice in 
cuprizone-induced demyelination of the corpus 
callosum 

[46] 

Source of TIMP-1 to promote 
remyelination 

TIMP-1 KO mice in cuprizone-induced 
demyelination of the corpus callosum 

[45] 

 
Inhibitory roles of astrocytes in remyelination 
Function Experiment Reference 
Source of ET-1 to inhibit 
remyelination 

Astrocyte-specific knockout of ET-1 in the 
spinal cord of mice injected with lysolecithin 

[65]  

Secretion of inhibitory 
CSPGs 

Pharmacological inhibition of CSPG synthesis 
in lysolecithin-induced demyelination of the 
mouse spinal cord 

[59] 

Production of fibronectin 
aggregates 

Injection of astrocyte-derived fibronectin 
aggregates into lysolecithin-induced lesions of 
the rat 

[102]  

Source of inhibitory HMW 
hyaluronan 

Injection of HMW hyaluronan into 
lysolecithin-induced lesions of the mouse 
corpus callosum 

[103] 

Secretion of molecules which 
are toxic to oligodendrocytes 

Conditioned media taken from astrocytes 
stimulated by LPS-activated microglia 

[33] 

Abbreviations:  PDGF-A, platelet-derived growth factor-A; FGF-2, fibroblast growth factor-2; 
TGF-B, transforming growth factor-B; IGF-1, insulin-like growth factor-1; GFAP, glial 
fibrillary acidic protein; TK, thymidine kinase; TIMP-1, tissue inhibitor of metalloproteinases-
1; KO, knock-out; ET-1, endothelin-1; CSPGs, chondroitin sulphate proteoglycans; HMW, 
high molecular weight; LPS, lipopolysaccharide 


