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ABSTRACT: Dissipative particle dynamics (DPD) is a coarse-grained approach to the simulation of large supramolecular systems, but one 
limitation has been that the parameters required to describe the non-covalent interactions between beads are not readily accessible. A first 
principles computational method has been developed so that bead interaction parameters can be calculated directly from ab initio gas phase 
molecular electrostatic potential surfaces of the molecular fragments that represent the beads. A footprinting algorithm converts the molecular 
electrostatic potential surfaces into a discrete set of surface site interaction points (SSIPs), and these SSIPs are used in the SSIMPLE (surface 
site interaction model for the properties of liquids at equilibrium) algorithm to calculate the free energies of transfer of one bead into a solution 
of any other bead. The bead transfer free energies are then converted into the required DPD interaction parameters for all pairwise combina-
tions of different beads. The reliability of the parameters was demonstrated using DPD simulations of a range of alkyl ethoxylate surfactants. 
The simulations reproduce the experimentally determined values of the critical micelle concentration and mean aggregation number well for 
all 22 surfactants studied.

INTRODUCTON 
The formation of supramolecular structures such as micelles, vesi-
cles and bilayer membranes is a fundamentally important process in 
biology and in industry, with many applications in health and per-
sonal care products.1 The self-assembly of surfactants is a compli-
cated process, and despite the development of simple tools that can 
be used to predict some aspects of surfactant behavior based on 
chemical structure (e.g. the critical packing parameter2 and the hy-
drophilic lipophilic balance (HLB)3), the development of new sur-
factant systems still relies on experimental screening. The key pa-
rameters are the critical micelle concentration (CMC), which is the 
concentration at which surfactants start to aggregate into supramo-
lecular structures (micelles), and the mean aggregation number 
(Nagg), which is the average number of surfactants in a micelle. Com-
mon techniques used to measure the CMC are surface tension,4 dy-
namic light scattering (DLS),5 fluorescence,6 UV-Vis7 and NMR8 
spectroscopy, and in the case of charged species, conductometry9 
and capillary electrophoresis.10 Methods for determining the Nagg in-
clude DLS,11 small angle neutron diffraction,12 and time-resolved flu-
orescence quenching.13  
Many factors affect these measurements: for example, temperature, 
the presence of electrolytes, and organic impurities in the solution. 
14-15 The method of analysis also plays a role, because different meth-
ods are sensitive to different aspects of the self-assembled supramo-
lecular structure.16 As a result, experimental screening of new surfac-

tant formulations is time-consuming and expensive, and in silico pre-
diction of surfactant self-assembly processes would be an attractive 
alternative. One computational approach is all-atom molecular dy-
namics (MD), but due to the long equilibration times and the large 
numbers of molecules required, coarse graining (CG) approaches 
are the method of choice.17 Coarse-graining combines several atoms 
or molecules into single CG beads, reducing the number of force 
centres and the associated computational cost.  
Various CG methods have been used for the prediction of surfactant 
behaviour in solution, including Monte Carlo (MC)18 and lattice 
Boltzmann methods.19 Although recent progress in coarse grained 
molecular dynamics (CG-MD), using force-fields such as 
MARTINI shows promise,20-22 the size of the simulated systems us-
ing Lennard-Jones potentials with hard-core repulsions is still lim-
ited in length and timescale. One of the possibilities for further in-
creasing the computational efficiency is the use of methods that con-
sider only soft-core interactions, such as dissipative particle dynam-
ics (DPD). Originally developed by Hoogerbrugge and Koelman23 
and extended by Español and Warren,24 DPD uses soft-core beads, 
which move according to Newton’s equations of motion.  
The total force acting on a DPD bead is the sum of a conservative 
force, a drag force, and a random force. The drag and random forces 
are used solely for thermostatting (NVT ensemble).24 The conserva-
tive force derives from a short-range soft pair potential of the form 
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where 𝑎ij is the repulsion amplitude describing the interaction be-
tween bead i and bead j, rij is the distance between the two beads, and 
Rij is the cut-off distance beyond which there is no interaction be-
tween the beads. 

