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Large Deviations Behavior of the Logarithmic Error
Probability of Random Codes

Ran Tamir (Averbuch), Neri Merhav, Nir Weinberger, and Albert Guillén i Fàbregas

Abstract— This work studies the deviations of the error
exponent of the constant composition code ensemble around its
expectation, known as the error exponent of the typical random
code (TRC). In particular, it is shown that the probability of
randomly drawing a codebook whose error exponent is smaller
than the TRC exponent is exponentially small; upper and
lower bounds for this exponent are given, which coincide in
some cases. In addition, the probability of randomly drawing
a codebook whose error exponent is larger than the TRC
exponent is shown to be double–exponentially small; upper and
lower bounds to the double–exponential exponent are given. The
results suggest that codebooks whose error exponent is larger
than the error exponent of the TRC are extremely rare. The
key ingredient in the proofs is a new large deviations result of
type class enumerators with dependent variables.

Index Terms: Error exponent, expurgated exponent, large devi-
ations, typical random code.

I. INTRODUCTION

Random coding is the most common method to show that
the probability of error vanishes for rates below the channel
capacity. In 1955, Feinstein [1] proved that, for a sequence
of codes of fixed rate and increasing length, the probability
of error decays to zero exponentially with the length of the
codes, provided that the rate of the code is below the mutual
information of the channel. In the same year, Elias [2] derived
the random coding and sphere–packing bounds and observed
that they exponentially coincide at high rates, for the cases of
the binary symmetric channel (BSC) and the binary erasure
channel (BEC). Fano [3] derived the random coding exponent,
namely,

Er(R) = lim
n→∞

{
− 1
n logE [Pe(Cn)]

}
, (1)
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where the expectation is with respect to (w.r.t.) a given en-
semble of codes, for the general discrete memoryless channel
(DMC). In 1965, Gallager [4] derived Er(R) in a much simpler
way and improved on Er(R) at low rates by the idea of
expurgation.

In random coding analysis, the code is selected at random
and remains fixed, and thus, it seems reasonable to study the
performance in terms of error exponent of the very chosen
code, rather than considering the exponent of the averaged
probability of error, as in Er(R). Therefore, it is natural to
ask what would be the error exponent associated with the
typical randomly selected code. The error exponent of the
typical random code (TRC) is defined as

Etrc(R) = lim
n→∞

{
− 1
nE [logPe(Cn)]

}
. (2)

We find the exponent of the TRC to be the more relevant
performance metric as it captures the true exponential behavior
of the probability of error, as opposed to the random coding
error exponent, which is dominated by the relatively poor
codes of the ensemble, rather than the channel noise, at
relatively low coding rates.

To the best of our knowledge, not much is known on typical
random codes. In [5], Barg and Forney considered typical
random codes with independently and identically distributed
codewords for the BSC with maximum–likelihood (ML) de-
coding. They also considered typical linear codes. It was
shown that at a certain range of low rates, Etrc(R) lies between
Er(R) and the expurgated exponent, Eex(R). In [6] Nazari et
al. provided bounds on the error exponent of the TRC for
both DMCs and multiple–access channels. In a recent article
[7], an exact single–letter expression has been derived for
the error exponent of typical, random, constant composition
codes, over DMCs, and a wide class of (stochastic) decoders,
collectively referred to as the generalized likelihood decoder
(GLD), which includes the ML decoder as a special case.
For such decoders, the probability of deciding on a given
message is proportional to a general exponential function
of the joint empirical distribution of the codeword and the
received channel output vector. Recently, Merhav has studied
error exponents of TRCs for the colored Gaussian channel [8],
typical random trellis codes [9], and a Lagrange–dual lower
bound to the TRC exponent [10].

Note that the TRC exponent can be viewed as the limit of
the expectation of the random variable

E(Cn) = − 1
n logPe(Cn), (3)
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where Pe(Cn) is the error probability of a given code Cn,
governed by the randomness of the codebook Cn. Having
defined this random variable, it is interesting to study, not
only its expectation, but also other, more refined, quantities
associated with its probability distribution. One of them is
the tail behavior, i.e., the large deviations (LD) rate functions.
In particular, it is partially implied1 from [7], that E(Cn)
concentrates around its expectation, i.e., the error exponent
Etrc(R). In this work we prove that E(Cn) indeed concentrates
around Etrc(R).

In this paper we are interested in probabilities of large
fluctuations around Etrc(R). More specifically, we investigate
the probability of randomly choosing a bad codebook, i.e., a
codebook with a relatively small value of E(Cn). On the other
hand, the probability of randomly drawing a good codebook,
i.e., a codebook with a relatively large value of E(Cn) is
of interest as well, since obtaining tight LD bounds is an
alternative method to prove upper or lower bounds on the
channel reliability function, a long–standing problem.

To the best of our knowledge, the only known bounds
on the probability of drawing codebooks with relatively
low error exponents are given in [11, Appendix III]. It is
proved in [11] that P {E(Cn) < Er(R)} is upper bounded by
exp{− exp{n(R − Er(R))}}, as long as R > Er(R), while
the entire range of relatively low rates, namely R ≤ Er(R),
was hardly considered in [11], and is one of the main topics
in the current work. Furthermore, in this paper, we study the
deviations of E(Cn) w.r.t. its actual expected value Etrc(R), and
not as in [11], in which considered deviations w.r.t. Er(R).

Accordingly, the main purpose of this paper is to study the
probabilistic behavior of the tails of E(Cn), i.e., to characterize
its large deviations properties. For a given E0 < Etrc(R),
we assess the probability P {E(Cn) ≤ E0} and provide expo-
nentially small lower and upper bounds on it, which proves
that bad codebooks are rare. More refined questions con-
cerning the lower tail are as follows. Does the probability
P {E(Cn) ≤ E0} tend to zero with a finite exponent in the
entire range [0, Etrc(R))? If not, what is the range of E0

for which P {E(Cn) ≤ E0} decays faster than exponentially?
Indeed, we prove that a phase transition occurs in the behavior
of this probability, i.e., at some point below Etrc(R), we
observe an abrupt change between an ordinary exponential
decay to a super–exponential decay. In addition, we consider
the probability P {E(Cn) ≥ E0}, for E0 > Etrc(R), and derive
double–exponentially small lower and upper bounds on it. We
find the largest value E0, for which P {E(Cn) ≥ E0} is strictly
positive, thereby proving the existence of exceptionally good
codebooks.

The remaining part of the paper is organized as follows. In
Section 2, we establish notation conventions. In Section 3, we
formalize the model, the decoder, LD quantities, and provide
some preliminaries. In Section 4, we summarize and discuss
the main results, and provide numerical example for the binary

1More specifically, for every ε > 0, P{E(Cn) ≤ Etrc(R) + ε} converges
to one exponentially fast as n→∞.

z–channel. Sections 5, 6 and 7 include the proofs of our main
theorems.

II. NOTATION CONVENTIONS

Throughout the paper, random variables will be denoted by
capital letters, realizations will be denoted by the correspond-
ing lower case letters, and their alphabets in calligraphic font.
Random vectors and their realizations will be denoted, respec-
tively, by boldfaced capital and lower case letters. Their alpha-
bets will be superscripted by their dimensions. For a generic
joint distribution QXY = {QXY (x, y), x ∈ X , y ∈ Y}, which
will often be abbreviated by Q, information measures will be
denoted in the conventional manner, but with a subscript Q,
that is, IQ(X;Y ) is the mutual information between X and
Y , and similarly for other quantities. Logarithms are taken to
the natural base. The probability of an event E will be denoted
by P{E}, and the expectation operator will be denoted by E[·].
The indicator function of an event E will be denoted by I{E}.
The notation [t]+ will stand for max{0, t}.

For two positive sequences, {an} and {bn}, the notation
an

.
= bn will stand for equality in the exponential scale,

that is, limn→∞(1/n) log (an/bn) = 0. Similarly, an
·
≤ bn

means that lim supn→∞(1/n) log (an/bn) ≤ 0, and so on.
Accordingly, the notation an

.
= e−n∞ means that an decays

at a super–exponential rate (e.g. double–exponentially).

By the same token, for two positive sequences, {an} and
{bn}, whose elements are both smaller than one (for all large
enough n), the notation an

◦
= bn will stand for equality in the

double–exponential scale, that is,

lim
n→∞

1

n
log

(
log bn
log an

)
= 0. (4)

Similarly, an
◦
≤ bn means that

lim sup
n→∞

1

n
log

(
log bn
log an

)
≤ 0, (5)

and an
◦
≥ bn stands for

lim inf
n→∞

1

n
log

(
log bn
log an

)
≥ 0. (6)

The empirical distribution of a sequence x ∈ Xn, which
will be denoted by P̂x, is the vector of relative frequencies,
P̂x(x), of each symbol x ∈ X in x. The joint empirical dis-
tribution of a pair of sequences, denoted by P̂xy , is similarly
defined. The type class of QX , denoted T (QX), is the set of
all vectors x ∈ Xn with P̂x = QX . In the same spirit, the
joint type class of QXY , denoted T (QXY ), is the set of all
pairs of sequences (x,y) ∈ Xn × Yn with P̂xy = QXY .

Throughout the paper, we will make a frequent use of the
fact that

kn∑
i=1

an(i)
.
= max

1≤i≤kn
an(i) (7)

as long as {an(i)} are nonnegative exponential functions of
an integer n and kn

.
= 1. This exponential equivalence will be
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termed henceforth the summation–maximization equivalence
(SME). The sequence kn will represent the number of type
classes possible for a given block length n, which is polyno-
mial in n.

III. PROBLEM FORMULATION

Consider a DMC W = {W (y|x), x ∈ X , y ∈ Y}, where
X and Y are the finite input and output alphabets, respectively.
When the channel is fed with a sequence x = (x1, . . . , xn) ∈
Xn, it produces y = (y1, . . . , yn) ∈ Yn according to

W (y|x) =

n∏
t=1

W (yt|xt). (8)

Let Cn be a codebook, i.e., a collection {x0,x1, . . . ,xM−1}
of M = enR codewords, n being the block–length and R
the coding rate in nats per channel use. When the transmitter
wishes to convey a message m ∈ {0, 1, . . . ,M − 1}, it feeds
the channel with xm. We assume that messages are chosen
with equal probability. We consider the ensemble of constant
composition codes: for a given distribution QX over X , all
vectors in Cn are uniformly and independently drawn from
the type class T (QX). As in [7], [12], we consider here the
GLD, which is a stochastic decoder, that chooses the estimated
message m̂ according to the following posterior probability
mass function, induced by the channel output y:

P
{
M̂ = m

∣∣∣y} =
exp{ng(P̂xmy)}∑M−1

m′=0 exp{ng(P̂xm′y)}
, (9)

where P̂xmy is the empirical distribution of (xm,y), and g(·)
is a given continuous, real–valued functional of this empirical
distribution. The GLD provides a unified framework which
covers several important special cases, e.g., matched likelihood
decoding, mismatched decoding, ML decoding, and universal
decoding (similarly to the α–decoders described in [13]).
In particular, we recover the ML decoder by choosing the
decoding metric

g(QXY ) = β
∑
x∈X

∑
y∈Y

QXY (x, y) logW (y|x), (10)

and letting β → ∞. A more detailed discussion is given in
[12].

The probability of error, associated with a given code Cn
and the GLD, is given by

Pe(Cn)

=
1

M

M−1∑
m=0

∑
y∈Yn

W (y|xm) ·
∑
m′ 6=m exp{ng(P̂xm′y)}∑M−1
m̃=0 exp{ng(P̂xm̃y)}

.

(11)

For the constant composition ensemble, Merhav [7] has
derived a single–letter expression for

Etrc(R) = lim
n→∞

{
− 1
nE [logPe(Cn)]

}
. (12)

In order to present this expression, we define first a few
quantities. Define the set Q(QX) = {QXX′ : QX′ = QX}
and

α(R,QY ) = max
QX̃|Y ∈S(QX ,QY )

{g(QX̃Y )− IQ(X̃;Y )}+R,

(13)

where S(QX , QY ) = {QX̃|Y : IQ(X̃;Y ) ≤ R, QX̃ = QX},
as well as

Γ(QXX′ , R) = min
QY |XX′

{D(QY |X‖W |QX) + IQ(X ′;Y |X)

+ [max{g(QXY ), α(R,QY )} − g(QX′Y )]+},
(14)

where D(QY |X‖W |QX) is the conditional divergence be-
tween QY |X and W , averaged by QX :

D(QY |X ||W |QX)

=
∑
x∈X

QX(x)
∑
y∈Y

QY |X(y|x) log
QY |X(y|x)

W (y|x)
. (15)

The TRC error exponent is given by [7]2

Etrc(R)

= min
{Q(QX): IQ(X;X′)≤2R}

{Γ(QXX′ , R) + IQ(X;X ′)−R}.

(16)

In the sequel, we prove that the exponent Etrc(R) is the exact
value around which the random variable E(Cn) concentrates,
as was partially implied from the proof in [7, Sec. 5.2]. The
expurgated exponent Eex(R), proved in [12], has exactly the
same expression, but with the minimization constraint in (16)
IQ(X;X ′) ≤ 2R replaced by IQ(X;X ′) ≤ R. In case of ML
decoding, define

a(R,QY ) = max
QX̃|Y ∈S(QX ,QY )

EQ[logW (Y |X̃)] (17)

and the set

A(R) = {QX′Y |X : IQ(X;X ′) ≤ 2R, QX′ = QX ,

EQ[logW (Y |X ′)] ≥ max {EQ[logW (Y |X)], a(R,QY )}}.
(18)

Then, (16) particularizes to [7, Sec. 4]

EML
trc (R)

= min
QX′Y |X∈A(R)

{D(QY |X‖W |QX) + IQ(X,Y ;X ′)−R}.

(19)

We are interested in the lower and the upper tails of the
distribution of E(Cn). The first is

P {E(Cn) ≤ E0} , E0 < Etrc(R), (20)

2Note that the expressions of α(R,QY ), Γ(QXX′ , R), and Etrc(R) are
defined in [7] using supremum and infimum. Since all the objective functions
involved in the optimization problems defining these terms are continuous and
the corresponding feasible sets are compact, these supremum and infimum are
in fact achieved by a maxima and minima.
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which is the probability of drawing a bad codebook. The
second one is

P {E(Cn) ≥ E0} , E0 > Etrc(R), (21)

which is the probability of drawing a good codebook. Finding
exact expressions for (20) and (21) appears to be difficult. We
derive lower and upper bounds on both (20) and (21).

IV. MAIN RESULTS

A. The Lower Tail

In order to present the error exponents of the lower tail, we
define the quantities:

β(R,QY ) = max
{QX̃|Y : QX̃=QX}

{g(QX̃Y ) + [R− IQ(X̃;Y )]+},

(22)
Λ(QXX′ , R) = min

QY |XX′
{D(QY |X‖W |QX) + IQ(X ′;Y |X)

+ β(R,QY )− g(QX′Y )}, (23)

and,

Ψ(R,E0, QXX′) = Γ(QXX′ , R) +R− E0, (24)
Ξ(R,E0, QXX′) = Λ(QXX′ , R) +R− E0. (25)

Also, define the sets

L(R,E0) = {QXX′ ∈ Q(QX) :

[2R− IQ(X;X ′)]+ ≥ Ψ(R,E0, QXX′)}, (26)
M(R,E0) = {QXX′ ∈ Q(QX) :

[2R− IQ(X;X ′)]+ ≥ Ξ(R,E0, QXX′)}, (27)

and the error exponent functions

Eub
lt (R,E0) = min

QXX′∈L(R,E0)
[IQ(X;X ′)− 2R]+, (28)

E lb
lt (R,E0) = min

QXX′∈M(R,E0)
[IQ(X;X ′)− 2R]+. (29)

Our first result in this section is the following theorem, which
is proved in Section V.

