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Abstract

Horizontal integration of summary statistics from different GWAS traits can be used to eval-

uate evidence for their shared genetic causality. One popular method to do this is a Bayes-

ian method, coloc, which is attractive in requiring only GWAS summary statistics and no

linkage disequilibrium estimates and is now being used routinely to perform thousands of

comparisons between traits. Here we show that while most users do not adjust default soft-

ware values, misspecification of prior parameters can substantially alter posterior inference.

We suggest data driven methods to derive sensible prior values, and demonstrate how sen-

sitivity analysis can be used to assess robustness of posterior inference. The flexibility of

coloc comes at the expense of an unrealistic assumption of a single causal variant per trait.

This assumption can be relaxed by stepwise conditioning, but this requires external software

and an LD matrix aligned to study alleles. We have now implemented conditioning within

coloc, and propose a new alternative method, masking, that does not require LD and

approximates conditioning when causal variants are independent. Importantly, masking can

be used in combination with conditioning where allelically aligned LD estimates are available

for only a single trait. We have implemented these developments in a new version of coloc

which we hope will enable more informed choice of priors and overcome the restriction of

the single causal variant assumptions in coloc analysis.

Author summary

Determining whether two traits share a genetic cause can be helpful to identify mecha-

nisms underlying genetically-influenced risk of disease or other traits. One method for

doing this is “coloc”, which updates prior knowledge about the chance of two traits shar-

ing a causal variant with observed genetic association data in a Bayesian statistical frame-

work. To do this using only summary genetic association data that is commonly shared,

the method makes certain assumptions, in particular about the number of genetic causal

variants that may underlie each measured trait in a genomic region. We walk through sev-

eral data-driven approaches to summarise the prior knowledge required for this tech-

nique, and propose sensitivity analysis as a means of checking that inference is robust to

uncertainty about that prior knowledge. We also show how the assumptions about
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number of causal variants in a region may be relaxed, and that this improves inferential

accuracy.

Introduction

As genome-wide association studies (GWAS) have considered a greater diversity of traits in

greater numbers of samples, comparative analyses of GWAS results have become a useful tool

to explore the aetiological connections between different traits. For example, estimates of

genetic correlation obtained via LD score regression quantify the average proportion of genetic

variance of two traits that is shared across the genome, [1] although typically large sample sizes

are required in both trait studies for accuracy. [2] Linking traits through genetics overcomes at

least one major challenge of observational studies, reverse causality, and with careful design,

can also address confounding. Epidemiologists have developed and widely deployed the tech-

nique of Mendelian randomization (MR), [3] which has been used, for example, to establish

causal effects of factors such as alcohol intake on aspects of health. [4] The method uses a

genetic variant or variants with established effects on one trait, and assesses whether a second

trait is (proportionally) associated with these instrumental variables. Assuming certain

assumptions hold true, [5] this provides evidence that the first trait is somehow causal for the

second. While MR was originally envisaged as a test of causality of specific risk factors for

which tests of causality might be confounded in observational studies, MR has been extended

to routinely assess the potential for any GWAS trait to mediate another. [6] However, the ubiq-

uity of genetic effects on some measurable aspect of human physiology or health, which have

prompted suggestions of an omnigenic model, [7] raise concerns that LD between causal vari-

ants can violate the MR assumption that the instrumental variable is only associated with the

outcome through the “mediating” trait. [8] This routine testing of all possible mediators is sim-

ilar in design to the assessment of potential molecular causes of disease, which has been

addressed through alternative approaches that focus not on whether one trait is causal for

another, but whether two traits share the same causal variants in a single, LD-defined, genetic

region, termed colocalisation.

While one such method is built on MR [9] and proceeds by filtering MR-positive associa-

tions via a test of heterogeneity in the estimated proportional effect across multiple SNPs in

the region, another popular colocalisation method, coloc, [10] avoids MR assumptions alto-

gether. Instead, coloc enumerates every possible configuration of causal variants for each of

two traits, and calculates the support for that causal model in the form of a Bayes factor can be

calculated under an assumption that at most one causal variant per trait exists in the region

(see S1 Text). Each configuration corresponds to exactly one of five mututally exclusive

hypotheses about association and genetic sharing in the region:

H0 : no association

H1 : association to trait 1 only

H2 : association to trait 2 only

H3 : association to both traits; distinct causal variants

H4 : association to both traits; shared causal variant

The coloc approach has also been extended beyond pairs of traits, although computational effi-

ciency scales poorly with numbers of traits [11, 12] unless decisions are binarised [13] and to
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deal with GWAS data that share controls, though at the expense of requiring raw genotype

data [11].

