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Abstract

Feedback is a key element of regulation, as it shapes the sensitivity of

a process to its environment. Positive feedback up-regulates, negative

feedback down-regulates. Many regulatory processes involve a mixture

of both, whether in nature or in engineering. This paper revisits the

mixed feedback paradigm, with the aim of investigating control across

scales. We propose that mixed feedback regulates excitability and that

excitability plays a central role in multi-scale neuronal signaling. We

analyze this role in a multi-scale network architecture inspired from

neurophysiology. The nodal behavior defines a meso-scale that connects

actuation at the micro-scale to regulation at the macro-scale. We show

that mixed-feedback nodal control provides regulatory principles at the

network scale, with a nodal resolution. In this sense, the mixed feedback

paradigm is a control principle across scales.
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1. Introduction

Control systems are increasingly multi-scale. Cheaper sensing, cheaper actuation, and

cheaper data processing motivate control algorithms that feed back signals at a micro-

scale to regulate an objective at a macro-scale. Emblematic examples include traffic control

(a population of individually controlled cars determines the traffic of a road or a city), soft

robotics (a population of micro-actuators determines the behavior of a robot), and tissue

engineering (a population of regulated cells determines the properties of a tissue). The

present paper is motivated by the brain control of neuronal circuits, which involves reshap-

ing the spatio-temporal electrical activity of neuronal populations across a formidable range

of scales. What is common to all the examples above is that variables at a macro-scale are

regulated by myriads of actuators at a micro-scale.

The increasing disparity of scales requires novel feedback control paradigms. In classi-

cal control, the distinction between noise and signal is based on a separation of scales in

amplitude and frequency. The noisy part of a signal is its small-scale component. This

distinction must be reconsidered when the signal range of a single micro-scale actuator or

sensor is well into the noise range of the macro-scale regulation objective.

In response to the multi-scale challenge, the last two decades have witnessed a particular

focus on distributed control paradigms (see e.g. (1) and references therein). In distributed

control, the global objective at the macro-scale is reformulated as a local objective at the

micro-scale. Local feedback loops are designed at the micro-scale and the local objective is

made global through diffusive mechanisms such as consensus or synchronisation (2). This

approach works best when the macro-scale is homogeneous, that is, the local control problem

is the same everywhere, or, equivalently, space and time invariant. Even in the situation

of a perfectly homogeneous control problem, the distributed paradigm faces limitations

inherent to the disparity of scales between the micro-scale of sensing and actuation and the

macro-scale of regulation, see e.g. (3).

In heterogenous multi-scale problems, the prevalent control architecture is hierarchical.

The control problem at the macro-scale is decomposed into a sequence of nested control
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problems at decreasing meso-scales. The amplitude, temporal, and spatial scales all obey

the same hierarchy: signals of small amplitude and high frequency are modeled and con-

trolled at finer scales, whereas signals of larger amplitude at lower frequencies are modeled

and controlled at larger scales. This nested architecture allows for a nested design of reg-

ulatory feedback loops. Outer feedback loops regulate coarser scales while inner feedback

loops regulate finer scales. The nested feedback loops minimally interact with each other

because they deal with distinct scales. Such control architectures are common in engineer-

ing and widespread in complex control systems. However, hierarchical constraints limit

performance: outer control loops are constrained to low-frequency signals, which makes

them sluggish with respect to the inner scales. Inner control loops are constrained to

high-frequency signals, which makes them noisy with respect to the outer scales. This per-

formance limitation becomes problematic as the disparity of scales increases. It is perhaps

the most evident difference between the performance of robots and animals in comparable

tasks. Feedback regulation in biological systems does not seem constrained by a hierarchy

of scales. Feedback regulation seems to occur across scales at the temporal and spatial

resolution of the tiny. Feedback loops appear interlocked at all scales rather than nested

from the tiny to the large. We still lack a theory to analyze and design artificial control

systems with such capabilities.

Inspired by the physiology of neuronal circuits, we investigate the role of feedback at a

cellular scale in shaping the spatio-temporal behavior of a neuronal network across scales.

We revisit the central biophysical model of cellular excitability as a particular regulation

mechanism that requires both positive and negative feedback. We propose that this mixed

feedback mechanism enables signaling across scales by converting specific tiny continuous

variations of an input signal to discrete events that signal to specific larger scales. We

provide several examples of neurophysiological relevance where sensitivity at the circuit or

network scale is shaped by feedback regulation of excitability at a cellular level. At an

abstract level, our objective is to contrast the role of nodal control and the role of net-

work control. Here nodal control refers to modulating the nodal behavior whereas network

control refers to modulating the nodal interconnections, that is, the network topology. In

neurophysiology, nodal control refers to the modulation of cellular excitability via the mod-

ulation of specific intrinsic ionic conductances; network control refers to the modulation

of synaptic transmission via the control of synaptic conductances. In artificial neural net-

works, much emphasis has been placed on network control, and the learning performance

of feedforward networks via network control. Those models often neglect nodal control and

neuronal excitability. Our paper has a complementary focus: we model nodal excitability

and investigate how feedback regulation at a nodal scale can shape a network behavior even

with a fixed interconnection structure. Our illustrations suggest that nodal control is not

subject to the performance limitation of nested feedback architectures and that the nodal

control of excitability is a regulation principle across scales.

1.1. Positive and negative feedback

A feedback system is a system that admits the block-diagram representation in Figure

1. It implies an input-output model of the open-loop system, that is, the system without

feedback. The open-loop system is modeled as a an operator that transforms input signals

into output signals. The feedback loop models the influence of the (past) output on the (fu-

ture) input. Feedback modeling is central to control theory because feedback is an essential
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a. An open-loop input-output process (center), a positive feedback system (right), and a negative

feedback system (left). b. The distinct roles of positive and negative feedback around a
memoryless saturating process. Negative feedback down-regulates and broadens the linear range

of the process. Positive feedback make the feedback system ultra-sensitive, promotes a discrete

output readout, and creates hysteresis (memory). Mixed feedback is sufficient to modulate a
process between three distinct types of behavior : linear continuous, ultra-sensitive, and hysteretic

discrete.

component of regulation. Feedback can up-regulate or down-regulate a process. We refer

to up-regulation as positive feedback and down-regulation as negative feedback. Positive

feedback increases the sensitivity of the output to an input perturbation: the feedback loop

amplifies the disturbance and acts as a destabilizing mechanism for the process. Negative

feedback decreases the sensitivity of the output to an input perturbation: the feedback

counteracts the disturbance and acts as a stabilizing mechanism for the process.

Some key features of feedback can be understood from the elementary saturating static

model

y = satg(u) =


0, u ≤ 0

g v, 0 ≤ u ≤ 1
g

1, u ≥ 1
g

1.

in the feedback configuation shown in Figure 1. The parameter g is called the open-loop

gain and the parameter k is called the feedback gain. The open-loop model is y = satg(u).