Theorem 1: Consider the ensemble of random constant
composition codes Cn of rate R and composition QX . Then,

P {E(Cn) ≤ E0}
·
≤ exp{−n · Eub

lt (R,E0)}. (30)

Also,

P {E(Cn) ≤ E0}
·
≥ exp{−n · E lb

lt (R,E0)}. (31)

An expression for the special case of ML decoding can
be derived, but turns out to be relatively cumbersome, since
it consists of a nested optimization problem. Instead, let
us recall the result of [14] (see also [15]), which asserts
that the probability of error for ordinary likelihood decoding
([12, eq. (3)]) is at most twice the error probability of ML
decoding. Hence, it is enough to use the decoding metric
g(Q) = EQ[logW (Y |X)] (here and in all of the results later

on) in order to study the LD rate functions under the ML
decoder. For example, (13) particularizes to

α(R,QY )

= max
QX̃|Y ∈S(QX ,QY )

{EQ[logW (Y |X̃)]− IQ(X̃;Y )}+R,

(32)

and similarly for Γ(QXX′ , R), β(R,QY ), and Λ(QXX′ , R).

We now provide some intuition concerning the term
Γ(QXX′ , R), which is encountered numerous times in this
work. For the true codeword xm and a competing codeword
xm′ , the term Γ(P̂xmxm′ , R) is, in fact, the exponential rate
of decay of the sum∑

y∈Yn
W (y|xm)

· exp
{
−n · [max{g(P̂xmy), α(R, P̂y)} − g(P̂xm′y)]+

}
,

(33)

where g(P̂xmy) and g(P̂xm′y) are the respective scores of the
true and the competing codewords, and where α(R, P̂y) rep-
resents the highest score among all other incorrect codewords
in the codebook3. When averaged over all possible channel
outputs, this sum yields the overall probability that m′ is
the decoded message. It follows by the method of types that
for a given empirical distribution P̂xmxm′ , there exist some
QY |XX′ , such that the most likely channel outputs are those
in T (QY |XX′ |xm,xm′), and they have the dominant tone in
this error event.

In order to characterize the behavior of the error exponent
functions (28) and (29), let us first define

Ẽ(R)

= min
{Q(QX): IQ(X;X′)≤2R}

{Λ(QXX′ , R) + IQ(X;X ′)−R}.

(34)

The following proposition is proved in Appendix D.

Proposition 1: Eub
lt (R,E0) and E lb

lt (R,E0) have the follow-
ing properties:

1) For fixed R, Eub
lt (R,E0) and E lb

lt (R,E0) are decreasing
in E0.

2) Eub
lt (R,E0) > 0 if and only if E0 < Etrc(R).

3) E lb
lt (R,E0) > 0 if and only if E0 < Ẽ(R).

4) Eub
lt (R,E0) =∞ for any E0 < Emin

0 (R), where

Emin
0 (R)

= min
Q(QX)

{Γ(QXX′ , R)− [2R− IQ(X;X ′)]+}+R.

(35)

Note that Ẽ(R) is defined similarly as Etrc(R), with
Λ(QXX′ , R) replacing Γ(QXX′ , R). Generally, Ẽ(R) ≥
Etrc(R), but in some special cases, e.g. the z–channel and the
BEC, it can be easily proved that Ẽ(R) = Etrc(R), as can be
seen in Fig. 3 below. Moreover, since Eub

lt (R,E0) is defined
similarly as E lb

lt (R,E0), also with Λ(QXX′ , R) replacing

3Also find a more comprehensive discussion on this point in [7, Sec. 4].
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Γ(QXX′ , R), it turns out that for the same special cases,
Eub

lt (R,E0) = E lb
lt (R,E0). Hence, we conclude that there exist

channels for which P {E(Cn) ≤ E0} has an exponentially tight
expression.

Proposition 1 answers the questions we raised in the
Introduction. First, it asserts that drawing a codebook for
which E(Cn) is strictly below the TRC exponent has an
exponentially vanishing probability. This implies that only
for a small fraction of constant composition codes, E(Cn)
is significantly lower than the TRC error exponent. Second,
the probability that E(Cn) falls in the range (Emin

0 (R), Etrc(R))
tends to zero with a finite exponent, but for E0 ∈ [0, Emin

0 (R)),
the probability of E(Cn) ≤ E0 converges to zero faster than
exponentially; these codebooks are extremely rare.

We next describe the behavior of Emin
0 (R). Denote by

Q∗XX′(R) the minimizer of (35) at rate R, and let R∗ be
the maximal rate for which 2R ≤ IQ∗(R)(X;X ′) holds. On
the one hand, for any R ∈ [0, R∗], the operator [·]+ in (35) is
active and Emin

0 (R) is given by

Emin
0 (R) = min

{Q(QX): 2R≤IQ(X;X′)}
Γ(QXX′ , R) +R, (36)

which is a monotonically increasing function. On the other
hand, if R ≥ R∗, the operator [·]+ in (35) is neutral and
Emin

0 (R) coincides with the TRC error exponent Etrc(R). Fig.
1 illustrates the error exponents, as well as Emin

0 (R), for the bi-
nary z–channel with crossover parameter 0.001, the symmetric
input distribution, QX = (1/2, 1/2), and the ML decoder. The
highest transmission rate is R ∼= 0.685 [nats/channel use]. As
can be seen in Fig. 1, the exponent Etrc(R) lies between Er(R)
and Eex(R), a fact that was already asserted for a general
DMC in [7]. Moreover, Etrc(R) is strictly higher than Er(R) for
relatively low coding rates, and above R ∼= 0.279 [nats/channel
use], they coincide, i.e., the random coding error exponent
provides the true exponential behavior of the typical codes
in the ensemble. As for Emin

0 (R), we observe the following
phenomena: First, note that Emin

0 (0) = 0, which means that all
codebooks that have a sub–exponential number of codewords
are drawn with a finite exponent. Second, in the range (0, R∗),
Emin

0 (R) is linear and divides the range [0, Etrc(R)) into two
intervals; in (Emin

0 (R), Etrc(R)) – an exponential decay with
a finite exponent, and in [0, Emin

0 (R)) – a super–exponential
decay. Third, for rates above R∗, the curves Emin

0 (R), Etrc(R),
and Er(R) are all equal. We conclude that for relatively
high rates, P {E(Cn) < Etrc(R)} converges to zero super–
exponentially fast, a fact that was already proved in [11, Th.
5].

In order to gain some intuitive insight behind the various
types of behavior of Eub

lt (R,E0), it is instructive to examine
the properties of the type class enumerators,

N(QXX′)
∆
=

M−1∑
m=0

∑
m′ 6=m

I {(Xm,Xm′) ∈ T (QXX′)} ,

(37)

which play a pivotal role in the proofs of the main results of
the paper. The summation (37) contains M(M − 1)

.
= en2R

terms. Borrowing from the terminology of binomial random

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.5

1

1.5

R

Er(R)

Etrc(R)

Eex(R)

Emin
0 (R)

Fig. 1: Various exponents for the z–channel with crossover
probability 0.001.

variables, we refer to it as the number of trials associated
with N(QXX′). The expectation of each binary random
variable in (37) is given by P {(Xm,Xm′) ∈ T (QXX′)}

.
=

e−nIQ(X;X′), which is referred to as the success probability.
Unlike its one–dimensional counterpart [16]–[18], N(QXX′)
is not a binomial random variable, since its terms are not
mutually independent.

We distinguish between two kinds of joint compositions.
On the one hand, we have the joint types QXX′ for which
IQ(X;X ′) ≤ 2R, i.e., the exponential rate of the number of
trials is higher than the negative exponential rate of the suc-
cess probability. Thus, with overwhelmingly high probability,
the respective N(QXX′) will concentrate around its mean,
exp{n(2R− IQ(X;X ′))}. Such compositions are referred to
as typically populated (TP) type classes. On the other hand,
for QXX′ with IQ(X;X ′) > 2R, N(QXX′) = 0 with high
probability. These compositions are referred to as the typically
empty (TE) type classes.

For E0 ∈ (Emin
0 (R), Etrc(R)), let us denote the minimizer of

Eub
lt (R,E0) by Q∗XX′ . Then, the dominant error event is due

to pairs of codewords with joint empirical composition Q∗XX′ .
In this range of exponents, all TP type classes are populated,
as well as all TE type classes with IQ(X;X ′) ≤ IQ∗(X;X ′).
The rest of the TE type classes, those with higher value of
IQ(X;X ′), are still empty (see Fig. 2b). These are the joint
type classes of the “closest” pairs of sequences in Xn, in the
sense of high empirical mutual information.

When E0 = Emin
0 (R), the constraint set L(R,E0) becomes

empty, all TE type classes become populated (see Fig. 2a) and
Eub

lt (R,E0) jumps to infinity. In some sense, the curve Emin
0 (R)

exhibits a phase transition. When E0 > Emin
0 (R), the minimum

“distance” between pairs of codewords is still positive, but
when E0 ≤ Emin

0 (R), this minimum distance vanishes.

For E0 < Emin
0 (R), the super–exponential behavior of

P {E(Cn) ≤ E0} follows from the result of Lemma 5 in
Appendix B, which states that P {N(QXX′) ≥ enε} tends to
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(a) For E0 ≤ Emin
0 (R) (b) E0 ∈ (Emin

0 (R), Etrc(R))

(c) Around the Etrc(R) (d) E0 ∈ (Etrc(R), Eex(R))

Fig. 2: Typical populations for different E0 values. The center
is the true codeword and each concentric circle around it
represents a conditional type class. The radii of the concentric
circles represent distances between codewords, which are mea-
sured by the empirical conditional entropy (also proportional
to the negative empirical mutual information), induced by
the joint composition of the codewords. Dots denote the TP
type classes and circle–dots represent the TE type classes. TP
type classes are the sets of relatively distant codewords; they
include all joint compositions QXX′ with IQ(X;X ′) ≤ 2R.
Red dots/circle–dots mean empty type classes. For larger E0

values, the minimum distance between codewords increases.

zero faster than exponentially for any TE type class. Now, if
all TE type classes are populated by exponentially many pairs,
then codebooks with exponentially many identical codewords
also exist in the range of these low exponents. Consider
the set Dn = {Cn} of codebooks, such that in each one
of them, every TE type class is populated by exponentially
many pairs of codewords. Obviously, E(Cn) ≤ Emin

0 (R) for
every Cn ∈ Dn, and it turns out that this set has, in fact,
a double–exponentially small probability. To see why this is
true, consider the following upper bound, which only requires
from some enε codewords to be identical:

P {Cn ∈ Dn} ≤
(
enR

enε

)
·
(

1

|T (QX)|

)enε
(38)

◦
=

(
enR

enε

)
· exp {−nHQ(X)enε} . (39)

The binomial coefficient is upper–bounded as(
enR

enε

)
≤ exp {nRenε} , (40)

hence,

P {Cn ∈ Dn}
◦
≤ exp {−n(HQ(X)−R)enε} , (41)

which decays double–exponentially fast, since R <
IQ(X;Y ) ≤ HQ(X).

At last, we prove that a concentration property holds:

Proposition 2: E(Cn) concentrates at Etrc(R) as n→∞.

Proof: On the one hand, it follows by Theorem 1 and Propo-
sition 1 that for every ε > 0, P{E(Cn) ≤ Etrc(R) − ε} → 0,
exponentially fast, as n → ∞. On the other hand, the proof
in [7, Sec. 5.2] implies that for every ε > 0, P{E(Cn) ≤
Etrc(R) + ε} → 1, also exponentially fast, as n → ∞.
Combining these two facts, it follows that E(Cn) concentrates
at Etrc(R).

B. The Upper Tail

In this subsection, we study the probability
P {E(Cn) ≥ E0}. On the one hand, we are interested in
lower–bounding the probability P {E(Cn) ≥ E0}, such that
we can assure the existence of good codebooks. On the other
hand, we would also like to provide a tight upper bound on
this probability, in order to prove that above some critical
exponent value, codebooks cease to exist. We begin with a
few definitions. Let us define the sets

V(R,E0) = {QXX′ ∈ Q(QX) : IQ(X;X ′) ≤ 2R,

Λ(QXX′ , R) + IQ(X;X ′)−R ≤ E0}, (42)
U(R,E0) = {QXX′ ∈ Q(QX) : IQ(X;X ′) ≤ 2R,

Γ(QXX′ , R) + IQ(X;X ′)−R ≤ E0}, (43)

and the error exponent functions

Eub
ut (R,E0) = max

QXX′∈V(R,E0)
min{2R− IQ(X;X ′),

E0 − Λ(QXX′ , R)− IQ(X;X ′) +R,R}, (44)
E lb

ut (R,E0) = max
QXX′∈U(R,E0)

{2R− IQ(X;X ′)}. (45)

The main result in this subsection is the following theorem.

Theorem 2: Consider the ensemble of random constant
composition codes Cn of rate R and composition QX . Then,

P {E(Cn) ≥ E0}
◦
≤ exp {− exp {n · Eub

ut (R,E0)}} . (46)

If E0 ∈ (Etrc(R), Eex(R)), then

P {E(Cn) ≥ E0}
◦
≥ exp {− exp {n · E lb

ut (R,E0)}} . (47)

The proofs of (46) and (47) appear in Sections VI and VII,
respectively. The double–exponential behavior indicates that
the relative number of very good codebooks is extremely
small.

The restriction to (Etrc(R), Eex(R)) in the lower bound of
Theorem 2 stems from the technical condition of [19, Th.
9], which is equivalent to the one found in the Lovász local
lemma [21]. If a large number of events are all independent
and each has probability less than 1, then there is a positive
probability that none of the events will occur. The Lovász
local lemma allows one to slightly relax the independence
condition, as long as the events are only “weakly” dependent
in some sense. More specifically, referring to the type class
enumerator N(QXX′), it turns out that if IQ(X;X ′) > R,
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then the binary random variables composing N(QXX′) are
only weakly dependent, and the probability P{N(QXX′) =
0}, which appears in the derivation of the lower bound of
Theorem 2, can be lower–bounded using the Lovász lo-
cal lemma by exp{− exp{n(2R− IQ(X;X ′))}}. Otherwise,
when IQ(X;X ′) < R, this probability is very small, but it
cannot be lower–bounded by the Lovász local lemma, since
its condition is not met. In our setting, the condition of the
local lemma is met, as long as the number of codewords is
not too high, which results in an upper bound on E0, given
by Eex(R).

In order to characterize the behavior of the error exponent
functions (44) and (45), we provide the following proposition,
which is proved in Appendix E.

Proposition 3: Eub
ut (R,E0) and E lb

ut (R,E0) have the follow-
ing properties:

1) For fixed R, Eub
ut (R,E0) and E lb

ut (R,E0) are increasing
in E0.

