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Abstract

We present a new scheme for teleporting a quantum state between two parties whose local refer-

ence frames are misaligned by the action of a finite symmetry group. Unlike other proposals, our

scheme requires the same amount of classical communication and entangled resources as conven-

tional teleportation, does not reveal any reference frame information, and is robust against changes

in reference frame alignment while the protocol is underway. The mathematical foundation of our

scheme is a unitary error basis which is permuted up to a phase by the conjugation action of the

group. We completely classify such unitary error bases for qubits, exhibit constructions in higher

dimension, and provide a method for proving nonexistence in some cases.
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I. Introduction

a. Motivation.

It is now well recognized that a shared reference frame is an implicit assumption underlying

the correct execution of many quantum protocols [1–6]. As quantum communication finds its

way into handheld devices [7–9] and into space [10–12], it is increasingly important to develop

protocols robust against reference frame error for situations where alignment is difficult [ 13–

15] or undesired [16, 17]. Considerable progress has already been made in this regard for

quantum key distribution [18–24], and there is also a smaller body of work on quantum

teleportation [25–27] without a shared reference frame, which our results extend.

b. Main results.

We consider the problem of quantum teleportation between two parties whose local refer-

ence frames are misaligned, where the set of possible local reference frame transformations

forms a finite group G with a unitary representation ρ : G → U(d) on the d-dimensional

system to be teleported. (This is the first paper in a series; the second paper [28] extends

these results to the more common setting of infinite groups.) Success of the protocol is judged

by a third-party observer who holds full reference frame information, and who must agree

that the original state has been teleported perfectly up to a global phase.[29] We present

a teleportation scheme for certain (G, ρ), where G is finite, which is guaranteed to succeed

regardless of the parties’ reference frame configurations and which additionally satisfies the

following properties.

• Tightness. The parties only require a d-dimensional maximally entangled resource

state, and only 2 dits of classical information are communicated from Alice to Bob.

• Dynamical robustness (DR). The scheme is not affected by changes in reference frame

alignment during transmission of the classical message from Alice to Bob.

• No reference frame leakage (NL). No information about either party’s reference frame

alignment is transmitted.[30]

Our scheme depends on the existence of a G-equivariant unitary error basis for the repre-

sentation (G, ρ). We exhaustively classify these mathematical structures for two-dimensional

representations, showing that they exist precisely when the image of the composite homo-

morphism G
ρ
→ U(2)

q
→ SO(3) is isomorphic to 1, Z2, Z3, Z4, D2, D3, D4, A4 or S4, where q
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is the quotient taking a unitary to its corresponding Bloch sphere rotation. We also provide

a construction for any permutation representation with dimension less than 5, and show how

to prove nonexistence in some cases.

Our results rely on a new idea regarding the classical communication part of the protocol:

we suppose that the readings of the classical channel are themselves interpreted with respect

to the local reference frame. Mathematically, this corresponds to a nontrivial action of the

group of reference frame transformations on the classical channel. Such classical channels

have been called ‘unspeakable’ [31]; we provide examples, and show how they can be used

to communicate the measurement result. An unspeakable classical channel is a powerful

resource which could be used to execute a prior alignment step before the protocol begins,

but we emphasize that it is not being used in this way here; indeed, by the (NL) property, our

protocol in fact transfers no information at all about either party’s reference frame alignment,

and makes use of the unspeakable channel in a nontrivial way.

We can give the following simple intuition for how our scheme works. Local reference frame

misalignment can cause errors in the performance of the protocol, since Bob will perform

correction operations with respect to his own frame, which need not be aligned with the

frame in which Alice performed her measurement. But, since in our setting the misalignment

also affects the classical channel, it can also cause errors in transmission of the classical

measurement result; Bob may, in interpreting the channel reading with respect to his own

frame, receive a different measurement value to that transmitted by Alice. In essence, our

scheme is constructed so that these errors exactly cancel out. This intuition makes clear how

the (DR) property is possible, since a change in local reference frame alignment also affects

reception of the classical communication data, even if it takes place while that information

is in transit.

c. Related work.

Chiribella et al. [25] considered teleportation with a speakable classical channel only, and

showed that when the group G of reference frame transformations is a continuous compact Lie

group, perfect tight teleportation is impossible; this does not contradict our work, which uses

an unspeakable classical channel and a finite group G. (Furthermore, as a consequence of our

main results, we show that for finite G, perfect tight teleportation is indeed possible with a

speakable classical channel in some restricted situations; see Corollary II.9 and Remark IV.2.)
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Several other solutions for reference frame–independent teleportation for a finite group of

reference frame transformations exist in the literature. These all involve establishment of a

shared reference frame in some way: by using pre-shared entanglement [25], sharing entan-

glement during the protocol [2], or transmitting more complex resources [1, Section V.A].

Unlike our scheme, these approaches work for arbitrary (G, ρ) where G is finite. However,

none of them have all the properties of tightness, dynamical robustness and no reference

frame leakage, as our scheme does.

Quantum communication under collective noise corresponding to a finite group was con-

sidered by Skotiniotis et al. [32]. From the perspective of our discussion above, their protocol

satisfies the (DR) and (NL) properties. However, it requires a quantum channel; it is not a

teleportation protocol. Their token could be equally be transmitted using an unspeakable

classical channel of the type we construct in Section III. However, we are not transmitting a

token in their sense; in particular, the classical system we transmit need not carry a free and

transitive action of G.

d. Criticism.

We can criticise our scheme as follows. Firstly, as with the alternative solutions discussed

above, it works only for finite G (although we discuss a related scheme for the case of infinite

G in a successor article [28].) Secondly, it cannot be implemented for all scenarios (G, ρ)

with finite G, and, although we provide a range of constructions of equivariant unitary

error bases, and completely characterise valid (G, ρ) for qubit teleportation, we cannot give

necessary and sufficient conditions for the applicability of our scheme in higher dimensions.

Thirdly, to communicate the measurement result, we do not use an ordinary ‘speakable’

classical channel, but rather an ‘unspeakable’ classical channel; while we provide a number of

examples of such channels, it is nevertheless clear that this novel aspect of our approach may

raise technological barriers in an implementation. Finally, up to a global phase, the system

to be teleported and Bob’s half of the entangled pair must carry the same representation ρ of

G, and Alice’s half of the entangled pair must transform according to the dual representation

ρ∗; although this is physically reasonable in view of charge conservation, a situation may

arise in which it is hard to construct a system carrying the representation ρ∗. Very often (for

instance, for all representations with real characters), ρ ' ρ∗ up to a phase, which solves this

problem.

4



e. Outlook.

These results may be applicable to cryptography and security of quantum protocols, as it

has been noted that reference frame uncertainty is of cryptographic importance [2, 16, 17],

and that a private shared reference frame may be considered as a secret key [16, 17]. In

this context, it is useful to know what protocols, such as quantum teleportation, may be

performed even in the absence of a shared reference frame, without any transmission of

cryptographically sensitive reference frame information.

We can also build on these results to produce schemes for teleportation with a continuous

compact Lie group of reference frame transformations. This is treated in a forthcoming

paper [28].

f. Outline.

In Section II we present our scheme for reference frame–independent teleportation, begin-

ning with an informal example for a group of spatial reference frame transformations. Our

scheme uses an unspeakable classical channel carrying a certain action; in Section III we show

how these may be constructed, and give several examples. Finally, in Section IV we turn our

attention to the problem of classifying and constructing equivariant unitary error bases, on

which our scheme depends.

II. Reference frame–independent teleportation

A. Example

a. Scenario.

Alice and Bob are quantum information theorists operating on spin- 1
2

particles. They

work in separate laboratories, which do not necessarily have the same orientation in space,

and their task is to teleport a quantum state without revealing their spatial orientations,

either to each other or to any eavesdropper.Their relative orientations are not completely

unknown: the rotation g taking Alice’s Cartesian frame onto Bob’s is promised to lie within

the subgroup Z3 ⊂ SO(3), the group of rigid spatial rotations through multiples of 2π/3

radians around some axis. However, g ∈ Z3 is unknown. Let a ∈ Z3 be the transformation

rotating the reference frame anticlockwise through 2π/3 radians. We suppose that the action
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of a affects the description of qubit states by the standard spin-1/2 representation:

ρ(a) =




1 0

0 e2πi/3



 (1)

That is, a state which appears as |v〉 in frame configuration f will appear as ρ(a) |v〉 in frame

configuration a ∙ f .