It is a linear model with gain δy
δu

= g over the restricted range u ∈ [0, 1
g
]. Away from this

linear range, the process saturates and the output is insensitive to input variations. The

closed-loop model is defined by the implicit relationship y = satg(±ky + u). In a negative

feedback configuration, the closed-loop model rewrites as y = satg′(u) with g′ = g
1+gk

. The

closed-loop model is like the open-loop model, but with a lower gain over a broader linear

range. Instead, in a positive feedback configuration, the linear range decreases and the

gain increases. The linear range shrinks to zero for the critical value k = 1
g
, making the

behavior ultra-sensitive. For larger positive feedback gains k > 1
g
, the closed-loop model is

multivalued over the range u ∈ [ 1
g
− k, 0]. The output has then a binary readout for every

value of the input. A continuous variation of the input signal leads to discontinuous jumps

of the output signal between 0 and 1, with hysteresis. Positive feedback has converted an

open-loop memoryless process into a closed-loop binary memory.

In spite of its simplicity, the above model captures general features of positive and

negative feedback regulation:
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• Feedback shapes sensitivity. It alters how a process interacts with its environment,

that is, how variations of the input signal affect the output signal.

• Negative feedback makes the output less sensitive to input variations and increases

the range of linear behavior. For large values of the open-loop gain g, the closed-loop

gain g′ = 1
g−1+k

≈ 1
k

becomes almost independent of the open-loop gain, making the

closed-loop process robust to unmodeled variations of the open-loop gain.

• Positive feedback makes the output more sensitive to input variations and can be

tuned to make the process ultrasensitive.

• Beyond a critical gain, a positive feedback system exhibits memory and hysteresis.

• Saturating processes have a continuous or discrete readout. Negative feedback pro-

motes the continuous readout, whereas positive feedback promotes the discrete read-

out.

The properties above have a general conceptual value but assume a static model of the

process. When a process is dynamic, its gain is not only a function of the input amplitude

but also of the input history. It is the attempt to conceptualize the properties of feedback

in dynamical models that led to the development of feedback theory. Early developments in

engineering were driven by the use of feedback in audio and electronic amplifiers. In the early

days of electrical signal transmission, engineers first concentrated on the potential of positive

feedback to regenerate signals or to design oscillators (4). The potential of negative feedback

to make a device robust to uncertainty was discovered much later, with the invention

of the negative feedback amplifier (5). From that time on, the use of negative feedback

became much more prominent in engineering than the use of positive feedback. Both the

success of negative feedback and the rise of digital technology wiped out the interest of

engineers for positive feedback. The situation is different in biology, where both positive and

negative feedback have been continuously reported to play a prominent role in regulation.

Homeostasis has been a central focus since the early days of physiology, with an emphasis on

negative feedback regulation. In the sixties, autocatalysis, a positive feedback mechanism,

was discovered to be a fundamental element of gene expression regulation (6). More recently,

the role of interlocked positive and negative feedback loops has been repeatedly emphasized

in systems biology, see e.g. (7, 8, 9).

The success of feedback control theory owes much to the fact that many properties

of negative feedback systems are well captured with a linear model (10). Following the

invention of the negative feedback amplifier, Bell Labs engineers developed the frequency-

domain analysis of feedback systems. Linear-time invariant systems can be represented by

their frequency response (the Fourier transform of their impulse response), which amounts

to modeling the process with a frequency-dependent complex gain. A central insight to

the stability theory of feedback systems came from the work of Nyquist (11), who studied

the critical frequency at which the loop gain of a process changes sign, turning a negative

feedback loop into a positive feedback loop. Modern linear robust control can be regarded

as a theory of negative feedback. The feedback controller is designed to ensure equilibrium

stability of the closed-loop system, to increase the robustness of the process against model

uncertainties, to decrease its sensitivity to external disturbances, and to increase the range

of input signals over which the process behaves linearly. Those properties are achieved by

shaping the loop gain of the feedback system as a function of frequency.

The elementary example in Figure 1 illustrates that positive feedback is the source of

nonlinear phenomena (such as ultra-sensitivity or hysteresis) and hence requires different
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analysis tools. For this reason, the mathematical theory of positive feedback lags far behind

the mathematical theory of negative feedback. In this paper, we will concentrate on a very

specific combination of positive and negative feedback that is amenable to mathematical

analysis. Our interest is in the ability of mixed-feedback to regulate ultra-sensitivity and

to shape the discrete readout of a continuous process. Our approach is close in spirit to the

loop shaping paradigm of classical control theory. But to cope with the nonlinearity of the

feedback system, the loop gain is shaped as a function of amplitude and time, rather than

as a function of frequency.

1.2. A modeling framework for control across scales

Inspired by the neurophysiology of neuronal circuits, we focus in this paper on electrical be-

haviors. We consider a multi-scale control problem defined by three distinct scales (Figure

2): a micro-scale of actuation; a macro-scale of regulation; and a behavioral meso-scale

that connects the micro and macro scales by dynamical relationships between voltages and

currents.

The macro-scale of regulation is a spatio-temporal electrical field V (x, t), where x de-

notes the spatial variable and t denotes the temporal variable.

The meso-scale is defined by a spatial discretization of the electrical field, leading to a

network of N nodes with temporal voltage Vi(t), i = 1, . . . , N . The dynamical behavior of a

nodal voltage is determined by the laws of circuit theory. In the language of circuit theory,

a node is a connector, that is, a multi-terminal isopotential circuit element determined by

Kirchhoff law that all currents into the node sum to zero. In this paper, any current I into

a node at potential V is assumed to obey the Ohmic law

I = g(·) (V − Ṽ ) 2.

The current results from a difference of potential with another terminal at potential Ṽ across

a circuit element of conductance g(·). The notation g(·) stresses that the conductance is not

constant. It is shaped by the the micro-scale of actuation. The mean-field of many actuators

at the micro-scale is modeled as a dependence of the conductances on the potential field

(Figure 2 left).

It is the spatial resolution of a node that defines the meso-scale. A node is isopotential. It

determines a resolution of the electrical field at which differences of potentials are neglected.

The meso-scale is only constrained to be sufficiently separated from the micro-scale. It must

involve a sufficiently large population of actuators at the micro-scale to justify the mean-field

model of the conductance.

Currents and voltages play a distinct role in a multi-scale model. Voltage is a variable

across while current is a variable into. Variables into are additive. They add to zero at

a node. Currents at broader scales are sums of currents at finer scales. Variables across

are intensive, i.e., independent of size. A potential is independent of the spatial scale. A

difference of potential can be measured between any two terminals. Relationships between

across and into variables are inherent to multi-scale modeling. They relate voltages and

currents in electricity, or forces and velocities in mechanics.