Since the conservative force accounts for the difference in non-cova-
lent interactions between different beads, determination of the pa-
rameters in Equation 1 is critical for accurately reproducing the rela-
tionship between chemical structure and surfactant behavior. 

 
Figure1. Coarse grained representation of alkyl ethoxylate (CmEn) surfactants. The hydrocarbon chain is represented by a bead for the CH3 terminal 
group (purple) and beads for ethylene groups (red). The glycol chain is represented by a bead for the terminal alcohol moiety (blue) and beads for the 
CH2OCH2 groups (green). 

Much effort has gone into the development of systematic parametri-
zation methods to obtain the DPD repulsion amplitudes 𝑎ij. An early 
approach by Groot and Warren links 𝑎ij with Flory-Huggins χ-pa-
rameters.25 This correlation has been used to obtain 𝑎ij from experi-
mental solubility data,26 Hildebrand cohesive energy density param-
eters,27-28 and infinite dilution activity coefficients.29 Alternatively, 𝑎ij 
can be obtained by using experimental data on the mutual solubility 
of small molecules. For example, using the CG approach for the alkyl 
ethoxylate surfactants shown in Figure 1, the interaction between 
the terminal alcohol bead and a bead in the ethylene glycol chain 
could be obtained using the mutual solubilities of methanol and 
methoxymethane. Computational approaches have also been inves-
tigated as an alternative to empirical parameterisation.30-32 A combi-
nation of MC and MD simulations was used to derive relationships 
between Flory-Huggins χ-parameters and 𝑎ij values for interactions 
between different sized beads.33 COSMO-RS was used to calculate 
infinity dilution activity coefficients and 1-octanol/water partition 
coefficients in order to obtain DPD repulsion parameters.34-36  
However, estimation of repulsion amplitudes based on experimental 
or calculated molecular properties has some limitations. Since DPD 
beads typically represent a fragment of a molecule, in reality a por-
tion of the molecular surface is buried by the overlap between cova-
lently connected beads; this area should not be included when com-
puting the bead interactions. Computational approaches provide an 
opportunity to remove the regions of bead overlap from a molecular 
surface. Saathoff used COSMO-SAC to delete parts of the molecular 
surface in the calculation of solvation free energies.31 An alternative 
approach to avoid this problem was adopted by Anderson et al. who 
used DPD simulations of the partition coefficients of complete mol-
ecules to optimize the set of 𝑎ij values, fitting to experimentally 
data.37  
Here, we propose a new approach to the calculation of DPD bead 
repulsion amplitudes 𝑎ij using surface site interaction points 
(SSIPs).38 We develop the method in the context of CG models of 

alkyl ethoxylate surfactants shown in Figure 1.  In this approach, dif-
ferent beads are used to represent chemical sub-groups containing 
between one and three heavy atoms as in Anderson et al.  This pro-
vides flexibility and allows straightforward extension to more com-
plicated systems. We show by simulation that the 𝑎ij values thus ob-
tained accurately reproduce the experimental CMC and Nagg values 
for this class of non-ionic surfactants. 

 
APPROACH 
Surface site interaction points (SSIPs) provide a quantitative de-
scription of all intermolecular interactions that a molecule can make 
with its environment. Molecules are represented as discrete sets of 
SSIPs of surface area 10 Å2 and volume 5 Å3 as illustrated in Figure 
2. The number and properties of the SSIPs required to represent a 
specific molecule are calculated using the ab initio molecular elec-
trostatic potential surface and a footprinting algorithm.39 SSIPs can 
been used in the surface site interaction model for the properties of 
liquids at equilibrium (SSIMPLE) algorithm described in reference 
38 to calculate solvation free energies and partition coefficients, 
which as we have outlined above can be used for estimating the 𝑎ij 

parameters required for DPD. 