As a Bayesian method, coloc requires specification of three informative prior probabilities:

p1, p2, p12 are, respectively, the prior probabilities that any random SNP in the region is associ-

ated with exactly trait 1, trait 2, or both traits (Fig 1). Although values for these were suggested

in the initial proposal, [12] appropriate values should depend on specific datasets used, partic-

ularly for p12, and no specific guidance on how this choice should be made was given.

One of the strengths of coloc is the simplicity of data required. The assumption of at most

one causal variant per trait allows inference to be made through reconstructing joint models

Fig 1. Each hypothesis for coloc analysis H0. . .H4 may be enumerated by configurations, one configuration per

row shown grouped by hypothesis. Each circle in this figure represents one of n genetic variants, and is shaded orange

if causal for trait 1, blue if causal for trait 2. There are different numbers of configurations for each hypothesis,

depending on the number of SNPs in a region, and the prior is set according to three prior probabilities so that all

configurations within a hypothesis are equally likely.

https://doi.org/10.1371/journal.pgen.1008720.g001
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across all SNPs from univariate (single SNP) GWAS summary data. [14, 15] Importantly, this

requires no reference LD matrix and allows combining data from traits studied in differently

structured populations. Further, p-values will suffice if internal or external estimates of minor

allele frequency (MAF) are available, so that (unsigned) effect estimates and their standard

errors can be re-constructed. However, the single causal variant assumption is convenient

rather than realistic and when it does not hold colocalisation effectively tests whether the stron-
gest signals for the two traits colocalise [10] which has been shown to be conservative [16].

e-CAVIAR [17] removes the assumption of a single causal variant per trait by integrating

over the fine mapping posteriors for two traits, but requires signed effect estimates that are

aligned to a reference LD matrix, that the traits are studied in the same population, and does

not allow using any prior knowledge that shared causal variants are more or less likely than

distinct variants. Perhaps the most challenging of these is the alignment of signed effect esti-

mates to a reference LD matrix. This can be impossible in the case that signed estimates are

not provided due to privacy concerns, [18] or that alleles are not provided. Even where alleles

are available, palindromic SNPs (A/T, C/G) cannot be aligned unambiguously particularly for

MAF� 0.5.

The assumption of a single causal variant in coloc may be relaxed by successively condition-

ing on the most significant variants for each trait, and testing for colocalisation between each

pair of conditioned signals, although this requires either complete genotype data or use of

external software such as CoJo [19] together with signed and LD-aligned effect estimates to

allow reconstruction of conditional regression effect estimates.

To support more accurate coloc analyses, we explored a variety of data-driven approaches

to inform prior choice across a range of traits and developed a framework to explore sensitivity

of conclusions to the priors used. Further, we implemented an existing conditioning approach

in the coloc package, but also developed an alternative approach to conditioning which does

not require aligned LD and effect estimates, to offer an option to deal with multiple causal vari-

ants which preserves the simplicity of the data required for coloc analyses.

Results

We used Scopus to identify 60 papers which cited coloc [10] and were published in 2018. Out

of these, we extracted the subset of 25 papers that were both applied papers (rather than meth-

odological) and for which full text could be accessed (S1 Table). The studies covered a variety

of trait pairs, generally integrating a disease GWAS with molecular quantitative trait loci

(QTL) data, [20–39] but also comparing pairs of disease GWAS, [40] eQTL and pQTL [41, 42]

or eQTL and other molecular traits. [43, 44] Only four studies considered the potential for

multiple causal variants in a region, either discussing the implications on their results, or using

conditioning in at least one trait, and 22 out of 25 studies used the software default priors

across this diverse range of trait pairs.

Given that it is likely that the prior probability of colocalisation may depend on the trait

pairs under consideration, we decided to evaluate the effect of mis-specifying prior parameters

and/or not conditioning when multiple causal variants exist.

