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Abstract

Reliance on solid biomass cooking fuels in India has negative health and socio-

economic consequences for households, yet policies aimed at promoting uptake

of LPG for cooking have not always been effective at promoting sustained tran-

sition to cleaner cooking amongst intended beneficiaries. This paper uses a two

step approach combining predictive and descriptive analyses of the IHDS panel

dataset to identify different groups of households that switched stove between

2004/5 and 2011/12. A tree-based ensemble machine learning predictive analy-

sis identifies key determinants of a switch from biomass to non-biomass stoves.

A descriptive clustering analysis is used to identify groups of stove-switching

households that follow different transition pathways. There are three key find-

ings of this study: firstly non-income determinants of stove switching do not

have a linear effect on stove switching, in particular variables on time of use and

appliance ownership which offer a proxy for household energy practices; sec-

ondly location specific factors including region, infrastructure availability, and

dwelling quality are found to be key determinants and as a result policies must

be tailored to take into account local variations; thirdly some groups of house-

holds that adopt non-biomass stoves continue using biomass and interventions

should be targeted to reduce their biomass use.
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Highlights

• Policies promoting cleaner cooking do not reach all intended beneficiaries.

• Descriptive analytics identify household groups with distinct transition

pathways.

• Non-income factors do not all linearly affect the probability of switching

stove.

• Policies must be tailored to take into account local socio-economic varia-

tions.

• Clean cooking interventions must address residual biomass use.

Keywords: Energy Access, Cooking Fuel, Energy Poverty, India, Urban

Analytics

1. Introduction

Worldwide there are almost 3 billion people who do not have access to clean

cooking fuel, and in India just under half the population still face limited access

to clean cooking fuels (International Energy Agency et al., 2019). Reliance on

solid fuels has negative consequences including the health impacts of household

air pollution, environmental impacts of local deforestation, and negative socio-

economic effects arising from the practices surrounding the use of such biomass

fuels (Smith and Sagar, 2014). These socio-economic effects disproportionately

impact women and children of the household, for example the time spent collect-

ing fuel by female members of the household negatively impacts their livelihoods

and empowerment (Rahut et al., 2016). While in the past there were attempts

to improve biomass stove efficiency to reduce negative health impacts of air pol-

lution from biomass fuel use, there has been growing recognition that solving

the wider negative socio-economic and health impact of solid fuel use requires

a transition towards cleaner alternatives such as gas and electricity (Batchelor

et al., 2019).
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The residential sector in India accounts for 29% of the country’s total energy

consumption, and is second only to the industrial sector (International Energy

Agency, 2020). However commercial sources of energy in the form of electricity

and petroleum products account for only around 30% of household energy con-

sumption, although this share is set to continue growing (Ministry of Statistics

and Programme Implementation, 2019). 68% of energy consumed by households

comes from biomass and waste, which is primarily used for cooking and heating

and accounts for almost two thirds of all biomass use in India (International

Energy Agency, 2020).

In recent years there has been a concerted effort in India to promote the

uptake of Liquified Petroleum Gas (LPG) for cooking to reduce the use of solid

fuels and tackle the associated negative health and development consequences of

their use. Most recently the flagship Pradhan Mantri Ujjwala Yojana (PMUY)

programme achieved its target of providing 80 million low-income households

with a gas connection. The PMUY programme provided financial support to

below poverty line households, covering the cost of LPG connection and subsi-

dising the first LPG cylinder (amounting to around 60% of total initial cost of

5000 INR), thus reducing the initial cost barrier (Sharma et al., 2019a). How-

ever, studies have found that while the programme successfully enabled many

households to acquire their first cylinder, several of those households have not

necessarily transitioned to sustained LPG use. They continue to use solid fuels

for part or all of their needs (Kar et al., 2019). Further to that, findings suggest

that the programme may not have managed to reach its intended beneficiaries

equally in all regions, and benefited some households that would likely have

transitioned without the incentive from the programme (Sharma et al., 2019a;

Sankhyayan and Dasgupta, 2019). These are outcomes also seen in other top-

down clean energy interventions in India and the Global South more widely

(Sehjpal et al., 2014; Silver and Marvin, Simon, 2017; Kebede et al., 2002).

Whilst many energy poor households may benefit from such policies, there are

always those who don’t benefit as expected, or ’slip through the net’ and miss

out altogether (Rao, 2012; Batchelor et al., 2019).
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PMUY is the most recent in a long line of policies aimed at reducing costs

of LPG for poor households and improving access. In the last two decades

there have been a range of other programmes and initiatives to promote the

uptake of LPG including the ’Vitrak Yojana’ from 2009 which aimed to increase

LPG distributorship through improving infrastructure and supply chains, while

a range of subsidies have existed at national and local levels (Sankhyayan and

Dasgupta, 2019). Recently there has been an initiative in place alongside PMUY

to encourage wealthier households to voluntarily give up their subsidy if they

do not need it so that it may benefit a poorer household (Sharma et al., 2019a).

A key assumption underpinning these policies is that use of a cleaner fuel,

in this case LPG, is desired by all households and that the barrier that prevents

them from using this fuel is the upfront cost of switching (Kar et al., 2019). This

simplifies lack of access to clean cooking to an issue of household income or lack

thereof, understating the complexity of barriers to clean cooking transitions

(Sankhyayan and Dasgupta, 2019). As Gould and Urpelainen (2018) show, for

many rural households in India the upfront cost is only one of many barriers to

sustained LPG use, with other notable barriers including the lump-sum nature

of monthly payments for LPG cylinders (as opposed to the actual cost) as well

as the time and difficulty of transporting the cylinders.