2) E lb
ut (R,E0) > 0 if and only if E0 > Etrc(R).

3) Eub
ut (R,E0) > 0 if and only if E0 > Ẽ(R).

Recall that for the typical code, i.e., any code with E(Cn) ≈
Etrc(R), all TP type classes are populated and all TE type
classes are empty (see Fig. 2c). Now, for any E0 in the
range (Etrc(R), Eex(R)), all TE type classes are still empty,
but now, also all TP type classes that are associated with the
set U(R,E0) are also empty (see Fig. 2d). The dominant error
event in these codebooks is caused by relatively distant pairs
of codewords that have a joint composition Q∗XX′ , which is
the maximizer of (45). We conclude that Etrc(R) exhibits a
phase transition in the E0 axis. Below the Etrc(R) curve, TE
type classes become populated, and above it, TP type classes
become empty.

When E0 reaches Eex(R), the set U(R,Eex) is a subset of
Ũ(R) = {QXX′ ∈ Q(QX) : R < IQ(X;X ′) ≤ 2R}, and
thus

E lb
ut (R,Eex) = max

U(R,Eex)
{2R− IQ(X;X ′)} (48)

≤ max
Ũ(R)
{2R− IQ(X;X ′)} = R. (49)

It means that the lower bound of Theorem 2 is at least as
high as the probability of any codebook in the ensemble,
given by ◦= exp{−nHQ(X)enR}, which implies the existence
of codebooks with E(Cn) ≈ Eex(R). We have the following
corollary, which is proved in Appendix F.

Corollary 1: If E0 < Eex(R), then there exists at least one
code with E(Cn) ≥ E0.

Fig. 3 illustrates the upper tail exponents (44) and (45) for
the binary z–channel with crossover parameter 0.001, rate R =
0.2, the symmetric input distribution, QX = (1/2, 1/2), and
the ML decoder. Due to the restriction in the lower bound
of Theorem 2, note that E lb

ut (R,E0) is applicable as long as
0 ≤ E lb

ut (R,E0) ≤ R, while Eub
ut (R,E0) is applicable for any

E0, but is truncated to R for relatively high E0. The lowest
E0 for which Eub

ut (R,E0) = R is approximately 0.873, which
is strictly lower than the straight–line bound Esl(R) ≈ 1.122,

but the truncation4 to R prevents5 us from deducing a tighter
upper bound to the reliability function. In the entire range
(Etrc(R), Eex(R)), both E lb

ut (R,E0) and Eub
ut (R,E0) are strictly

positive, such that the lower and the upper bounds on the
probability of the upper tail are double–exponentially small.

0.5 0.6 0.7 0.8 0.9
0

0.05

0.1

0.15

0.2

E0

Eub
ut (R,E0)

E lb
ut (R,E0)

Fig. 3: Upper tail double–exponential rate functions for the
z–channel with crossover probability 0.001 and R = 0.2.

V. PROOF OF THEOREM 1

A. An Upper Bound on the Probability of the Lower Tail

Let Cn be a constant composition code of rate R and
blocklength n and let E0 > 0 be given. Then,

P
{
− 1

n
logPe(Cn) ≤ E0

}

= P

 1

M

M−1∑
m=0

∑
m′ 6=m

∑
y∈Yn

W (y|xm)

·
exp{ng(P̂xm′y)}∑
m̃ exp{ng(P̂xm̃y)}

≥ e−n·E0

}
. (50)

Let

Zm(y) =
∑
m̃6=m

exp{ng(P̂xm̃y)}, (51)

fix ε > 0 arbitrarily small, and for every y ∈ Yn, define the
set

Bε(m,y) =
{
Cn : Zm(y) ≤ exp{nα(R− ε, P̂y)}

}
. (52)

4We conjecture that this truncation to R is artificial, and can be removed
by deriving tighter LD bounds. More specifically, a tighter version of Fact 1
(Appendix A), which may lead to a tighter result in Lemma 2 (Appendix B),
which, in turn, may provide a tighter upper bound in Theorem 2

5Had the double–exponential rate of the upper bound strictly bigger than
R, we were able to conclude the absentee of codebooks with error exponents
above some threshold.
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Following the result of [12, Appendix B], we know that,
considering the ensemble of randomly selected constant com-
position codes of type QX ,

P{Bε(m,y)} ≤ exp{−enε + nε+ 1}, (53)

for every m ∈ {0, 1, . . . ,M − 1} and y ∈ Yn, and so, by the
union bound,

P


M−1⋃
m=0

⋃
y∈Yn

Bε(m,y)


∆
= P {Bε} (54)

≤
M−1∑
m=0

∑
y∈Yn

P {Bε(m,y)} (55)

≤
M−1∑
m=0

∑
y∈Yn

exp{−enε + nε+ 1} (56)

= enR · |Y|n · exp{−enε + nε+ 1}, (57)

which still decays double–exponentially fast. Thus,

P
{
− 1

n
logPe(Cn) ≤ E0

}

= P

 1

M

M−1∑
m=0

∑
m′ 6=m

∑
y∈Yn

W (y|xm)

·
exp{ng(P̂xm′y)}

exp{ng(P̂xmy)}+ Zm(y)
≥ e−n·E0

}
(58)

= P

Cn ∈ Bc
ε,

1

M

M−1∑
m=0

∑
m′ 6=m

∑
y∈Yn

W (y|xm)

·
exp{ng(P̂xm′y)}

exp{ng(P̂xmy)}+ Zm(y)
≥ e−n·E0

}

+ P

Cn ∈ Bε, 1

M

M−1∑
m=0

∑
m′ 6=m

∑
y∈Yn

W (y|xm)

·
exp{ng(P̂xm′y)}

exp{ng(P̂xmy)}+ Zm(y)
≥ e−n·E0

}
(59)

≤ P

Cn ∈ Bc
ε,

1

M

M−1∑
m=0

∑
m′ 6=m

∑
y∈Yn

W (y|xm)

×min

{
1,

exp{ng(P̂xm′y)}
exp{ng(P̂xmy)}+ exp{nα(R− ε, P̂y)}

}
≥ e−n·E0

}
+ P{Cn ∈ Bε} (60)

.
= P

Cn ∈ Bc
ε,

1

M

M−1∑
m=0

∑
m′ 6=m

∑
y∈Yn

W (y|xm)

× exp
{
−n · [max{g(P̂xmy), α(R− ε, P̂y)}

− g(P̂xm′y)]+

}
≥ e−n·E0

}
+ P{Cn ∈ Bε} (61)

.
= P

Cn ∈ Bc
ε,

1

M

M−1∑
m=0

∑
m′ 6=m

exp{−nΓ(P̂xmxm′ , R− ε)}

≥ e−n·E0
}

(62)

≤ P

 1

M

M−1∑
m=0

∑
m′ 6=m

e−nΓ(P̂xmx
m′
,R−ε) ≥ e−n·E0

 , (63)

where in (60), the inner terms in the first expression of
(59) were upper–bounded according to (52) as well as the
trivial upper bound of one, and the indicators of the second
summand were trivially upper–bounded by one. In (61), we
used the SME (7). In (62), the inner–most sum over y ∈ Yn
was evaluated using the method of types, with the functional
Γ(QXX′ , R) defined in (14) (see [12, Sec. 5] for more details),
and the fact that P{Bε} is double–exponentially small was
used. One of the difficulties in the statistical analysis of
N(QXX′) (37) is that it is the sum of dependent6 (though pair-
wise independent) binary random variables. This is different
from the more commonly encountered type class enumerators
(see, e.g., [16], [17], [18]), which are sums of independent
binary random variables. Hence, existing results concerning
the LD for type class enumerators of independent variables
are not applicable, and thus, more refined tools from LD
theory are required, like those of [19], that will allow us to
handle dependency between terms7. In spite of the statistical
dependencies, it turns out, that the LD behavior of N(QXX′)
and the ordinary type class enumerators are the same. This can
be seen in the following theorem, which is proved in Appendix
B.

Theorem 3: For any s ∈ R,

P {N(QXX′) ≥ ens}
.
= e−n·E(R,Q,s), (64)

where,

E(R,Q, s) ={
[IQ(X;X ′)− 2R]+ [2R− IQ(X;X ′)]+ ≥ s
∞ [2R− IQ(X;X ′)]+ < s

. (65)

Then, we rewrite (63) in terms of the enumerators N(QXX′)
and get

P
{
− 1

n
logPe(Cn) ≤ E0

}
·
≤ P

 ∑
QXX′∈Q(QX)

N(QXX′) exp{−n · Γ(QXX′ , R− ε)}

≥ en·(R−E0)
}

(66)

.
= P

{
max

QXX′∈Q(QX)
N(QXX′) exp{−n · Γ(QXX′ , R− ε)}

≥ en·(R−E0)
}

(67)

6This dependence can be demonstrated by the following extreme example.
Let QX be uniform over X and let QXX′ (x, x

′) = 1/|X | whenever x = x′

and QXX′ (x, x
′) = 0 otherwise. Then, without any prior knowledge, for

every m′ 6= m, P {Xm = Xm′} = P {(Xm,Xm′ ) ∈ T (QXX′ )}
.
=

exp{−nIQ(X;X′)}, where IQ(X;X′) = log |X |. Now, conditioned on
X0 = X1 and X1 = X2, it holds that X0 = X2 with probability 1.

7Also refer to [20, Sec. IV–C], where bounds from [19] were used to handle
weak dependencies in joint types.
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= P

 ⋃
QXX′∈Q(QX)

N(QXX′) exp{−n · Γ(QXX′ , R− ε)}

≥ en·(R−E0)
}

(68)
.
=

∑
QXX′∈Q(QX)

P {N(QXX′) exp{−n · Γ(QXX′ , R− ε)}

≥ en·(R−E0)
}

(69)
.
= max
QXX′∈Q(QX)

P {N(QXX′)

≥ exp {n · (Ψ(R− ε, E0, QXX′) + ε)}} . (70)

where the steps to (67) and (70) are due to the SME of (7).
Define the set Sε(R,E0) = {QXX′ : [2R− IQ(X;X ′)]+ ≥
Ψ(R − ε, E0, QXX′) + ε}. Thanks to Theorem 3, the last
expression decays exponentially with rate Eub

lt (R,E0, ε), which
is given by

Eub
lt (R,E0, ε)

= min
QXX′∈Q(QX)

{
[IQ(X;X ′)− 2R]+ QXX′ ∈ Sε(R,E0)

∞ QXX′ /∈ Sε(R,E0)
(71)

= min
QXX′∈Q(QX)∩Sε(R,E0)

[IQ(X;X ′)− 2R]+ , (72)

with the convention that the minimum over an empty set is
defined as infinity. Due to the arbitrariness of ε > 0, it follows
that

P
{
− 1

n
logPe(Cn) ≤ E0

}
·
≤ exp{−n · Eub

lt (R,E0)}, (73)

which proves the upper bound of Theorem 1.

B. A Lower Bound on the Probability of the Lower Tail

For a given m, m′ 6= m, and y ∈ Yn, define

Zmm′(y) =
∑

m̃∈{0,1,...,M−1}\{m,m′}

exp{ng(P̂xm̃y)}. (74)

Let σ > 0 and define the set

B̂n(σ,m,m′,y)

=
{
Cn : Zmm′(y) ≥ exp{n · (β(R, P̂y) + σ)}

}
, (75)

and its complement Ĝn(σ,m,m′,y), where β(R,QY ) is de-
fined as in (22). Let

B̂n(σ) =

M−1⋃
m=0

⋃
m′ 6=m

⋃
y∈Yn

B̂n(σ,m,m′,y), (76)

and

Ĝn(σ) = B̂c
n(σ). (77)

Let ε > 0 be arbitrary and define

Λ̃(QXX′ , R, ε)

= min
QY |XX′

{D(QY |X‖W |QX) + IQ(X ′;Y |X)

+ [max{g(QXY ), β(R,QY ) + ε} − g(QX′Y )]+}. (78)

We get the following

P
{
− 1

n
logPe(Cn) ≤ E0

}

= P

 1

M

M−1∑
m=0

∑
m′ 6=m

∑
y∈Yn

W (y|xm)

× eng(P̂x
m′y

)

eng(P̂xmy) + eng(P̂x
m′y

) + Zmm′(y)
≥ e−n·E0

}
(79)

≥ P

Cn ∈ Ĝn(ε),
1

M

M−1∑
m=0

∑
m′ 6=m

∑
y∈Yn

W (y|xm)

× eng(P̂x
m′y

)

eng(P̂xmy) + eng(P̂x
m′y

) + Zmm′(y)
≥ e−n·E0

}
(80)

≥ P

Cn ∈ Ĝn(ε),
1

M

M−1∑
m=0

∑
m′ 6=m

∑
y∈Yn

W (y|xm)

× eng(P̂x
m′y

)

eng(P̂xmy) + eng(P̂x
m′y

) + en·[β(R,P̂y)+ε]
≥ e−n·E0

}
(81)

.
= P

Cn ∈ Ĝn(ε),
1

M

M−1∑
m=0

∑
m′ 6=m

∑
y∈Yn

W (y|xm)

× en·[max{g(P̂xmy),β(R,P̂y)+ε}−g(P̂x
m′y

)]+ ≥ e−n·E0

}
(82)

.
= P

{
Cn ∈ Ĝn(ε),

1

M

M−1∑
m=0

∑
m′ 6=m

e−n·Λ̃(P̂xmx
m′
,R,ε) ≥ e−n·E0

 (83)

= P
{
Cn ∈ Ĝn(ε),

∑
QXX′∈Q(QX)

N(QXX′) · e−n·Λ̃(QXX′ ,R,ε) ≥ en·(R−E0)

 ,

(84)

where (79) follows from the definitions of the probability of
error and Zmm′(y) in (11) and (74), respectively. In (80), we
lower–bounded by intersecting with the event Cn ∈ Ĝn(ε).
In (81), the definition of the set Ĝn(·) in (77) was used, in
(82), the exponential equivalence enB/(enA + enB + enC)

.
=

exp{−n · [max{A,C} − B]+}, in (83), the method of types
and the definition of Λ̃(QXX′ , R, ε) in (78), and in (84), the
definition of the type class enumerators N(QXX′) in (37).