The importance and elicitation of prior parameter values

Before examining the robustness of inference to changes in prior values, we elucidate some

properties of prior parameters. While priors are expressed per SNP, our hypotheses and poste-

rior relate to a region—a set of n neighbouring SNPs. The prior that one SNP in the region is

causally associated with trait 1 is� np1 (and similarly np2 for trait 2, np12 for colocalisation).

All these scale with the number of SNPs—the larger the set of SNPs we consider, the greater
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the chance one of them is causal for any trait. Despite this, the prior odds for H4/H1—colocali-

sation compared to association of trait 1 only—remains constant at p12/p1.

The prior for H3 (two distinct variants for the two traits) is� n(n − 1)p1 p2 which scales

with the square of n. This means that prior odds of the two hypotheses of greatest interest,

H4/H3, depends not only on the per SNP prior of causality for one or other trait, but also on

the number of SNPs in a region, to the extent that the same p1, p2, p12 may favour either H3 or

H4 as larger regions are considered (Fig 2). This effect can be understood by noting that both

H3 and H4 imply that each trait has exactly one causal variant in the region. Simple combina-

torics implies that as the number of SNPs in a region increases, then the number of ways two

different SNPs can be causal for the two traits (H3) increases more rapidly than the number of

ways one SNP can be causal for both (H4). Hence, H3 becomes relatively more likely than H4

as the number of SNPs in the region increases.

Marginal priors. To elicit values for p1, p2, we reparameterise, focusing on the possible

marginal events for any SNP:

A1 : SNP is causally associated to trait 1 Prob q1 ¼ p1 þ p12

A2 : SNP is causally associated to trait 2 Prob q2 ¼ p2 þ p12

Fig 2. Effects of varying p12 on the prior for H4 (coloured lines) compared to H3 (dashed line) as a function of the number

of SNPs in the region. For all plots p1 = p2 = 10−4 is constant. The coloured squares highlight points P(H3) = P(H4) for

different p12.

https://doi.org/10.1371/journal.pgen.1008720.g002
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Note that in this notation, A1 and A2 are not mutually exclusive, so that colocalisation is A1 \

A2. q1, q2 can be estimated empirically by considering evidence from the wealth of single trait

association data that already exists. For eQTLs, we use GTeX data [45] and find that q. is

dependent on the MAF of SNPs considered, which reflects variable power with fewer true

eQTL variants detectable at lower MAF, and search window around the gene considered as

previously noted, tending to 10−4 for common SNPs and windows *1 mb (Fig 3).

The GWAS Catalog [46] enables us to consider something similar by aggregating over 5000

GWAS studies. We find, as expected, and again as previously noted,[47] that the number of

hits per study increases steadily with increasing sample size (Fig 3), but that the count also

Fig 3. Determining plausible priors q1, q2. a q. estimated for eQTLs as the ratio of estimated number of LD-

independent significant eQTL variants divided by number of SNPs considered for an eQTL analysis in GTeX whole

blood samples in successively larger windows around a gene TSS. Separate lines show findings in 5 equal groups of MAF,

with the top and bottom groups labelled. b The number of hits claimed per study according to the GWAS catalog. q.

could be estimated as number of hits / number of common SNPs (* 2, 000, 000). c Posterior probability of association at

a single SNP as a function of -log10 p values for varying values of q.. We considered both case/control and quantitative

trait designs, and a range of MAF (0.05-0.5) and sample size (2000,5000,10000). The relationship between -log10 p (x

axis) and posterior probability of association (y axis) is consistent across all designs, affected only by the prior probability

of association (q1, q2). The vertical line indicates p = 5 × 10−8, the conventional genome-wide significance threshold in

European populations.

https://doi.org/10.1371/journal.pgen.1008720.g003
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depends on the class of trait considered, with “harder” endpoints such as breast cancer and

heel bone mineral density identifying orders of magnitude more associations compared to

“weaker” endpoints such as tendency to strenuous sports or activity levels. The largest studies

find* 100–1000 hits out of * 2 million common SNPs leading to estimates that 5 in 10,000–

100,000 common SNPs are detectably causal for these traits which corresponds to q. 2 [5

×10−5, 5 × 10−4]. Even with the largest studies, these estimates must be considered likely to

continue to increase with sample size, and therefore conservative. Using conservative priors

for p1, p2 in colocalisation analysis is likely to reduce power to detect either shared or distinct

causal variants, because weaker signals may be wrongly interpreted as trait-unique or null.