Alice and Bob share the two-qubit entangled state

|η〉 =
1
√

2
( |01〉 + |10〉).

Note that this state is invariant up to a phase under the action (1) of a change in reference

frame orientation, so the entanglement will not be degraded by changes in reference frame

alignment following its initialisation. All these aspects of the overall setup are common

knowledge to both parties.

b. The conventional protocol.

A conventional quantum teleportation scheme [33] is presented in terms of a unitary error

basis (a family of unitary operators which form an orthogonal basis for the operator space

under the trace inner product):

U0 =

(
1 0

0 e2πi/3

)

U2 =
1
√

3

(
1

√
2e2πi/3

√
2 e5πi/3

)

(2)

U1 =
1
√

3

(
1

√
2e4πi/3

√
2e4πi/3 e5πi/3

)

U3 =
1
√

3

(
1

√
2

√
2e2πi/3 e5πi/3

)

The scheme proceeds as follows. Alice measures her initial system together with her half of the

entangled state in a maximally-entangled orthonormal basis |φi〉 = (1⊗ (UiX)T ) |η〉, where

X is the Pauli X-matrix [34], and communicates the result i to Bob through an ordinary

classical channel, which transmits the measurement result faithfully. Bob then applies the

correction Ui to his half of the entangled state.

If the reference frames have the same alignment, the procedure will be successful. However,

if the reference frames are misaligned by some nonidentity element g ∈ Z3, then, from the

perspective of Alice’s frame, Bob will not perform the intended correction Ui, but rather

ρ(g)†Uiρ(g). Assuming the uniform distribution over Z3, a simple calculation shows that an

input pure state will emerge in a mixed state.
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Alice’s frame Bob’s frame

OA OB

FIG. 1. In our classical communication procedure, Alice and Bob label the vertices of regular

tetrahedra centred on their origins OA and OB , using their own Cartesian frames. Bob’s frame is

related to Alice’s by a 2π/3 anticlockwise rotation around the axis defined by v0. Upon measuring

|φ1〉, Alice prepares an arrow pointing to vertex v1 and sends this to Bob by parallel transport. In

Bob’s frame this arrow points to vertex v2, and so he performs correction U2.

c. The new protocol.

We now describe our reference frame–independent scheme. Before performing the protocol,

Alice and Bob share the coordinates of four unit vectors {v0, v1, v2, v3} ∈ R3, which form a

regular tetrahedron centred on the origin such that, under the reference frame transformation

a ∈ Z3 ⊂ SO(3), the vectors are permuted as follows:

a ∙ v0 = v0 a ∙ v1 = v2 a ∙ v2 = v3 a ∙ v3 = v1 (3)

For example, let v0 = 1√
3
(x̂ + ŷ + ẑ), v1 = 1√

3
(x̂ − ŷ − ẑ), v2 = 1√

3
(−x̂ + ŷ − ẑ) and

v3 = 1√
3
(−x̂− ŷ + ẑ), and suppose that the generating element a ∈ Z3 acts as a right-handed

rotation about the axis defined by v0.

If Alice obtains measurement result i, she communicates this to Bob in the following way:

she prepares a physical arrow, of the sort a medieval archer might use, arranges it to have the

same orientation as the vector vi, and then sends it directly to Bob by parallel transport along

a known path. When the arrow is received, Bob observes its orientation in his own frame,

correcting if necessary for the parallel transport map associated to the path, and matches

this with one of the reference orientations vj ∈ {v0, v1, v2, v3}; he thus obtains the message

j ∈ {0, 1, 2, 3}. He then performs the corresponding unitary correction. This procedure is

illustrated in Figure 1.

Note that Alice transmits no information about her local reference frame by the above
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procedure, since her measurement result is uniformly random, and thus so is the direction

indicated by the arrow. Also, we emphasize that exactly two bits of classical information have

been transferred, since there were four possible values upon transmission and four possible

values upon receipt.

Suppose that Alice and Bob’s laboratories share the same reference frame; that is, their

local frames are related by the element e ∈ Z3 of the group of reference frame transformations.

Then the arrow’s orientation will be the same in Bob’s frame as in Alice’s frame, and the

measurement outcome will be faithfully communicated. In this case the protocol will be

successful, and it is identical to the conventional teleportation protocol, albeit with the two

classical bits of information transmitted from Alice to Bob in an unusual way.

Now suppose that Alice and Bob’s frames are misaligned by the action of the element

a ∈ Z3 of the reference frame transformation group. In this case, if Alice sends the result 0,

1, 2, or 3, Bob will receive the result 0, 2, 3 or 1 respectively, because of the transformation

properties (3) of the arrows. Furthermore, when Bob applies the unitary Ui in his local

frame, its action is seen in Alice’s frame as ρ(a)†Uiρ(a). The following equations describe the

consequences of such a conjugation, as can be directly checked using expressions (1) and (2):

ρ(a)†U0ρ(a) = U0 ρ(a)†U1ρ(a) = U3

ρ(a)†U2ρ(a) = U1 ρ(a)†U3ρ(a) = U2

We now see the point of the entire construction: the unitary error basis (2) was carefully

chosen so that these two apparent sources of error—in the transmission of the classical

measurement result, and in Bob’s unitary correction—exactly cancel each other out. For

example, if Alice obtains measurement outcome 1, Bob will receive this as measurement

outcome 2, and will perform the correction U2 in his frame, which in Alice’s frame is equal

to ρ(a)†U2ρ(a) = U1, and so the intended correction will be carried out after all. As a result,

the quantum teleportation will conclude successfully, even though Alice and Bob’s reference

frames were misaligned. Similarly, it can be shown that the teleportation is also successful if

the frame misalignment is given by the element a2 ∈ Z3.

d. Discussion.

We have exhibited a procedure for reference frame–independent quantum teleportation

in the particular case of spatial reference frame misalignment with transformation group

8



Z3 ⊂ SO(3). This involved a careful choice of unitary error basis (2), with communication

of the measurement result through a classical channel carrying a compatible nontrivial ac-

tion (3) of the reference frame transformation group. Only 2 bits of classical information were

transferred from Alice to Bob, as in a conventional teleportation procedure, and the Hilbert

space of the entangled resource was of minimal dimension, so this procedure was tight in the

sense of Werner [33]. The unspeakable information transmitted by Alice was uniformly ran-

dom, since Alice’s measurement results were; in particular, Bob, or an eavesdropper on the

classical channel, received no information about Alice’s reference frame alignment. Finally,

the procedure would have succeeded even if Bob’s reference frame alignment changed during

the protocol, while Alice’s measurement result was still in transit.

In this example we chose Z3 ⊂ SO(3) as the reference frame transformation group, but

the same unitary error basis and classical channel allow reference frame–independent tele-

portation for the group A4 ⊂ SO(3) of order 12, as we will see in Section IV.

B. General scheme

We now present our scheme in full generality. We begin by recalling the conventional

teleportation protocol.

Procedure II.1 (Conventional tight teleportation [35]). Alice holds an n-dimensional quan-

tum system, prepared in a state |ψ〉. Separately, Alice and Bob hold an entangled pair of

n-dimensional quantum systems, in a maximally entangled state (1⊗X) |η〉 for some unitary

X, where

|η〉 =
1
√

n

n∑

i=1

|ii〉

is the generalised Bell state.[36] Alice performs a joint measurement on the system to be

teleported and her entangled system, described by an orthonormal basis |φi〉 ∈ Cn⊗Cn. She

communicates the classical measurement result i to Bob using a perfect classical channel; Bob

then performs the unitary correction Ui on his half of the entangled state. The procedure is

successful if Bob’s system is now in the state |ψ〉.