Lack of access to clean cooking can be a form of energy poverty, and as

described by Sadath and Acharya (2017) problems of energy poverty are multi-

dimensional and should not be simply confused with income poverty. Khandker

et al. (2012) showed that income non-poor households were not necessarily en-

ergy non-poor, and the effect of non-income variables on energy decision making

plays a key role in determining the energy poverty of a household. There is a

substantial body of literature using quantitative methods to model household

energy use. Predictive modelling efforts have shown the relationship between

appliance ownership and electricity demand (Murthy et al., 2001; van Ruijven

et al., 2011), and studies have identified socio-economic determinants of appli-

ance ownership including education, caste, and dwelling characteristics (Rao

and Ummel, 2017; Dhanaraj et al., 2018). Studies have shown of a hierarchy of
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preference of fuels in India (Farsi et al., 2007; Ekholm et al., 2010), and have

used income as the basis for modelling consumption of clean fuels (Pachauri

et al., 2004; Filippini and Pachauri, 2004; Lam et al., 2016; Bhattacharyya,

2015). Quantitative modelling has also identified non-income socio-economic

determinants of clean fuel use including profession of the head of the house-

hold (Kemmler, 2007; Sehjpal et al., 2014), education (Ahmad and Puppim de

Oliveira, 2015; Sankhyayan and Dasgupta, 2019), and land ownership (Sehj-

pal et al., 2014), although findings across all these studies show considerable

variation (Chunekar and Sreenivas, 2019).

A macro scale technical-economic view of energy transition which focuses

on cost and performance of different alternatives and assumes that households

behave as rational consumers has proven useful for quantitatively understand-

ing energy consumption trends. However, van der Kroon et al. (2013) make the

case that identifying different energy transition pathways requires a better un-

derstanding of the decision-making and external context of a household. This

requires understanding the social aspects of energy use, through preferences,

practices, and decisions of households which act at a local scale.

Social practice theory (SPT) provides a lens through which energy transi-

tions at a local scale can be analysed. SPT approaches used in energy research

follow the approach of Shove et al. (2019) which views people as ’practition-

ers’ who combine materials, competences or know-how, and meanings to create

practices (Bisaga and Parikh, 2018; Khalid and Sunikka-Blank, 2017). This

provides a shift in perspective away from macro scale resourced-based systems

thinking towards more micro scale individual enquiry of what energy is actually

used for.

Several recent studies have applied an SPT approach to the study of energy

use in the Global South. In their work on middle class households in Pakistan,

Khalid and Sunikka-Blank (2017) found that household practices shaped around

cultural norms and socio-cultural dynamics explained the peculiar nature of elec-

tricity demand of these households. Similarly Bisaga and Parikh (2018) found

that understanding the practices surrounding lighting and mobile phone charg-
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ing helped to explain energy demand and transition in Rwandan rural-off grid

communities. A more recent study by Debnath et al. (2019) provides an Indian

context using a quantitative approach grounded in SPT to explore the influence

of non-income factors on appliance ownership in rehabilitated slums in Mum-

bai, finding that the change in built environment following the rehabilitation of

slums led to a change in practices which translated into changes of appliance

ownership and usage. However the population samples in all of these studies

were relatively homogeneous in their socio-economic characteristics, and differ-

ences in practices are observed on a household to household level. Galvin and

Sunikka-Blank (2016) explain that socio-economic causality in energy consump-

tion studies can be a blind spot for SPT approaches, and households in such

studies are often relatively uniform in their socio-economic profiles.

Findings at a macro-scale may point to the existence and prevalence of cer-

tain trends governing uptake of modern fuel use. For example, Rao and Ummel

(2017) found that Sikh households in India were more likely to own a refrig-

erator. However, correct interpretation of the causes and implications of such

trends sometimes requires taking account of local practices, behaviours, and

decisions that define energy use. For the refrigerator ownership trend above

knowledge of practices and behaviours, in this case the higher consumption of

dairy products by Sikhs compared to other religious groups in India, offered an

explanation for this trend.

There has been growing interest in the role of urban data analytics for im-

proving our understanding of energy provision (Bibri and Krogstie, 2017), and

these are particularly relevant given the multi-dimensional nature of energy

poverty. Such studies use techniques from the data sciences to process large

socio-economic and/or demographic datasets with mixed datatypes to inform

better policy interventions. This involves three broad categories of analysis: de-

scriptive analysis, which is concerned with understanding the data; predictive

analysis which is concerned with extrapolating the trends found in the data;

and prescriptive analysis which is concerned with using the data to identify the

interventions likely to achieve desired outcomes (Wang et al., 2019). The ma-
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jority of macro scale quantitative studies make use of regression models, which

constitute a form of predictive analysis. However, prediction models based on

regression assume that all variables considered in the analysis are independent

and influence a given quantity of interest in a similar manner. This restricts

the understanding of variations of features that influence uptake of clean fuels

across different types of households and their local context. Descriptive analysis

overcomes these limitations, and can enhance the understanding of the composi-

tion of characteristics that govern energy transitions. Together with predictive

analysis, it can yield a better understanding of the different sets of features

that act as barriers to transition between groups of households so as to support

targeted policy interventions. While previous studies have made use of novel

data science techniques to perform predictive regression analyses such as Rao

and Ummel (2017), the authors are not aware of studies combining these with

descriptive data science methods to support targeted policy interventions. In

this paper, we demonstrate a novel combination of descriptive and predictive

analysis to support the design of more targeted clean cooking policies.

We employ ensemble machine learning and clustering algorithms to conduct

a combined predictive and descriptive analysis of the panel data from the In-

dian Human Development Survey (IHDS) between 2004/5 and 2011/12. The

predictive analysis characterises the non-linear relationship of different determi-

nants that influence clean cooking adoption. Through the descriptive analysis,

we demonstrate that groups of households follow different cooking transition

pathways. The combined analysis identifies differences in key policy features

between groups of households for which targeted interventions could be de-

signed to address the needs and challenges of households that might currently

be under-served by cost-centric policies. The remainder of this paper is struc-

tured as follows: section 2 discusses the features and handling of the dataset,

section 3 describes our analytical methods. Section 4 presents results of two

different regression models and compares the performance of these, leading on

to section 5 which presents the results of a clustering analysis of households that

did switch to a non-biomass stove discussing the existence of different types of
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switching household, discussing limitations in section 6 and presenting conclu-

sions and policy implications in section 7.