However, estimates from the largest available studies also represent at upper bound on the pro-

portion of variants likely to be detectably associated in any new study from the same class of

traits, and therefore relaxing the priors further might result in over-stating the evidence for

causal variants and erring towards false detection of shared or distinct causal variants.

An alternative approach is to choose the prior according to the p-value that we would con-

sider significant. The threshold of p< 5 × 10−8 has been widely adopted as “genome-wide sig-

nificant” for GWAS studies in European populations. Across a range of designs (case/control

or quantitative trait, with varying MAF and sample size), we see that a prior of q. = 10−4 gives a

strong posterior probability of association (� 0.94).

The default coloc marginal prior of q1 = q2 = 10−4 + p12� 10−4 is thus supported by the con-

vergence of these three approaches to values of the order of 10−4.

Prior probability of joint or conditional causality. q1 and q2 themselves place some con-

straints on p12. On the one hand, the chance of joint causality cannot be greater than the

chance of causal association with either trait. On the other hand, if traits were independent,

then causal variants for each trait would happen to co-occur at the same location with proba-

bility q1 × q2. However, simulations show that the distribution of expected posterior probabili-

ties vary considerably with p12 over this range (Fig 4), indicating that we need to make some

effort to elicit plausible values. The results suggest that the coloc default of p12= = 10−5 may be

overly liberal, with data simulated under H3 having posterior support for H4, particularly for

smaller samples, and that p12 = 5 × 10−6 may be a more generally robust choice.

We consider different approaches to determine data-driven estimation of p12. First, we can

set a lower bound if we take into account that not all of the genome is understood to be func-

tional. Estimates of the functional proportion vary considerably, from 25% [48]–80%. [49]

Even for traits that are genetically independent, knowing that a SNP is causal for one trait

implies it is functional, and thus more likely to be causal for another trait then a random SNP

that may or may not be functional. Assuming the proportion of genetic variants that are func-

tional is f, the probability of co-occurence by chance alone is q1 q2/f (see S1 Text).

In the case of comparing two GWAS studies, it may be possible to estimate the genetic cor-

relation, rg. We show in S1 Text that, when shared variants do not have any systematically dif-

ferent distribution of allele frequencies or effects compared to non-shared variants,

jrgj �
n12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðn12 þ n1Þðn12 þ n2Þ
p ¼

p12
ffiffiffiffiffiffiffiffiffiq1q2

p

where n12, n1, n2 are the number of variants shared, distinct to trait 1 and distinct to trait 2.

Putting these together, we find

q1q2

f
< p12; jrg j

ffiffiffiffiffiffiffiffiffi
q1q2

p
< p12; p12 < minðq1; q2Þ:

PLOS GENETICS Priors and multiple causal variants in coloc

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008720 April 20, 2020 7 / 20

https://doi.org/10.1371/journal.pgen.1008720


Second, where studies of both traits are well powered, then methods for joint analysis of

trait pairs may be informative. For example, gwas-pw [50] extends the original coloc by using

empirical Bayes to estimate per-hypothesis priors via joint analysis of all regions genomewide.

However, this comes at a cost of ignoring the dependence of per-hypothesis priors on the

number of SNPs in a region, and even in simulated data did not generate consistent estimates.

This latter may reflect the limited information that exists in any pair of GWAS (the number of

regions where detectable signals exist for both traits). Nonetheless, such an approach can prob-

ably give a useful order of magnitude estimate for p12.

Finally, in the absence of data about joint trait association at the genome-wide level, it is

necessary to rely more on investigator judgement, and here it may helpful to consider condi-

tional probabilities

p12 ¼ PðA1 \ A2Þ ¼ PðA1jA2Þ � PðA2Þ ¼ q1j2 � q2

The term q1|2 represents the probability that a SNP, already known to be causal for trait 2, is

also causal for trait 1. In asymmetric analysis such as GWAS and eQTL, it may be simpler to

condition on one event rather than the other—does the investigator have a clearer idea of the

chance that a SNP that causally regulates gene expression in a given tissue is causally associated

with a disease or the chance that a SNP that is causally associated with a disease does so via

transcriptional regulation in that same tissue?