Next, we simplify the expression of Λ̃(QXX′ , R, ε). First,
note that for any Q̂XY with marginals QX and QY

β(R,QY ) = max
{QX̃|Y : QX̃=QX}

{g(QX̃Y ) + [R− IQ(X̃;Y )]+}

(85)
≥ max
{QX̃|Y : QX̃=QX}

g(QX̃Y ) (86)

≥ g(Q̂XY ). (87)
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Then,

Λ̃(QXX′ , R, ε)

= min
QY |XX′

{D(QY |X‖W |QX) + IQ(X ′;Y |X)

+ [max{g(QXY ), β(R,QY ) + ε} − g(QX′Y )]+} (88)
= min
QY |XX′

{D(QY |X‖W |QX) + IQ(X ′;Y |X)

+ [β(R,QY ) + ε− g(QX′Y )]+} (89)
= min
QY |XX′

{D(QY |X‖W |QX) + IQ(X ′;Y |X)

+ β(R,QY )− g(QX′Y ) + ε} (90)
= Λ(QXX′ , R) + ε, (91)

where (89) is due to β(R,QY ) ≥ g(QXY ), (90) is because
β(R,QY ) ≥ g(QX′Y ), and (91) follows the definition in (23).
Let us now define

G0 =

Cn :
∑

QXX′∈Q(QX)

N(QXX′)

· exp{−n · (Λ(QXX′ , R) + ε)} ≥ en·(R−E0)
}
, (92)

such that, continuing from (84):

P
{
− 1

n
logPe(Cn) ≤ E0

}
·
≥ P

{
Ĝn(ε) ∩ G0

}
(93)

= P


M−1⋂
m=0

⋂
m′ 6=m

⋂
y∈Yn

Ĝn(ε,m,m′,y)

∣∣∣∣∣∣G0

 · P {G0} (94)

=

1− P


M−1⋃
m=0

⋃
m′ 6=m

⋃
y∈Yn

B̂n(ε,m,m′,y)

∣∣∣∣∣∣G0




· P {G0} (95)

≥

1−
M−1∑
m=0

∑
m′ 6=m

∑
y∈Yn

P
{
B̂n(ε,m,m′,y)

∣∣∣G0

}
· P {G0} (96)

= P {G0} −
M−1∑
m=0

∑
m′ 6=m

∑
y∈Yn

P
{
B̂n(ε,m,m′,y) ∩ G0

}
.

(97)

Assessing P{G0} in (97): Now,

P{G0}

= P

 ∑
QXX′∈Q(QX)

N(QXX′) · e−n·(Λ(QXX′ ,R)+ε)

≥ en·(R−E0)
}

(98)

.
=

∑
QXX′∈Q(QX)

P
{
N(QXX′) ≥ en·(Λ(QXX′ ,R)+R−E0+ε)

}
(99)

.
= max
QXX′∈Q(QX)

P
{
N(QXX′) ≥ en·(Ξ(R,E0,QXX′ )+ε)

}
,

(100)

where (99) and (100) follow by the SME and are similar
to the steps between (66)–(70). Define the set S ′ε(R,E0) =
{QXX′ : [2R− IQ(X;X ′)]+ ≥ Ξ(R,E0, QXX′) + ε}.
Thanks to Theorem 3, the last expression decays exponentially
with rate E lb

lt (R,E0, ε), which is given by

E lb
lt (R,E0, ε)

= min
QXX′∈Q(QX)

{
[IQ(X;X ′)− 2R]+ QXX′ ∈ S ′ε(R,E0)

∞ QXX′ /∈ S ′ε(R,E0)
(101)

= min
QXX′∈Q(QX)∩S′ε(R,E0)

[IQ(X;X ′)− 2R]+ , (102)

and thus

P{G0}
.
= exp{−n · E lb

lt (R,E0, ε)}. (103)

Upper–bounding P{B̂n(ε,m,m′,y) ∩ G0} in (97): Define
the type class enumerator

Ny(QXY ) =

M−1∑
m=0

I {(Xm,y) ∈ T (QXY )} . (104)

Then, we have the following

P{B̂n(ε, m̂, m̈,y) ∩ G0}

= P

 ∑
m̃∈{0,1,...,M−1}\{m̂,m̈}

eng(P̂Xm̃y) ≥ en·(β(R,P̂y)+ε),

M−1∑
m=0

∑
m′ 6=m

e−n·(Λ(P̂XmX
m′
,R)+ε) ≥ en·(R−E0)

 (105)

≤ P

 ∑
m̃∈{0,1,...,M−1}

eng(P̂Xm̃y) ≥ en·(β(R,P̂y)+ε),

M−1∑
m=0

∑
m′ 6=m

e−n·(Λ(P̂XmX
m′
,R)+ε) ≥ en·(R−E0)

 (106)

= P

∑
QXY

Ny(QXY )eng(QXY ) ≥ en·(β(R,P̂y)+ε),

∑
QXX′

N(QXX′)e
−n·(Λ(QXX′ ,R)+ε) ≥ en·(R−E0)

 (107)

.
= P

 ⋃
QXY

{
Ny(QXY ) ≥ en·(β(R,P̂y)−g(QXY )+ε)

}
,

⋃
QXX′

{
N(QXX′) ≥ en·(Ξ(R,E0,QXX′ )+ε)

} (108)

.
=
∑
QXY

∑
QXX′

P
{
Ny(QXY )l ≥ en·(β(R,P̂y)−g(QXY )+ε)·l,

N(QXX′)
k ≥ en·(Ξ(R,E0,QXX′ )+ε)·k

}
(109)

.
= max

QXY
max
QXX′

P
{
Ny(QXY )l ≥ en·(β(R,P̂y)−g(QXY )+ε)·l,

N(QXX′)
k ≥ en·(Ξ(R,E0,QXX′ )+ε)·k

}
(110)
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≤ max
QXY

max
QXX′

P
{
Ny(QXY )l ·N(QXX′)

k

≥ en·(β(R,P̂y)−g(QXY )+ε)·l · en·(Ξ(R,E0,QXX′ )+ε)·k
}

(111)

≤ max
QXY

max
QXX′

P
{
Ny(QXY )l ·N(QXX′)

k

≥ en·([R−IQ(X;Y )]++ε)·l · en·(Ξ(R,E0,QXX′ )+ε)·k
}

(112)

≤ max
QXY

max
QXX′

E
[
Ny(QXY )l ·N(QXX′)

k
]

en·([R−IQ(X;Y )]++ε)·l · en·(Ξ(R,E0,QXX′ )+ε)·k
,

(113)

where k and l are arbitrary positive integers, and where (108)
follows from the definition of Ξ(R,E0, QXX′) in (25). Step
(111) is due to the fact that P{X ≥ a, Y ≥ b} ≤ P{X · Y ≥
a · b}, under the assumption that a, b are positive. In (112),
we use the definition of β(R,QY ) in (22), which implies that
β(R,QY ) ≥ g(QXY ) + [R− IQ(X;Y )]+ and (113) follows
from Markov’s inequality. After optimizing over l and k,

P{B̂n(ε,m,m′,y) ∩ G0}
·
≤ max

QXY
max
QXX′

inf
l∈N

inf
k∈N

E
[
Ny(QXY )l ·N(QXX′)

k
]

en·([R−IQ(X;Y )]++ε)·l · en·(Ξ(R,E0,QXX′ )+ε)·k
. (114)

For S ≥ 0, a joint distribution QUV , and an integer j ∈ N,
define the following quantity

F (S,QUV , j)

=

{
exp{nj (S − IQ(U ;V ))} IQ(U ;V ) < S
exp{n (S − IQ(U ;V ))} IQ(U ;V ) > S

. (115)

We use the following proposition, which is proved in Appendix
G.

Proposition 4: Let N(QXX′) and Ny(QXY ) be as in (37)
and (104), respectively. Then, for any k, l ∈ N,

E
[
Ny(QXY )lN(QXX′)

k
]

·
≤ F (R,QXY , l) · F (2R,QXX′ , k). (116)

Next, substituting the result of Proposition 4 back into (114)
provides

P{B̂n(ε,m,m′,y) ∩ G0}
·
≤ max

QXY
inf
l∈N

en·(l·[R−IQ(X;Y )]+−[IQ(X;Y )−R]+)

exp{n · ([R− IQ(X;Y )]+ + ε) · l}

× max
QXX′

inf
k∈N

en·(k·[2R−IQ(X;X′)]+−[IQ(X;X′)−2R]+)

exp{n · (Ξ(R,E0, QXX′) + ε) · k}
. (117)

As for the left–hand term in (117), we have that

− 1

n
log max

QXY
inf
l∈N

en·(l·[R−IQ(X;Y )]+−[IQ(X;Y )−R]+)

exp{n · ([R− IQ(X;Y )]+ + ε) · l}

= − 1

n
log max

QXY
inf
l∈N

exp{−n · ([IQ(X;Y )−R]+ + lε)}

(118)
= min
QXY

sup
l∈N

([IQ(X;Y )−R]+ + lε) (119)

=∞. (120)

For the right–hand term in (117), we get the following

− 1

n
log max

QXX′
inf
k∈N

en·(k·[2R−IQ(X;X′)]+−[IQ(X;X′)−2R]+)

exp{n · (Ξ(R,E0, QXX′) + ε) · k}
= min
QXX′

sup
k∈N

(k · (Ξ(R,E0, QXX′) + ε

− [2R− IQ(X;X ′)]+) + [IQ(X;X ′)− 2R]+) (121)
= min{

QXX′∈Q(QX):
[2R−IQ(X;X′)]+≥Ξ(R,E0,QXX′ )+ε

} [IQ(X;X ′)− 2R]+

(122)
= E lb

lt (R,E0, ε). (123)

Thus,

P{B̂n(ε,m,m′,y) ∩ G0}
·
≤ e−n∞ · exp{−n · E lb

lt (R,E0, ε)}.
(124)

Final Steps: Finally, we continue from (97) and use the
results of (103) and (124) to provide

P
{
− 1

n
logPe(Cn) ≤ E0

}
·
≥ P {G0} −

M−1∑
m=0

∑
m′ 6=m

∑
y∈Yn

P
{
B̂n(ε,m,m′,y) ∩ G0

}
(125)

·
≥ exp{−n · E lb

lt (R,E0, ε)}

−
M−1∑
m=0

∑
m′ 6=m

∑
y∈Yn

e−n∞ · exp{−n · E lb
lt (R,E0, ε)} (126)

.
=
(
1− en2R · |Y|n · e−n∞

)
· exp{−n · E lb

lt (R,E0, ε)}
(127)

.
= exp{−n · E lb

lt (R,E0, ε)}. (128)

Due to the arbitrariness of ε > 0, it follows that

P
{
− 1

n
logPe(Cn) ≤ E0

}
·
≥ exp{−n · E lb

lt (R,E0)}, (129)

which proves the lower bound of Theorem 1.

VI. PROOF OF THE UPPER BOUND OF THEOREM 2

Let Zmm′(y), B̂n(σ), and Ĝn(σ) be defined as in (74),
(76), and (77), respectively. One of the main ingredients in
the proof of the upper bound on the probability of the lower
tail in Section V-A is the fact that Zm(y) is lower–bounded
by exp{nα(R, P̂y)} with a probability that approaches one
double–exponentially fast. In order to prove an upper bound
on the probability of the upper tail, we start by showing
that exp{nβ(R, P̂y)} serves as an upper bound on Zmm′(y),
simultaneously for every m ∈ {0, 1, . . . ,M − 1}, m′ ∈
{0, 1, . . . ,M − 1} \ {m}, and y ∈ Yn, with probability that
tends to one double–exponentially fast. More specifically, we
have the following result, which is proved in Appendix H.

Proposition 5: For every σ > 0,

P
{
B̂n(σ)

} ◦
≤ exp {−enσ} . (130)



12

We start with

P
{
− 1

n
logPe(Cn) ≥ E0

}
= P

{
Cn ∈ Ĝn(σ),− 1

n
logPe(Cn) ≥ E0

}
+ P

{
Cn ∈ B̂n(σ),− 1

n
logPe(Cn) ≥ E0

}
(131)

≤ P
{
Cn ∈ Ĝn(σ),− 1

n
logPe(Cn) ≥ E0

}
+ P

{
Cn ∈ B̂n(σ)

}
. (132)

As for the first term,

P
{
Cn ∈ Ĝn(σ),− 1

n
logPe(Cn) ≥ E0

}

= P

Cn ∈ Ĝn(σ),
1

M

M−1∑
m=0

∑
m′ 6=m

∑
y∈Yn

W (y|xm)

× eng(P̂x
m′y

)

eng(P̂xmy) + eng(P̂x
m′y

) + Zmm′(y)
≤ e−n·E0

}
(133)

≤ P

Cn ∈ Ĝn(σ),
1

M

M−1∑
m=0

∑
m′ 6=m

∑
y∈Yn

W (y|xm)

× eng(P̂x
m′y

)

eng(P̂xmy) + eng(P̂x
m′y

) + en·[β(R,P̂y)+σ]
≤ e−n·E0

}
(134)

◦
= P

Cn ∈ Ĝn(σ),
1

M

M−1∑
m=0

∑
m′ 6=m

∑
y∈Yn

W (y|xm)

× en·[max{g(P̂xmy),β(R,P̂y)+σ}−g(P̂x
m′y

)]+ ≤ e−n·E0

}
(135)

◦
= P

{
Cn ∈ Ĝn(σ),

1

M

M−1∑
m=0

∑
m′ 6=m

e−n·Λ̃(P̂xmx
m′
,R,σ) ≤ e−n·E0

 (136)

= P
{
Cn ∈ Ĝn(σ),

∑
Q(QX)

N(QXX′) · e−n·Λ̃(QXX′ ,R,σ) ≤ en·(R−E0)

 (137)

≤ P

 ∑
Q(QX)

N(QXX′) · e−n·Λ̃(QXX′ ,R,σ) ≤ en·(R−E0)

 ,

(138)

where (133) follows from the definitions of the probability of
error and Zmm′(y) in (11) and (74), respectively. In (134),
the definition of the set Ĝn(σ) in (77) was used, in (135), the
exponential equivalence enB/(enA + enB + enC)

.
= exp{−n ·

[max{A,C} − B]+}, in (136), the method of types and the
definition of Λ̃(QXX′ , R, σ) in (78), in (137), the definition
of the type class enumerators N(QXX′) in (37), and in (138),
the event Cn ∈ Ĝn(σ) was taken out.

Next,

P
{
Cn ∈ Ĝn(σ),− 1

n
logPe(Cn) ≥ E0

}
◦
≤ P

 ∑
Q(QX)

N(QXX′) · e−n·Λ̃(QXX′ ,R,σ) ≤ en·(R−E0)


(139)

◦
= P

{
max
Q(QX)

N(QXX′) · e−n·Λ̃(QXX′ ,R,σ) ≤ en·(R−E0)

}
(140)

= P

 ⋂
Q(QX)

{
N(QXX′) ≤ en·(Λ̃(QXX′ ,R,σ)+R−E0)

} ,

(141)

where (140) is due to the SME.

If E0 is relatively small, then for every QXX′ ∈ Q(QX), ei-
ther IQ(X;X ′) ≥ 2R or 2R−IQ(X;X ′) ≤ Λ̃(QXX′ , R, σ)+
R − E0, and we have an intersection of polynomially many
events whose probabilities all tend to one. Hence, for every
σ > 0, we assume that E0 is sufficiently large, so there must
exist at least one QXX′ ∈ Q(QX) for which IQ(X;X ′) ≤ 2R
and Λ̃(QXX′ , R, σ) + R − E0 ≤ 2R − IQ(X;X ′), such that
(141) decays double exponentially fast, according to Lemma
2 in Appendix B. We define the set

Ṽ(R,E0, σ)
∆
= {QXX′ ∈ Q(QX) : IQ(X;X ′) ≤ 2R,

Λ̃(QXX′ , R, σ) + IQ(X;X ′)−R ≤ E0}. (142)

Then,

P
{
Cn ∈ Ĝn(σ),− 1

n
logPe(Cn) ≥ E0

}
◦
≤ P

 ⋂
Q(QX)

{
N(QXX′) ≤ en·(Λ̃(QXX′ ,R,σ)+R−E0)

}
(143)

≤ P

 ⋂
Ṽ(R,E0,σ)

{
N(QXX′) ≤ en·(Λ̃(QXX′ ,R,σ)+R−E0)

} .