In SSIMPLE, the solvent and solute molecules are each described as 
an ensemble of SSIPs. The equilibrium constant for the pairwise in-
teraction of any two SSIPs is given by  
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where ϵi and ϵj describe the interaction properties of two SSIPs, and 
EVdW is a constant that was estimated to be –5.6 kJ mol-1 based on 
experimental data on the enthalpy change for the vapour-liquid equi-
libria of non-polar liquids as described in references 38 and 40. 
The values of Kij can be used to determine the speciation of all pos-
sible SSIP contacts in a liquid phase. For a solute SSIP x dissolved in 
a solvent S1, solving the set of simultaneous equations allows calcu-
lation of  
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KS1 (x)= [x bound] / [x free]     Eq. 3 
where [x bound] is the concentration of SSIP x that is bound to a sol-
vent SSIP, and [x free] is the concentration of SSIP x that is free.  This 
represents the overall equilibrium constant for the interaction of 
SSIP x with the solvent. The SSIP description of non-covalent inter-
actions was parameterized using equilibrium constants for H-
bonded complexes, which were measured at room temperature, and 
the approach has not yet been generalized to different temperatures, 
so this paper will focus on the room temperature behavior of surfac-
tants. 

 
Figure 2. Calculation of the free energy of solvation based on pairwise 
contacts between SSIPs that describe non-covalent interactions be-
tween solute and solvent.38 

Equating the concentrations of free SSIPs in two different phases al-
lows calculation of the change in free energy (ΔG12) for moving an 
SSIP from solvent 1 to solvent 2, according to 
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where θ1 and θ2 are the fractional occupancies of the two phases, 
equal to the total SSIP concentration relative to the maximum pos-
sible SSIP concentration (300 M), R is the gas constant and T is the 
absolute temperature.  
Equation 4 represents ΔG12 as the sum of a binding free energy, 
which accounts for the interactions the SSIP makes with the solvent 
SSIPs (first term), and a confinement free energy (second term). 
The confinement energy term is obtained by using an equilibrium 
constant of unity for all pairwise interactions in a phase and corrects 
for the difference in the probability of interaction associated with 
constraining the SSIPs to phases with different overall SSIP concen-
trations. For a solute molecule which is represented by multiple 
SSIPs, the free energy of transfer between two phases is calculated 
by summing the values of ∆G12 over all SSIPs. Similarly, it is possible 

to represent a DPD bead as a set of SSIPs and to calculate the free 
energies of transfer of beads between different liquid phases as the 
sum of the free energies of transfer of the individual SSIPs that rep-
resent the bead. These free energies of transfer are then used to ob-
tain DPD repulsion amplitudes 𝑎ij as follows.  
First, the Flory-Huggins χ parameter is calculated from the bead 
transfer free energy using Equation 5, which corrects for differences 
in the volumes of different beads.41 
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where vr, v1 and v2 are the van der Waals volumes calculated using the 
0.002 electron/bohr3 electron density isosurface for two molecules 
of water, and the fragments that represent beads 1 and 2 respectively, 
and ΔG12 is the calculated change in free energy of transfer of one 
mole of bead 1 from a pure liquid composed of bead 1 to a dilute 
solution in a liquid composed of bead 2.   
Second, the linear correlation proposed by Groot and Warren is 
used to obtain the actual DPD repulsion parameters using Equations 
6 and 7.25  
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where cp = 0.291 is a constant appropriate to the overall DPD bead 
density ρrc

3 = 3 used in this work.25 
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where 𝑎ii and 𝑎jj are the self-interaction parameter for beads i and j. 

One of the limitations of this method is that the interaction between 
beads of the same type, 𝑎ii, cannot be calculated. One approach is to 
use the same self-interaction parameter for all beads, and the water 
𝑎ii parameter derived from compressibility data is commonly used 
(25 kBT).27 However, this approximation assumes that all beads have 
the same volume,25 so we use self-interaction parameters reported by 
Anderson et al., which were tuned to match the experimental densi-
ties of selected molecular liquids.37 