A complete description of correct procedures was given by Werner, who showed that they

can be characterized mathematically in terms of unitary error bases.
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Definition II.2. For a Hilbert space H, a unitary error basis (UEB) is a basis of unitary

operators {Ui}i∈I , with I = {0, 1, . . . , dim(H)2 − 1}, such that for all i, j ∈ I we have:

Tr
(
U †

i Uj

)
= δij dim(H) (4)

Under this correspondence, we construct Alice’s joint measurement basis as

|φi〉 := (1⊗ XTUT
i ) |η〉 , (5)

and Bob performs the correction Ui from the unitary error basis when he receives the mea-

surement result i from Alice. Werner showed [33, Theorem 1] that all correct measurement

and correction data for Procedure II.1 can be obtained from a unitary error basis in this way.

A second key concept in our new scheme is that of an unspeakable classical channel. For

simplicity, we only consider perfect classical channels in this paper; whatever reading Alice

sends through the channel will be received unaltered by Bob. However, his interpretation of

this reading will be affected by his reference frame orientation.

Definition II.3. For a finite group G, an unspeakable classical channel is a classical channel

whose set of messages carries a nontrivial action of the group G of reference frame transfor-

mations.

Writing I for the set of messages carried by the channel, we can encode the data of an

unspeakable channel as a group action σ : G×I → I. For each reference frame transformation

g ∈ G taking Alice’s frame onto Bob’s frame, we obtain an invertible function σ(g,−) : I → I,

which describes how a message input by Alice using her local frame is interpreted by Bob with

respect to his local frame. Since this function is invertible, there is no loss of information;

however, if the receiver of the message does not know g ∈ G, they will be unable to infer

which message was actually input. The arrows channel of Section II A was an unspeakable

classical channel; we will see more examples in Section III.

We now define our new teleportation scheme. Here we write ρ∗ for the dual representation

of ρ.

Procedure II.4 (Reference frame–independent teleportation). Alice has an n-dimensional

quantum system in a state |ψ〉. Separately, Alice and Bob hold a maximally entangled state

(1 ⊗ X) |η〉 of a pair of n-dimensional quantum systems. They each possess local reference

10



frames with transformation group G, acting unitarily by a representation ρ on the system

to be teleported, by a representation ρ∗ ⊗ θ1 on Alice’s half of the entangled state, and by a

representation ρ⊗θ2 on Bob’s half of the entangled state, where θ1, θ2 are any one-dimensional

representations of G.

Alice performs a joint measurement on the system to be teleported and her half of the

entangled state, described by an orthonormal basis { |φi〉}, |φi〉 ∈ Cn ⊗ Cn. She uses a

perfect unspeakable classical channel to communicate the classical measurement result i to

Bob, who receives the message σ(g, i), where g is the transformation taking Alice’s local

frame configuration upon transmission onto Bob’s local frame configuration upon receipt.

Bob then immediately performs a unitary correction Uσ(g,i) on his half of the entangled state.

Remark II.5. We prove in Appendix A that the conditions on the possible representations

carried by each system precisely imply that the maximally entangled state may always be

taken to be G-invariant up to a phase, preventing degradation of entanglement by reference

frame transformations.

The measurement and correction operations for Procedure II.4, together with the action σ on

the unspeakable classical channel, are correct data if, regardless of Alice and Bob’s reference

frame alignments, Bob’s system ends in the state |ψ〉 ∈ Cn, according to a third observer

with a fixed frame who can see both laboratories.

Definition II.6 (G-equivariant unitary error basis). For a finite group G, and a Hilbert

space H carrying a unitary action ρ of G, an equivariant unitary error basis for (G, ρ) is a

unitary error basis {Ui}i∈I for H whose elements are permuted up to a phase[37] by the right

conjugation action of G.

That is, for all i ∈ I and g ∈ G, and some family of phases ξ(i, g) ∈ C, we have that

ξ(i, g)ρ(g)†Uiρ(g) ∈ {Ui}i∈I . Ignoring the phases, we can encode the effect of this conjugation

as a right group action τ : I×G → I. We now show that the notion of G-equivariant unitary

error basis gives a precise mathematical characterization of correct data for Procedure II.4.

Theorem II.7. All correct data for Procedure II.4 can be obtained from an equivariant

unitary error basis {Ui} for (G, ρ), with associated right action τ . The measurement and

correction operations are as in (5), and the unspeakable classical channel carries the action

τ−1 : G × I → I.
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Proof. We work in Alice’s frame. Let Bob’s misalignment with respect to this frame be

g ∈ G. For sufficiency, suppose Alice measures x ∈ I; Bob then reads τ−1(g, x) and performs

the correction

Uτ(τ−1(g,x),g) = Ux,

as required. For necessity, note that the procedure must work for trivial misalignment g = e;

therefore, by Werner’s result [33, Theorem 1], Alice must perform measurements correspond-

ing to a unitary error basis, and Bob must perform the unitary correction Ux in his own

frame whenever he receives x ∈ I. The condition on the unspeakable channel is therefore

clear.

We say that an unspeakable classical channel is compatible with an equivariant UEB when

it carries the inverse action as in Theorem II.7. We see that our scheme can be implemented

for some representation (G, ρ) if and only if there exists an equivariant UEB for (G, ρ), and

Alice and Bob have access to a compatible unspeakable classical channel. Before investigating

these requirements, we draw a straightforward corollary from Theorem II.7.

Definition II.8 (Orbit type). For a G-equivariant unitary error basis {Ui}i∈I , we define its

orbit type as the multiset of sizes of each orbit in I under the action τ : I × G → I.

Corollary II.9. With only a speakable classical channel (that is, a channel carrying a trivial

G-action), Procedure II.4 succeeds for all frame alignments only if the action τ : I × G → I

is trivial; that is, the elements of the orbit type of the equivariant UEB are all 1.

III. Unspeakable channels

In this section we address the physical requirement of our scheme, a compatible unspeak-

able classical channel for a given equivariant UEB.

A. Construction from quantum systems

We begin with a completely general method for constructing such a channel. When Alice

performs the measurement on her two systems, they decohere in her measurement basis, and

the joint system becomes a single classical object. Alice can transfer this directly to Bob,

still in the eigenstate corresponding to her measurement result. Since the reference frame

transformation is guaranteed to act as a permutation on measurement outcomes, Bob will

also receive the system in an eigenstate, which he can can identify by performing the same
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measurement as Alice. Due to reference frame uncertainty, the result he receives may of

course be different to that noted by Alice. The result is an unspeakable classical channel.

Since Bob both measures and performs the corresponding corrections in his own frame, the

procedure will succeed for any reference frame misalignment.

B. Construction from shared classical system

In some physical situations, the method of Section III A involving transfer of the decohered

quantum systems may be impractical. We now provide an alternative construction. The

problem is the following: given the right action τ : I × G → I of a finite group on a

finite index set, we must construct a compatible unspeakable classical channel Σ whose set

of messages MΣ can be identified with I, so that it carries the corresponding left action

τ−1 : G × I → I.

Here we show how this can be done when τ−1 is a transitive action. This is sufficient since,

if τ−1 is not transitive, I will split into orbits under it, and the following procedure may be

performed:

• After her measurement, Alice communicates the orbit O ⊂ I of the index she measured,

through a speakable channel.

• She then communicates the precise measurement index i ∈ O using an unspeakable

classical channel with the set of messages O, carrying the restricted action τ−1|O :

G × O → O, which is transitive.

This procedure still leaks no reference frame information, since the orbit is communicated as

speakable information and the outcomes within each orbit are equiprobable. It is still tight,

since the classical channel distinguishes only d2 possible messages, despite being split into

speakable and unspeakable parts. It is still dynamically robust, since the orbit is unaffected

by reference frame transformations.

We assume, therefore, that the action τ−1 is transitive. We can then characterise it further

using the following well-known fact from group theory. Recall that the set of right cosets

{Hgi} of a subgroup H < G carries a canonical left action g ∙ (Hgi) = Hgig
−1; we write this

left G-set as G/H .