While this paper focuses on electrical behaviors, that is, relationships between currents

and voltages, the multi-scale nature of our model is general. For instance, a multi-scale

traffic model can be conceived analogously: in a traffic problem, the variable into is the

traffic flow, whereas the variable across is the traffic mass. The analog of the Ohmic law (2)

6 Sepulchre, Drion, Franci



Figure 2

An electrical field modeled at three distinct scales. Regulation macro-scale (right): a controlled

spatio-temporal electrical field V (x, t). Behavioral meso-scale (center) : spatial discretization of
the electrical field leads to a discrete network of interconnected isopotential nodes Vi(t). The

nodal behavior is determined by Kirchhoff laws of electrical circuits : currents Iχi into node k sum

to zero. Actuation micro-scale (left): each meso-scale current is modelled as a Ohmic current. The
voltage dependence of the conductance models a mean-field control of the current by a population

of discrete (on-off) micro-actuators.

is a relationship expressing traffic flow as the product of traffic mass and speed, the analog

of conductance. Micro-scale actuation would refer the modulation of speed at a micro-scale,

for instance through traffic lights, whereas the macro-scale would be the traffic state of a

road or a city.

The proposed multi-scale model is directly inspired from the conductance-based mod-

eling principles of neurophysiology (12). The meso-scale is the scale of cellular neurophys-

iology. The natural resolution of a node is a single neuron. But a node can also be a

patch of a neuron, at a finer spatial scale, or a homogeneous population of neurons, at a

coarser scale. A node is modeled with a lumped nodal voltage V (t). Each current into

the node models a distinct flow of ions through the cellular membrane. The micro-scale

is the scale of molecular neurophysiology : biochemical reactions control the binding of

receptors and the opening and closing of ion channels that gate the flow of ions through

the cellular membrane. The conductance of a current at the cellular scale is a mean-field

model of the actuation of a population of ions at a molecular scale. The macro-scale is the

scale of circuit neurophysiology : the spatio-temporal electrical field models the activity

of heterogenous neuronal tissues composed of distinct subpopulations of neurons involved

in a specific brain function of interest. Macro-scale variables in neurophysiology are local

field potentials, inferred from the total current recorded by an extracellular electrode over

a specific tissue area.

1.3. Outline

The rest of the paper is organized in two sections. Section 2 revisits the central physiological

concept of excitability as a particular combination of positive and negative feedback at the

meso-scale of our network model. Section 3 illustrates the versatility of nodal control to

www.annualreviews.org • Control across scales 7



shape the behavior of the network model anywhere from the nodal scale to the entire

network scale. The exposition is deliberately non-technical and omits a lot of biological

details to concentrate on the regulation principles of the considered circuits. The interested

reader is referred to specific references for more details about their biological relevance.

2. Mixed feedback amplification

2.1. Mean-field actuation models

The conductance g(·) in the Ohmic law (2) models the mean-field, at a given meso-scale,

of a population of actuators at the micro-scale. By nature, such a model is empirical and

approximate. It is not meant to model the details of the micro-scale, but only to capture the

extent to which the micro-actuators influence the current-voltage relationship at the meso-

scale of interest. We write g(·) = ḡS(·), where ḡ denotes the maximal conductance, and

S(·) is an adimensional model of actuation with normalized output range [0, 1]. We call S(·)
a S-behavior. We briefly review basic models of the voltage dependence of a S-behavior.

The static properties of a S-behavior are illustrated in Figure 3:

• the S-behavior has two distinct read-outs: a continuous readout and a discrete read-

out; the continuous readout is a fine-grain readout whereas the discrete readout is a

coarse-grain readout.

• the gain δg = dS
dV

(V )δV is localized in amplitude: it vanishes away from a restricted

amplitude range and has a unimodal shape.

The unimodal profile of the gain provides a statistical interpretation of the mean-field

model: each actuator in the population contributes to the mean-field gain in an infinitesimal

range δV . The distribution of gains in the population is necessarily bell-shaped for a

large population. The S-behavior is the cumulative distribution of the population. For

a normally distributed population centered at V = 0 and of variance σ, the cumulative

distribution is the Gauss error function S(V ) = erf(V ) = 1
π

∫ V
−V e

−x2dx. Static models of

S-behaviors are pervasive in science and engineering. An early appearance is in population

studies, with the logistic model of Verhulst (13), which uses the sigmoid S(V ) = 1
1+e−V

.

In (bio)chemistry, S-behaviors include the Hill activation function S(V ) = V α

Kα+V α
. The

parameter K is the constant of half-activation and the parameter α controls the variance of

the gain. In computer science, the hyperbolic tangent S(V ) = tanh(V ) is a frequent model

of soft quantization arising in a population of agents with binary output. In electronic

engineering, S-behaviors model amplifiers or transistors. In control theory, the piecewise-

linear saturation models the finite sensitivity range of an actuator or sensor.

The static model of a S-behavior captures the restricted amplitude input range of the

differential gain but does not capture its restricted temporal range. In nature and in en-

gineering, S-behaviors have a limited bandwidth and a fading memory. The temporal

dependence of the differential gain can be estimated empirically from the step response of

the current to a voltage step perturbation (Figure 4). A unimodal step response corre-

sponds to the localization of the differential gain in time, analogously to the localization in

amplitude.

Modeling the fading property of a gain both in amplitude and temporal range is difficult.

Static models only capture the amplitude localization. Linear time-invariant models only

capture the temporal localization via the frequency dependence of the gain. Modeling the

localization both in time and amplitude requires nonlinear dynamical models, which is a

8 Sepulchre, Drion, Franci
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Figure 3

The static S-behavior of a mean-field model of actuation (a) and its (differential) gain (b). The

mean-field behavior saturates away from a restricted amplitude range. It is the cumulative
distribution of a population of devices only sensitive in a micro-range of amplitude. The unimodal

gain models the first two moments (mean and variance) of a statistical distribution.

source of intractability in network models. This issue has been a pervasive challenge in

amplifier modeling, see e.g. (14).

In neurophysiology, conductance-based modeling was pioneered by Hodgkin and Huxley

(15). They designed the voltage-clamp experiment in which the voltage was clamped to

a step change ∆V from the resting potential V0 and the conductance g(t) = ∆I(t)
∆V

was

computed from the corresponding current response ∆I(t). Based on those step responses,

they fitted the experimental data to a model that expresses the conductance as the product

of an activation variable m and an inactivation variable h:

g = g(m,n) = ḡmαhβ

τm(V )ṁ = m+m∞(V )

τh(V )ḣ = −h+ h∞(V )

3.

The activation function m∞(V ) is a static S-behavior, with a positive bell-shaped gain

m′∞(V ). The inactivation function h∞(V ) is the complement of a S-behavior, that is,

1−h∞(V ) is a static S-behavior. The time-constant τm(V ) is significantly smaller than the

time-constant τh(V ), meaning that the conductance first activates, then inactivates. The

exponents α and β are further parameters of the model. The dynamics of the activation

and inactivation variables model the fast and slow lags.

For the sake of mathematical tractability, we follow the approach in (16). We assume an

infinitesimal step change δV around a fixed potential V and we approximate the temporal

properties of the differential conductance by extracting three snapshot local gains corre-

sponding to the instantaneous response δI0, the early response δIf , and the late response

δIs (Figure 4). The differential conductance is decomposed accordingly as

δI = δg0δV + δgfδV + δgsδV 4.