 
RESULTS AND DISCUSSION 
DPD PARAMETERS 
The SSIP description of the four beads required for DPD simula-
tions of the surfactants in Figure 1 is shown in Figure 3. SSIPs were 
calculated using methoxymethane for EO, ethane for C2, methane 
for T and ethanol for OH. To convert these molecular descriptions 
to bead descriptions, the SSIPs associated with the hydrogen atoms 
located at the points of covalent connectivity between beads were 
removed, i.e. the points indicated by dotted lines in Figure 3. The 
SSIP description of water has been reported previously,43 and the 
SSIP values used for all of the beads are summarised in Table 1. 
These values were used in SSIMPLE to calculate free energies of 
transfer for all pairwise combinations of beads (Table 1). A concen-
tration of 1 mM was used for the solute beads to make sure that there 
are no solute-solute interactions, so the results are equivalent to the 
infinite dilution values required for Equation 5. The concentrations 
of the solvent beads were estimated based on structurally related liq-
uids: the concentration of methanol was used as the bead concentra-
tion for a liquid composed of OH beads, half of the concentration of 
dimethoxyethane was used as the bead concentration for a liquid 
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composed of EO beads, one quarter of the concentration of n-octane 
was used as the bead concentration for a liquid composed of C2 

beads, and one eighth of the concentration of n-octane was used as 
the bead concentration for a liquid composed of T beads. 

Table 1 SSIP representation of DPD beads and calculated free energies of transfer (∆G12 in kJ mol-1). 

Bead vi (Å3) SSIP ϵi ∆G→T ∆G→C2 ∆G→EO ∆G→OH ΔG→W 

T 25.9 0.4, 0.4, 0.4, -0.3 0.00 0.40 0.00 2.40 18.38 

C2 38.9 0.4, 0.4, 0.4, 0.4, -0.3, -0.3 -0.60 0.00 0.10 2.30 17.89 

EO 48.7 0.4, 0.4, 0.4, 0.4, -5.3, -5.3 -1.14 -0.04 0.00 -1.52 -6.17 

OH 34.7 2.7, 0.4, 0.4, -5.3, -5.3, -0.3 14.58 15.95 1.27 0.00 -3.16 

W 42.0 2.8, 2.8, -4.5, -4.5 25.33 26.01 -0.71 0.50 0.00 

 

 
Figure 3. SSIP representations of the DPD beads used in this work. Pos-
itive and negative SSIPs are shown as red and blue dots respectively. The 
dotted lines indicate the point of covalent attachment to adjacent beads. 

Table 2: DPD parameters for all pairwise bead interactions. 

Bead j Bead i 𝑎ii
36 𝑎ij ∆𝑎ij Rij

36 

C2 C2 22.0 / / 1.074 

EO EO 25.5 / / 1.116 

OH OH 14.0 / / 0.980 

W W 25.0 / / 1.000 

T T 24.0 / / 0.955 

C2 EO / 23.8 0.03 1.095 

C2 OH / 27.1 9.13 1.027 

C2 W / 45.5 21.95 1.037 

EO OH / 19.6 -0.13 1.048 

EO W / 21.8 -3.44 1.058 

OH W / 18.2 -1.33 0.990 

T W / 46.2 21.85 0.978 

T OH / 27.5 8.49 0.968 

T C2 / 22.9 -0.08 1.015 

T EO / 24.2 -1.05 1.036 

 
The transfer free energies in Table 1 were used in Equations 5-7 to 
obtain the repulsion parameters listed in Table 2. For beads of dif-
ferent size, a volume correction is used in Equation 5. The van der 

Waals volume of the terminal beads T and OH was calculated by us-
ing half the calculated volume of ethane and 1,2-ethandiol, respec-
tively. For the inner beads C2 and EO, the van der Waals volumes 
were obtained by calculating the volumes of homologous series of 
alkanes or ethylene glycols and taking the slope of a plot of volume 
versus number of bead repeats in the chain (see ESI). The van der 
Waals volumes and 𝑎ii values used in Equations 5-7 are reported in 
Tables 1 and 2. 