Lemma III.1. For any transitive left G-set X, there is a unique conjugacy class C of sub-

groups of G such that X ' G/H iff H ∈ C.
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It follows that τ−1 is characterised up to isomorphism by its associated conjugacy class of

subgroups. It also follows that any transitive unspeakable classical channel Σ (that is, any

unspeakable classical channel whose set of messages MΣ is a transitive G-set) is characterised

by its associated conjugacy class of subgroups CΣ. Our problem can therefore be rephrased

as follows: we need to construct a transitive unspeakable channel for which CΣ = Cτ−1 , so

that MΣ ' G/H ' I as left G-sets.

A key construction is the following, which allows us to group together messages in MΣ to

create a new channel with a different associated conjugacy class.

Construction III.2 (Quotient channel). Let Σ be a transitive unspeakable classical channel

with associated conjugacy class of subgroups CΣ, and let HΣ ∈ CΣ. Fix an isomorphism

α : MΣ ' G/HΣ. Let K be another subgroup such that HΣ < K < G.

We obtain a quotient channel whose associated conjugacy class of subgroups has repre-

sentative K, and whose messages are right cosets Kg, transmitted as follows. In order to

send a coset Kg, Alice picks uniformly at random any element x ∈ K/HΣ ⊂ G/HΣ, and

sends the message α−1(xg) ∈ MΣ. Depending on his reference frame orientation, Bob receives

some y ∈ MΣ, such that α(y) lies in some right coset of K/HΣ. He then uses the canonical

isomorphism
G/HΣ

K/HΣ

' G/K

to obtain a right coset of K in G, which is the message he receives.

We obtain the following corollary. Recall the usual partial order on conjugacy classes of

subgroups, where C1 < C2 iff H1 < H2 for some H1 ∈ C1, H2 ∈ C2.

Corollary III.3. If we have access to a transitive unspeakable classical channel Σ with asso-

ciated conjugacy class of subgroups CΣ, and CΣ < Cτ−1, then we may construct a compatible

channel for τ .

Proof. Take Hτ−1 ∈ Cτ−1 , HΣ ∈ CΣ such that HΣ < Hτ−1 , and construct the quotient

channel.

The trivial subgroup is the only member of its conjugacy class, which we call the trivial class.

The trivial class is the minimal element of the poset of conjugacy classes of subgroups. It
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follows that, from an transitive unspeakable channel Σ whose associated conjugacy class of

subgroups is the trivial class, we may construct a compatible channel for any transitive τ−1.

We now show how to use a shared classical system to construct an unspeakable classical

channel with trivial associated conjugacy class.

Definition III.4. A reference frame system is a classical system whose configuration is

described according to a local reference frame, and whose set of configurations C carries a

free and transitive action of G.

The details of how this system is shared between Alice and Bob are abstracted away in this

approach. The nomenclature is derived from the fact that Alice and Bob each possess physical

systems serving as their local reference frames, on which the reference frame transformation

group G acts freely and transitively, by definition.

Alice and Bob will use their shared reference frame system to communicate messages.

They associate each of the |G| configurations of the system to an element of G using a

labelling, which is a choice of isomorphism l : C → G depending on their local reference

frame configurations. Once Alice fixes a labelling, she can communicate element g ∈ G to

Bob by preparing the system in the configuration associated to g in her labelling. Bob will

then interpret this configuration with respect to his own labelling.

A labelling l : C → G is obtained by choosing a configuration xe such that l(xe) = e;

the labelling is then fully determined by the equation l(g ∙ xe) = gl(xe) = g. Alice and Bob

both agree on a way to pick xe based on their own local frame configuration; this is specified

by a map ε : F → C, where F is the space of local frame configurations and ε satisfies the

naturality equation

ε(g ∙ f) = g ∙ ε(f).

We write [l(x)] to refer to x ∈ C when a labelling is fixed. Alice and Bob generally have

different labellings lA, lB, so we write [lA(x)]A, [lB(x)]B to refer to x using their respective

labellings. We obtain the following proposition.

Proposition III.5. A shared reference frame system gives rise to an transitive unspeakable

classical channel whose associated conjugacy class of subgroups is trivial.

Proof. From the above discussion,the labelling of the channel is defined as [g]A = g ∙ [e]A; we
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Alice transmits g. Bob receives g̃
−1
.

Alice’s
local
frame
configuration
is fA ∈ F .

1. Alice orients
the box to
[e]A = ǫ(fA).

2. Alice rotates
the box by g and
sends it to Bob.

3. Bob rotates
the box by g̃ to
[e]B = ǫ(fB).

Bob’s
local
frame
configuration
is fB ∈ F .

FIG. 2. The reference frame channel of Example III.6, where G is the group of rigid rotations of a

cube. Here Alice transmits a π/2-rotation around the x axis, and Bob receives a π-rotation around

the z-axis.

have [e]A = ε(fA), so [g]A = g ∙ ε(fA) = g ∙ ε(g−1
AB ∙ fB) = (gg−1

AB) ∙ [e]B = [gg−1
AB]B. The channel

therefore carries the action σ(g, x) = xg−1, and the result follows.

By Corollary III.3, it is therefore possible to construct a compatible unspeakable channel for

any equivariant unitary error basis using a shared reference frame system. We conclude this

section by presenting two examples of shared reference frame systems.

Example III.6 (Particle in a box). Suppose that the quantum systems used in the telepor-

tation protocol are particles in cubic boxes. In order to describe states of and operations on

these systems, it is necessary to decide which sides of the box are ‘up’, ‘front’ and ‘right’.

Alice and Bob shared such a labelling when they created their entangled pair of boxes; since

that time, however, the orientation, and therefore the labelling, of Bob’s box may have al-

tered. The choice of labelling can be seen as a reference frame, whose transformation group

is the group of rigid rotations of a cube. One reference frame system here is a classical solid

cube, with labelled sides, passed between parties; the map ε : F → C is defined by labelling

the cube identically to the box containing the particle. This is illustrated in Figure 2.

Example III.7 (Group of time translations). We suppose that the system to be teleported

has a basis of energy eigenstates with different energy eigenvalues. Over the period T of time

evolution, these states will acquire a relative phase. In order to define states and operations,

Alice and Bob must choose a time t0 at which the chosen basis vectors will have trivial
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phase. If we are promised that Alice and Bob’s clocks are related by a time translation in

a finite subgroup of U(1), then the choice of t0 corresponds to a reference frame with cyclic

transformation group. One reference frame system here is the time of arrival, modulo T , of

a signal transmitted from Alice to Bob; the map ε : F → C is defined by the signal arriving

at one’s own time t0.

IV. Equivariant unitary error bases

We now turn to the classification and construction of equivariant unitary error bases, the

mathematical basis for our scheme.

A. Classification for qubits

We first fully classify equivariant UEBs for two-dimensional representations (G, ρ). Let

q : SU(2) → SO(3) be the quotient homomorphism taking a qubit unitary to its corresponding

Bloch sphere rotation. Our results are outlined in the following theorem.

Theorem IV.1 (Classification of equivariant UEBs for qubits). The existence of unitary

error bases of a given orbit type for a1 unitary representation ρ : G → U(2) depends only on
1: It works for

non-faithful as well

becuase we only

consider the image

under the

representation.

the isomorphism class of the image subgroup q(ρ(G)) ⊂ SO(3), according to the classification

given in Table I.

The proof of the classification is given in Appendix B. Whilst in Table I we have only given the

orbit type of the UEBs, in Appendix B we also describe the associated action τ : I ×G → G.

Remark IV.2. By Corollary II.9, tight qubit teleportation without an unspeakable classical

channel is possible only when the image of the composite homomorphism G
ρ
→ U(2)

q
→ SO(3)

is isomorphic to 1, Z2 or D2.

B. Higher dimensions

In this section we consider the problem of constructing an equivariant UEB for represen-

tations of dimension greater than two.