(144)

Since Λ̃(QXX′ , R, σ)+R−E0 ≤ 2R−IQ(X;X ′), we obtain

P

 ⋂
Ṽ(R,E0,σ)

{
N(QXX′) ≤ en·(Λ̃(QXX′ ,R,σ)+R−E0)

}
(145)

≤ min
Ṽ(R,E0,σ)

P
{
N(QXX′) ≤ en·(Λ̃(QXX′ ,R,σ)+R−E0)

}
(146)

◦
≤ min
Ṽ(R,E0,σ)

exp
{
−min

(
en(2R−IQ(X;X′)), enR

)}
(147)

= min
Ṽ(R,E0,σ)

exp
{
−en·min{2R−IQ(X;X′),R}

}
(148)

= exp
{
−en·maxṼ(R,E0,σ)

min{2R−IQ(X;X′),R}
}
, (149)
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where (147) follows from Lemma 2 in Appendix B. Let us
define

E1(R,E0, σ) = max
QXX′∈Ṽ(R,E0,σ)

min{2R− IQ(X;X ′), R},

(150)

such that

P
{
Cn ∈ Ĝn(σ),− 1

n
logPe(Cn) ≥ E0

}
◦
≤ exp {− exp {n · E1(R,E0, σ)}} . (151)

Final Steps: Finally, it follows from (151) and Proposition
5 that

P
{
− 1

n
logPe(Cn) ≥ E0

}
≤ P

{
Cn ∈ Ĝn(σ),− 1

n
logPe(Cn) ≥ E0

}
+ P

{
Cn ∈ B̂n(σ)

}
(152)

◦
≤ exp

{
−en·E1(R,E0,σ)

}
+ exp {−enσ} (153)

◦
= exp {− exp{n ·min[E1(R,E0, σ), σ]}} . (154)

As a last step, we optimize over σ > 0, which resulting in

P
{
− 1

n
logPe(Cn) > E0

}
◦
≤ exp

{
− exp

{
n · sup

σ>0
min[E1(R,E0, σ), σ]

}}
. (155)

A Simplified Expression: Note that E1(R,E0, σ) is contin-
uous and monotonically non–increasing in σ, hence we can
solve for the optimal σ > 0 by finding the maximal σ for
which σ ≤ E1(R,E0, σ). Let us abbreviate IQ(X;X ′) by
IQ, and then

E1(R,E0, σ)

= max
QXX′∈Ṽ(R,E0,σ)

min{2R− IQ, R} (156)

= max
{QXX′∈Q(QX): IQ≤2R}

inf
µ≥0
{min{2R− IQ, R}

+ µ · (E0 − Λ̃(QXX′ , R, σ)− IQ +R)
}

(157)

= max
{QXX′∈Q(QX): IQ≤2R}

inf
µ≥0
{min{2R− IQ, R}

+ µ · (E0 − Λ(QXX′ , R)− σ − IQ +R)} (158)
= max
{QXX′∈Q(QX): IQ≤2R}

inf
µ≥0
{min{2R− IQ, R}

+ µ · (E0 − Λ(QXX′ , R)− IQ +R)− µσ} , (159)

where (157) is due to (142) and the fact that
max{Q: g(Q)≥0} f(Q) = maxQ infµ≥0{f(Q) + µ · g(Q)} and
(158) is true thanks to (91). Now, we would like to solve for

σ ≤ max
{QXX′∈Q(QX): IQ≤2R}

inf
µ≥0
{min{2R− IQ, R}

+ µ · (E0 − Λ(QXX′ , R)− IQ +R)− µσ} , (160)

which is equivalent to the statement

∃QXX′ ∈ Q(QX) s.t. IQ ≤ 2R, ∀µ ≥ 0 :

σ ≤ min{2R− IQ, R}
+ µ · (E0 − Λ(QXX′ , R)− IQ +R)− µσ, (161)

or,

∃QXX′ ∈ Q(QX) s.t. IQ ≤ 2R, ∀µ ≥ 0 :

σ ≤ 1

1 + µ
· [min{2R− IQ, R}

+ µ · (E0 − Λ(QXX′ , R)− IQ +R)], (162)

or, equivalently,

σ ≤ max
{QXX′∈Q(QX): IQ≤2R}

inf
µ≥0

1

1 + µ
· [min{2R− IQ, R}

+ µ · (E0 − Λ(QXX′ , R)− IQ +R)]. (163)

For simplicity, let us denote

A = min{2R− IQ, R}, (164)
B = E0 − Λ(QXX′ , R)− IQ +R, (165)

such that

σ ≤ max
{QXX′∈Q(QX): IQ≤2R}

inf
µ≥0

{
A+ µB

1 + µ

}
(166)

= max
{QXX′∈Q(QX): IQ≤2R}

min{A,B} (167)

= max

{
max{QXX′∈Q(QX): IQ≤2R, B≥0}min{A,B}
max{QXX′∈Q(QX): IQ≤2R, B<0}min{A,B}

(168)

= max

{
max{QXX′∈Q(QX): IQ≤2R, B≥0}min{A,B}
max{QXX′∈Q(QX): IQ≤2R, B<0}B

(169)
= max
{QXX′∈Q(QX): IQ≤2R, B≥0}

min{A,B} (170)

= max
QXX′∈V(R,E0)

min{2R− IQ,

E0 − Λ(QXX′ , R)− IQ +R,R} (171)
= Eub

ut (R,E0), (172)

where (169) and (170) are due to the fact that A ≥ 0, while
(171) and (172) follow from the definitions in (42) and (44),
respectively. Thus,

P
{
− 1

n
logPe(Cn) ≥ E0

}
◦
≤ exp

{
− exp

{
n · sup

σ>0
min[E1(R,E0, σ), σ]

}}
(173)

= exp

{
− exp

{
n · sup

0<σ≤Eub
ut (R,E0)

σ

}}
(174)

= exp
{
−en·E

ub
ut (R,E0)

}
, (175)

and the proof of the upper bound of Theorem 2 is complete.



14

VII. PROOF OF THE LOWER BOUND OF THEOREM 2

Let the sets Bε(m,y) and Bε be as defined in (52) and (54),
respectively. Also define Gε(m,y) = Bc

ε(m,y) and Gε = Bc
ε.

Let E0 > 0 be given. Then,

P
{
− 1

n
logPe(Cn) ≥ E0

}

= P

 1

M

M−1∑
m=0

∑
m′ 6=m

∑
y∈Yn

W (y|xm)

·
exp{ng(P̂xm′y)}

exp{ng(P̂xmy)}+ Zm(y)
≤ e−n·E0

}
(176)

≥ P

 1

M

M−1∑
m=0

∑
m′ 6=m

∑
y∈Yn

W (y|xm)

·
exp{ng(P̂xm′y)}

exp{ng(P̂xmy)}+ Zm(y)
≤ e−n·E0 , Cn ∈ Gε

}
(177)

◦
≥ P

 1

M

M−1∑
m=0

∑
m′ 6=m

exp{−nΓ(P̂xmxm′ , R− ε)}

≤ e−n·E0 , Cn ∈ Gε
}
, (178)

where (176) follows from the definitions of the probability of
error and Zm(y) in (11) and (51), respectively. Step (178)
follows from the same considerations as in eqs. (59)–(62).
Now, define the event

E0 = 1

M

M−1∑
m=0

∑
m′ 6=m

exp{−nΓ(P̂xmxm′ , R− ε)} ≤ e
−n·E0

 ,

(179)

such that, continuing from (178),

P {Cn ∈ E0, Cn ∈ Gε}

= P


M−1⋂
m̄=0

⋂
y∈Yn

Gε(m̄,y)

∣∣∣∣∣∣E0
 · P {E0} (180)

=

1− P


M−1⋃
m̄=0

⋃
y∈Yn

Bε(m̄,y)

∣∣∣∣∣∣E0

 · P {E0} (181)

≥

1−
M−1∑
m̄=0

∑
y∈Yn

P {Bε(m̄,y)|E0}

 · P {E0} (182)

= P {E0} −
M−1∑
m̄=0

∑
y∈Yn

P {Bε(m̄,y) ∩ E0} . (183)

Lower–bounding P{E0} in (183): First of all, note that

P {E0}

= P

 1

M

M−1∑
m=0

∑
m′ 6=m

e−nΓ(P̂xmx
m′
,R−ε) ≤ e−n·E0

 (184)

= P

 ∑
Q(QX)

N(QXX′)e
−nΓ(QXX′ ,R−ε) ≤ en·(R−E0)


(185)

◦
= P

{
max
Q(QX)

N(QXX′)e
−nΓ(QXX′ ,R−ε) ≤ en·(R−E0)

}
(186)

= P

 ⋂
Q(QX)

{
N(QXX′) ≤ en·(Γ(QXX′ ,R−ε)+R−E0)

} ,

(187)

where in (185), the definition of N(QXX′) in (37) was used,
and (186) is due to the SME in (7).

Now, if there exists at least one QXX′ ∈ Q(QX) for which
IQ(X;X ′) < 2R and 2R − IQ(X;X ′) > Γ(QXX′ , R −
ε) + R − E0, then this QXX′ alone is responsible for a
double exponential decay of the probability of the event
{N(QXX′) ≤ en·(Γ(QXX′ ,R−ε)+R−E0)} (thanks to Lemma 2
in Appendix B), such that the probability in (187), which is
of the intersection over all QXX′ ∈ Q(QX), decays double
exponentially fast. On the other hand, if for every QXX′ ∈
Q(QX), either IQ(X;X ′) ≥ 2R or 2R − IQ(X;X ′) ≤
Γ(QXX′ , R − ε) + R − E0, then we have an intersection of
polynomially many events whose probabilities all tend to one.
Thus, this probability is exponentially equal to one if and only
if for every QXX′ ∈ Q(QX), either IQ(X;X ′) ≥ 2R or
2R−IQ(X;X ′) ≤ Γ(QXX′ , R−ε)+R−E0, or equivalently,

2R ≤ min
QXX′∈Q(QX)

{IQ(X;X ′)

+ [Γ(QXX′ , R− ε) +R− E0]+}. (188)

Let us now find what is the maximum value of E0 for which
this inequality holds true. The condition is equivalent to

min
QXX′∈Q(QX)

max
0≤a≤1

{IQ(X;X ′)

+ a (Γ(QXX′ , R− ε) +R− E0)} ≥ 2R, (189)

or

∀QXX′ ∈ Q(QX) ∃a ∈ [0, 1] :

IQ(X;X ′) + a (Γ(QXX′ , R− ε) +R− E0) ≥ 2R, (190)

or

∀QXX′ ∈ Q(QX) ∃a ∈ [0, 1] :

Γ(QXX′ , R− ε) +R+
1

a
(IQ(X;X ′)− 2R) ≥ E0, (191)

or, equivalently,

E0

≤ min
QXX′∈Q(QX)

max
0≤a≤1

{Γ(QXX′ , R− ε) +R

+
1

a
(IQ(X;X ′)− 2R)

}
(192)

= min
QXX′∈Q(QX)

[Γ(QXX′ , R− ε) +R

+

{
IQ(X;X ′)− 2R 2R ≥ IQ(X;X ′)
∞ 2R < IQ(X;X ′)

]
(193)
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= min{
QXX′∈Q(QX):
IQ(X;X′)≤2R

} {Γ(QXX′ , R− ε) + IQ(X;X ′)−R}

(194)
≤ Etrc(R). (195)

Thus, we assume that E0 > Etrc(R), which ensures that there
exists at least one QXX′ ∈ Q(QX) for which IQ(X;X ′) ≤
2R and Γ(QXX′ , R− ε) +R−E0 ≤ 2R− IQ(X;X ′), such
that the probability in (187) decays double exponentially fast.
Define

A1 = {QXX′ ∈ Q(QX) : IQ(X;X ′) > 2R} (196)
A2 = {QXX′ ∈ Q(QX) : IQ(X;X ′) ≤ 2R,

Γ(QXX′ , R− ε) + IQ(X;X ′)−R ≤ E0 + ε} (197)
A3 = {QXX′ ∈ Q(QX) : IQ(X;X ′) ≤ 2R,

Γ(QXX′ , R− ε) + IQ(X;X ′)−R > E0 + ε}. (198)

Defining the events

F0 =
⋂

QXX′∈A1∪A2

{N(QXX′) = 0} , (199)

and,

F(QXX′) =
{
N(QXX′) ≤ en·(Γ(QXX′ ,R−ε)+R−E0)

}
,

(200)
then considering the probability in (187), we have that

P

 ⋂
QXX′∈Q(QX)

F(QXX′)


= P

 ⋂
QXX′∈A1∪A2∪A3

F(QXX′)

 (201)

≥ P

 ⋂
QXX′∈A3

F(QXX′),
⋂

QXX′∈A1∪A2

{N(QXX′) = 0}


(202)

= P

 ⋂
QXX′∈A3

F(QXX′)

∣∣∣∣∣∣F0

 · P {F0} (203)

=

1− P

 ⋃
QXX′∈A3

Fc(QXX′)

∣∣∣∣∣∣F0


 · P {F0} (204)

≥

1−
∑

QXX′∈A3

P
{
Fc(QXX′)

∣∣F0

} · P {F0} . (205)

Next, it follows from Markov’s inequality that

P
{
N(QXX′) ≥ en·(Γ(QXX′ ,R−ε)+R−E0)

∣∣∣F0

}
(206)

≤ E [N(QXX′)|F0]

en·(Γ(QXX′ ,R−ε)+R−E0)
(207)

=
E
[∑M−1

m=0

∑
m′ 6=m I {(Xm,Xm′) ∈ T (QXX′)}

∣∣∣F0

]
en·(Γ(QXX′ ,R−ε)+R−E0)

(208)

=

∑M−1
m=0

∑
m′ 6=m P {(Xm,Xm′) ∈ T (QXX′)|F0}
en·(Γ(QXX′ ,R−ε)+R−E0)

(209)

≤ en2R · P {(X0,X1) ∈ T (QXX′)|F0}
en·(Γ(QXX′ ,R−ε)+R−E0)

. (210)

We continue from (205) and get that

P

 ⋂
QXX′∈Q(QX)

F(QXX′)


≥

1−
∑

QXX′∈A3

en2R · P {(X0,X1) ∈ T (QXX′)|F0}
en·(Γ(QXX′ ,R−ε)+R−E0)


· P {F0} (211)

= P {F0}

−
∑

QXX′∈A3

en2R · P {(X0,X1) ∈ T (QXX′),F0}
en·(Γ(QXX′ ,R−ε)+R−E0)

. (212)

In order to upper–bound the probabilities in the summation in
(212), we define the following truncated enumerators

Ñ(QXX′)

∆
=

M−1∑
m=2

∑
m′∈{2,3,...,M−1}\{m}

I {(xm,xm′) ∈ T (QXX′)} ,

(213)

and the event

F1 =
⋂

QXX′∈A2

{
Ñ(QXX′) = 0

}
. (214)

Then,

P {(X0,X1) ∈ T (QXX′),F0}
= P {(X0,X1) ∈ T (QXX′),⋂
Q̂XX′∈A1∪A2

{
N(Q̂XX′) = 0

} (215)

= P

(X0,X1) ∈ T (QXX′),
⋂

Q̂XX′∈A1∪A2

M−1⋂
m=0

⋂
m′∈{0,1,...,M−1}\{m}

{
(Xm,Xm′) /∈ T (Q̂XX′)

}
(216)

≤ P

(X0,X1) ∈ T (QXX′),
⋂

Q̂XX′∈A1∪A2

M−1⋂
m=2

⋂
m′∈{2,3,...,M−1}\{m}

{
(Xm,Xm′) /∈ T (Q̂XX′)

}
(217)

= P {(X0,X1) ∈ T (QXX′)}

× P

 ⋂
Q̂XX′∈A1∪A2

M−1⋂
m=2

⋂
m′∈{2,3,...,M−1}\{m}

{
(Xm,Xm′) /∈ T (Q̂XX′)

}
(218)
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= P {(X0,X1) ∈ T (QXX′)}

· P

 ⋂
Q̂XX′∈A1∪A2

{
Ñ(Q̂XX′) = 0

} (219)

≤ P {(X0,X1) ∈ T (QXX′)}

· P

 ⋂
Q̂XX′∈A2

{
Ñ(Q̂XX′) = 0

} (220)

= P {(X0,X1) ∈ T (QXX′)} · P {F1} . (221)

Substituting it back into (212), now yields

P

 ⋂
QXX′∈Q(QX)

F(QXX′)


≥ P {F0}

−
∑

QXX′∈A3

en2R · P {(X0,X1) ∈ T (QXX′),F0}
en·(Γ(QXX′ ,R−ε)+R−E0)

(222)

≥ P {F0}

−
∑

QXX′∈A3

en2R · P {(X0,X1) ∈ T (QXX′)} · P {F1}
en·(Γ(QXX′ ,R−ε)+R−E0)

(223)
= P {F0}

− P {F1} ·
∑

QXX′∈A3

en2R · P {(X0,X1) ∈ T (QXX′)}
en·(Γ(QXX′ ,R−ε)+R−E0)

.