2. Data

Our study uses household level survey data from the publicly available and

nationally representative IHDS. The first IHDS was conducted in 2004-2005

(referred to as IHDS-I) (Desai et al., 2010) with a second follow-up survey in

2011-2012 (IHDS-II) (Desai and Vanneman, 2015), which returned to survey the

same households originally surveyed for IHDS-I. The surveys were conducted by

means of two one-hour interviews with the whole household or the head of the

household, and comprised of a nationally representative sample of 41,554 ur-

ban and rural households across all Indian territories excluding the Andaman

Isles and Lakshadweep. This sample included 1503 villages and 971 urban city

blocks across 383 districts in 33 different states. IHDS-II covered 85 percent of

the original households, with those households not surveyed the second time ei-

ther having been unreachable, having moved, or been struck by natural disaster

(Desai and Vanneman, 2015). To control for the effect of changes in built envi-

ronment and constitution of the household due to a move or split of the house-

hold we included only instances where the original household was recontacted.

Thus the 6,911 households from the IHDS-I that could not be recontacted were

excluded as well as the 1,721 households which had split into multiple different

households. This analysis uses the resulting subset of 32,922 households which

were surveyed both in the IHDS-I and IHDS-II.

As pointed out by Khandker et al. (2012) and Ahmad and Puppim de

Oliveira (2015), the energy related questions in the IHDS are more comprehen-

sive than those in comparable studies including the Living Standards Measure-

ment Studies coordinated by the World Bank, and the NSS Surveys of Consumer

Expenditure. The IHDS dataset is disaggregated by housing type and various

demographic features such as gender, religion, caste, occupation, and education

(Desai and Vanneman, 2015; Desai et al., 2010). Additionally the IHDS includes
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some information on time spent carrying out certain energy related practices in

the household, including time spent watching television, time spent collecting

firewood, and hours of stove usage. Recommendations from the authors of the

dataset were followed (Desai and Vanneman, 2015) with regards to weightings

and variable selection. All weightings used were the ’SWeights’ specified for the

households in the IHDS-I, and values for relatively unchanging variables (e.g.

Caste and Religion) were taken from the IHDS-II.

The main dependant variable of interest was a binary variable indicating

whether the household had switched from primarily using a biomass stove in

2004/5 to a non-biomass stove in 2011/12. This was constructed using the the

variables indicating the main stove used for cooking in the IHDS-I and IHDS-II

respectively. The stove options included 3 types of biomass solid fuel stoves,

and a general ’modern stove’ category which could represent kerosene, LPG,

or electric stoves. In our IHDS dataset 5358 households switched from using a

biomass stove as their primary stove in 2004-5 to using a ’modern’ non-biomass

stove in 2011-12 representing 16.27% of households (14.94% when adjusted by

sampling weights).

Other variables were constructed from the dataset either to make variables

more comparable or to create a dummy variable for a particular characteristic, or

to characterise change in a variable between surveys. Energy consumption values

in the IHDS are given in units of cost (INR) as opposed to units of energy which

makes comparisons difficult. These values were converted to estimated energy

consumption in kWh using local price data available in the IHDS and collected

from government sources (Government of India Planning Commission, 2012).

In addition appliance ownership was grouped according to associated household

activity: cooking (Pressure Cooker, Mixer/Grinder, Microwave, Refrigerator),

and IT (Television, Telephone, Mobile Telephone, Computer, Laptop).
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3. Methods

Studies on energy transition typically use some form of logit or probit re-

gression model to perform a predictive analysis identifying the trends and effect

of a given set of variables on appliance ownership, fuel use, or adoption rates of

electricity or LPG. Recently Rao and Ummel (2017) used a form of ensemble

technique called a Boosted Regression Tree (BRT) model to analyse the effect

of a range of household characteristics on the uptake of so-called ’white good’

appliances. A comparison of the predictive capability of these two modelling

approaches found that the BRT model on the whole outperformed the logit

model in predicting appliance ownership (Rao and Ummel, 2017).

In this study we seek to provide a greater level of descriptive or explanatory

analysis to identify the different transition pathways and a two stage approach

was used to achieve this. The first stage involves predictive modelling using an

ensemble machine learning technique to identify factors that are determinants

of clean cooking transition and assess performance of the model. The second

stage focuses on descriptive modelling using hierarchical clustering, where the

key determinants identified in the predictive modelling are used to identify the

different groups of households that did switch stove and the different combina-

tion of features that characterize each group. The first stage of the analysis uses

a training subset of 25,000 of the 32,922 households from the IHDS to identify

the influence of variables on the propensity of a household to switch from a solid

fuel biomass stove to a cleaner ’modern stove’ as their main cooking stove. The

predictive performance of the ensemble learning regression and a conventional

probit regression are assessed and compared using the remainder of the dataset

not used to train the model. The secondary stage of analysis uses agglomera-

tive hierarchical clustering to cluster the 5,358 households that did switch from

biomass to a ’modern’ non-biomass stove. By comparing the effect of key deter-

minants identified by the predictive modelling and the defining characteristics of

the clusters of stove-switching households, it is possible to identify the different

combinations of key determinants enabling stove transition and policy features
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in each cluster.

Variable selection was carried out using both correlation and random forest

analysis to identify the most relevant variables. Given the inter-related nature

of the socio-economic and cultural variables of interest in the dataset it was im-

portant to identify and address any significant multi-collinearity in the dataset

before performing any analysis. A Farrar-Glauber test was conducted to identify

and address any multi-collinearity. In particular fuels used exclusively for cook-

ing showed cross-dependent correlation with one another, so redundant fuels

were removed from the selected variables. In addition, the number of different

region categories was reduced by reassigning households in states in the center

region to the neighbouring eastern region as there was little distinction between

these two. The descriptive statistics of the resulting independent variables are

show in table 1 (except profession, caste, and region which are non-continuous,

and non-binary).

The BRT is a tree based ensemble learning technique that combines a large

number of simple categorisation trees, using gradient boosting to build ensem-

bles of decision trees that are fit to the remaining model residuals. Unlike a

probit model there is no a priori specification of the functional form and the

BRT analyses the influence of the variables capturing non-linear effects and

complex interactions. A challenge of the BRT model is the specification of the

hyper-parameters which include the number of trees, the learning rate, and the

tree complexity. We used n-fold cross validation to determine the optimum

number of trees, and followed the recommendations of Elith et al. (2008) to

optimise the remaining parameters to produce an accurate model and minimise

risk of over-fitting. For this model we used a tree complexity of 5, and a learning

rate of 0.01, with 4100 trees fitted. We implemented the BRT using the ’gbm’

and ’dismo’ packages in the R programming language.