To aid translation of priors between the two parameterisations discussed here, we have cre-

ated an online tool “coloc explorer” at https://chr1swallace.shinyapps.io/coloc-priors.

Fig 4. Distribution of expected posterior probabilitiesacross a wide range of simulated data. In all analyses we fixed p2 = p1 = 10−4

and varied p12. Coloured bar heights represent the average posterior probability for each hypothesis over the set of simulations for a

given simulated hypothesis and sample size.

https://doi.org/10.1371/journal.pgen.1008720.g004
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Sensitivity analysis. In the expected case that an investigator does not have a strong prior

belief in a single value for p12 we can use sensitivity analysis to consider whether conclusions

are robust over a range of plausible values. Helpfully, it is not necessary to reanalyse the com-

plete dataset multiple times. Given that

PðHijD; pÞ / BFi � PðHijpÞ ¼
PðDjHiÞ

PðDjH0Þ
� PðHijpÞ

where D represents study data and π = (p1, p2, p12) is the prior parameter vector used for analy-

sis, we can derive posterior probabilities under an alternative prior parameter π� as

PðHijD; p
�Þ / PðHijD; pÞ �

PðHijp
�Þ

PðHijp

and so we can rapidly explore sensitivity of inference to changes to p12. Fig 5 shows an example

where conclusions depend heavily on the relative prior belief in H3 and H4 and a conclusion of

colocalisation by a decision rule of P(H4|D, π)> 0.5 is only valid if prior beliefs are that H4 is

at least as likely as H3. An alternative example where results are robust over a wide range of p12

Fig 5. Example of sensitivity analysis on a dataset which shows evidence for colocalisation at a predefined rule of posterior P(H4)

> 0.5 only when the prior beliefs in H3 and H4 are approximately equal. The left hand panels show local Manhattan plots for the two

traits, while the right hand panels show prior and posterior probabilities for H0-H4 as a function of p12. The dashed vertical line

indicates the value of p12 used in initial analysis (the value about which sensitivity is to be checked). H0 is omitted from the prior plot to

enable the relative difference for the other hypotheses to be seen.

https://doi.org/10.1371/journal.pgen.1008720.g005
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is shown in S1 Fig. Detailed instructions to run a sensitivity analysis are given at http://

chr1swallace.github.io/coloc/articles/a04_sensitivity.html.

Conditioning and masking to allow for multiple causal variants

In order to deal with multiple causal variants in a region, we implemented the CoJo approach

[19] within the coloc package. We also propose an alternative to conditioning which does not

depend on allelic alignment and can be used with p-values alone: masking. Stepwise regression

proceeds by identifying the top SNP, and then re-estimating association statistics across all

other SNPs to test whether they provide any additional information to infer the trait of inter-

est. Conditional effect estimates at SNPs in LD with the top SNP(s) differ from their uncondi-

tional values, so that they capture the residual evidence for association, but conditional and

unconditional effect estimates are (effectively) the same at SNPs independent from the top

SNP(s). Our proposed masking algorithm relaxes the assumption of a single causal variant by

instead assuming that if multiple causal variants exist for any individual trait, they are in link-

age equilibrium. It therefore first identifies lead SNPs, then successively masks all SNPs in LD

with the top signals(s), testing for significant association in the remainder, and adding SNPs

sequentially while residual association remains (Fig 6). When colocalising, each lead SNP is

taken in turn, and any SNPs in LD with any other lead SNP are masked, by setting the per-

SNP Bayes factor to 1 for any SNP-specific hypothesis relating to that SNP/trait pair. We have

implemented both approaches in the development version of the coloc package, https://github.

com/chr1swallace/coloc/tree/condmask, and document their use at http://chr1swallace.github.

io/coloc/articles/a05_conditioning.html.