(224)

Generally, it follows that P {F0} ≤ P {F1}. First, we lower–
bound P {F0}. The following proposition is proved in Ap-
pendix I:

Proposition 6: If E0 < Eex(R), then

P {F0}
◦
≥ exp

{
− exp

{
n · max

QXX′∈A2

{2R− IQ(X;X ′)}
}}

.

(225)

In addition, we can easily prove that under the condition of
E0 < Eex(R), P {F1} can be upper–bounded by the same
expression that lower–bounds P {F0}. We have that

P {F1}

= P

 ⋂
QXX′∈A2

{
Ñ(QXX′) = 0

} (226)

≤ min
QXX′∈A2

P
{
Ñ(QXX′) = 0

}
(227)

◦
≤ min
QXX′∈A2

exp
{
−min

(
en(2R−IQ(X;X′)), enR

)}
(228)

= min
QXX′∈A2

exp
{
−en(2R−IQ(X;X′))

}
(229)

= exp

{
− exp

{
n · max

QXX′∈A2

{2R− IQ(X;X ′)}
}}

,

(230)

where (228) is due to Lemma 2 in Appendix B and (229)
follows from the fact that E0 < Eex(R) is equivalent to
minQXX′∈A2

IQ(X;X ′) > R (Appendix I). Hence,

P {F0}
◦
= P {F1}
◦
= exp

{
− exp

{
n · max

QXX′∈A2

{2R− IQ(X;X ′)}
}}

.

(231)

Using the definition of the set A3 provides

P {E0}

◦
= P

 ⋂
QXX′∈Q(QX)

F(QXX′)

 (232)

≥ P {F0}

− P {F1} ·
∑

QXX′∈A3

en2R · P {(X0,X1) ∈ T (QXX′)}
en·(Γ(QXX′ ,R−ε)+R−E0)

(233)

◦
=

1−
∑

QXX′∈A3

en·(2R−IQ(X;X′))

en·(Γ(QXX′ ,R−ε)+R−E0)


· exp

{
− exp

{
n · max

QXX′∈A2

{2R− IQ(X;X ′)}
}}

(234)

◦
=
(
1− e−nε

)
· exp

{
− exp

{
n · max

QXX′∈A2

{2R− IQ(X;X ′)}
}}

(235)

◦
= exp

{
− exp

{
n · max

QXX′∈A2

{2R− IQ(X;X ′)}
}}

.

(236)

Upper–bounding P {Bε(m̄,y) ∩ E0} in (183): Recall that

P {Bε(m̄,y) ∩ E0}

= P

 ∑
m̃∈{0,1,...,M−1}\{m̄}

eng(P̂Xm̃y) ≤ en·α(R−ε,P̂y),

M−1∑
m=0

∑
m′ 6=m

e−nΓ(P̂XmX
m′
,R−ε) ≤ en·(R−E0)

 . (237)

In order to upper–bound this probability, we do the following.
In the first event, instead of summing over {0, 1, . . . ,M −
1} \ {m̄}, we sum over {bM/2c, bM/2c + 1, . . . ,M − 1} \
{m̄}, and in the second event, instead of summing over
{(m,m′) : m,m′ ∈ {0, 1, . . . ,M − 1}, m 6= m′}, we sum
over N 2 = {(m,m′) : m,m′ ∈ {0, 1, . . . , bM/2c−1}, m 6=
m′}, hence, the two events become independent:

P {Bε(m̄,y) ∩ E0}

≤ P

 ∑
m̃∈{bM/2c,...,M−1}\{m̄}

eng(P̂Xm̃y) ≤ en·α(R−ε,P̂y)


× P

 ∑
(m,m′)∈N 2

e−nΓ(P̂XmX
m′
,R−ε) ≤ en·(R−E0)

 .

(238)
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As for the first factor in (238), note that its sum has exponen-
tially many terms as Zm(y), and hence is also upper–bounded
as in (53). The second factor in (238) can be upper–bounded
using similar analysis as in the proof in Section VI, which
results an upper bound similar to (230). Thus,

P {Bε(m̄,y) ∩ E0}
≤ exp{−enε + nε+ 1}

· exp

{
− exp

{
n · max

QXX′∈A2

{2R− IQ(X;X ′)}
}}

.

(239)

Final Steps: Finally, we continue from (183) and use the
results of (234) and (239) to obtain

P
{
− 1

n
logPe(Cn) ≥ E0

}
◦
≥ P {E0} −

M−1∑
m̄=0

∑
y∈Yn

P {Bε(m̄,y) ∩ E0} (240)

◦
≥ exp

{
− exp

{
n · max

QXX′∈A2

{2R− IQ(X;X ′)}
}}

−
M−1∑
m̄=0

∑
y∈Yn

exp{−enε + nε+ 1}

· exp

{
− exp

{
n · max

QXX′∈A2

{2R− IQ(X;X ′)}
}}

(241)

=
(
1− enR · |Y|n · exp{−enε + nε+ 1}

)
· exp

{
− exp

{
n · max

QXX′∈A2

{2R− IQ(X;X ′)}
}}

(242)

◦
= exp

{
− exp

{
n · max

QXX′∈A2

{2R− IQ(X;X ′)}
}}

,

(243)

which proves the lower bound of Theorem 2.

APPENDIX A

Preliminaries

The main purpose of this appendix is to provide the general
setting and the main results that are borrowed from [19].

Let {Uk}k∈K, where K is a set of multidimensional indexes,
be a family of Bernoulli random variables. Let G be a
dependency graph for {Uk}k∈K, i.e., a graph with vertex
set K such that if A and B are two disjoint subsets of K,
and G contains no edge between A and B, then the families
{Uk}k∈A and {Uk}k∈B are independent. Let S =

∑
k∈K Uk

and ∆ = E[S]. Moreover, we write i ∼ j if (i, j) is an edge
in the dependency graph G. Let

Φ = max
i∈K

E[Ui], (A.1)

Ωi =
∑

j∈K,j∼i

E[Uj ], (A.2)

Ω = max
i∈K

∑
j∈K,j∼i

E[Uj ], (A.3)

and

Θ =
1

2

∑
i∈K

∑
j∈K,j∼i

E[UiUj ]. (A.4)

The following result will be used in the proof of Lemma 2 in
Appendix B:

Fact 1: With notations as above, [19, Th. 10] states that
for any 0 ≤ a ≤ 1,

P{S ≤ a∆}

≤ exp

{
−min

(
(1− a)2 ∆2

8Θ + 2∆
, (1− a)

∆

6Ω

)}
.

(A.5)

The following result will be used in the proof of Lemma 6 in
Appendix B:

Fact 2: With notations as above, [19, Th. 3] states that,

P{S = 0} ≤ exp

{
−min

(
∆2

8Θ
,

∆

6Ω
,

∆

2

)}
. (A.6)

Next, define ϕ(x), 0 ≤ x ≤ e−1, to be the smallest root t of
the equation

t = ext. (A.7)

It is well known that ϕ(x) is well defined in [0, e−1], in
particular, ϕ(x) = 1 +x+O(x2). The following lower bound
will be useful in the proof of Proposition 6 in Appendix I.

Fact 3: With notations as above, suppose further that Ω +
Φ ≤ e−1. Then, with ϕ defined by (A.7), [19, Th. 9] states
that

P{S = 0} ≥ exp{−∆ · ϕ(Ω + Φ)}. (A.8)

APPENDIX B

Proof of Theorem 3

Let us abbreviate I(m,m′)
∆
= I {(xm,xm′) ∈ T (QXX′)},

such that the enumerator N(QXX′) can also be written by

N(QXX′) =
∑

(m,m′)∈[M ]2∗

I(m,m′), (B.1)

where the set [M ]2∗ is an abbreviation for the set
{(m,m′) : m,m′ ∈ {0, 1, . . . ,M − 1}, m 6= m′}.

Before proving Theorem 3, we start with the following
series of partial results, that are going to be instrumental in
proving Theorem 3.

Lemma 1: For any two pairs (i, j), (i, k) ∈ [M ]2∗, j 6= k,

E[I(i, j)I(i, k)]
.
= exp{−2nIQ(X;X ′)}. (B.2)
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Proof: Since all codewords are independent, it follows by the
method of types that

E[I(i, j)I(i, k)]

= P {(Xi,Xj) ∈ T (QXX′), (Xi,Xk) ∈ T (QXX′)}
(B.3)

=
∑

x∈T (QX)

P{Xi = x}

· P {(x,Xj) ∈ T (QXX′), (x,Xk) ∈ T (QXX′)} (B.4)

=
∑

x∈T (QX)

P{Xi = x} · P {(x,Xj) ∈ T (QXX′)}

· P {(x,Xk) ∈ T (QXX′)} (B.5)
.
=

∑
x∈T (QX)

P{Xi = x} · exp{−nIQ(X;X ′)}

· exp{−nIQ(X;X ′)} (B.6)
= exp{−2nIQ(X;X ′)}, (B.7)

where (B.5) is because Xj and Xk are statistically indepen-
dent. Lemma 1 is proved.

Now, we have the following Lemma, which proposes an
upper bound on the probability of the lower tail in the case of
TP type classes.

Lemma 2: Let ε > 0 be given. Then, for any QXX′ such
that IQ(X;X ′) ≤ 2R− ε,

P
{
N(QXX′) ≤ e−nε · E[N(QXX′)]

}
◦
≤ exp

{
−min

(
en(2R−IQ(X;X′)), enR

)}
. (B.8)

Proof: We use the result of Fact 1, that appears in Appendix
A. In our case, we have a = e−nε and ∆

.
= en(2R−IQ(X;X′)),

and it only remains to assess the quantities Θ and Ω. One can
easily check that the indicator random variables I(i, j) and
I(k, l) are independent as long as i 6= k and j 6= l. Thus, we
define our dependency graph in a way that each vertex (i, j)
is connected to exactly enR + enR − 2 vertices of the form
(i, l), l 6= j or (k, j), k 6= i. If the vertices (i, j) and (k, l) are
connected, we denote it by (i, j) ∼ (k, l). Using the result of
Lemma 1, we get that

Θ =
1

2

∑
(i,j)∈[M ]2∗

∑
(k,l)∈[M ]2∗,(k,l)∼(i,j)

E[I(i, j)I(k, l)] (B.9)

.
=

1

2
e2nR · (enR + enR − 2) · e−2nIQ(X;X′) (B.10)

.
= en(3R−2IQ(X;X′)), (B.11)

and

Ω = max
(i,j)∈[M ]2∗

∑
(k,l)∈[M ]2∗,(k,l)∼(i,j)

E[I(k, l)] (B.12)

.
= (enR + enR − 2) · e−nIQ(X;X′) (B.13)
.
= en(R−IQ(X;X′)). (B.14)

Then,

∆

6Ω

.
=
en(2R−IQ(X;X′))

en(R−IQ(X;X′))
= enR, (B.15)

and,

∆2

8Θ + 2∆

.
=

en(4R−2IQ(X;X′))

en(3R−2IQ(X;X′)) + en(2R−IQ(X;X′))
(B.16)

=
en(2R−IQ(X;X′))

en(R−IQ(X;X′)) + 1
(B.17)

.
=
en(2R−IQ(X;X′))

en[R−IQ(X;X′)]+
. (B.18)

Hence,

P
{
N(QXX′) ≤ e−nε · E[N(QXX′)]

}
◦
≤ exp

{
−min

(
en(2R−IQ(X;X′))

en[R−IQ(X;X′)]+
, enR

)}
(B.19)

= exp
{
−min

(
en(2R−IQ(X;X′)), enR

)}
. (B.20)

Now, if IQ(X;X ′) ≤ R, we get

P
{
N(QXX′) ≤ e−nε · E[N(QXX′)]

} ◦
≤ exp

{
−enR

}
,

(B.21)

and otherwise, if R < IQ(X;X ′) ≤ 2R− ε,

P
{
N(QXX′) ≤ e−nε · E[N(QXX′)]

}
◦
≤ exp

{
−en(2R−IQ(X;X′))

}
(B.22)

≤ exp {−enε} , (B.23)

which completes the proof of Lemma 2.

Before moving on to the upper tail, we need the following
lemma, proved in Appendix C.

Lemma 3: For any k ∈ N,

E
[
N(QXX′)

k
]

·
≤
{

exp{nk (2R− IQ(X;X ′))} IQ(X;X ′) < 2R
exp{n (2R− IQ(X;X ′))} IQ(X;X ′) > 2R

.

(B.24)

Concerning the upper tail, we have the following result.

Lemma 4: Let ε > 0 be given. Then, for any QXX′ such
that IQ(X;X ′) ≤ 2R,

P {N(QXX′) ≥ enε · E[N(QXX′)]}
·
≤ e−n∞. (B.25)

Proof: For any k ∈ N, Markov’s inequality and Lemma 3
implies that

P {N(QXX′) ≥ enε · E[N(QXX′)]}

≤ inf
k∈N

E[N(QXX′)
k]

enkε · (E[N(QXX′)])k
(B.26)

·
≤ inf
k∈N

exp {nk (2R− IQ(X;X ′))}
enkε · (exp {n (2R− IQ(X;X ′))})k

(B.27)

= inf
k∈N

exp{−nkε}, (B.28)

thus,

lim inf
n→∞

− 1

n
logP {N(QXX′) ≥ enε · E[N(QXX′)]}

≥ sup
k∈N

kε =∞, (B.29)
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which proves Lemma 4.

Next, we treat the TE type classes.