A probit regression was carried out for comparison with the BRT, as this is a

commonly used model for studies on energy transition concerned with a binary

outcome. Assuming that the individual’s decision to switch from a biomass

stove to a non-biomass stove is based on a latent variable which represents
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Table 1: Descriptive statistics for variables

Independent variable Mean Median Min. Max.

Income per capita (INR/month) 2401 1363 0 346750

Urban 0.330 - 0 1

Time in Place (years) 78.41 90.00 0.00 90.00

Female Education (years) 5.395 5.000 0.000 16.000

Permanent House 0.704 - 0 1

Flush Toilet 0.392 - 0 1

Piped Water Availability (hours/day) 1.845 0.000 0.000 24.000

Dairy Spend (INR/month) 196.40 100.00 0.00 8600

Electricity Availability (hours/day) 13.11 14.00 0.00 24.00

Electricity Consumption (kWh/month) 93.68 54.50 0.00 1977.40

Kerosene Consumption (kWh/month) 28.01 24.79 0.00 587.00

Change in fuel collection time (min) -3.475 0.000 -320.000 450.000

Cooking appliance ownership 0.291 0.250 0.000 1.000

IT appliance ownership 0.310 0.429 0.000 1.000

Change in Female TV Time (hours/day) 0.687 1.000 -12.000 14.000

some measure of utility, then this variable can be defined as a linear function of

the independent variables, as shown in equation 1 where Xi is a vector of all the

independent variables for an individual household, β is a vector of coefficients,

and ui captures the uncertainty.

y∗i = Xiβ + ui (1)

The binary outcome we are interested in with these models is not unlike the

binary outcomes in medical models assessing patient outcomes (although in our

study the outcome is a switch from biomass to non-biomass or not, instead of

life and death), and in both cases there is a need for the models to not only

perform well on average but also to perform well in distinguishing borderline

cases. In the field of medicine when assessing models for patient outcomes it is
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good practice to report the calibration and discriminatory ability of the model

(Steyerberg et al., 2010). The Brier Score is an overall performance measure of

calibration and discrimination for binary outcomes whose scoring rule is shown

in equation 2 where N is the number of instances, f is the outcome from the

model, and o is the actual outcome. The concordance statistic c, identical to

the area under the Receiver Operating Characteristic (ROC) curve for binary

outcomes offers a measure of how well the model distinguishes outcomes. Both

of these measures were calculated for each model using base packages in R.

BrierScore =
1

N

N∑
i=1

(fi − oi)
2 (2)

For the second stage of the analysis hierarchical clustering was used. This

is an unsupervised machine learning method that can be used to identify sub-

sets within a dataset that have similar characteristics based on the connectivity

between data points. A benefit of hierarchical clustering algorithms for such

descriptive analysis is that the iterative process produces a clear tree like struc-

ture of clusters which offers a more intuitive view of the clustering process and

easier analysis of results, although the iterative nature of the algorithm makes it

inefficient for extremely large datasets (Kassambra, 2017). We used an agglom-

erative hierarchical clustering algorithm and with the gower distance measure

for categorical variables as it produced a clear and distinct cluster structure. All

analysis was performed in R using base packages, as well as the ’dendextend’

and ’fpc’ packages.

4. Predictive Modelling Results

4.1. Boosted regression tree model

From the BRT analysis we obtain both the relative importance of variables

shown in figure 1 and the marginal effects of the independent variables shown in

figures 2, 3, 4. Figure 1 shows all independent variables were found to have non-

zero relative influence ranging from 1-12%. Use of kerosene and electricity both
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have an influence of around 11%, while cooking equipment ownership shows

an 8.5% influence, and IT appliance ownership a 7.1% influence. The region

a household is in has a 10.7% influence and the profession of the head of the

household has an influence of 9.3%. Income per capita of the household does

have an influence of 8.5% but the BRT shows it is not the dominant determinant

of a household’s switch to non-biomass stoves. The marginal effects for each

variable shown in figures 2, 3, and 4 exhibit one of three different types of

response: either a constant response (for categorical variables), a threshold

response, or a multiple threshold (multiple regime) response.

Permanent.house

Time.in.place

Water.piped.hours

TV.hours.women.change

Urban

Female.education

Flush.toilet

Caste

Dairy.spend

Electricity.Hours

Fuel.distance.change

Ict.apps

Income.pc

Cooking.apps

Profession

Kerosene

Region

Electricity

0 3 6 9

Relative Influence (%)

Figure 1: Relative influence of variables in BRT Model

The constant marginal effects observed for categorical variables shows that

these variables will be key determinants of modern stove switching for only

some households - for example region is one of the more relatively influential

variables, with North-Eastern states being associated with a markedly higher

probability of switching stove, while households in the South have a slightly

higher chance of switching than households in the East, North and West where

region is a determinant of minor influence. This difference could be the result of
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local policy or climate differences; for example the southern states are typically

wealthier relative to the national average, and southern states such as Tamil

Nadu and Karnatka have led development in renewable energy infrastructure in

India (Schmid, 2012). North Eastern states have lower incomes and with his-

torically lower access to infrastructure (Ghosh and De, 1998), the geography of

this region also results in greater local availability and dependency on biomass

fuel compared to other regions (Bhatt et al., 2016). LPG distribution infrastruc-

ture development under ’Vitrak Yojana’ between 2005 and 2011 benefited many

poorly serviced settlements in North Eastern states. In the work of Sankhyayan

and Dasgupta (2019) a significant relationship between region and LPG use was

not found, however the coefficients from their model are compatible with the

marginal effects from our analysis.

The profession of the head of the household was also found to be of greater

relative influence, although the marginal effects were only significant for some

professions as shown in figure 2. Those in skilled trades, artisans, salaried em-

ployment, or collecting pensions or rent all had a greater probability of switch-

ing, whereas those in agricultural wage labour, and unskilled work were less

likely to switch. Kemmler (2007) found that more labour intensive and ’daily

wage’ type employment was associated with lower electricity use, and Sehjpal

et al. (2014) found that, in rural India, households whose head was in more

formal employment had a greater likelihood of the household transitioning to

clean cooking. This may be related to the frequency of payment with the for-

mer group of jobs being associated with regular monthly or weekly pay whereas

income can be more erratic for the latter group.