We assume a bell-shaped gain δgf (V ) to model the early activation of the conductance and

www.annualreviews.org • Control across scales 9



Figure 4

The temporal behavior of a differential conductance is approximated with three distinct
snapshots: δI0 ≈ δg0(V )δV for the instantaneous behavior, δIf ≈ δgf (V )δV for the early

behavior and δIs ≈ δgs(V )δV for the late behavior.

a bell-shaped gain of opposite sign δgs(V ) to model its late inactivation. This corresponds

to a conductance model of the general form

g = g(V f , V s) = ḡSf (V f )(1− Ss(V s)) 5.

where the two variables V f and V s are assumed to lag behind V with a fast and slow

time-lag, respectively. The simplest lag model is of the form

τf V̇ f = −V f + V

τsV̇ s = −V s + V
6.

with 0 < τf << τs the time-constants of the fast and slow times-scales, respectively. In a

quasi steady-state approximation, the conductance based models (5) and (3) are equivalent

via the identification Sf (V ) = mα
∞(V ) and Ss(V ) = 1− hβ∞(V ).

The conductance model of Hodgkin and Huxley was purely empirical. Much later, with

the development of molecular biology, the model was related to a microscopic description of

the ion channel dynamics that gate the conductance. The model (3) was then interpreted

as the mean-field evolution of a large population of discrete actuators modeled by a Markov

process that flips their binary state with a voltage dependent probability (17).

2.2. Nodal and network currents

We consider Ohmic currents of four distinct types (Table 1). A first distinction is between

passive and active currents. A current is said to be passive if its conductance is independent

of the electrical field. The conductance of a passive current is a parameter g(·) = ḡ. A

current is said to be active if its conductance is voltage-dependent. A second distinction is

between nodal and network currents. A current into a node is said to be nodal if it only

depends on the nodal potential. It is called a network current if it depends on two distinct

nodal potentials. With the reverse sign convention I = −g(·).(V − Ṽ ) for every network

current into node V , the total nodal current into a node is equal to the total network

current:

Inod = Inet 7.
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This equation rephrases Kirchhofff’s law that the total current Inod − Inet into the node is

zero. It also has the interpretation of a nodal balance between the internal and the external

flows.

Conductances are assumed to be localized in a given amplitude and temporal range, as

explained in the previous section. Nodal conductances are the conductances of nodal cur-

rents. Nodal control shapes the nodal behavior by modulating the maximal conductance of

a nodal current. Network conductances are the conductances of network currents. Network

control shapes the nodal interactions by modulating the maximal conductance of a network

current.

Table 1 The four distinct types of Ohmic currents into node k. The parameter E

denotes an external constant potential (battery).

Current types Nodal Network

Passive ḡ (Vk − E) ḡ (Vk − Vl)

Active g(V fk , V
s
k ) (Vk − E) g(V fl , V

s
l ) (Vk − E)

2.3. Excitability: a mixed feedback principle for signaling across scales

In this section we revisit the basic property that a mixed-feedback structure is necessary

and sufficient to make a passive node excitable. We show that excitability makes the nodal

scale sensitive to the micro-scale and enables signaling to the macro-scale via a discrete

event.

We consider a single node of voltage V with three nodal currents: a passive current Ip
that determines the passive behavior of the node and two active currents I1 and I2 that

shape the behavior with a mixture of positive and negative feedback :

Ip = gp (V − Ep)
I1 = g1(V f , V s) (V − Emax)

I2 = g2(V s) (V − Emin)

8.

The nodal behavior determines a one-port circuit with external current Inet and voltage V .

Kirchhoff’s law Inet = Inod = Ip + I1 + I2 rewrites as

gnodV = gpEp + g1Emax + g2Emin + Inet 9.

with gnod = gp + g1 + g2. In the absence of a network current, the voltage is a convex

combination of the three parameters Ep, Emin, and Emax at any time. We assume Emin <

Ep < Emax, meaning that the current I1 is always negative and that the current I2 is always

positive. In the terminology of electrophysiology, I1 is an inward current, whereas I2 is an

outward current.

To determine how the nodal currents contribute to the feedback properties of the system,

we linearize the circuit equations around a given voltage V and separate the contributions
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of the circuit conductance in each time scale:

δInet = δI0
nod + δIfnod + δIsnod

= ∂Inod
∂V

δV + ∂Inod
∂V f

δV + ∂Inod
∂V s

δV

= gnodδV + δgf (V )δV + δgs(V )δV

10.

with
δgf (V ) = ∂g1

∂V f
(V, V ) (V − Emax) ≤ 0

δgs(V ) = ∂g1
∂V s

(V, V ) (V − Emax) + g′2(V ) (V − Emin) ≥ 0
11.

The local circuit behavior has a specific mixed-feedback structure (Figure 5): an open-loop

process in the instantaneous time-scale, a positive feedback system in the fast time-scale,

and a negative feedback system in the slow time-scale. The positive feedback is provided by

the activation of an inward current. It is synonym of a negative conductance, or equivalently,

a variation δIf of sign opposite to the variation δV in the step response shown in Figure

4. The negative feedback is provided by the inactivation of the inward current and the

activation of an outward current. Both contribute to a positive conductance, or equivalently,

a variation δIs of the same sign as the variation δV in the step response shown in Figure 4.

The mixed feedback is first positive, then negative. This specific feedback structure makes

the node excitable. An excitable behavior outputs discrete events, called spikes or action

potentials, in response to continuous-time variations of the input signal (Figure 6). We

refer the reader to (18) for a detailed discussion on excitable behaviors.

The positive feedback in the fast time-scale is responsible for a threshold around which

the behavior is ultra-sensitive. For sub-threshold variations of the input current, the voltage

response is passive, but beyond threshold, the voltage jumps to a value close to Emax. The

nodal behavior is all-or-none in the fast time scale: supra-threshold input variations trigger

an output discrete switch. For an equilibrium behavior close to Emin, the voltage switch

spans almost the entire output voltage range [Emin, Emax] of the circuit.

The negative feedback in the slow time-scale is responsible for a refractory time-interval

following the switch. The voltage variable returns to equilbrium with a negative overshoot.

During the refractory time-interval, the nodal behavior is infra-sensitive, that is, its sensi-

tivity to an external perturbation is lower than the sensitivity of the open-loop behavior.

The negative feedback turns the switch into a discrete event of finite duration. It is the

slow time scale of the feedback system that controls the duration of the spike.

The excitable behavior that results from fast positive feedback and slow negative feed-

back is robust, tunable, and tractable. Those three properties are grounded in a sufficient

separation of scales. The behavior is robust in that it only depends on qualitative properties

of the actuation model, that is, the existence of a fine-scale amplitude and temporal voltage

range where the positive feedback gain dominates and a coarse-scale amplitude and tempo-

ral voltage range where the negative feedback gain dominates. The behavior is tunable in

that the two qualitative properties of excitability – the threshold and the refractoriness –

can be tuned by independent parameters. The maximal gain of the positive feedback loop

determines the threshold. It is tuned by the maximal conductance of the inward current.