The cross-interaction parameters Δ𝑎ij in Table 2 show that the 
strongest repulsion, about 20 kBT, occurs between water and the two 
hydrocarbon beads C2 and T as expected. The values compare well 
with those reported in literature.25,28,37,44-45 The values of Δ𝑎ij for the 
interactions of the terminal alcohol bead with the hydrocarbon 
beads, OH-C2 and OH-T, are approximately 9 kBT, which repre-
sents a significant repulsion. The OH bead is well solvated by itself 
due to H-bonding interactions between the hydroxyl groups, and 
these interactions are lost when this bead is transferred to a hydro-
carbon solvent. The values are similar to those reported in literature: 
values of Δ𝑎ij of 6 kBT and 7 kBT were used previously for interac-
tions between OH-C2 and OH-T.37 

The values of Δ𝑎ij for the interactions of the ethylene glycol bead 
with the hydrocarbon beads, EO-C2 and EO-T, are approximately 
zero. The major difference between the EO bead and the hydrocar-
bon beads is the presence of two H-bond acceptor sites on the EO 
oxygen (Table 1). However, none of these beads have H-bond do-
nor sites, so there are no significant differences in the interactions 
the beads make with each other. These EO-hydrocarbon cross-inter-
action parameters in Table 1 differ from those reported in the litera-
ture. Because of the limited experimental data on the mutual solubil-
ities of alkanes and oligoethylene glycols, Δ𝑎ij was originally esti-
mated to be intermediate in value between the hydrocarbon-hydro-
carbon and hydrocarbon-water parameters, and a value of 6.5 kBT 
was used in the literature.26 Attempts to calculate this parameter us-
ing COSMO-RS were inconclusive, due to a strong dependence on 
conformation.34 Anderson et al. used experimental water-octanol 
partition coefficients to obtain a value of 3.1 kBT for the EO-
hydrocarbon cross-interaction parameter, which is closer to the val-
ues in Table 2.37 

The values of Δ𝑎ij for the interactions of the terminal alcohol and 
ethylene oxide beads with water, W-OH and W-EO, are both nega-
tive. The miscibility of water with alcohols and with oligoethylene 
oxides makes it impossible to determine the values of Δ𝑎ij from ex-
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perimental solubility measurements. Extrapolation from high tem-
perature measurements on polyethylene oxide-water mixtures gave 
a value of Δ𝑎ij of 1.0–1.5 kBT for the W-EO interaction. Anderson et 
al. used experimental logP measurements to obtain a value of –1.25 
kBT for the W-EO interaction, which is consistent with the negative 
value we calculate. The origin of the negative values of Δ𝑎ij in the 
SSIMPLE calculation is due to the fact that both alcohols and eth-
ylene glycols are H-bond acceptors, and so the H-bonds formed with 
the water H-bond donors are favorable in the mixtures. 
 
DPD SIMULATIONS 

To test the parametrisation, DPD simulations were performed on 
linear, non-ionic surfactants belonging to the alkyl ethoxylate family 
shown in Figure 1; these are generically denoted as CmEn where m is 
the number of carbon atoms in the hydrocarbon chain and n is the 
number of oxygens in the ethylene glycol chain. In the literature, 
these compounds are generally described using two types of 
bead,26,29,45-47 one for the hydrophobic tail and the other one for the 
hydrophilic head group, but here we use the more detailed CG de-
scription shown in Figure 1.37 The solvent beads used in the simula-
tions were each composed of two molecules of water. The value of 
Rij for the interaction of two water beads was set equal to rc, the 
length unit in DPD, which is in turn set using the mapping number 
identity proposed by Groot and Rabone:26 ρNmvm = 1, where ρ is the 
bead density, Nm (the ‘mapping number’) is the number of water 
molecules in a water bead, and vm = 30 Å3 is the molecular volume of 
water. With Nm = 2 and dimensionless bead density ρrc

3 = 3, this 
means that rc = 5.64 Å.  The correlated cut off distances for all other 
bead-bead interactions (Rij) were taken from Anderson et al.37,42  
In our CG representation of these surfactants (Figure 1), the DPD 
molecules are linear chains with a stiff harmonic spring potential, 

𝑈(𝑟) = (1 2⁄ )	𝑘?	(𝑟!" −	𝑟@)$    Eq. 8 
between connected pairs of beads. We set kb = 150 kBT and choose 
r0 to match (approximately) the physical bond lengths as described 
below.  To provide additional chain rigidity we supplement this two-
body spring potential with a three-body angular potential,  