A measure of household infrastructure is provided through variables mea-

suring permanent house construction, and availability of flush toilets shown in

figure 2 and both show a small positive increase in marginal effect on the switch

to a non-biomass stove with greater levels of access. Rao and Ummel (2017)

similarly found that better dwelling quality had a positive relationship with

ownership of refrigerators and TVs, and Ahmad and Puppim de Oliveira (2015)

showed that access to piped water was associated with clean cooking. Perma-
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nent housing, while having the lowest relative influence of the variables in the

dataset, did have a positive marginal effect on the switch to a non-biomass stove.

These findings suggest that access to public utilities and quality of the house-

hold’s immediate built environment are important, as Debnath et al. (2019)

found in their study of rehabilitated slum housing in Mumbai.

Profession Region

Flush Toilet Housing Quality
0.

0

0.
1

0.
2

0.
0

0.
1

0.
2

0.
0

0.
1

0.
2

0.
0

0.
1

0.
2

Non Pucca

Pucca

West

East

North

South

North East

No Flush Toilet

Has Flush Toilet

Allied agriculture

Unemployed

Profession

Cultivation

Agricultural wage labourer

Organised business

Pension/Rent

Wage labourer

Petty shop

Others

Salaried

Artisan

Marginal Effect

Figure 2: Marginal effect of constant effect independent variables on probability of a household

switching from Biomass to LPG

Figure 3 shows the marginal effects of variables which exhibit a threshold

response, namely hours of electricity supply and years of education of the head

female of the household. The marginal effect of hours of electricity supply
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on switching behaviour shows a constant effect up until 15 hours of electricity

supply per day, after which the marginal effect increases with hours of electricity.

Rao and Ummel (2017) similarly found that hours of electricity supply had a

positive relationship with ownership of refrigerators and TVs, and Ahmad and

Puppim de Oliveira (2015) showed that access to electricity was associated with

clean cooking. The threshold observed at 15 hours could be indicative of the

added convenience or reliability of having electricity available for two thirds of

the day, encouraging investment in appliances or changing household practices

related to cooking.

Education of the head female of the household also displays a threshold

response as seen in figure 3. Households whose head female has 10 or more

years of schooling, i.e. completing some level of secondary or tertiary education,

has a greater probability of switching to a ’modern stove’. A recent study by

Sharma et al. (2019a) found a significant relationship between education and

LPG uptake for households in the eastern states of Chattisgarh and Jharkhand,

while Ahmad and Puppim de Oliveira (2015) found female education to be a

significant determinant of non-biomass cooking in non-slum households. In their

study, Sankhyayan and Dasgupta (2019) found that in urban areas there was

a stronger positive association between female literacy and LPG use, especially

for households where the female head of the household had more than 9 years

of schooling, and they suggest this difference is a result of female literacy not

translating into female empowerment as effectively in rural households.

Figure 4 shows the marginal effects of variables with multiple thresholds,

or different regimes, where marginal effect follows different trends within given

ranges. LPG and biomass fuels are used fairly exclusively for cooking. In con-

trast electricity and kerosene have a range of different end uses. Use of these

fuels can indicate transition to cleaner energy for other household activities

which offers an explanation for the high relative influence of these variables.

In figure 4 we can see that low levels of electricity consumption are associated

with a negative marginal effect on the probability of a household switching

but this marginal effect increases to a positive level with increasing electricity
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Figure 3: Marginal effect of threshold response independent variables on probability of a

household switching from Biomass to LPG
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Figure 4: Marginal effect of multiple threshold response independent variables on probability

of a household switching from Biomass to LPG
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consumption up to a level of 500kWh/month. Beyond this electricity has a neg-

ligible effect on the probability of switching as households using more electricity

than that almost certainly have transitioned to clean cooking, with over 80%

of households using no biomass fuel at all. We similarly see that Kerosene use

up to 200 kWh leads to a greater probability of a household switching whereas

above that 200 kWh the marginal effect is negative indicating reduced chance

of switching. Households using more than 200 kWh of kerosene are likely using

it for cooking, hence already have a non-biomass stove. The noisy behaviour

between 350 kWh and 500 kWh is likely due to households switching from a

biomass stove to a kerosene one, which counts as a ’modern stove’ switch in the

IHDS. The different marginal effect thresholds show how related energy prac-

tices of the household shape the observed energy consumption and how these

practices have inter-dependencies, as Bisaga and Parikh (2018) found in their

study.

Appliance ownership can serve as a proxy for energy use by a household as

appliances are used to deliver a particular energy service. Figure 4 shows how

increasing ownership of IT and cooking appliances increases the probability of

a household having switched to a non-biomass stove. Rao and Ummel (2017)

found that refrigerator and television ownership was associated with greater

LPG use by a household, which suggests clean cooking facilities. Greater ap-

pliance ownership could also signal better access to markets or shops, as well

as better availability of electricity. However there are two thresholds, as the

marginal effect plataeus for households with average ownership, and drops off at

high ownership levels as households with very high levels of appliance ownership

are more likely to already use LPG and thus the greatest marginal probability

of switching occurs for households with middling levels (40-60%) of ownership.

Time spent collecting fuel and watching TV in a household shown in figure 4

offer some quantification of household practices as a measure of time allocation

to given practices. A decrease in time spent collecting fuel of up to 130 minutes

is associated with a greater probability of a switch to a ’modern stove’, and

decreases in time spent collecting fuel beyond 130 minutes have a relatively
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low marginal effect on the chance of a household transitioning. An increase

up to 50 minutes is associated with a decreasing probability of switching and

increases in fuel collection time above 50 minutes see the lowest probability

of switching. Similarly the change in number of hours spent watching TV by

the adult women of the household has a small positive association for small

decreases and increases, but larger increases beyond 5 hours of TV viewing are

associated with a lower probability of a household stove switching. The marginal

effect of changes in energy practices surrounding energy use and clean cooking

transitions are characterised by multiple thresholds. Additionally the marginal

effects of these two variables quantitatively shows that there is a change in the

time allocated to energy related practices in a household that switches stove.