1. Constructions for permutation representations

Recall that a representation ρ : G → U(n) is a permutation representation if there exists

an orthonormal basis of Cn in which ρ(g), g ∈ G are all permutation matrices. In this special

case, equivariant UEBs can be constructed from Hadamard matrices satisfying a certain

equivariance condition.
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TABLE I. UEB families for qubit representations.

Isom. class of q(ρ(G)) Orbit types and solutions, up to phase Further details

Trivial (1,1,1,1) - any UEB N/A

Z2 (1,1,1,1) - one 2-parameter family Proposition B.8

(2,1,1) - one 2-parameter family

(2,2) - one 2-parameter family

Z3 (3,1) - one 2-parameter family Proposition B.9

Z4 (2,1,1) - one 2-parameter family Proposition B.10

Zn, n ≥ 5 No solutions N/A

D2 (1,1,1,1) - one isolated solution Proposition B.12

(2,1,1) - six isolated solutions

(2,2) - three isolated solutions

(4) - two isolated solutions

D3 (3,1) - six isolated solutions Proposition B.13

D4 (2,1,1) - two isolated solutions Proposition B.14

(2,2) - two isolated solutions

Dn, n ≥ 5 No solutions N/A

Tetrahedral (A4) (4) - two isolated solutions Proposition B.16

Octahedral (S4) (1,3) - one isolated solution Proposition B.17

Icosahedral (A5) No solutions N/A

Proposition IV.3. Let (G, ρ) be a permutation representation, and let H be a Hadamard

matrix that commutes with all permutation matrices ρ(g). Then the following are elements

of a G-equivariant unitary error basis:

(UH)ij =
1

N
H ◦ diag(H, j)† ◦ H† ◦ diag(HT , i) (6)

Here diag(M, i) is the diagonal matrix whose diagonal is the ith row of M .

Proof. It is proven in [38, Corollary 35] that this is a UEB; showing G-equivariance is a

simple exercise in matrix algebra.

We will use this construction to prove Theorem IV.5. First we need the following lemma.
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Lemma IV.4. Let M be a circulant matrix of dimension ≥ 3 whose first column vector

(a, b, . . . , b) has first entry a and all other entries b. Let a = |a|α, b = |b|β where α, β ∈ U(1)

and |a|, |b| 6= 0. Then M is unitary precisely when the following conditions are satisfied:

n − 2

n
≤ |a| ≤ 1 (7) |b|2 =

1 − |a|2

n − 1
(8) Re(α∗β) =

2 − n

2

|b|
|a|

(9)

Proof. For unitarity it is sufficient that the rows form an orthonormal basis. It is clear from

the symmetry of M that it is sufficient for one row vector to be normal, and one pair of row

vectors to be orthogonal. This gives us two equations in a and b:

|b|2 =
1 − |a|2

n − 1
(10)

Re(a∗b) =
2 − n

2
|b|2. (11)

We will demonstrate that (7) is necessary and sufficient for us to find b satisfying these

equations. It is obvious that (10) is satisfiable if and only if |a| ≤ 1. Letting a = |a|α, b = |b|β,

equation (11) then reads as follows:

Re(α∗β) =
2 − n

2

|b|
|a|

Since −1 ≤ Re(α∗β) ≤ 1, and α, β can be freely adjusted to give Re(α∗β) any value in that

range, we see that the following is necessary and sufficient for (11) to be soluble:

(2 − n)2

4

|b|2

|a|2
≤ 1

Use of the equation (10) and a short calculation demonstrates that this is equivalent to the

lower bound in the inequality (7).

Theorem IV.5. There exists a G-equivariant unitary error basis for every permutation

representation (G, ρ) of dimension less than 5.

Proof. We use the construction in Proposition IV.3. Expressed in the G-permuted orthonor-

mal basis, Im(ρ) will be some subgroup of the permutation matrices Sn. To use Theorem

IV.3, we must find a Hadamard matrix in the centraliser of ρ(G). In the worst case, Im(ρ)

will be all permutation matrices.

For dimension less than 5, there exists a Hadamard matrix which commutes with all

permutation matrices. We ignore the degenerate case n = 1. For n = 2 the following family
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of Hadamard matrices commutes with S2, where |a| = |b| = 1/
√

2 and Re(a∗b) = 0:



a b

b a





For n ≥ 3, the centraliser of Sn is the group of circulant matrices of the type described in

Lemma IV.4; the conditions for such a matrix to be unitary were given there. Setting |a| = |b|

in (8), it follows that |a| = 1/
√

n. This is compatible with (7) only for n ≤ 4.

2. Showing nonexistence

In this section we provide a method for proving nonexistence of an equivariant unitary

error basis for some representations (G, ρ).

Definition IV.6. A representation ρ : G → U(n) on some n-dimensional vector space V is

monomial [39] if it admits an orthonormal basis of Cn in which all the matrices ρ(g), g ∈ G

are monomial.

G-equivariant unitary error bases for (G, ρ) are G-equivariant orthonormal bases of

End(V ) ' ρ ⊗ ρ∗, all of whose elements are unitary maps. Therefore, if (G, ρ) admits

an equivariant UEB, then ρ ⊗ ρ∗ must be monomial. It is also well known [39] that every

monomial representation is a direct sum of representations induced from one-dimensional

representations of subgroups. We therefore obtain the following proposition.

Proposition IV.7. If (G, ρ) admits an equivariant UEB, then ρ ⊗ ρ∗ must split as a direct

sum of representations induced from one-dimensional representations of subgroups.

This condition is straightforward to check using characters in a computer algebra program

such as GAP [40]. As an example, we exhibit a 3-dimensional representation for which no

equivariant UEBs exist.

Example IV.8. We show that the 3-dimensional irreducible representations of the alternat-

ing group A5 admit no equivariant unitary error basis. In Table II are shown the characters

of the induced monomial representations of the alternating group A5 of dimension less than

or equal to 9. We see that χVi
(1, 2, 3, 4, 5) = (±

√
5+1)/2; this means that χVi⊗V ∗

i
(1, 2, 3, 4, 5)

has a multiple of
√

5 as a summand for both of i = 1, 2. However, all the monomial characters

of A5 of degree less than 9 have integer values. χVi⊗V ∗
i

can therefore not be decomposed as

a Z+-linear combination of monomial characters.
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TABLE II. Simple monomial representations for A5.

() (1, 2)(3, 4) (1, 2, 3) (1, 2, 3, 4, 5) (1, 2, 3, 5, 4)

1 1 1 1 1

5 1 -1 0 0

5 1 2 0 0

6 -2 0 1 1

6 2 0 1 1
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A. Existence of G-invariant maximally entangled states

Here we prove the result stated in Remark II.5.

Definition A.1. A state ω of a G-representation is invariant up to a phase if g ∙ ω = θ(g)ω

for some homomorphism θ : G → U(1).

Lemma A.2. Let A,B be G-representations of identical dimension. A maximally entangled

pure state ω ∈ A ⊗ B invariant up to a phase exists iff A ' θ ⊗ B∗ for some θ : G → U(1).

Proof. Suppose the representation A is the dual of B up to a character θ. Then let ω be the

unit η : 1→ θ∗ ⊗A⊗B witnessing the duality θ∗ ⊗A ' B∗. In the other direction, suppose

there exists a state stabilised up to a phase. Any maximally entangled state is of the form

∑

i

|i〉 ⊗ X |i〉

for some orthonormal basis { |i〉} and unitary X. Working in that basis we have the following,

for all g ∈ G, and where ρA(g)T is the transpose in the basis { |i〉}:

g ∙
∑

i

|i〉 ⊗ V |i〉 =
∑

i

ρA(g) |i〉 ⊗ ρB(g)V |i〉

=
∑

i

|i〉 ⊗ ρB(g)V ρA(g)T |i〉

It follows that ρB(g)V ρA(g)T = θ(g)V , and therefore that ρB(g) = θ(g)V ρA(g)∗V † for all g,

where ρA(g)∗ is the complex conjugate matrix. The result follows by definition of the dual

representation.