We compared conditioning and masking to single coloc analysis across a variety of simu-

lated datasets (Figs 7 and 8). A single coloc comparison generally relates to the strongest sig-

nals for each of the two traits, as previously reported, [10] which can miss colocalising signals

that are secondary to a primary independent signal (Fig 7, row 3) or that have differently

ordered effect sizes (Fig 8, row 5). Conditioning allows more distinct comparisons and shows

a marked improvement on single coloc, in particular being able to identify a greater propor-

tion of the truly colocalising signals. Masking increases the number of comparisons compared

to single coloc, but is less informative than conditioning. In particular, the number of compari-

sons that cannot be clearly assigned to a specific causal variant pair (at least one lead SNP does

not have r2 > 0.8 with a causal variant) increases when multiple causal variants are in LD (S2

and S3 Figs) and this fraction of comparisons are often inaccurate, finding posterior support

for H3 when H4 is true.

Discussion

This paper has focused on two practical aspects of Bayesian colocalisation analysis that hitherto

have not received detailed attention. The ability of Bayesian methods to incorporate prior

knowledge and beliefs is a strength of the coloc approach, but also places onus on a researcher

to evaluate their prior beliefs. Elicitation of informative priors is a subject that has received

much attention in the statistical literature [51] but rather less within the genetics community.

Nonetheless, the use of Bayesian methods in genomics is growing in popularity, as a natural

way to fit joint models to large and complex data sets and to enable integrative analysis over

different traits or datasets. When data are large, and the number of events is also large, then

empirical Bayes can enable an analyst to learn the prior from the same data used for testing.

However, in the case of smaller studies or less common events, the wealth of existing informa-

tion from other large studies as well as investigators’ own beliefs can be used.
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Fig 6. Masking as an alternative strategy to conditioning when attempting to colocalise trait signals with multiple causal variants

in a region. Top panel: input local Manhattan plots, with causal variants for each trait highlighted in red. We can use conditioning (left

column) to perform multiple colocalisation analyses in a region. First, lead SNPs for each signal are identified through successively

conditioning on selected SNPs and adding the most significant SNP out of the remainder, until some significance threshold is no longer

reached. Then we condition on all but one lead SNP for each parallel coloc analysis. Note that when multiple lead SNPs are identified for

each trait, eg n and m for traits 1 and 2 respectively, then n × m coloc analyses are performed. When an allele-aligned LD matrix is not

available, an alternative is masking (right column) which differs by successively restricting the search space to SNPs not in LD with any

lead SNPs instead of conditioning. Multiple coloc analyses are again performed, but setting the per SNP Bayes factor to 1 for hypotheses

containing SNPs in LD with any but one of the lead SNPs. Note that for convenience of display, all SNPs in r2 > α with the lead SNP are

assumed to be in a contiguous block, shaded gray.

https://doi.org/10.1371/journal.pgen.1008720.g006
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For coloc, the choice of marginal prior parameter values can be readily informed in this

way. For joint causality this is harder and while we suggest and walk through several alternative

ways of doing this the conclusions we draw are not universally applicable; each investigator

should use both available data and their own judgement to elicit their own prior beliefs and

those of their co investigators. Perhaps the most widely applicable are the results of simula-

tions, that suggest values of the order p12� 5×10−6 lead to robust inference over a range of sce-

narios, but the adoption of sensitivity analysis will help evalutate robustness of inference to

changes in prior parameter values.

Attempts to colocalise disease and eQTL signals have ranged from underwhelming [52] to

positive.[53] One key difference between outcomes is the disease-specific relevance of the cell

types considered, which is consistent with variable chromatin state enrichment in different

Fig 7. Average posterior probabilities for each hypothesis under different analysis strategies when trait 1 has two

causal variants, A and B, and trait 2 has just one. The left column shows the identity of causal variants for each trait and

their relative effect sizes under four different models. The right column shows the average posterior that can be assigned

to specific comparisons for of variants for trait 1: trait 2. We exploit our knowledge of the identity of the causal variants in

simulated data to label each comparison according to LD between the lead SNP for each trait and the simulated causal

variants. When labels cannot be unambiguously assigned (r2 < 0.8 with any causal variant) we use “?”.

https://doi.org/10.1371/journal.pgen.1008720.g007
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GWAS according to cell type.[54] For example, studies considering the overlap of open chro-

matin and GWAS signals have convincingly shown that tissue relevance varies by up to 10

fold, [55] with pancreatic islets of greatest relevance for traits like insulin sensitivity and

immune cells for immune-mediated diseases.[54] This suggests that p12 should depend explic-

itly on the specific pair of traits under consideration, including cell type in the case of eQTL or

chromatin mark studies. One avenue for future exploration is whether fold change in enrich-

ment of open chromatin/GWAS signal overlap between cell types could be used to modulate

p12 and select larger values for more a priori relevant tissues.