Lemma 5: Let ε > 0 be given. Then, for any QXX′ such
that IQ(X;X ′) ≥ 2R,

P {N(QXX′) ≥ enε}
·
≤ e−n∞. (B.30)

Proof: For any k ∈ N, Markov’s inequality and Lemma 3
implies that

P {N(QXX′) ≥ enε}

≤ inf
k∈N

E[N(QXX′)
k]

enkε
(B.31)

·
≤ inf
k∈N

exp {n (2R− IQ(X;X ′))}
enkε

(B.32)

= inf
k∈N

exp {−n (IQ(X;X ′)− 2R+ kε)} , (B.33)

and hence,

lim inf
n→∞

− 1

n
logP {N(QXX′) ≥ enε}

≥ sup
k∈N
{IQ(X;X ′)− 2R+ kε} =∞, (B.34)

which completes the proof of Lemma 5. Furthermore, we have

Lemma 6: For any QXX′ such that IQ(X;X ′) ≥ 2R,

P {N(QXX′) ≥ 1} .= exp{n(2R− IQ(X;X ′))}. (B.35)

Proof: An upper bound simply follows from Markov’s in-
equality:

P {N(QXX′) ≥ 1} ≤ E[N(QXX′)] (B.36)
.
= exp{n(2R− IQ(X;X ′))}. (B.37)

For the lower bound, we use Fact 2 from Appendix A.
Similarly to (B.15) and (B.16), we have

∆2

8Θ

.
=
en(4R−2IQ(X;X′))

en(3R−2IQ(X;X′))
= enR, (B.38)

and,

∆

6Ω

.
=
en(2R−IQ(X;X′))

en(R−IQ(X;X′))
= enR. (B.39)

Now, since IQ(X;X ′) ≥ 2R,

P {N(QXX′) = 0}

≤ exp

{
−min

(
enR, enR,

1

2
· en(2R−IQ(X;X′))

)}
(B.40)

= exp

{
−1

2
· en(2R−IQ(X;X′))

}
(B.41)

≤ 1− 1

2
· en(2R−IQ(X;X′)) +

1

8
· en(4R−2IQ(X;X′)), (B.42)

where (B.42) is due to the fact that for t ≥ 0, e−t ≤ 1− t+
t2/2, and so,

P {N(QXX′) ≥ 1} = 1− P {N(QXX′) = 0} (B.43)

≥ 1

2
· exp{n(2R− IQ(X;X ′))}

− 1

8
· exp{n(4R− 2IQ(X;X ′))}

(B.44)
.
= exp{n(2R− IQ(X;X ′))}, (B.45)

which is compatible with the above upper bound, proving
Lemma 6.

Proof of Theorem 3: Let us abbreviate IQ = IQ(X;X ′).
We use the results of Lemmas 2, 4, 5, and 6, and get the
following exponential rate of decay for P {N(QXX′) ≥ ens}:

E(R,Q, s)

=


IQ − 2R IQ ≥ 2R, s ≤ 0
∞ IQ ≥ 2R, s > 0
0 IQ ≤ 2R, s ≤ 2R− IQ
∞ IQ ≤ 2R, s > 2R− IQ

(B.46)

=


[IQ − 2R]+ IQ ≥ 2R, s ≤ [2R− IQ]+
∞ IQ ≥ 2R, s > [2R− IQ]+
[IQ − 2R]+ IQ ≤ 2R, s ≤ [2R− IQ]+
∞ IQ ≤ 2R, s > [2R− IQ]+

(B.47)

=

{
[IQ − 2R]+ [2R− IQ]+ ≥ s
∞ [2R− IQ]+ < s

, (B.48)

which proves Theorem 3.

APPENDIX C

Proof of Lemma 3

For a set of indices J let us denote J 2
∗ = {(j, j′) ∈

J 2 : j 6= j′}. Recall that I(m,m′) = I{(Xm,Xm′) ∈
T (QXX′)} and N(QXX′) =

∑
(m,m′)∈[M ]2∗

I(m,m′). We
show by induction that

E
[
N(QXX′)

k
] ·
≤
{
enk(2R−I) I < 2R
e−n(I−2R) I > 2R

, (C.1)

where I is a shorthand notation for IQ(X;X ′). This clearly
holds for k = 1 by linearity of expectation. We assume it
holds up to k − 1 and show this for k.

Proof for k: Assume that {(mi,m
′
i)}

k−1
i=1 are given, where

(mi,m
′
i) ∈ [M ]2∗ for all i ∈ [k − 1]. Let Mk−1 =⋃k−1

i=1 {{mi} ∪ {m′i}} be the set of indices of the k − 1
pairs of codeword indices {(mi,m

′
i)}

k−1
i=1 . We condition on

all these codewords, and then compute expectation w.r.t. all
other codewords. For any fixed k, the number of codewords
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in the first k − 1 indicators is negligible to the number of all
other codewords. Specifically, |Mk−1| ≤ 2(k−1) holds. Now,∑

(mk,m′k)∈[M ]2∗

I(mk,m
′
k)

=
∑

(mk,m′k)∈([M ]\Mk−1)2∗

I(mk,m
′
k)

+
∑

mk∈Mk−1

∑
m′k∈[M ]\Mk−1

(I(mk,m
′
k) + I(m′k,mk))

+
∑

(mk,m′k)∈(Mk−1)2∗

I(mk,m
′
k). (C.2)

By (C.2), linearity of expectation, the independence of code-
words assumption, and the trivial fact that I(mk,m

′
k) ≤ 1,

E

 ∑
(mk,m′k)∈[M ]2∗

I(mk,m
′
k)

∣∣∣∣∣∣{X l}l∈Mk−1


·
≤ en(2R−I) + 4(k − 1)en(R−I) + 4(k − 1)2 (C.3)
.
= max{en(2R−I), 1}. (C.4)

Now,

E
[
N(QXX′)

k
]

=
∑

{
(mi,m

′
i)∈[M ]2∗,

1≤i≤k

}E

[
k∏
i=1

I(mi,m
′
i)

]
(C.5)

=
∑

{
(mi,m

′
i)∈[M ]2∗,

1≤i≤k−1

}E

[
k−1∏
i=1

I(mi,m
′
i)

·

 ∑
(mk,m′k)∈[M ]2∗

I(mk,m
′
k)

 . (C.6)

The expectation in (C.6) is given by

E

k−1∏
i=1

I(mi,m
′
i) ·

 ∑
(mk,m′k)∈[M ]2∗

I(mk,m
′
k)


= E

E
k−1∏
i=1

I(mi,m
′
i) ·

 ∑
(mk,m′k)∈[M ]2∗

I(mk,m
′
k)


∣∣{X l}l∈Mk−1

]]
(C.7)

= E

k−1∏
i=1

I(mi,m
′
i) · E

 ∑
(mk,m′k)∈[M ]2∗

I(mk,m
′
k)


∣∣{X l}l∈Mk−1

]]
(C.8)

·
≤ max{en(2R−I), 1} · E

[
k−1∏
i=1

I(mi,m
′
i)

]
, (C.9)

where (C.8) is due to the fact that upon conditioning on
{X l}l∈Mk−1

,
∏k−1
i=1 I(mi,m

′
i) is fixed, and (C.9) follows

from (C.4). Substituting it back into (C.6) and using the
induction assumption provides

E
[
N(QXX′)

k
]

·
≤ max{en(2R−I), 1}

∑
{

(mi,m
′
i)∈[M ]2∗,

1≤i≤k−1

}E

[
k−1∏
i=1

I(mi,m
′
i)

]

(C.10)

= max{en(2R−I), 1} · E
[
(N(QXX′))

k−1
]

(C.11)

·
≤ max{en(2R−I), 1} ·

{
en(k−1)(2R−I) I < 2R
e−n(I−2R) I > 2R

(C.12)

=

{
enk(2R−I) I < 2R
e−n(I−2R) I > 2R

. (C.13)

Thus, Lemma 3 is proved.

APPENDIX D

Proof of Proposition 1

The monotonicity is straightforward, and follows the fact
that L(R,E0) and M(R,E0), defined in (26) and (27),
respectively, become larger when E0 grows. In order to show
the fourth item, observe that when E0 < Emin

0 , the set L(R,E0)
is empty. As for the second item, we seek a condition on E0

such that Eub
lt (R,E0) > 0:

min
QXX′∈L(R,E0)

[IQ(X;X ′)− 2R]+ > 0. (D.1)

Explicitly,

min
{QXX′∈Q(QX): [2R−IQ(X;X′)]+≥Γ(QXX′ ,R)+R−E0}

[IQ(X;X ′)− 2R]+ > 0, (D.2)

and by using the identity min{Q: g(Q)≤0} f(Q) =
minQ sups≥0{f(Q) + s · g(Q)}, it can also be written
as

min
QXX′∈Q(QX)

sup
s≥0
{s · (Γ(QXX′ , R) +R− E0

−[2R− IQ(X;X ′)]+) + [IQ(X;X ′)− 2R]+} > 0, (D.3)

which means that for every QXX′ ∈ Q(QX) there exists some
s ≥ 0, such that

s · (Γ(QXX′ , R) +R− E0 − [2R− IQ(X;X ′)]+)

+ [IQ(X;X ′)− 2R]+ > 0, (D.4)

or equivalently,

E0 < Γ(QXX′ , R) +R− [2R− IQ(X;X ′)]+

+
[IQ(X;X ′)− 2R]+

s
. (D.5)
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Thus,

E0 < min
QXX′∈Q(QX)

sup
s≥0
{Γ(QXX′ , R) +R

− [2R− IQ(X;X ′)]+ +
[IQ(X;X ′)− 2R]+

s

}
(D.6)

= min
QXX′∈Q(QX)

[Γ(QXX′ , R) +R− [2R− IQ(X;X ′)]+

+

{
0 IQ(X;X ′) ≤ 2R
∞ IQ(X;X ′) > 2R

]
(D.7)

= min
{QXX′∈Q(QX): IQ(X;X′)≤2R}

{Γ(QXX′ , R) +R

− [2R− IQ(X;X ′)]+} (D.8)
= min
{QXX′∈Q(QX): IQ(X;X′)≤2R}

{Γ(QXX′ , R)

+ IQ(X;X ′)−R} (D.9)
= Etrc(R), (D.10)

where the ∞ in (D.7) is because the maximizing s ≥ 0 in
(D.6) when IQ(X;X ′) > 2R is s∗ = 0. The proof of the
third item is very similar to the proof of the second item and
hence omitted.

APPENDIX E

Proof of Proposition 3

The monotonicity is immediate, since both V(R,E0) and
U(R,E0), defined in (42) and (43), respectively, become larger
when E0 grows. In order to show the second item, we seek a
condition on E0 such that E lb

ut (R,E0) > 0:

max
QXX′∈U(R,E0)

{2R− IQ(X;X ′)} > 0. (E.1)

Explicitly,

max
{QXX′∈Q(QX): IQ(X;X′)≤2R, Γ(QXX′ ,R)+IQ(X;X′)−R≤E0}

{2R− IQ(X;X ′)} > 0, (E.2)

and thanks to the fact that max{Q: g(Q)≥0} f(Q) =
maxQ infµ≥0{f(Q) + µ · g(Q)}, it can also be written as

max
{QXX′∈Q(QX): IQ(X;X′)≤2R}

inf
µ≥0
{2R− IQ(X;X ′)

+ µ · (E0 − Γ(QXX′ , R)− IQ(X;X ′) +R)} > 0, (E.3)

or, equivalently,

∃QXX′ ∈ Q(QX) s.t. IQ(X;X ′) ≤ 2R, ∀µ ≥ 0 :

µ · E0 > IQ(X;X ′)− 2R

+ µ · (Γ(QXX′ , R) + IQ(X;X ′)−R), (E.4)

or,

E0 > min
{QXX′∈Q(QX): IQ(X;X′)≤2R}

sup
µ≥0

{
IQ(X;X ′)− 2R

µ

+ Γ(QXX′ , R) + IQ(X;X ′)−R} (E.5)
= min
{QXX′∈Q(QX): IQ(X;X′)≤2R}

{Γ(QXX′ , R)

+ IQ(X;X ′)−R} (E.6)
= Etrc(R), (E.7)

where (E.6) is because the maximizing µ ≥ 0 in (E.5) is
µ∗ =∞, since IQ(X;X ′) ≤ 2R. The proof of the third item
is very similar to the proof of the second item and hence
omitted.

APPENDIX F

Proof of Corollary 1

The probability of any codebook in the ensemble is given
asymptotically by exp{−nHQ(X)enR}, hence, in order to
assure that a code exists, we demand that

P
{
− 1

n
logPe(Cn) ≥ E0

}
> exp{−nHQ(X)enR}. (F.1)

Now, the lower bound of Theorem 2 reads

P
{
− 1

n
logPe(Cn) ≥ E0

}
◦
≥ exp

{
− exp

{
n · max

QXX′∈U(R,E0)
{2R− IQ(X;X ′)}

}}
,

(F.2)

thus (F.1) will obviously be satisfied if

max
QXX′∈U(R,E0)

{2R− IQ(X;X ′)} < R, (F.3)

or, equivalently,

min
QXX′∈U(R,E0)

IQ(X;X ′) > R, (F.4)

which is exactly (I.19). Then, following some algebraic work,
that can be found in (I.20)–(I.30), we found that (F.4) is
equivalent to E0 < Eex(R).

APPENDIX G

Proof of Proposition 4

For a set of indices J let us denote J 2
∗ = {(j, j′) ∈

J 2 : j 6= j′}. Recall that I(m,m′) = I{(Xm,Xm′) ∈
T (QXX′)} and N(QXX′) =

∑
(m,m′)∈[M ]2∗

I(m,m′). Let us
abbreviate I(m) = I {(Xm,y) ∈ T (QXY )}, such that

Ny(QXY ) =
∑

m∈[M ]

I(m). (G.1)

Recall the definition of F (S,QUV , j) in (115). We show by
induction that

E
[
Ny(QXY )lN(QXX′)

k
]

·
≤ F (R,QXY , l) · F (2R,QXX′ , k). (G.2)

Checking for k = l = 1: Note that due to the symmetry of
the random draw over the type class:

E [I(m,m′)I(m)] = E [I(m)E [I(m,m′) |Xm]] (G.3)
= E [I(m)] · E [I(m,m′)] (G.4)
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and similarly, E [I(m,m′)I(m′)] = E [I(m′)] · E [I(m,m′)].
Thus, for k = l = 1:

E [Ny(QXY )N(QXX′)]

=
∑

(m,m′)∈[M ]2∗

∑
r∈[M ]

E [I(m,m′)I(r)] (G.5)

=
∑

(m,m′)∈[M ]2∗

 ∑
r∈[M ]\{m,m′}

E [I(m,m′)]E [I(r)]

+ E [I(m,m′)I(m)] + E [I(m,m′)I(m′)]) (G.6)

=
∑

(m,m′)∈[M ]2∗

∑
r∈[M ]

E [I(m,m′)]E [I(r)] (G.7)

.
= en(2R−IQ(X;X′)) · en(R−IQ(X;Y )). (G.8)

Induction assumption: Assume that (G.2) holds up for some
(k− 1, l− 1). We show by two inductive steps that this holds
for (k, l − 1) and (k − 1, l) and thus for any (k, l).