The maximal gain of the negative feedback loop determines the refractoriness. It is tuned

by the maximal conductance of the outward current. Finally, the behavior is tractable, in

spite of being nonlinear and dynamic. Thanks to the time-scale separation, the fast switch

and the slow refractoriness can be analyzed separately, for instance through fast-slow phase

portrait analysis. In the absence of the time-scale separation, excitability is lost. Robust-

ness, tunability, and tractability of the behavior progressively deteriorate as the time-scale
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separation decreases. In neurophysiology, the ratio between fast and slow time scales is

rarely below 5 to 10. This separation is also remarkably stable across different types of

neurons.

The significance of excitability for the present paper is that an excitable node signals

across scales. Near threshold, the meso-scale behavior is ultra-sensitive, that is, sensitive to

smaller scales. This ultra-sensitivity is localized in a narrow amplitude and temporal range

of the input signal. Away from this specific range, signals from the micro-scale are in the

noise range of the passive node. But within the ultrasensitive range, signals from the micro-

scale trigger a discrete event in the meso-scale. Excitability makes the meso-scale selectively

sensitive to specific signals or ensemble of signals from the micro-scale. Likewise, the output

signal of an excitable node is a sequence of discrete-events. Those discrete events can serve

as the micro-actuators of a mean-field conductance at a larger scale. Collectively, many

spikes control the mean-field gain of a macro-conductance. Because spikes have a specific

amplitude and temporal range, the mean-field gain is necessarily localized in amplitude and

temporal range. A population of spikes determines a mean-field conductance at the macro-

scale. As a mean-field of discrete events, the mean-field conductance defines a S-behavior

for the next scale.

The role of mixed-feedback as the fundamental mechanism of excitability was first dis-

covered by Hodgkin and Huxley. In their seminal work (15), they modeled excitability as

the property of an electrical circuit consisting of a passive membrane, an inward (sodium)

current with fast activation and slow inactivation, and an outward (potassium) current.

(Their model only differs from the structure (8) by an additional capacitive current that is

inessential for the message of the present paper). Their model was later shown by Fitzhugh

(19) and Nagumo (20) to share the properties of negative resistance oscillators studied ear-

lier by Van der Pol. A negative resistance device is an Ohmic element with a negative gain

over some voltage range. The terminology is sometimes a source of confusion because it is

not the resistance (or conductance) itself that is negative, but only its gain. The inward

current I1 in (8) has the interpretation of a negative resistance device when the fast time-

scale merges with the instantaneous time-scale, that is, V f = V , and when the inactivation

of the inward current is neglected (or merged with the activation of the outward current).

The model of Hodgkin and Huxley is discussed in any textbook of neurophysiology, see e.g.

(21). The presentation here leaves aside many physiological details in order to concentrate

on the role of mixed-feedback in shaping the sensitivity properties of a passive node.

2.4. A network of mixed-feedback amplifiers

An excitable nodal behavior is determined by three distinct types of nodal currents: a

passive current, and active currents that up-regulate or down-regulate the passive behavior.

In the same way, the nodal interactions are determined by three types of network currents:

passive network currents, and active network currents that are either excitatory or inhibitory.

In Figure 7, the resistive link between node 1 and node 2 denotes a network passive

current :

I12,p = −I21,p = −ḡ12(V2 − V1). 12.

The link between node 1 and node 3 with an arrow symbol denotes an excitatory current

into node 3 with a conductance that depends on the nodal potential V1:

I13,E = −gsyn(V f1 , V
s
1 )(V3 − Esyn,+) 13.
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The behavior of a passive node with fast positive feedback and slow negative feedback is excitable:

ultra-sensitive in the fast time-scale and infra-sensitive in the slow time-scale. The nodal
conductances modulate the nodal behavior between an open-loop model (instantaneous

time-scale), a positive feedback model (fast time-scale), and a negative feedback model (slow

time-scale).
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Figure 6

An excitable behavior converts the small variations of a continuous input signal into a sequence of

discrete-events with a specific amplitude and temporal signature. Ultra-sensitivity in the fast

time-scale endows the meso-scale with a threshold with respect to continuous variations at the
micro-scale. Discrete-events at the meso-scale are the atoms of signaling at the macro-scale.

The current is called excitatory because the potential Esyn,+ is higher than the excitability

threshold of node 3. For instance, the current is necessarily excitatory if Esyn,+ = Emax : a

spike at node 1 will necessarily generate a positive current I13,E , that will depolarize node

3 and therefore facilitate a spike at node 3.

The link between node 2 and node 3 with a circle symbol denotes an inhibitory current

into node 3 with a conductance that depends on the nodal potential V2:

I23,I = −gsyn(V f2 , V
s
2 )(V3 − Esyn,−) 14.

The current is called inhibitory because the potential Esyn,− is lower than the excitability

threshold of node 3. For instance, the current is necessarily inhibitory if Esyn,− = Emin: a

spike at node 2 will necessarily generate a negative current I13,E , that will hyperpolarize

node 3.

Passive network currents model diffusion between the nodes. In neurophysiology, they
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Figure 7

Interconnections between nodes are determined by three types of network currents. The resistor

symbol denotes a passive current between node 1 and node 2. The arrow symbol denotes an
excitatory current into node 3, with a conductance controlled by V1. The circle symbol denotes an

inhibitory current into node 3, with a conductance controlled by V2.

model gap junctions between neurons. Active network currents model synaptic intercon-

nections between neurons. A frequent assumption in neuroscience is that the excitatory or

inhibitory nature of a synaptic current is a property of the presynaptic node. Nodes are

called excitatory when they control excitatory synaptic currents, and inhibitory when they

control inhibitory synaptic currents. In Figure 7, the node 1 is excitatory whereas the

node 2 is inhibitory.

The network currents above complete the description of a network model that includes

the four distinct types of currents in Table 1. It is the presence of active nodal currents

that distinguishes this model from many other models in the literature. The nodal active

currents are essential to shape the nodal excitability.

In the systems and control literature, most dynamical network models only include the

passive currents of Table 1. They consider passive nodal behaviors and passive intercon-

nections. Passivity must here be understood in the generalized system-theoretic sense of

behaviors that can only dissipate energy (22). The study of passive networks is a major

topic of system theory (23). It focuses on equilibrium behaviors and the diffusive properties

of passive interconnections. It is a core concept of the distributed control paradigm. Passive

networks have a limited sensitivity across scales. The input-output sensitivity is expected

to decrease with the size of the network, which limits the controllability properties at the

network scale. Such limitations have become the focus of recent studies, see e.g. (24).

In computational neuroscience, the important class of rate models includes active net-

work currents but do not includes active nodal currents. Neural networks with passive nodes

and active interconnections originate in the seminal work of Wilson-Cowan (25), Amari (26),

and Hopfield (27). The nodal behavior in those models is passive. It has the interpretation

of a mean-field behavior of the cellular activity. The nodal dynamics does not model the

spiking behavior of a single neuron but rather the mean-field spiking activity of a popula-

tion of neurons. Rate neural network models have been seminal in identifying the network

properties of specific network architectures encountered in neurophysiology. Rate models

do not include the nodal feedback of nodal currents but do include the network feedback of

any network loop of network currents. The network feedback can shape the sensitivity of a

node very much like the nodal feedback. Our motivation to include nodal active currents

in the network architecture is to highlight the distinct role of nodal control and network

control in a multi-scale model.