B. Proof of classification of qubit unitary error bases

In this appendix we prove Theorem IV.1. We begin by fixing some notation for rotations.

Euler showed [42] that every rotation in SO(3) can be represented uniquely as a rotation

through an angle 0 ≤ θ ≤ π around a given normalised vector n̂ ∈ R3. We write a rotation

through an angle θ around an axis n̂ as r(θ, n̂).[43] Given two rotations r(θ1, n̂1) and r(θ2, n̂2),

we write the angle and axis of the composite as θ12 and n̂12. For concision, we will occasionally

write rotations simply as r ∈ SO(3), omitting to mention the axis and angle of rotation.

24



It is well known that unitary operations on a qubit correspond to rotations of the Bloch

sphere together with a global phase [44, Exercise 4.8]. It is easy to check that two uni-

taries U1, U2 are orthogonal iff their corresponding Bloch sphere rotations q(U1), q(U2) are

orthogonal in the following sense.

Definition B.1. Two rotations r1, r2 ∈ SO(3) are orthogonal if the composite r−1
1 r2 is a

rotation through the angle π.

The image of a UEB under the quotient q will be a set of orthogonal rotations preserved

under conjugation by the orthogonal rotations q(ρ(g)) for g ∈ G; this inspires the following

definition.

Definition B.2. An orthogonal error basis (OEB) is a family O ⊂ SO(n) of n2 orthogonal

rotations. For a finite group G and a homomorphism ρ : G → SO(n), an equivariant

orthogonal error basis for (G, ρ) is an OEB O ⊂ SO(n) preserved under conjugation by ρ(g)

for all g ∈ G.

In the other direction, given an equivariant OEB for (G, q ◦ ρ), one may obtain all corre-

sponding equivariant UEBs for (G, ρ) by picking phases for each rotation. A classification

of equivariant UEBs for subgroups G ⊂ U(2) is therefore equivalent to a classification of

equivariant OEBs for subgroups q(G) ⊂ SO(3). Note also that the action of ρ(g) on the

index set of a UEB is identical to the action of q(ρ(g)) on the index set of the corresponding

OEB.

Theorem B.3 ([45, Theorem 19.2]). The finite subgroups of SO(3) are as follows:

• cyclic groups Zn for n ≥ 1, generated by a rotation through 2π/n around a given axis;

• dihedral groups Dn for n ≥ 1, generated by a rotation through 2π/n around a given axis

and a π-rotation around a perpendicular axis;

• the group of orientation-preserving symmetries of a regular tetrahedron, isomorphic to

A4;

• the group of orientation-preserving symmetries of a regular octahedron (or a cube),

isomorphic to S4;
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• the group of orientation-preserving symmetries of a regular icosahedron, isomorphic to

A5.

In order to find sets of points preserved under the conjugation action of these subgroups, we

recall a useful way to think about conjugation in SO(3). The group SO(3) may be viewed as

a closed ball B(3) ⊂ R3 of radius π, which we call the SO(3)-ball, under the identification

r(θ, n̂) 7→ θn̂. (B1)

Antipodal points on the boundary are identified, since rotation through an angle π around

n̂ is the same as rotation through an angle π around −n̂. Given two rotations r1 = r(θ, n̂)

and r2, we have the identity

r2r1r
−1
2 = r2r(θ, n̂)r−1

2 = r(θ, r2(n̂)).

It follows that, under the identification (B1), conjugation by a rotation in SO(3) corresponds

to rotation of the SO(3)-ball. Equivariant OEBs for a subgroup are therefore sets of orthog-

onal points in the SO(3)-ball permuted by rotations in that subgroup.

For concision, in what follows we will occasionally conflate points in B(3) and rotations

in SO(3). For instance, we say ‘a point on the z-axis’ to signify the element of SO(3)

corresponding to a point on the z-axis, that is, a rotation around the z-axis through some

angle. We will also write sin(x), cos(x) and tan(x) as s(x), c(x) and t(x) respectively.

We now recall some useful facts about orthogonality in SO(3).

Lemma B.4. Each rotation in SO(3) around n̂ is orthogonal to exactly one other rotation

around ±n̂.

Proof. The composite r(θ1, n̂)−1r(θ2, n̂) is the rotation r(θ2 − θ1, n̂). For a given θ1 ∈ [0, π],

there is only one θ2 ∈ (−π, π] such that θ1 − θ2 is an odd multiple of π.

Lemma B.5. The rotation r(θ2, n̂2) is orthogonal to the rotation r(π, n̂1) iff either n̂2 is

orthogonal to n̂1 or θ2 = 0.

Proof. We have the following standard formula for the rotation angle θ12 of the composite

r−1
2 ◦ r1, where ri is a rotation around the axis n̂i through an angle θi ∈ [0, π] [44, Exercise
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4.15]:

c(θ12/2) =c(θ1/2)c(θ2/2)

+ s(θ1/2)s(θ2/2)n̂1 ∙ n̂2

(B2)

Orthogonality of r2 and r1 is precisely the condition that the LHS is zero. Since the first

term on the RHS equals zero when θ1 = π, the second term must also. This implies that

either n̂1 ∙ n̂2 = 0, in which case the axes of rotation are orthogonal, or s(θ2/2) = 0, in which

case the other rotation is simply the identity.

Lemma B.6. Two rotations can be orthogonal only if the angle between the axes of rotation

is obtuse. If the angle between the axes is π/2 then for orthogonality one rotation must be

through the angle π.

Proof. Considering (B2), we note that both c(θ1/2)c(θ2/2) and s(θ1/2)s(θ2/2) will be positive

for θ1, θ2 ∈ [0, π]. The sum can only be zero, then, if n̂1 ∙ n̂2 ≤ 0, i.e. if the angle between the

axes is obtuse. If the angle is π/2 then we need c(θ1/2)c(θ2/2) = 0, which implies that one

of the rotations is through an angle π.

We now begin our classification.

a. Cyclic subgroups of SO(3)

Any set of orthogonal points will be equivariant for Z1. We proceed directly to the

nontrivial cases. Let the z-axis be the axis of rotation of the generator of Zn which rotates

the SO(3)-ball through an angle 2π/n. Recalling that antipodal points on the ball’s surface

are identified, we immediately obtain the following characterisation of the orbits under this

action.

Lemma B.7. The orbit sizes under the conjugation action of Zn on SO(3) are:

• 1, for a point on the axis of rotation;

• n, for a point in the interior of the ball and not on the axis of rotation, on the boundary

of the ball and not on the xy-plane or the axis of rotation, or on the intersection of the

boundary of the ball and the xy-plane when n is odd;

• n/2, for a point on on the intersection of the boundary of the ball and the xy-plane

when n is even.
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Proposition B.8. The Z2-equivariant orthogonal error bases are as follows:

• for orbit type (1,1,1,1), a 2-parameter family of solutions, where two points are rotations

around the z-axis and the other two are π-rotations around orthogonal axes in the xy-

plane;

• for orbit type (2,1,1), a 2-parameter family of solutions, where one point is a rotation

around the z-axis, another point is a π-rotation around an x-axis perpendicular to the z-

axis, and the other two points are rotations around axes in the yz-plane (see Figure 3),

where the y-axis is perpendicular to both the x- and z-axes;

• for orbit type (2,2), a 2-parameter family of solutions, where, for an axis x orthogonal

to z and an axis y orthogonal to both, two points lie in the xz-plane and below the xy-

plane, and another two points lie in the yz-plane and above the xy-plane (see Figure 4).

Proof. Orbit type (1,1,1,1). By Lemma B.4 there can be at most two rotations on the z-axis.

The other two, in order to have orbit size 1, must both be π rotations around different axes

in the xy-plane, which must be orthogonal to each other by Lemma B.5. This set of solutions

therefore has two independent parameters, namely the angle of one rotation around the z-axis

and the orientation of the perpendicular axes in the xy-plane.

Orbit type (2,1,1). Firstly, suppose both the 1-orbits lie off the z-axis. Then they must be

orthogonal π-rotations in the xy-plane. But then the other two rotations would have to be

orthogonal and we would end up in the case (1, 1, 1, 1).