𝑈(θ) = (1 2⁄ )	𝑘>	(θ!" −	θ@)$    Eq. 9 
where ka = 5 kBT and θ0 = 180°.  
For two covalently bonded C2 beads, the equilibrium distance r0 was 
set at 0.39rc, which gave an average distance during the simulation of 
0.45rc, equivalent to a bond length of 2.55 Å.37 The other equilibrium 
distances (r0) between covalently bonded beads were modified by 
0.1rc for each heavy atom added or deleted relative to C2, which 
gives 0.29rc for C2-T, 0.49rc for C2-EO, 0.59rc for EO-EO and 0.49rc 
for EO-OH as in Anderson et al.37,42 
All the simulations were performed in a cubic box of side 40rc, con-
taining in total 192,000 beads. Box sizes from 20rc to 40rc were inves-
tigated, but no effect on the value of the calculated CMC was ob-
served (see ESI). Simulations were run for (2–4)×106 timesteps 
with a timestep of 0.01 in DPD time units.  In the literature, the DPD 
timescale in this kind of CG representation has been estimated using 
the diffusion of small molecules, 35  so that one DPD timestep corre-
sponds approximately to 0.5 ps, and our simulation runs correspond 
roughly to 1–2 μs. Simulations were performed using the 

DL_MESO DPD package (version 2.7),48 and analyzed using a com-
bination of the UMMAP analysis tool49 and purpose written scripts. 
Trajectory files were collected every 500 timesteps, and the NVT en-
semble was ensured by a commonly used DPD thermostat based on 
the standard velocity Verlet integration.50 
DPD simulations were run at 4, 5 and 6% wt in water for all the CmEn 
surfactants shown in Figure 1. Figure 4 shows examples of the re-
sults. Two molecules were considered part of the same supramolec-
ular cluster, if they were closer than the cut-off distance Rij, and this 
criterion was used to calculate the number of ‘free’ surfactants as 
monomers or in submicellar aggregates for each timestep in a simu-
lation. Figure 4a shows the free surfactant concentration for four dif-
ferent surfactants plotted against the number of timesteps.  In all 
cases equilibrium was established between 1.0×105 and 2.5×105 
timesteps. The cut-off distance criterion was also used to calculate 
the total number of molecules present within each supramolecular 
aggregate in each timestep of the simulation. The distribution of su-
pramolecular assemblies was calculated for all timesteps greater than 
5×105 and the populations were summed to obtain the aggregation 
number distribution (P(N)) for each simulation. Figure 4b shows 
an example of an aggregation number distribution for simulation of 
C10E6. There are clearly two populations. There are a large number 
of monomers that appear close to the origin, and then there is a clear 
gap in the trimer to 10-mer region, before a bell-shaped distribution 
appears with a maximum population around 20. The bell-shaped 
distribution corresponds to micellar aggregates of various sizes. The 
results from single simulations can be rather noisy, because the mol-
ecules tend to become kinetically trapped in the micellar assemblies. 
Figure 4b shows that the values of P(N) obtained from a simulation 
of C10E6 are not a simple function of N. It is possible to obtain a 
smoother aggregation number distribution by combining multiple 
simulations, and Figure 4c illustrates the result for C10E6. 
CRITICAL MICELLE CONCENTRATIONS 