The parallel types of nodal and network currents in our network architecture make it
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multi-scale and multi-resolution in nature: network currents at a finer scale become nodal

currents at a coarser scale. In the same way, network conductances at the nodal scale

become nodal conductances at the network scale. At the nodal scale, the behavior is an

input-output relationship between Inet and V . This input-output behavior is shaped by

the nodal conductance, which acts as a feedback control. The input Inet is shaped by the

network conductance, which acts as a feedforward control.

3. Shaping behaviors across scales

First positive then negative mixed-feedback provides a basic feedback structure for signaling

across scales. The second part of the paper will illustrate how controlling the nodal scale

with this feedback structure can shape the network behavior at broader scales.

3.1. Shaping a nodal behavior

The mixed-feedback structure discussed in Section 2.3 endows the nodal behavior with a

specific scale of excitability: the spike is a discrete event with a specific amplitude and

temporal sensitivity range determined by the active nodal currents. A two-scale nodal

behavior is obtained simply by duplicating the mixed-feedback structure. We consider a

node with one passive current and four distinct active currents to shape two distinct mixed-

feedback loops:

Ip = gp.(V − Ep)
I1 = g1(V f , V s).(V − Emax)

I2 = g2(V s).(V − Emin)

I3 = g3(V s, V us).(V − Emax)

I4 = g4(V us).(V − Emin)

15.

The nodal circuit has now two distinct sources of positive feedback, each of which can create

a distinct threshold. We assume that the activation ranges of the two inward currents I1
and I3 are distinct and overlapping, both in amplitude and in time: the activation range

of I3 is slower and lower than the activation range of I1. The two outward currents I2 and

I4 balance the two distinct ranges of positive feedback with two distinct ranges of negative

feedback. They provide refractoriness in two distinct but overlapping ranges in amplitude

and in time. Together, the four nodal currents shape the interlocked mixed-feedback of

two distinct scales of excitability, with overlapping amplitude and temporal ranges. The

resulting discrete event is a burst, which can be regarded as a spike of spikes (Figure 8).

Bursting is central to cellular neurophysiology. The four distinct types of nodal con-

ductances can be identified in most neurons. Sodium and calcium currents are inward

currents. The activation range of most calcium currents is slow and low with respect to the

activation range of most sodium currents. Hence sodium activation is the most common

source of fast positive feedback and calcium activation is a common source of slow positive

feedback. Potassium and chloride currents provide most of the outward currents. Their

activation ranges are widepspread in amplitude and in time, providing negative feedback

in a continuum of ranges. Sometimes, it is the inactivation of an outward current that

provides the slow positive feedback. A notable example is the A-type potassium current,

which plays an important role in slow excitability (28).

The particular significance of bursting in the context of the present paper is that it

endows the nodal behavior with two distinct modes of excitability, each associated with a
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Two interlocked mixed-feedback loops endow the nodal behavior with two distinct modes of

excitability. The equilibrium value of the node determines the excitability mode : the node is
spike excitable around the equilibrium potential V = Ehigh and burst excitable around the

equilibrium potential V = Elow . Each mixed-feedback loop endows the nodal behavior with a

distinct scale of memory and signaling.

distinct scale. Spike excitability only signals in the high amplitude and frequency range;

burst excitability simultaneously signals in a high and low amplitude and frequency ranges.

The modulation between spike and burst excitability is central to the multiscale control

illustrations of the next sections. It can take many different forms but the basic property is

illustrated in Figure 8. The excitability mode drastically alters the input-output behavior

of the node. A same input disturbance might trigger a spike or a burst, that is, generate

a discrete event in two distinct scales. This is because of the distinct activation ranges

of the two inward currents. The trajectories illustrated in Figure 8 are the result of a

fast inward current that activates near Ehigh and a slow inward current that activates near

Elow. Spike excitability is observed when the slow inward current is inactivated, whereas

burst excitability is observed when the slow inward current is activated. A burst response

is observed only when the voltage has remained low for long enough. The modulation

between spike and burst excitability is central to the control of the nodal behavior. It can

be achieved either by modulating the polarization of the node, that is, the balance of inward

and outward currents at steady-state, or by modulating the maximal conductance of the

slow inward current.

The behavior that results from two interlocked mixed-feedback loops is robust, tunable,

and tractable. We refer the interested reader to a detailed analysis of those properties in

(29). They are rooted in a sufficient separation of the amplitude and temporal ranges of the

feedback gains : a fast time-scale and high voltage range where positive feedback dominates;

an ultra-slow and low voltage range where negative feedback dominates; and an intermedi-

ate slow time-scale and middle voltage range where the instantaneous sign of the feedback

loop depends on a balance between the negative feedback following the fast positive feed-

back and the positive feedback preceding the ultraslow negative feedback. The fast/high

positive feedback determines the threshold of spike excitability. The ultra-slow/low nega-

tive feedback determines the refractoriness of burst excitability. The intermediate balance

of positive and negative feedback determines the threshold of burst excitability and the

refractoriness of spike excitability. The behavior is robust to the modeling details of the

activation and inactivation properties because it is only the balance of feedback loops in

a given time-scale and amplitude range that determines the qualitative properties (thresh-

old and refractoriness) of the two excitability modes. The behavior is tunable because the

activation range and maximal conductances of each current can be tuned to shape the
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bursting waveform in a broad range of amplitude and frequencies. The behavior is tractable

because the attractor properties of a burster can be dissected in distinct time-scales. Sin-

gular perturbation analysis and singularity theory provide a complete classification of the

possible combinations of spike and burst excitability that obey the hierarchy of the two

mixed-feedback loops (30).

The regulation of the balance of positive and negative feedback in the intermediate

scale of the behavior is of particular significance to shape the input-output sensitivity of

the nodal behavior in distinct time scales. The continuous modulation between spiking and

bursting is a core signaling mechanism in cellular neurophysiology (31, 32). The reader will

notice that such a regulation is not possible in the absence of a nodal conductance providing

positive feedback in the intermediate voltage amplitude and temporal range. We have shown

the critical role of this distinct positive feedback in (29) for robustness and tunability of

a bursting behavior. Surprisingly, ionic currents that provide slow positive feedback are

often omitted in mathematical treatments of bursting (e.g. in the recent textbooks (33)

and (34)).

3.2. Shaping a motif behavior

Modulating the excitability of a node has a profound influence on the behavior not only

at the nodal scale, but also across scales. This is best exemplified in two interconnection

motifs that have been extensively studied in the literature : the I-I motif and the E-I motif.

The I-I motif is a symmetric inhibitory interconnection between two nodes, each controlling

a network inhibitory current into the other node:

I12,I = g12(V s1 )(V2 − Emin)

I21,I = g21(V s2 )(V1 − Emin)
16.