Let us now suppose that exactly one of the 1-orbits lies on the z-axis. The other must

be an orthogonal π-rotation; let this be around the x-axis. Then the 2-orbit must lie in the

yz-plane by Lemma B.5. We are therefore looking for three orthogonal points in the yz-plane,

one on the z-axis and the other two symmetric under a reflection in the z-axis. Let r be the

rotation angle of the elements in the 2-orbit and θ be the angle between them. Here we take

0 < θ < 2π, where θ = 0 would correspond to both points being on the positive z-axis. By

(B2) we have the following equation for orthogonality of the elements of the 2-orbit:

r = 2c−1

(√
c(θ)

c(θ) − 1

)

(B3)

This has a unique solution r ∈ [π/2, π] for θ ∈ [π/2, 3π/2], and none otherwise. Using (B2),

it can be shown similarly that, for given θ, there is a unique value of the z-coordinate of
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2-orbits
1-orbits (z-axis)

OEB 1
OEB 2
OEB 3

OEB Elements

1 π around z, ±π/2 around y

2 Identity, π around y ± z

3 2 arccos(
√

1/3) around z, ±3y − z

FIG. 3. Z2-equivariant OEBs with orbit type (2, 1, 1). The diagram shows the intersection of the

yz-plane with the SO(3)-ball. One 1-orbit of the OEB is a π-rotation around the x-axis, and the

remaining 2-orbit and 1-orbit are rotations around axes in the yz-plane shown in the diagram. Each

2-orbit is a pair of points with identical z-value on the two curved gray lines. The corresponding

1-orbit is a point on the z-axis. Three possible choices of points are given in the table and marked

in the figure, joined by dashed lines.

the 1-orbit such that all three points are orthogonal (see Figure 3). We therefore have a 2-

parameter family of solutions, where one parameter corresponds to a choice of z-coordinate

z1 of the 1-orbit on the z-axis, and the other parameter comes from a choice of orientation

of x-axis.

Suppose now that both 1-orbits lie on the z-axis; we will demonstrate that we cannot

then obtain solutions of this orbit type. Firstly, if the elements of the 2-orbit are π-rotations

not in the xy-plane, then they will not be orthogonal to the 1-orbits on the z-axis. On the

other hand, if the elements of the 2-orbit are rotations through an angle less than π and not

in the xy-plane, then, given that by Lemma B.4 the z-rotations will be on opposite sides of

the origin, both elements of the 2-orbit will make an acute angle with one of the z-rotations,

violating Lemma B.6. The 2-orbit must therefore lie in the xy-plane. The rotations of the

2-orbit must be through an angle less than π, or they would form two 1-orbits. But, by

Lemma B.6, in order to be orthogonal both z-rotations must then be through an angle π,

which would identify them.
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Orbit type (2,2). Each 2-orbit will lie in a plane through the z-axis. Again, let r be the

rotation angle of the elements in the 2-orbit and θ be the angle between them; the relationship

between r and θ was already given in (B3).

We must find two 2-orbits where all four elements are pairwise orthogonal. Without loss

of generality let the first orbit O1 lie in the xz-plane, and let θ1 ∈ [π/2, π]. Certainly, the

second orbit O2 must have θ2 ∈ [π, 3π/2], as otherwise the central angle between some pair

of elements will be acute. We now show that the orbit O2 must also lie in the yz-plane. In

other words, the two 2-orbits must lie in orthogonal planes containing the z-axis, and be on

opposite sides of the xy-plane.

Let r1, r2 ∈ [0, π] be the rotation angles of O1 and O2 respectively. Take one element

from each orbit, and consider their composition (B2). With r1, r2 fixed, the only thing that

can vary on the right hand side of this equation is the angle between the axes of rotation of

these elements. This angle will lie between 0 and π, and c(x) is single-valued in that range;

therefore, for both elements of the second orbit to be orthogonal to the given element of the

first, their axes of rotation must both have an equal central angle with that element. This

means that the xz-plane containing O1 must be orthogonal to the plane through the z-axis

containing O2, which must therefore be the yz-plane.

With the planes fixed, we now find which angles θ1 ∈ [π/2, π] and θ2 ∈ [π, 3π/2] defining

the two orbits are compatible. By the above discussion, for orthogonality of all elements

it is sufficient for a single pair of elements from different orbits to be orthogonal. Unit

vectors n̂1, n̂2 defining the axes of rotation of a pair of elements in O1, O2 respectively may be

expressed in Cartesian coordinates as n̂1 = (s(θ1/2)), 0, c(θ1/2)) and n̂2 = (0, s(θ2/2), c(θ2/2)).

The orthogonality condition (B2) then becomes

−c(r1/2)c(r2/2) = s(r1/2)s(r2/2)c(θ1/2)c(θ2/2). (B4)

Replacing θ1, θ2 with r1, r2 using (B3), squaring both sides and performing some trigonometric

manipulations, we derive

r1 = 2c−1

(√
1

2
− c2(

r2

2
)

)

This uniquely determines r1 ∈ [π/2, π] for any r2 ∈ [π/2, π]. The solutions of orbit type (2,2)

are therefore parametrised by two angle variables; the first is the orientation of the x-axis and
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x

y

z
a = r(π, ẑ)

r1
ar1a

−1

r2

r2

ar2a
−1

ar2a
−1

x

y

z
a = r(π, ẑ)

s1

as1a
−1

s2

as2a
−1

FIG. 4. Two equivariant OEBs for Z2 with orbit type (2,2), pictured in the SO(3)-ball. Under the

Z2 action, the equivariant OEB on the left is generated by r1 = r(π/2, x̂) and r2 = r(π, 1√
2
(ŷ + ẑ))

(note the identification of antipodal points), while the equivariant OEB on the right is generated

by s1 = r(2π/3, 1√
3
(
√

2ŷ + ẑ)) and s2 = r(2π/3, 1√
3
(
√

2x̂ − ẑ)).

the second is the angle r2 of one of the rotations in the 2-orbit O2 lying below the xy-plane.

Two of these solutions are shown in Figure 4.

Proposition B.9. The Z3-equivariant orthogonal error bases are as follows:

• for orbit type (1,1,1,1), no solutions;

• for orbit type (3,1), a 2-parameter family of solutions, forming the vertices of a tetra-

hedron with one vertex on the z-axis and the other three forming an equilateral triangle

in a plane perpendicular to the z-axis (see Figure 5).

Proof. Orbit type (1,1,1,1). All the points would need to be on the z-axis, which is impossible

by Lemma B.4.

Orbit type (3,1). By the classification of orbits (Lemma B.7), these OEBs consist of a 1-

orbit on the z-axis and a 3-orbit forming the vertices of an equilateral triangle in a plane

perpendicular to the z-axis. Let one of the elements in the 3-orbit lie in the xz-plane,

so (r, ψ, 0) are its spherical coordinates. From (B2) we obtain the following condition for
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x

y

z a = r(π, ẑ)

r1

ar1a
−1

a2r1a
−2

r2

r2

x

y

z a = r(π, ẑ)

s1

s1

as1a
−1

as1a
−1

a2s1a
−2

a2s1a
−2

s2

FIG. 5. Two equivariant OEBs for Z3 with orbit type (3,1). Under the Z3 action, the equivariant

OEB on the left is generated by r1 = r(2s−1(
√

2
3), x̂) and r2 = r(π, ẑ), and the equivariant OEB

on the right is generated by s1 = r(π, 1√
3
(
√

2x̂ + ẑ)) and s2 = r(0, ẑ). Note the identification of

antipodal points in both cases; this is why the points are vertices of two tetrahedra rather than just

one.

orthogonality of the elements of the 3-orbit:

r = 2s−1

( √
2

√
3s(ψ)

)

Where soluble, this equation completely determines r for given ψ. It admits solutions for

ψ ∈ [s−1(
√

2
3
), π − s−1(

√
2
3
)]. By (B2) we also obtain an equation in ψ for the height z of

the point on the z-axis, which is single-valued in the range ψ ∈ [s−1(
√

2
3
), π − s−1(

√
2
3
)]:

z = 2t−1(

√
3

2
c(r(ψ)/2)t(ψ))

Under this equation z can take all values in [−π, π]; the 3-orbit lies on the other side of the

xy-plane. These OEBs therefore form a 2-parameter family, where one parameter is the angle

ψ, and the other is the choice of x-axis. Two solutions are shown in Figure 5.