This is important as it implies that characteristics of the stove and its usage

have an impact on the practices of a household. Debnath et al. (2019) found

that characteristics of household appliances in Mumbai slums had a significant

effect on the practices of the household.

4.2. Probit model

The coefficients of the probit regression model are shown in table 2. The

same subset of 18 variables used in the BRT model were included in this model,

although several profession categories encompassing smaller proportions of the

population as well as caste were not found to have a significant effect (at p<0.1)

on fuel switching, and are not included in the table. A key difference between

the outputs of the probit and BRT models is that while the BRT provides rela-

tive importance and marginal effect plots, the probit model provides coefficients,

standard errors, and confidence intervals denoted by statistical significance lev-

els which can make the process of evaluating the model more straightforward.

Comparing the coefficients in table 2 with the relative importance and marginal

effect plots from the BRT model in figures 2, 3 and 4 we can see that many

of the coefficients and marginal effects for many of the categorical variables

such as region, permanent housing, profession, and flush toilet availability show

compatibility with respect to influence on stove switching.
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Table 2

Dependent variable

Independent Variable Coefficient Standard Error

Region: North −0.008 (0.046)

Region: North East 1.078∗∗∗ (0.089)

Region: South 0.494∗∗∗ (0.045)

Region: West −0.091∗∗ (0.045)

Income per capita −0.000006∗ (0.000003)

Time in place 0.003∗∗∗ (0.001)

Female education 0.003 (0.004)

Profession: Agricultural wage labourer 0.811∗ (0.478)

Profession: Artisan/Skilled 1.036∗∗ (0.483)

Profession: Pension/Rent 0.847∗ (0.477)

Profession: Petty shop 1.038∗∗ (0.477)

Profession: Salaried 0.949∗∗ (0.477)

Profession: Wage labourer 0.958∗∗ (0.478)

Pucca house 0.352∗∗∗ (0.037)

Flush toilet 0.266∗∗∗ (0.035)

Water piped hours 0.007∗∗ (0.003)

Dairy spend -0.00004 (0.0001)

Electricity hours 0.010∗∗∗ (0.002)

Electricity 0.00001 (0.0001)

Kerosene 0.001∗∗ (0.0004)

Fuel distance change -0.002∗∗∗ (0.0004)

Cooking appliance ownership 0.311∗∗∗ (0.085)

IT appliance ownership 0.916∗∗∗ (0.111)

TV hours women change -0.010 (0.008)

Constant -2.817∗∗∗ (0.540)

Pseudo R2 0.115

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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However there are some key differences between the outputs, particularly

those which have a non linear effect in the BRT model. For example, while the

BRT identified the use of complimentary fuels as being significant, the probit

regression does not find any significant effect. If we look at the marginal effect

plots for electricity use in figure 4 we can see that the marginal effects vary with

the level of respective fuel use. This non-linear relationship cannot be captured

by the probit regression. Conversely while the probit regression correctly identi-

fies significant effects for variables such as cooking and IT appliance ownership,

distance travelled for fuel, and hours of electricity supply, it does not capture

the threshold identified by the BRT beyond which the marginal effects of these

variables are reduced or negligible.

4.3. Comparison of predictive performance of BRT and Probit Models

Using the test subset of the dataset as inputs to each of the two models, pre-

dictions of whether a household would switch to a non-biomass ’modern stove’

or not were calculated and compared to the actual stove switching outcome in

the dataset. Table 3 shows the classification tallies of each model as well as

three measures of predictive performance: the percentage of correctly classified

households (a higher score indicates better predictive ability); the AUC score

indicating discriminative ability of the model (a higher score indicates better

predictive ability); and the Brier score which is an indication of both calibration

and discriminative ability of the model (a lower score indicates better predictive

ability).

The BRT model outperforms the probit model on all three measures particu-

larly on its discriminatory ability, although the results are comparable. This is a

reflection on the ability of the tree-based ensemble method to model non-linear

effects. Indeed many of the independent variables had non-linear marginal ef-

fects. Thresholds for non-zero effects are a reflection of the non-linear nature

of practices and decision-making concerning household energy use. Figure 5

demonstrates this difference between the probit and BRT model using the ex-

ample of cooking appliance ownership. As shown both models follow the same
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Table 3: Results of indicators for comparison of predictive performance of BRT and Probit

Model

Model

BRT Model Probit Model

Correct classification 84.9% 83.5%

AUC 0.823 0.731

Brier Score 0.108 0.126

True positive 214 103

False negative 1138 1249

False positive 89 116

True negative 6866 6839

Note: test subset of 7922 households

positive trend with greater appliance ownership and have similar marginal ef-

fects at the mean. However, for specific households the probit either under- or

overestimates the effect of appliance ownership compared to the BRT model.

The probit regression offers the benefit of simplicity, which can make commu-

nicating results to a non-technical audience straightforward. Additionally the

assessment of compatibility of results via statistical significance can help vali-

date and compare results. However, the outputs of the BRT offer a visual and

intuitive way of conveying the variation in marginal effect and the existence of

threshold levels.

While our measures of performance provide a metric for the calibration and

discriminatory ability of each model, the rates of true and false positives and

negatives for each model shown in the bottom half of table 3 point to a problem

of such models. For both the probit and BRT models we find that the number

of false negatives, that is the households that the model predicted would not

switch but did in reality switch, accounts for over 84% of switching households

in the BRT model and 92% of such households under the probit model. This

suggests that while these models are good at predicting households that did
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Figure 5: Comparison of Marginal Effect of Cooking Appliance Ownership from Probit and

BRT Models

not switch (true negatives compared with false positives), they perform poorly

at predicting households that do transition. Households that transition against

the expectation of the model point to the existence of alternative transition

pathways not captured by either model, defined by characteristics that individ-

ually would ordinarily not be drivers of transition, but when present in specific

combinations can allow households to overcome other barriers.

5. Descriptive Modelling Results

Using the variables shown in table 1 a divisive hierarchical clustering analysis

was conducted on the subset of households that did switch their main stove from

solid fuel biomass stoves to a clean non-biomass stove between 2004-5 and 2011-

12. The clustering analysis identifying nine distinct clusters of households all

of which had transitioned away from primarily using a biomass stove but with
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different combinations of defining characteristics. The resulting dendrogram is

shown in figure 6, and the mean characteristics of each cluster are shown in

table 4.