The E-I motif is an asymmetric excitatory-inhibitory interconnection between two nodes,

each controlling a network current of opposite sign into the other node:

I12,E = g12(V f1 )(V2 − Emax)

I21,I = g12(V s2 )(V1 − Emin)
17.

The I-I motif is central to the circuit neurophysiology of central pattern generators (35).

It is a basic mechanism to generate autonomous circuit rhythms by interconnecting nodes

that are burst excitable but do not necessarily oscillate in isolation. The mechanism is simple

to understand from the input-output nodal behavior shown in Figure 8: A burst in neuron

1 induces a hyperpolarizing network current into node 2. As a consequence, the termination

of a burst in neuron 1 triggers a burst in neuron 2. The symmetric interconnection from

neuron 2 to neuron 1 closes a network loop that can sustain an autonomous anti-phase

rhythm in the circuit (Figure 9).

The E-I motif is central to the circuit neurophysiology of transient slow rhythms. The

mechanism is again a simple consequence of the input-output nodal behavior shown in

Figure 8. In the spike excitability mode, the two nodes do not interact and behave inde-

pendently of each other. In the reported illustration (Figure 9), one node is repeatedly

spiking while the other node is silent. In the burst excitability mode, the two nodes interact,

triggering a new rhythm for the circuit (Figure 9).

The significance of both motifs for the present paper is that it is the nodal modulation

of excitability that controls the circuit behavior. In both motifs, the circuit rhythm is
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The influence of the nodal mode of excitability on two basic interconnection motifs. Both the I-I

and E-I motif define a behavior at the circuit scale distinct from the behavior at a nodal scale.

The circuit behaviors are turned on and off by the modulating the excitability mode of the nodes.

turned on and off by the excitability mode of the nodes: the circuit rhythm is on when

the nodes are burst excitable and off when the nodes are spike excitable. The resulting

behavior is multi-scale because it can be modulated between a behavior at the nodal scale

and a behavior at the motif scale. The control is at a nodal resolution, because the nodal

excitability can be modulated locally, through local modulation of the maximal conductance

of specific nodal currents.

The scale of the motif is of course not restricted to the interconnection of two cells.

The interconnections can be between a population of excitatory nodes and a population of

inhibitory nodes.

The multi-scale behavior of the elementary motifs discussed above is again robust, tun-

able, and tractable. We refer the interested reader to a detailed analysis of the I-I motif

in (36) and a detailed analysis of the E-I motif in (37). Those properties are rooted in the

separation of amplitude, temporal, and spatial scales. The separation of spatial scales is

ensured by the assumption of weak nodal interconnection. The interconnection is weak if

the nodal behavior is dominated by the feedback properties of nodal conductances. The

nodal behavior of each neuron in Figure 9 is a sequence of spikes and bursts. Those are

shaped by the nodal conductance, regardless of the interconnection topology. They define

an input-output nodal behavior for each node, which is independent of the network ar-

rangement. What differs in the E-I and I-I motif is only the sequence of discrete events in

each node and the relative phase of similar events in the distinct nodes. Those properties

are shaped by the network conductances. The separation of scales is fundamental to the

multi-scale nature of the behavior. The behavior at a broader scale is a particular temporal

arrangement of the discrete events that define the behavior at a finer scale.

The behavior of the motif is robust to the modeling details of the nodal and network

conductances. This property is of fundamental importance to make the motif robust to
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the heterogeneity of the population when it designates the interconnection of populations

rather than isolated nodes. The analysis in (36) (for the I-I motif) and in (37) (for the

E-I motif) shows that the behavior illustrated in Figure 9 persists over a broad range

of modeling parameters. In both papers, we highlight the critical role of the nodal slow

positive feedback for this robustness. The two distinct positive feedbacks of each node

determine two distinct types of discrete events, one for each mode of excitability. This

discrete classification of the nodal behaviors is essential to the robustness of behaviors at

a larger scale. The behavior of the motif is also tunable, precisely because the discrete

classification of nodal behaviors persists over a broad range of parameters. Both the I-I and

E-I circuit rhythms have distinct properties from the nodal behaviors. Those properties

are determined by the phase relationships between the nodal discrete events. Those phase

relationships can be tuned by modulating the activation ranges of the network currents,

both in amplitude and time. Finally, the behavior of the motif is tractable because it can be

inferred from the behavior of the nodes and from the circuit topology. The nodal behavior

defines the discrete-events that compose the network behavior. The nodal interconnections

constrain the phase relationships between the discrete events of interconnected nodes.

3.3. Shaping a circuit behavior

The nodal control of the I-I motif provides a shaping principle for circuits composed of

excitable nodes interconnected by inhibitory synaptic currents. In neurophysiology, such

circuits have long been associated to rhythmic functions such as breathing, chewing, swal-

lowing, walking or heart beating (38, 39, 40, 41). We will briefly illustrate how nodal

control shapes the behavior of the five-node circuit illustrated in Figure 10. We refer the

interested reader to (42) for a detailed analysis of the circuit. The circuit architecture is

inspired by the neuronal topology of the crab somatogastric ganglion (STG), which has

served as a key experimental model to study the neuromodulation of rhythmic circuits over

the past forty years (43). In experiments, two different rhythms coexist within the STG

circuit. One corresponds to the fast pyloric rhythm, which is constantly active, whereas

the second corresponds to the slow gastric mill rhythm, which can be turned on and off

by afferent neuromodulatory inputs and neuromodulators. Each node in the circuit is a

conductance-based model that includes seven different types of nodal currents. Those cur-

rents are not discussed in detail here but their conductances can be shown to shape the

four distinct types of feedback discussed in Section 3.1. They endow each node with the

two distinct excitability modes of a bursting node. In particular, the model includes two

calcium currents that provide the critical source of slow/intermediate positive feedback nec-

essary for burst excitability. Our local control parameter is the maximal conductance of

those two currents, that can modulate the nodal excitability of each node between the two

modes of excitability. The topology of the network is indicated in Figure 10. It includes

passive currents between nodes 2, 3, and 4, and a number of inhibitory network currents.

Reciprocal inhibitory connections between nodes 1 and 2 and between 4 and 5 define two

elementary I-I motifs, one for the fast rhythm between nodes 1 and 2, one for the slow

rhythm between nodes 4 and 5. The two distinct I-I motifs interact through the central

node 3.

The figure illustrates the different rhythms that can coexist in the circuit by controlling

the excitability mode of the nodes. The significance of this nodal control is that the inter-

connections gains (and in particular the maximal conductances of the synaptic currents)
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Figure 10

Nodal control of a circuit behavior with a fixed synaptic connectivity. Left, circuit connectivity

diagrams. Filled circles represent neurons, which are numbered from 1 to 5. Neurons with thick

orange edges are controlled by neuromodulatory inputs that increase the maximal conductance of
calcium currents. Center, membrane potential variations over time for neurons 1 to 5 (from top to

bottom) in the different control configurations. Synaptic connections are identical in all cases.