The aggregation number distributions were used to calculate CMC 
values. The minimum number of molecules required for a cluster to 
be considered a micelle must first be assigned. A variable Ncut is in-
troduced such that clusters with aggregation numbers N > Ncut are 
identified as micelles, and those with N < Ncut as monomers and sub-
micellar aggregates; the totality of the latter were used to define the 
free surfactant concentration. For the example shown in Figure 4b, 
there is a clear gap between the two populations, so choosing a value 
of Ncut anywhere in the 5–10 range will give the same result. In some 
simulations, there was overlap between the submicellar and micellar 
populations, but in these cases, it was still possible identify a sparsely 
populated intermediate region, where the precise value of Ncut had 
minimal effect on the calculated CMC values (see ESI). The values 
of CMC obtained from different simulations of the same surfactant 
were similar, leading to relatively well-defined values with small error 
bars. The surfactant concentration used in a DPD simulation can af-
fect the calculated CMC value,51 but even for simulations run over a 
wider concentration range (1 to 15% wt of surfactant, see ESI), no 
significant variations in CMC were found.52 
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Figure 4. a) The concentration of free surfactants plotted as a function 
of timestep for C6E4 (green), C8E5 (violet), C10E6 (blue) and C12E8 (yel-
low). The red dotted line shows the timestep at which the simulations 
were considered to have reached equilibrium. All simulations were run 
at 5%wt. b) The aggregation number distribution for a single simulation 
of C10E6 at 5%wt. c) The aggregation number distribution for C10E6 cal-
culated by summing the results from nine simulations run at concentra-
tions of 4%, 4.25%, 4.5%, 4.75%, 5.0%, 5.25%, 5.5%, 5.75%, 6.0% wt. 

CMC values were calculated for all 22 surfactants by averaging the 
results from the three different concentrations used in the simula-
tions, 4%, 5% and 6% wt. The results are compared with the corre-
sponding experimentally determined values in Figure 5. The error 
bars in the calculated CMC values are larger for the C12 surfactants, 
due to the small numbers of free surfactants in individual simula-
tions, but in all cases, there is excellent agreement between calcula-
tion and experiment. The simulations clearly reproduce the trend 
that CMC is independent of n, the length of the ethylene glycol 
chain, but highly dependent on m, the length of the hydrocarbon 
chain. The results are also quantitatively accurate reproducing the 
order of magnitude drop in CMC for every two CH2 groups added 
to the hydrocarbon chain (Stauff-Klevens rule). 

 
Figure 5. CMC values for CmEn surfactants plotted as a function of n. 
The lines represent the experimental values for each family of surfactants 
with the same value of m (blue m = 6, red m = 8, green m =10, purple m 
=12) and the empty diamonds are the values calculated from DPD sim-
ulations. 

MEAN AGGREGATION NUMBERS 
For each timestep in a DPD simulation, the mean aggregation num-
ber (Nagg) can be calculated using 

𝑁>AA =
∑ C(+,+-./ D(C)

∑ C+,+-./ D(C)
   .    Eq. 10 

Some authors use different Ncut numbers to determine the values of 
Nagg and the CMC from the same P(N) distribution, but here we 
used the same Ncut for calculation of both values (Table 3).29,44,53 
Consistent values of Nagg were obtained for simulations at different 
surfactant concentrations between 2 and 10% wt, and the results in 
Table 3 are quoted as the range of Nagg values obtained from individ-
ual simulations. All simulations performed in this work gave spheri-
cal micelles with no significant population of other morphologies in 
agreement with simulations29,37 and experimental reports in the liter-
ature.54-59 For C12E3, C12E4, C10E3, C10E4, short-lived interactions of 
two spherical micelles lead to transient elongated aggregates.37,60 

Figures 6a-d and 6f-i show snapshots illustrating the evolution of the 
micelle structure with time for C8E4 and C10E6. The timescale for 
equilibration of the Nagg shown in Figures 6e and 6j is much longer 
than the timescale for equilibration of the monomer concentration 
shown in Figure 6a. The reason is that the equilibration of micelle 
size must take place via exchange of molecules between micelles via 
monomers in solution, and both the number of micelles and the dis-
sociation rate from a micelle are low. Figures 6e and 6j illustrates the 
effect of surfactant concentration on Nagg equilibration time. For 
C8E4, all of the simulations converge to the same value of Nagg (about 
50) after 3×106 timesteps, but the more dilute solutions equilibrate 
more slowly, because there are fewer micelles. For C10E6, equilibra-
tion is significantly slower, and after 4×106 timesteps, the values of 
Nagg for different concentrations have not converged. This behaviour 
is illustrated in Table 3 where Nagg values are reported after 2×106 
timesteps for all simulations and after 4×106 timesteps for selected 
examples. The Nagg values for C6En surfactants show no substantial 
variation between 2×106 and 4×106 timesteps, confirming that equi-
libration occurs rapidly. For C8En, the Nagg values increase slightly 
between 2×106 and 4×106 steps, but as shown in Figures 6e, equilib-
rium is reached by 4×106 timesteps simulations. For C10En and C12En, 
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there is a significant difference between the values of Nagg obtained 
at 2×106 and 4×106 timesteps. Figure 6j shows that the slow equili-
bration of the more hydrophobic surfactants means that the calcu-
lated values of Nagg are likely to be underestimated.45 