1

2 3 4 5

6

7

8 9

Figure 6: Dendrogram of Hierarchical Clustering with IHDS Biomass to LPG switching house-

holds

The diversity of characteristics between clusters is notable as it suggests

that there is no single combination of determinants that results in a transition

to clean cooking fuels, and points to the different and complex transition path-

ways that van der Kroon et al. (2013) discussed. A comparison of clusters 1 and

2 detailed in table 4 and shown in figure 7 serves to illustrate a rural case of

such different transition pathways: households in cluster 1 have a mean income

of 55,058 INR, and are nearly all Northern rural households. They have good

provision of water and electricity, with near ubiquity of flush toilets, permanent

housing, above average appliance ownership and electricity use, as well as above

average levels of female education. This group represents households that score

highly on most of the key determinants, and a higher proportion of these house-

holds were correctly predicted to have switched stove by the BRT model. In
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Figure 7: Key explanatory variables by cluster for households that have switched from Biomass

to LPG
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contrast households in cluster 2 have a lower mean per capita income of 33,054

INR, lower female education levels, lower prevalence of flush toilets, fewer hours

of piped water and electricity access, lower electricity consumption and higher

average biomass consumption while having lower appliance ownership. However

households in cluster 2 all have permanent housing, have been settled for on av-

erage over 80 years and still have better than average availability of electricity

and water. This suggests that despite their lower income these households still

have access to a better than average level of physical infrastructure, but their

high biomass use relative to cluster 1 suggests that there is a higher prevalence

of fuel stacking in households of cluster 2.

The existence of different transition pathways can also be observed between

urban clusters 4 and 5. Cluster 4 represents above average income households

with a per capita annual income of 46,401 INR, and above average education of

the head female of the household, access to flush toilets, hours of electricity, and

appliance ownership. Cluster 4 also largely represents northern urban house-

holds. Households in cluster 5 are also urban, but have markedly lower mean

per capita annual income of 29,561 INR, and low prevalence of flush toilets,

lower electricity consumption, lower levels of head female education, appliance

ownership, and mean biomass consumption double that of cluster 4. Cluster 5

have a high proportion of households employed in stable jobs, and have equally

good availability of water and electricity as those households in cluster 4, as well

as being settled in their current neighbourhood for longer and containing more

Southern households. These longer established households with steady employ-

ment are likely to have stronger communities with good ’social infrastructure’,

with better relationships and sharing of information between neighbours. A

greater proportion of households in cluster 5 were correctly predicted to transi-

tion by the BRT model as they score highly on key determinants such as region,

profession, and change in fuel distance while not lagging too far behind the

mean on other key determinants. These households are likely to have a higher

prevalence of fuel stacking as evidenced by the higher mean biomass use, where

biomass fuels may offer a back up fuel when LPG is not available, or in months
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when household income needs to be spent on other priorities.

While our predictive models had good performance in predicting non-switching

households they did not perform well identifying households that did switch. It

is interesting to note the uneven distribution of correct model predictions across

the clusters, that is the rate of true positives in the test subset of the dataset

present in each cluster. The probit model fails to predict a significant proportion

of transitions in any cluster but 6 and 9 where it correctly predicted 64.1% and

24.2% of stove transitions respectively. These are the clusters which score highly

in nearly all the determinants and are easy identification targets for the model.

The BRT model does correctly identify a low percentage of stove switching in

several other clusters but similarly performs best at identifying stove switching

households in clusters 6 and 9.

Access to both physical infrastructure - indicated by variables including

housing quality, hours of electricity, piped water availability, and flush toilet

availability - and/or social infrastructure - indicated by variables including years

since migration, caste, and profession - seem to be important to transition to

clean cooking. Clusters other than 6 and 9 do not score highly on nearly all de-

terminants, but score highly on different combinations of determinants related

to physical and social infrastructure. All of these combinations facilitated a

transition albeit following a different pathway. This analysis sheds light on the

defining features of each of these transition pathways, and these can indicate

key challenges for policy to address to promote adoption and continued use of

clean cooking fuel, and reduce dependency on solid biomass fuels. Table 5 sum-

marises four distinct transition pathways observed across the nine clusters, and

likely policy challenges associated with households on each pathway.

LPG consumption in rural and peri-urban households such as those on path-

way B in table 5, as well as average income urban and peri-urban households of

pathway D suggests that canisters are being refilled less than once a month (a

regular 14.2kg canister has approximately 200kWh worth of LPG, so monthly

use below this indicates non-monthly refills). This indicates that LPG is not

being used to meet all of a households cooking needs, and this could point to

29



either issues of affordability and cash flow with households unable to afford more

frequent refills, or issues of supply and delivery which may particularly affect

rural and peri-urban households. Sharma et al. (2019a) observed that doorstep

delivery of LPG canisters in an area increased LPG usage in Chhattisgarh, and

noted that often rural households had to collect their cylinders form the distrib-

utors. Our analysis indicates that further policy intervention may be needed to

address this issue for rural and peri-urban households.

Table 5 also shows that some households may require less policy intervention

to encourage uptake of LPG because they exhibit many shared features with

households that already use LPG as described for pathway A. Their good access

to infrastructure within an urban setting and stronger financial position means

that they may only need a small nudge to switch to LPG. These groups also

appear more likely to discontinue biomass use once using LPG, and thus need

less policy intervention to transition away from biomass stove use. Similarly

some households may face region specific challenges that require additional local

intervention, such as north-eastern households of pathway C in table 5, who

despite above average socio-economic circumstances and regular LPG use still

are dependant on biomass fuel. This could be in part due to different practices

with biomass being used for non-cooking needs, or biomass serving as a more

reliable alternative to less reliable supply of cleaner fuels.