Proof for (k, l − 1): Assume that {(mi,m
′
i)}

k−1
i=1 and

{rj}l−1
j=1 are given, where (mi,m

′
i) ∈ [M ]2∗ for all i ∈ [k−1],

and rj ∈ [M ] for all j ∈ [l − 1]. Let Mk−1,l−1 =⋃k−1
i=1 {{mi} ∪ {m′i}} ∪

⋃l−1
j=1{rj} be the set of indices of

the k − 1 pairs of codeword indices {(mi,m
′
i)}

k−1
i=1 and of

the l − 1 codeword indices {rj}l−1
j=1. Clearly |Mk−1,l−1| ≤

2(k − 1) + l − 1
∆
= ck−1,l−1 holds. Now,∑

(mk,m′k)∈[M ]2∗

I(mk,m
′
k)

=
∑

(mk,m′k)∈([M ]\Mk−1,l−1)2∗

I(mk,m
′
k)

+
∑

mk∈Mk−1,l−1

∑
m′k∈[M ]\Mk−1,l−1

(I(mk,m
′
k) + I(m′k,mk))

+
∑

(mk,m′k)∈(Mk−1,l−1)2∗

I(mk,m
′
k). (G.9)

By (G.9), linearity of expectation, the independence of code-
words assumption, and the fact that I(mk,m

′
k) ≤ 1,

E

 ∑
(mk,m′k)∈[M ]2∗

I(mk,m
′
k)

∣∣∣∣∣∣{Xs}s∈Mk−1,l−1


≤̇en(2R−IQ(X;X′)) + 2ck−1,l−1e

n(R−IQ(X;X′)) + c2k−1,l−1

(G.10)

=̇ max{en(2R−IQ(X;X′)), 1}. (G.11)

Next,

E
[
Ny(QXY )l−1N(QXX′)

k
]

=
∑

{
(mi,m

′
i)∈[M ]2∗,

1≤i≤k

}
∑

{
rj∈[M ],

1≤j≤l−1

}E

 k∏
i=1

I(mi,m
′
i)

l−1∏
j=1

I(rj)


(G.12)

=
∑

{
(mi,m

′
i)∈[M ]2∗,

1≤i≤k−1

}
∑

{
rj∈[M ],

1≤j≤l−1

}E

k−1∏
i=1

I(mi,m
′
i) ·

l−1∏
j=1

I(rj)

 ∑
(mk,m′k)∈[M ]2∗

I(mk,m
′
k)

 . (G.13)

The expectation in (G.13) is given by

E

k−1∏
i=1

I(mi,m
′
i) ·

l−1∏
j=1

I(rj)

 ∑
(mk,m′k)∈[M ]2∗

I(mk,m
′
k)


= E

E
k−1∏
i=1

I(mi,m
′
i) ·

l−1∏
j=1

I(rj) ∑
(mk,m′k)∈[M ]2∗

I(mk,m
′
k)

∣∣∣∣∣∣{Xs}s∈Mk−1,l−1

 (G.14)

= E

k−1∏
i=1

I(mi,m
′
i) ·

l−1∏
j=1

I(rj)

· E

 ∑
(mk,m′k)∈[M ]2∗

I(mk,m
′
k)

∣∣∣∣∣∣{Xs}s∈Mk−1,l−1


(G.15)

·
≤ max{en(2R−IQ(X;X′)), 1}

· E

k−1∏
i=1

I(mi,m
′
i) ·

l−1∏
j=1

I(rj)

 , (G.16)

where (G.15) is thanks to the conditioning on
{Xs}s∈Mk−1,l−1

, and (G.16) is due to (G.11). Substituting it
back into (G.13) and using the induction assumption provides

E
[
Ny(QXY )l−1N(QXX′)

k
]

·
≤ max{en(2R−IQ(X;X′)), 1}∑
{

(mi,m
′
i)∈[M ]2∗,

1≤i≤k−1

}
∑

{
rj∈[M ],

1≤j≤l−1

}E

k−1∏
i=1

I(mi,m
′
i) ·

l−1∏
j=1

I(rj)


(G.17)

= max{en(2R−IQ(X;X′)), 1}
· E
[
Ny(QXY )l−1N(QXX′)

k−1
]

(G.18)
·
≤ max{en(2R−IQ(X;X′)), 1}
· F (R,QXY , l − 1) · F (2R,QXX′ , k − 1) (G.19)

= F (R,QXY , l − 1) · F (2R,QXX′ , k), (G.20)

which completes the proof of the first inductive step. The proof
of the second inductive step follows exactly the same lines and
hence omitted. The proof of Proposition 4 is complete.

APPENDIX H

Proof of Proposition 5

By the union bound,

P
{
B̂n(σ)

}
= P


M−1⋃
m=0

⋃
m′ 6=m

⋃
y∈Yn

B̂n(σ,m,m′,y)

 (H.1)
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≤
M−1∑
m=0

∑
m′ 6=m

∑
y∈Yn

P
{
B̂n(σ,m,m′,y)

}
. (H.2)

Now,

P
{
B̂n(σ,m,m′,y)

}
= P

 ∑
m̃∈{0,1,...,M−1}\{m,m′}

eng(P̂Xm̃y) ≥ en·(β(R,QY )+σ)

 (H.3)

= P

∑
QXY

N(QXY )eng(QXY ) ≥ en·(β(R,QY )+σ)

 (H.4)

.
=
∑
QXY

P
{
N(QXY ) ≥ en(β(R,QY )+σ−g(QXY ))

}
(H.5)

=
∑

{QXY : IQ(X;Y )≤R}

P
{
N(QXY ) ≥ en(β(R,QY )+σ−g(QXY ))

}
+

∑
{QXY : IQ(X;Y )>R}

P
{
N(QXY ) ≥ en(β(R,QY )+σ−g(QXY ))

}
,

(H.6)

where (H.3) is due to the definition of Zmm′(y) in (74),
in (H.4) we introduced the type class enumerator N(QXY ),
which is the number of codewords in Cn, other than xm and
xm′ , that have a joint composition QXY together with y, and
where (H.5) is due to the SME. The first summand of (H.6)
is upper–bounded by

P {N(QXY ) ≥ exp {n (β(R,QY ) + σ − g(QXY ))}}
= P {N(QXY ) ≥ exp {n (σ + β(R,QY )− g(QXY )

− [R− IQ(X;Y )]+ + [R− IQ(X;Y )]+

)}}
(H.7)

≤ P
{
N(QXY ) ≥ exp

{
n
(
σ + [R− IQ(X;Y )]+

)}}
(H.8)

= P
{
N(QXY ) ≥ en(σ+R−IQ(X;Y ))

}
(H.9)

≤ exp
{
−enRD(e−n[R−(σ+R−IQ(X;Y ))]‖e−nIQ(X;Y ))

}
(H.10)

= exp
{
−enRD(e−n(IQ(X;Y )−σ)‖e−nIQ(X;Y ))

}
(H.11)

< exp
{
−enR · e−n(IQ(X;Y )−σ)

·
(

ln
e−n(IQ(X;Y )−σ)

e−nIQ(X;Y )
− 1

)}
(H.12)

= exp
{
−en(R−IQ(X;Y )+σ) · (nσ − 1)

}
(H.13)

≤ exp {−enσ} . (H.14)

In (H.8), we use the definition of β(R,QY ) in (22), which
implies that β(R,QY ) ≥ g(QXY ) + [R− IQ(X;Y )]+, and
for (H.9), recall that R ≥ IQ(X;Y ). Step (H.10) is according
to Chernoff’s bound [16, Appendix], [12, Appendix B], (H.12)
is due to the following lower bound to the binary divergence
[22, Sec. 6.3, p. 167]

D(a‖b) > a
(

ln
a

b
− 1
)
, (H.15)

and (H.14) is true since R ≥ IQ(X;Y ). Similarly, for the
second summand of (H.6), we have

P {N(QXY ) ≥ exp {n (β(R,QY ) + σ − g(QXY ))}}

≤ P
{
N(QXY ) ≥ exp

{
n
(
σ + [R− IQ(X;Y )]+

)}}
(H.16)

= P {N(QXY ) ≥ enσ} (H.17)

≤ exp
{
−enRD(e−n(R−σ)‖e−nIQ(X;Y ))

}
(H.18)

< exp

{
−enR · e−n(R−σ) ·

(
ln

e−n(R−σ)

e−nIQ(X;Y )
− 1

)}
(H.19)

= exp {−enσ · [n(IQ(X;Y )−R+ σ)− 1]} (H.20)
≤ exp {−enσ} , (H.21)

where (H.16) is true for the same reason as (H.8), (H.17) is
because IQ(X;Y ) > R, (H.18) is again due to Chernoff’s
bound, (H.19) is true thanks to (H.15), and (H.21) is due to
IQ(X;Y ) − R + σ > 0. Hence, we conclude that for every
σ > 0

P{B̂n(σ,m,m′,y)}
= P{Zmm′(y) ≥ exp{n · (β(R,QY ) + σ)}} (H.22)
◦
≤ exp {−enσ} , (H.23)

and so, continuing from (H.2), this means that

P
{
B̂n(σ)

} ◦
≤
M−1∑
m=0

∑
m′ 6=m

∑
y∈Yn

exp {−enσ} (H.24)

◦
= exp {−enσ} , (H.25)

which completes the proof of the proposition.

APPENDIX I

Proof of Proposition 6

First, note that

F0 =

 ∑
QXX′∈A1∪A2

N(QXX′) = 0

 . (I.1)

Let us define

N(A1 ∪ A2)
∆
=

∑
QXX′∈A1∪A2

N(QXX′), (I.2)

and the binary random variables

I(m,m′, QXX′)
∆
= I {(Xm,Xm′) ∈ T (QXX′)} , (I.3)

such that,

N(A1 ∪ A2) =
∑

QXX′∈A1∪A2

M−1∑
m=0

∑
m′ 6=m

I(m,m′, QXX′).

(I.4)

In order to use Fact 3 that appears in Appendix A, let us first
define an appropriate dependency graph. One can easily check
that the indicator random variables I(i, j, Q) and I(k, l, Q̃)
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are independent as long as i 6= k, j 6= l, and Q 6= Q̃. Thus,
we define our dependency graph in a way that each vertex
(i, j, Q) is connected to exactly enR − 1 vertices of the form
(k, j,Q), k 6= i, to enR − 1 vertices of the form (i, l, Q),
l 6= j, and to exactly |A1 ∪ A2| − 1 vertices of the form
(i, j, Q̃), Q̃ 6= Q. Let us now examine the quantities ∆, Ω,
and Φ. First,

∆ = E[N(A1 ∪ A2)] (I.5)

=
∑

QXX′∈A1∪A2

E[N(QXX′)] (I.6)

.
=

∑
QXX′∈A1∪A2

en·(2R−IQ(X;X′)) (I.7)

.
= max
QXX′∈A1∪A2

en·(2R−IQ(X;X′)) (I.8)

= exp

{
n · max

QXX′∈A1∪A2

{2R− IQ(X;X ′)}
}

(I.9)

= exp

{
n · max

QXX′∈A2

{2R− IQ(X;X ′)}
}
, (I.10)

where the last equality follows from the definitions of A1 and
A2 and the assumption that A2 is nonempty. Regarding the
quantity Ωi,j,Q of (A.2), notice that it actually depends only
on Q. Thus, for some Q ∈ A1 ∪ A2,

ΩQ
.
= (enR + enR − 2) · e−nIQ(X;X′)

+
∑

Q̃∈A1∪A2\{Q}

e−nIQ̃(X;X′) (I.11)

.
= en(R−IQ(X;X′)) +

∑
Q̃∈A1∪A2

e−nIQ̃(X;X′) (I.12)

.
= en(R−IQ(X;X′)) + max

Q̃∈A1∪A2

e−nIQ̃(X;X′), (I.13)

and hence

Ω = max
Q∈A1∪A2

ΩQ
.
= max
Q∈A1∪A2

en(R−IQ(X;X′)). (I.14)

Furthermore,

Φ
.
= max
Q∈A1∪A2

e−nIQ(X;X′), (I.15)

such that

Ω + Φ
.
= max
Q∈A1∪A2

en(R−IQ(X;X′)) (I.16)

= max
Q∈A2

en(R−IQ(X;X′)). (I.17)

Now, we would like to have Ω + Φ ∈ [0, e−1]. Specifically, if
Ω + Φ→ 0 as n→∞, then ϕ(Ω + Φ)

.
= 1. In order to have

Ω + Φ→ 0, we need that

max
Q∈A2

{R− IQ(X;X ′)} < 0, (I.18)

or

min
QXX′∈A2

IQ(X;X ′) > R. (I.19)

Let us abbreviate IQ(X;X ′) by IQ. In order to find
the highest E0 for which (I.19) holds, let us derive
minQXX′∈A2

IQ(X;X ′) as follows:

min
QXX′∈A2

IQ

= min
{QXX′∈Q(QX): IQ≤2R, Γ(Q,R−ε)+IQ−R≤E0}

IQ (I.20)

= min
QXX′∈Q(QX)

sup
σ≥0

sup
µ≥0
{IQ + σ · (IQ − 2R)

+ µ · (Γ(Q,R− ε) + IQ −R− E0)} , (I.21)

where in (I.21) we used twice the fact that
min{Q: g(Q)≤0} f(Q) = minQ supσ≥0{f(Q) +σ · g(Q)}. For
(I.21) to be strictly larger than R, it is equivalent to require
that for all QXX′ ∈ A2 there exist σ ≥ 0 and µ ≥ 0 such
that

IQ + σ · (IQ − 2R)

+ µ · (Γ(Q,R− ε) + IQ −R− E0) > R, (I.22)

or, equivalently,

E0 <
IQ −R+ σ · (IQ − 2R)

µ
+ Γ(Q,R− ε) + IQ −R.

(I.23)

Thus,

E0 < min
QXX′∈Q(QX)

sup
µ≥0

sup
σ≥0
{Γ(Q,R− ε) + IQ −R

+
IQ −R+ σ · (IQ − 2R)

µ

}
(I.24)

= min
QXX′∈Q(QX)

sup
µ≥0

[Γ(Q,R− ε) + IQ −R

+

{
IQ−R
µ IQ ≤ 2R

∞ IQ > 2R

]
(I.25)

= min
{QXX′∈Q(QX): IQ≤2R}

sup
µ≥0
{Γ(Q,R− ε) + IQ

−R+
IQ −R
µ

}
(I.26)

= min
{QXX′∈Q(QX): IQ≤2R}

[Γ(Q,R− ε) + IQ −R

+

{
0 IQ ≤ R
∞ IQ > R

]
(I.27)

= min
{QXX′∈Q(QX): IQ≤2R, IQ≤R}

{Γ(Q,R− ε)

+ IQ −R} (I.28)
= min
{QXX′∈Q(QX): IQ≤R}

{Γ(Q,R− ε) + IQ −R} (I.29)

≡ Eex(R, ε), (I.30)

where the ∞ in (I.25) is because the maximizing σ ≥ 0 in
(I.24) when IQ > 2R is σ∗ = ∞. The ∞ in (I.27) is due to
the fact that when IQ > R, the maximizing µ ≥ 0 in (I.26) is
µ∗ = 0. Note that the exponent function Eex(R, ε) converges
to Eex(R) when ε ↓ 0. Finally, we use these results in Fact 3
and get the desired lower bound on P{F0}.
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