The other focus of this paper is on dealing with multiple causal variants for single traits in a

single region. Single coloc can be misleading when there are completely shared causal variants

in the two traits, but with different effect sizes, such that colocalisation concludes there are

Fig 8. Average posterior probabilities for each hypothesis under different analysis strategies when both traits have

two causal variants. Information is displayed as described in Fig 7.

https://doi.org/10.1371/journal.pgen.1008720.g008
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single effects in each trait, different to each other (e.g. row 5 of Fig 8). Inference is much

improved with conditioning, and we hope that by including the conditioning method within

coloc we will enable more widespread use of this step. Note that if the two traits are measured

in different populations, then colocalisation can still be performed, with a separate LD matrix

for each. However, if the summary statistics from a single trait are the results of meta analysis

of different populations, then conditioning needs to be performed in each population

separately.

One advantage of coloc has been the minimal amount of data pre-processing required. In

particular, there is no need to harmonize alleles between the two datasets or to some reference

dataset. However, harmonization cannot be avoided if multiple causal variants are to be dealt

with via conditioning. Here, we propose successively masking most associated SNPs and SNPs

in LD with them. This has conceptual similarities to clumping, used in polygenic risk score

construction to select the strongest signal in each LD-independent set of SNPs [56], and to the

division of the genome into LD-independent blocks, [57] but differs to each. Our motivation is

inverted compared to that for clumping: We aim to identify the set of SNPs whose GWAS

summary statistics are likely to be unrelated to the masked signal, rather than select a single

SNP from the masked group. We also select smaller sets of SNPs than found by dividing the

genome into blocks, because we select SNPs only according to LD with the sentinel SNP, rather

than finding breakpoints such that every SNP in a block is likely to have minimal LD with any

SNP outside that block. While masking loses accuracy in comparison to conditioning, it

improves on single coloc, and importantly doesn’t appear to lead to erroneous positive conclu-

sions for H4 when H3 is true, although the reverse—supporting H3 for a secondary comparison

when H4 is true—can occur when causal variants are themselves in LD. Therefore secondary

H3 conclusions should be treated with some caution, but secondary H4 conclusions may signal

true colocalisations that would have otherwise been missed. Often a researcher may be coloca-

lising results from one dataset for which they have complete information (e.g. because it was

generated in their lab) with a public disease GWAS with less information, and here we recom-

mend the hybrid strategy of conditioning in the dataset with full information and masking in

the public dataset. Masking is also likely to avoid substantial errors in the results of approxi-

mate conditioning that can occasionally result from small deviations from LD estimated in a

reference population to that in the study sample, particularly when the reference population is

smaller than that used to the GWAS [58].

While we have discussed the thought process required to consider prior parameter values,

thought is also required to interpret partially colocalising signals (i.e. a convincing mixture of

one colocalising and one non-colocalising variant). When the two datasets are different disease

GWAS, it may be reasonable that they share only one signal, with the alternate signal operating

through a different mechanism. But if there are two signals for an eQTL only one of which

colocalises with a disease signal, then this should be interpreted with greater caution than com-

plete colocalisation. It suggests that there are two ways of modifying expression of a gene but

that only one of those ways is also associated with variable disease risk. This might mean that

the right gene has been identified in the wrong tissue, given the overlap in eQTL signals

between tissues, [45] but it might also indicate incidental colocalisation. Similarly, lack of colo-

calisation may indicate only that the correct tissue or state has not been assayed. We anticipate

that systematic analysis of multiple tissues and genes with a single disease may lead to a set of

posterior probabilities that are jointly more amenable to interpretion than a single isolated

analysis. However, colocalisation will always be limited by its basis in analysis of observational

data, and experimental manipulation through CRISPR or through genotype-targeted assays

will be required to establish causality.
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In summary, we find that coloc default values for the prior probabilities of single trait asso-

ciation, p1, p2, are well supported by data across a range of data types, but that the choice of p12

needs careful thought, and is expected to vary according to the pair of traits being considered.