An important policy challenge common to several clusters is the continued

regular use of biomass fuels amongst a majority of households that have adopted

a non-biomass stove. Across the country it appears that rural, and peri-urban

households that switch to non-biomass stoves still use considerable amounts of

biomass fuel, as do urban households on below average income. For many of

these households it may be a way of coping with unreliability in supply or access

to LPG, or as a means of reducing consumption of LPG to manage household

cash flow. It could also arise due to energy related behaviours which favour

biomass use, such as a preference for rice over bread. Crucially, the prevalence

of fuel stacking to manage energy services as described by van der Kroon et al.

(2013), means it is important to recognise that even once non-biomass stoves
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Table 5: Key pathway features of households that transitioned to LPG and relevant policy

issues

Path Key Pathway Features Cluster Policy Issues

A Urban pucca households,

above average income, appli-

ance ownership, electricity

use and good infrastructure

access. Low residual biomass

use

4,7 Many households of this

group will have already

switched, and do not con-

tinue use of biomass fuels

B Rural pucca households with

average to above average in-

come, electricity use, and

good infrastructure. Above

average reduction in fuel col-

lection

1,2,8 LPG uptake has not

stopped regular biomass

use. Infrequent LPG refill

suggests supply or cost

issue. LPG has delivered

notable time savings.

C North eastern households,

above average income and ap-

pliance ownership but poor

infrastructure and low elec-

tricity use. Substantial use of

biomass fuel.

6 Heavy continued reliance

on biomass, perhaps due

to regional fuel supply

challenges or local prac-

tices.

D Urban or peri-urban house-

holds with average income, ei-

ther in pucca or non-pucca

housing but good infrastruc-

ture access, and continued

biomass or kerosene depen-

dence

3,5,9 Biomass and kerosene

may be relied on as

backup. Possible cash

flow or supply challenges

persist.
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are adopted, further intervention to change energy related behaviours or im-

prove reliability of LPG supply may be needed to reduce biomass use by these

households. Understanding the energy practices and decisions leading to such

fuel stacking behaviours requires an understanding at a household level such

as demonstrated by Khalid and Sunikka-Blank (2017) in order to enable policy

interventions to promote greater uptake of sustained clean cooking among such

households.

6. Limitations and Future Work

This analysis does face a limitation due to the nature of the IHDS dataset

which is representative at the national level. It serves to make some crucial com-

parisons between regions and states, but we cannot locate where households on

a particular transition pathway are beyond their region and rural or urban des-

ignation. Differences in the non-income drivers that determine clean cooking

transitions and the interaction between physical and social infrastructure and

household energy practices all take place at a local scale. Larger sample size

surveys at a city scale could be used to identify and characterise the different

transition pathways of different groups of households. Additional data on the

current fuels used, different energy end uses within a household and time of

use, as well as aspirations of households would be invaluable. In addition such

detailed surveys could include some qualitative interviews with households dis-

cussing their energy practices and decisions to provide context to the data. For

example this could provide an understanding of the non-monetary trade-offs

considered by households when switching to LPG.

The authors note that promisingly a number of recent studies including by

Debnath et al. (2019) and Sharma et al. (2019b) in this journal have carried out

local case studies exploring the influence of non-income drivers on changes in

energy practices, appliance ownership, and fuel use. Further work with larger

and more widely representative samples of such local data is needed while em-

bracing alternative analytical tools such as ensemble methods and clustering
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analyses alongside qualitative approaches which can help identify the complex

action of non-income factors and identify different pathways to transition.

7. Conclusions and Policy Implications

This study has used unsupervised machine learning methods in a two stage

analysis using predictive modelling to characterise the non-income determinants

of a switch from a biomass to a non-biomass stove by Indian households, and

descriptive modelling to identify groups of households which had adopted non-

biomass stoves with similar energy transition pathways. Using the panel IHDS

dataset with over 32,000 households surveyed in 2004/5 and 2011/12, this study

uses ensemble machine learning predictive modelling and descriptive clustering

analysis to identify households that are missed by current policy interventions.

North-eastern and southern households had a greater probability of switch-

ing from a biomass to non-biomass stove, as did those whose head of household

was employed in non-manual labour professions. Several determinants displayed

a threshold relationship with stove switching, and were only influential deter-

minants of stove switching beyond a given value - for example availability of

electricity above 15 hours a day was associated with increased stove switch-

ing. Similarly where the head female of the household had more than 10 years

of education a similar increasing probability of stove switching was observed.

The influence of other determinants was characterised by multiple thresholds or

regimes for example low appliance ownership of both cooking and IT appliances

had a plateau of greatest marginal effect for households with ownership between

10 and 50% with slightly lower probability of fuel switching for households with

higher appliance ownership and negligible chance of switching below this range.

Our study found that the BRT model performed better than the probit

model in predicting whether households switched, however both models per-

formed relatively poorly in identifying the households that did switch compared

to those that did not. The clustering analysis showed that there were nine

clearly distinguishable groups of household that had switched. Each cluster
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is defined by different combinations of key determinants. However nearly all

the households correctly identified by the predictive models were grouped in

only two of the clusters. The other groups of households represent those typ-

ically missed out by predictive models and policies informed by such models.

The two stage approach in this study provided additional insight over simple

predictive models by determining not only the trends in the data but also the

latent groups of households within the sample which followed different cooking

transition pathways.

There are several major implications from this study for policy interven-

tions aiming to alleviate energy poverty and promote transition to sustained

use of cleaner cooking fuels. Firstly households following different energy tran-

sition pathways, pose different challenges for policy to promote clean cooking

and reduce reliance on biomass. Many rural and peri-urban households may

face limitations in supply of LPG, and interventions to address reliability and

convenience of supply may promote more sustained uptake of LPG.

Regional infrastructure, climatic, and cultural factors may also constrain

adoption of clean cooking fuels, such as in the North East of India, and ad-

ditional local policies to improve infrastructure or address local energy related

behaviours surrounding biomass are needed to promote clean cooking in the

region. This supports a conclusion of Kebede et al. (2002) that local variations

must be factored into the design and tailoring of policies.

Crucially amongst households that do adopt non-biomass stoves, those in

rural and peri-urban areas, as well as urban households on average incomes,

are likely to continue using considerable amounts of biomass. Policy interven-

tions promoting uptake of clean cooking for such households must pair LPG

promotion with interventions to change behaviours to reduce biomass in order

to deliver on the public health aims of clean cooking.
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