We note that in principle the mean aggregation number is an increas-
ing function of concentration.61  This could account for the behavior 
seen here.  Additionally, there are slow processes on ms time scales 
which are likely to be inaccessible in our μs simulations.62 Thus the 
number of micelles may be poorly equilibrated even if the free sur-
factant concentration has reached a steady state.  This obviously im-
pacts the calculation of the mean aggregation number. 

Table 3 compares the calculated values of Nagg with the correspond-
ing experimentally determined values reported by Swope et al.63 Ex-
perimental measurement of Nagg is not straightforward, and the ap-
plication of different techniques to very broad distributions of mi-
celle size can lead to discrepancies of an order of magnitude in re-
ported values (see C10E5 and C12E5 in Table 3). However, the values 
of Nagg calculated for the fully equilibrated C6En and C8En surfactants 
agree well with the experimental ranges. For the surfactants with 
longer hydrocarbon chains, C10En and C12En, the simulations consist-
ently underestimate the value of Nagg. 
 

 
Figure 6. Evolution of micelle structure in DPD simulations. a-d) Snapshots of C8E4 simulation (5% wt) taken after 5×103, 2×105, 106 and 4×106 
timesteps. e) Nagg calculated for C8E4 plotted as a function of timestep at six different concentrations. f-i) Snapshots of C10E6 (5% wt) taken after 
5×103, 2×105, 106 and 4×106 timesteps. j) Nagg calculated for C10E6 plotted as a function of timestep at six different concentrations. 
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Table 3: Nagg values from simulation and experiment. 

Surfactant 2 ×	 106 

timesteps 
4 ×	 106 

timesteps 
Experiment61 

C6E3 27-31 28-33 24-57 

C6E4 22-24  28 

C6E5 20-22 21-23 21-55 

C6E6 19-21 19-23 8-12 64 

C8E3 63-76   

C8E4 43-47 46-54 23-147 

C8E5 34-39  17-90 

C8E6 31-36 33-41 30-41 

C8E7 31-34   

C8E8 29-33 28-34 72 65 

C10E3 77-97   

C10E4 55-71 58-77 100 66 

C10E5 40-44  17-172 

C10E6 31-41 32-54 66-105 

C10E7 28-36   

C10E8 26-32 29-39 46-70 

C12E3 85-126   

C12E4 58-76  30 67 

C12E5 44-53 45-67 112-4460 

C12E6 42-46 45-57 100-555 

C12E7 36-38   

C12E8 31-37  39-159 

 
CONCLUSION 
A method for calculating the bead interaction parameters required 
for dissipative particle dynamics (DPD) simulations has been devel-
oped. The method is based on ab initio calculation of the gas phase 
molecular electrostatic potential surfaces of the molecular fragments 
that represent the beads, so the approach should be generally appli-
cable to the coarse graining of any molecular system using DPD. A 
footprinting algorithm was used to convert the molecular electro-
static potential surfaces into a discrete set of surface site interaction 
points (SSIPs), and these SSIPs were used in the SSIMPLE algo-
rithm to calculate the free energies of transfer of one bead into a so-
lution of any other bead. The bead transfer free energies were used 
to obtain the required DPD interaction parameters for all pairwise 
combinations of different beads. The reliability of this computa-
tional approach to determination of accurate DPD parameters was 
demonstrated using DPD simulations of a range of alkyl ethoxylate 
surfactants. The simulations reproduce the experimentally deter-
mined values of critical micelle concentration and aggregation num-
ber well for all 22 surfactants studied. The approach provides a pow-
erful new tool for first principles calculation of DPD parameters and 
for prediction of the surfactant properties of molecules for which ex-
perimental data is not available. 
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