Neurons are colored in blue when they participate in the fast rhythm, in red when they
participate in the slow rhythm, in purple when they participate in a global rhythm, and in black

when they do not participate in the circuit rhythm. Right, functional connectome in the different

control configurations.

are kept unchanged in the five circuit rhythms shown in Figure 10. The circuit behavior

is modulated by nodal control rather than by network control. Nodal control modulates

the functional connectivity of the network without changing the synaptic connectivity. Our

message is that nodal control makes the circuit behavior robust, tunable, and tractable. The

circuit behavior is easily inferred from the I-I motif behavior because the circuit topology

only orchestrates the phase relationships between discrete events defined at a smaller scale.
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Those properties are very difficult to achieve when the circuit behavior is only tuned by the

synaptic currents.

This example illustrates the role of nodal excitability in shaping a behavior across scales.

This control principle is relevant to neurophysiology and illustrates the important function

of neuromodulation as a complement to synaptic plasticity.

3.4. Shaping a network behavior

The control of the E-I motif provides a shaping principle for network states. Network

states designate the spatio-temporal mean-field signature of specific discrete events at the

network scale. In neuroscience, specific network states signal specific brain functions. Rapid

control of network states has been reported to affect spatial attention in cortical circuits

(44, 45), attention and arousal in the thalamus, and movement initiation in the subthalamic

nucleus (46). The most studied example is probably the thalamo-cortical circuitry. The

thalamus acts as a plastic relay between sensory systems, different subcortical areas and

the cerebral cortex, by gating and modulating neuronal signal flow under the modulatory

effect of cortical feedback (47, 48).

We briefly illustrate how nodal control shapes the spatiotemporal behavior of a network

in the cartoon E-I network illustrated in Figure 11. The figure is taken from (37), which

contains a detailed analysis of the model and its properties. Each node in the network

again contains the four distinct types of feedback necessary to modulate the nodal behavior

between spike excitability and burst excitability. The nodal control is through a neuromod-

ulator that switches the node between its two modes of excitability by hyperpolarisation.

The network currents are of three distinct types:

IEI = gE(V fE )(VI − Emax)

IIE,1 = gI,1(V sI )(VE − E1
min)

IIE,2 = gI,2(V usI )(VE − Emin)

18.

The excitatory current IEI models AMPA synaptic currents controlled by the excitatory

neurons into the inhibitory neurons. The inhibitory currents IIE,1 and IIE,2 model GABAA

and GABAB synaptic currents controlled by the inhibitory neurons into the excitatory neu-

rons. GABAB synapses are slower than GABAA synapses, and GABAA synapses have a

reversal potential E1
min slightly higher than Emin. The difference between the two different

types of inhibitory currents is physiological but non essential for the present paper. Each

pair of excitatory-inhibitory cells, as well as the entire populations of excitatory and in-

hibitory cells form a E-I motif with a qualitative behavior similar to the one discussed in

Section 3.2.

Figure 11 illustrates how the nodal control of excitability can shape the spatiotemporal

properties of the network. Very much like in the rhythmic circuit discussed in the preceding

section, nodal control spatially modulates the functional connectivity of the network without

changing the synaptic connectivity. Our message is that nodal control makes the network

behavior robust, tunable, and tractable, at a nodal resolution. The network behavior is easily

inferred from the E-I motif behavior because the nodal interconnections only orchestrate

the spatial spread of localized nodal discrete events.
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Figure 11

Nodal control shapes the spatiotemporal behavior of a E-I network at a cellular resolution. A,

Left. Sketch of the spatial network. A one-dimensional array of 80 excitatory (E) cells is
connected to a one-dimensional array of 80 inhibitory (I) cells. Inhibitory currents connect I cells

to E cells and are of two types (GABAA and GABAB). network currents are all-to-all from one

population to the other population, with maximal conductances randomly distributed in a fixed
range for each type of current. The nodal modulatory control (MOD) can be activated

independently in 8 distinct spatial clusters A, right. Spectrogram of the local field potentials

(LFP?s) of E cells (top) and I cells (bottom) with independent nodal control of 8 distinct spatial
clusters. Blue traces at the bottom indicate the period during which the fast neuromodulator is

active in a given cluster. Spatial localization of the nodal control affects the temporal frequency

and amplitude range of the mean-field spectral power. B, Left. Sketch of the spatial network. A
one-dimensional array of 20 excitatory (E) cells is connected to a one-dimensional array of 20

inhibitory (I) cells. Here, GABAB connections are spatially localized, via a maximal conductance
that decays exponentially along the spatial dimension. The nodal modulatory control (MOD) is

activated independently in 4 distinct spatial clusters B, right. Spectrogram of the local field

potentials (LFPs) of the 4 independently controlled spatial clusters of E cells (top) and I cells.
Spatial localization of the nodal control and of the GABAB currents only enables spatial tuning of

the network mean-field, even though AMPA and GABAA connections are all-to-all.

4. Closing remarks

A central paradigm of control theory is that feedback shapes sensitivity. How to extend this

principle from a mono-scale feedback control loop to a multi-scale network control archi-

tecture remains a puzzle. This paper has focused on the role of nodal feedback control for

network regulation. Nodal feedback control regulates nodal excitability, which is a specific
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type of ultra-sensitivity resulting from a combination of positive and negative feedback. We

have shown that modulating nodal excitability can reconfigure a behavior at the large scale

of a network with the tiny resolution of a node. This control principle is flexible, robust,

and tractable provided that the actuation of each conductance is localized in the proper

amplitude, temporal, and spatial ranges.

The material in this paper is primarily inspired from questions in neurophysiology.

Understanding how neuromodulators can reconfigure the behavior of a neuronal circuit

without altering its anatomy remains a central question in the analysis of brain functions.

We have put aside many physiological details to concentrate on control principles that have

generality beyond the applications of neuroscience. We hope that the potential of those

principles across science and engineering stimulate novel developments in control theory. In

particular, novel analysis and design tools are needed to cope with mixed-feedback control

systems that behave away from equilibrium.

SUMMARY POINTS

1. Feedback shapes the sensitivity of an input-output behavior. Positive feedback is

a source of ultra-sensitvity, memory, and discrete signaling. Negative feedback is a

source of infra-sensitivity, linearity, and continuous signaling.

2. Excitability is a mixed-feedback mechanism. Excitability at a meso-scale shapes

the (continuous) input sensitivity to finer scales and the (discrete) output signaling

to coarser scales.

3. Nodal control of excitability is a versatile regulation mechanism across scales. It

shapes the network scale of a spatio-temporal behavior at the resolution of the nodal

scale.

FUTURE ISSUES

1. What is the potential of nodal feedback control in multi-scale control problems such

as traffic control or artificial neural network regulation ?

2. Linear control theory is a theory of sensitivity for negative feedback regulation of

equilibrium behaviors. Is it possible to generalize linear control theory to a multi-

scale theory of sensitivity for mixed-feedback regulation of excitable behaviors?

3. Can nodal control advance the control principles of recurrent neural networks ?
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