Proposition B.10. The Z4-equivariant orthogonal error bases are as follows:

• for orbit type (1,1,1,1), no solutions;
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• for orbit type (2,1,1), a 2-parameter family of solutions identical to the (1,1,1,1) solu-

tions for Z2 (Proposition B.8);

• for orbit type (2,2), no solutions;

• for orbit type (4), no solutions.

Proof. Orbit type (1,1,1,1). All the points would need to be on the z-axis, which is impossible

by Lemma B.4.

Orbit type (2,1,1). The 2-orbit must consist of orthogonal π-rotations around axes in the

xy-plane. One parameter therefore corresponds to the rotation angle of one of the rotations

on the z-axis, and the other to the orientation of the orthogonal axes in the the xy-plane.

Orbit type (2,2). These must be four different π-rotations around axes in the xy-plane. But

then they cannot be orthogonal.

Orbit type (4). The angle between rotation vectors in a 4-orbit will be acute if they are not

in the xy-plane, so they cannot be orthogonal. If they are in the xy-plane then as the angle

between adjacent vectors is π/2, at least one pair of opposite vectors must be π-rotations by

Lemma B.6; but then these will be identified and this will not be a 4-orbit.

Proposition B.11. There are no Zn-equivariant orthogonal error bases for n ≥ 5.

Proof. We handle the odd and even cases separately.

n ≥ 5 and n odd : The only orbit sizes are 1 and n. Since we only have four elements in the

UEB, all four points must be of orbit size 1; they must therefore all be on the ẑ-axis. But

this is impossible by Lemma B.4.

n ≥ 5 and n even: For n = 6, the orbit sizes are 1, 3 and 6. Since for the reason given above

we cannot have four 1-orbits, we must have one 1-orbit and one 3-orbit. However, the axes

of the π-rotations will not be orthogonal and so the rotations are not orthogonal by Lemma

B.5. For n = 8, the orbit sizes are 1, 4 and 8, so we are forced to have a 4-orbit by Lemma

B.4. But these π rotations will again not be around orthogonal vectors and are therefore

not orthogonal by Lemma B.5. For n > 8, the orbit sizes for elements off the ẑ-axis are all

greater than 4.
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b. Dihedral subgroups of SO(3)

Let the z-axis be the axis of cyclic rotation, and let the f -axis be the perpendicular axis

of π-rotation (the ‘flip axis’).

Proposition B.12. The D2-equivariant orthogonal error bases are as follows:

• for orbit type (1,1,1,1), one solution;

• for orbit type (2,1,1), six solutions;

• for orbit type (2,2), three solutions;

• for orbit type (4), two solutions.

Proof. Any solution for D2 must also be a solution for its Z2 subgroup, and we proceed by

case analysis of Z2-orbit types, making use of Proposition B.8.

Z2-orbit type (1, 1, 1, 1). Recall that Z2-equivariant OEBs of this type are made up of two

π-rotations around orthogonal axes in the xy-plane and two rotations around the z-axis. If

we fix the flip axis f , in order that the rotations in the xy-plane are preserved there are two

choices for the axes; either f and g, or f + g and f − g. In order that the z-rotations are

preserved, there are two choices for the rotation angles; either 0 and π, or −π/2 and π/2.

The orbit types are (1,1,1,1), (2,1,1), (2,1,1) and (2,2).

Z2-orbit type (2,1,1). Recall that Z2-equivariant OEBs of this type are made up of a π-

rotation around some x-axis, a rotation around the z-axis, and two other rotations around

axes in the yz-plane (see Figure 3). Fix the flip axis f . The z-rotation will be preserved

under the flip only if it is through an angle π or 0. This fixes the rotation angle r of the

elements in the 2-orbit as π/2 or π respectively. For the x-rotation to be preserved under the

flip, we need either that x = f or y = f . In both of these cases, the solutions with r = π/2

and r = π are preserved. We therefore obtain four equivariant OEBs with orbit type (2,1,1).

Z2-orbit type (2,2). Consider the 2-parameter family of solutions of orbit type (2 , 2). The

2-orbits O1, O2 lie on opposite sides of the xy-plane, in the xz- and yz-planes respectively.

D2 is abelian, so the Z2-orbit pairing will be preserved after the flip. There are therefore two

possibilities if the elements are to be preserved under the flip; the flip can either swap the

xz- and yz-planes or preserve them.
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If the planes are preserved then the flip axis must be the x- or y-axis, and the 2-orbits

must be symmetric under reflection in the xy-plane. Since one orbit is fixed by the other,

this gives two solutions of orbit type (2, 2), corresponding to a choice of r1 = π/2 or r1 = π

in O1, where ri is the rotation angle of the elements of Oi (see Figure 3).

If the planes are permuted then the flip axis must be v1 ± v2, and r1 = r2. Setting r1 = r2

in (B4) and substituting in (B3), we obtain c(θ) = −1
3
, where θ ∈ [π/2, π] is the central angle

between the elements of each orbit. This has a unique solution in the relevant domain, of

orbit type (4). There are two of these for a given choice of f -axis, since we can choose which

orbit lies above the xy-plane.

Proposition B.13. There are six isolated D3-equivariant quotient orthogonal error bases all

of orbit type (3,1).

Proof. Any solution for D3 must also be a solution for its Z3 subgroup. In Proposition B.9

we saw that solutions were the vertices of a 2-parameter family of tetrahedra with one vertex

on the z-axis and the others forming the vertices of an equilateral triangle on the other side

of the xy-plane. The vertex on the z-axis point must be preserved under reflection in the

xy-plane, so it must be through an angle 0 or π; the two possibilities were shown in Figure 5.

For z = 0, the elements of the 3-orbit will be preserved if the fz plane is orthogonal to the

triangle’s medians, giving three solutions. For z = π, the f -axis must go through any of the

three vertices of the triangle, giving three solutions.

Proposition B.14. The D4-equivariant orthogonal error bases are as follows:

• for orbit type (2,1,1), two isolated solutions;

• for orbit type (2,2), two isolated solutions.

Proof. Any solution for D4 must also be a solution for its Z4 subgroup. In Proposition B.10

we saw that these form a single 2-parameter family; they can only be preserved if f = x or

f = x + y, and the points on the z-axis are either {0, π}, which yields orbit type (2, 1, 1), or

{−π/2, π/2}, which yields orbit type (2, 2).

Proposition B.15. There are no Dn-equivariant orthogonal error bases for n ≥ 5.

Proof. If there is no equivariant OEB for the cyclic subgroup there can be none for the full

dihedral group. The result therefore follows from Proposition B.11.
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c. Other subgroups of SO(3)

Proposition B.16. The tetrahedral subgroups have two equivariant orthogonal error bases,

both of orbit type (4).

Proof. Any solution for the tetrahedral group must also be a solution for its Z3 subgroup.

These form a 2-parameter family of tetrahedra. Since the tetrahedral group preserves only

a regular tetrahedron and its dual, there will be exactly two solutions corresponding to the

vertices of those tetrahedra.

Proposition B.17. The octahedral subgroups have one equivariant orthogonal error basis,

of orbit type (1, 3).

Proof. Any solution for the octahedral group must also be a solution for its D4 subgroup.

Only one of these equivariant for the full octahedral group, with three points at the face

centres of a cube of centre-to-face length π, and the final point at the origin.

Proposition B.18. The icosahedral subgroups have no equivariant orthogonal error bases.

Proof. There is no equivariant OEB for the D5 subgroup, so there will be none for the full

icosahedral group.
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