We recommend taking some time to do this before any analysis, documenting and justifying

choices, using the coloc explorer app to translate between per-SNP and per-hypothesis values.

The simulations here (Fig (4)) suggest that p12 = 5×10−5 provides a reasonable balance between

power and false positive calls, but it is unlikely that any single point distribution on p12 cap-

tures all prior knowledge. As varying p12 can sometimes have a substantial impact on infer-

ence, we strongly advise users to perform sensitivity analysis for key results. Both the

justification of choices and the results of sensitivity analyses should be presented to accompany

any published results.

Materials and methods

Code to run the simulations and analyses described below is available at https://github.com/

chr1swallace/coloc-mask-paper.

A statistical description of the coloc method, including calculation of per-SNP and per-

hypothesis Bayes factors and posterior probabilities is given in S1 Text.

To calculate the posterior probability of association shown in Fig 3c and 3d, we use the

Bayes factor for association at a single SNP defined in S1 Text, BF1. We calculate the posterior

probability for association as a function of the prior probability that a SNP is associated with

the trait, π, as

PðJ1jDataÞ ¼
PðDatajJ1Þp

PðDatajJ1Þpþ PðDatajJ0Þð1 � p0Þ

¼
BF1p

BF1pþ ð1 � p0Þ

where we use J0, J1 to denote the competing hypotheses of association and non-association at

this SNP.

Simulations

We evaluated different prior parameter settings, sensitivity analysis, or strategies for dealing

with multiple causal variants by simulation. In each case, we simulated GWAS data by sam-

pling 2N haplotypes of length M SNPs for N individuals from 1000 Genomes samples (either

EUR or YRI), and selected one or two causal variants at random from amongst common SNPs

(MAF>5%) according to the question being addressed.

Effect estimates at each variant were sampled from the set {0.17, 0.33, 0.50, 0.67, 0.83, 1.00,

1.17, 1.33, 1.50}, sample sizes N from the set {100, 200, 500, 1000, 2000, 5000, 10000} and num-

ber of SNPs M from {250, 500, 750}. Quantitative traits with residual standard deviation 1

were then simulated according to linear models, i.e. as

Y ¼
X

i

biGi þ e

where i indexes causal variants, bi and Gi the effect estimate and genotype at variant i, and

e* N(0, 1).

For all analyses, we used p1 = p2 = 10−4 and varied p12 as described in the text.
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GTEx analysis

We used GTEx data to estimate the probability that a random SNP could be causally associated

with the expression of a gene within some bp-defined window. We analysed GTEx v7 Whole

Blood significant eQTLs, downloaded from https://storage.googleapis.com/gtex_analysis_v7/

single_tissue_eqtl_data/GTEx_Analysis_v7_eQTL.tar.gz on 25 June 2019. We used masking to

define independent signals within this set for each gene (r2 < 0.01) using 1000 Genomes EUR

samples to estimate LD. We estimated q as the ratio of the number of significant lead eQTLs in

multiples of 100 kb windows around the TSS to the number of SNPs in 1000 Genomes with

SNPs grouped by MAF into 5 groups: [0, 0.1], (0.1, 0.2], (0.2, 0.3], (0.3, 0.4], (0.4, 0.5].

GWAS catalog analysis

We used the GWAS summaries in the GWAS catalog (https://www.ebi.ac.uk/gwas/api/search/

downloads/full, download date: 12 June 2019) to estimate the proportion of common SNPs

that were independently associated with any given case/control or quantitative trait and exam-

ined how this varied according to reported sample size.

Supporting information

S1 Table. Summary of applied papers from 2018 using coloc.

(PDF)

S1 Text. Supporting mathematical derivations.

(PDF)

S1 Fig. Example of sensitivity analysis on a dataset which shows evidence for colocalisation

at a predefined rule of posterior P(H4) > 0.5 across a wide range of p12.

(TIF)

S2 Fig. Average posterior probabilities for each hypothesis when trait 1 has two causal var-

iants, and trait 2 has just one, according to whether the maximum r2 between multiple

causal variants is� 0.01 or > 0.01.

(TIF)

S3 Fig. Average posterior probabilities for each hypothesis when both traits have two

causal variants, according to whether the maximum r2 between multiple causal variants

is� 0.01 or > 0.01.

(TIF)
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