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ABSTRACT
This experimental study presents a number of issues that pose a
challenge for practical configuration tuning and its deployment in
data analytics frameworks. These issues include: 1) the assumption
of a static workload or environment, ignoring the dynamic charac-
teristics of the analytics environment ( e.g., increase in input data
size, changes in allocation of resources). 2) the amortization of tun-
ing costs and how this influences what workloads can be tuned in
practice in a cost-effective manner. 3) the need for a comprehensive
incremental tuning solution for a diverse set of workloads. We adapt
different ML techniques in order to obtain efficient incremental tun-
ing in our problem domain, and propose Tuneful, a configuration
tuning framework. We show how it is designed to overcome the
above issues and illustrate its applicability by running a wide array
of experiments in cloud environments provided by two different
service providers.

1 INTRODUCTION
Optimizing the runtime configuration when executing data process-
ing tasks in the cloud is crucial for meeting desired requirements
(timeliness of results, accuracy, energy efficiency) at a minimal cost.
Sometimes, this can be achieved by setting the execution time as
the sole optimization goal. At other times, multiple objectives need
to be taken into account simultaneously and trade-offs considered.
For example, how much are you willing to spend for getting a result
10% faster? Can you sacrifice accuracy and get probabilistic answers
faster than exact ones, while incurring similar cost?

While the position above is a usual way of framing optimization
problems, we have found that the amortization of the optimiza-
tion costs through the resulting savings is often overlooked. This
is because tuning is usually performed using ML performance/-
cost models [17, 25, 27]. Once trained, it is assumed the model
can produce predictions about what configurations yield close-to-
optimum executions for a given workload for a long period of time.
This makes the implicit assumption that the workloads and their
runtime environment during prediction never drift too far from
conditions during training. However, a significant number of real-
world situations do not fit this assumption. There are workloads
for which the distribution of input data and its size change over
time; workloads which might be executed for a limited period of
time or with reduced frequency, in cluster configurations that may
change dynamically. Little data has been publicly shared about
those workload characteristics, so it is of interest to build intuition
on how they may affect the decision to optimize configurations.

To better understand this, we perform experiments in two cloud
environments, Amazon Web Services (AWS) [3] and Google Cloud

(GCP) [16] – 7429 hours of runtime in total, and use the lessons
learned to define a practical automated optimization framework.

We also explore how to identify scenarios where: 1) the cost of
incremental optimization and execution when compared to execut-
ing the workload with a fixed configuration cannot be amortised;
and 2) optimization is only practical when performed by the cloud
provider based on historical data collected across tenants.

While all methods discussed are not limited to a particular sys-
tem or cost function, we have targeted Spark as the data process-
ing framework to configure, because it is both popular and poses
significant challenges for state-of-art configuration tuners (huge
configuration search space, a variety of ways to process data) [27].

The paper makes 3 fundamental contributions to the discussion
around configuration tuning:

• Bringing into focus the trade-offs that need to be considered
when performing tuning without assuming a static envi-
ronment or workload, and proposing "rules of thumb" for
evaluating the opportunity to optimize.
• Proposing a comprehensive framework for incremental tun-
ing of configurations that reaches results comparable to ex-
isting state-of-art tuners but using significantly fewer execu-
tions. The source code of our implementation for Spark [2]
is released under an Apache License v2.0 at [6] and can be
transparently integrated into existing processing workflows.
• Showing how data-efficient machine learning techniques
can be leveraged to widen the types of workloads that can
be tuned in a cost-effective manner.

All collected data is published as a reference dataset usable for
significant configuration parameter identification, efficient tuning
and workload similarity analysis. The data contains five workload
types, each executed with multiple data input sizes and hundreds
of configurations across 2 different types of clusters.

1.1 Tuning Cost Amortization
Is workload-specific tuning necessary? It is reasonable to ask
whether tuning can not be efficiently done using a single cost model
to predict the best configurations for a wide range of data processing
workloads. If that were the case, amortization could be done over
the lifetime of a cluster rather than for individual workloads. The
main difficulties posed for training such a model are: 1) hundreds of
executions are needed to build it [27]; 2) difficulties in adapting to
dynamic resource allocation in the cluster; 3) the high diversity of
the workloads makes it harder to build a single cost model of a good
accuracy [8]; 4) the high dimensionality of the search space: one
dimension per configuration parameter. Complex data processing
frameworks such as Spark commonly have 20 - 60 parameters
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Figure 1: Relative configuration parameter importance for 3
Hibench workloads, showing that the parameters (Table 3)
which affect runtime the most are workload-specific.

that are relevant for tuning, and our experimental evaluation with
system-wide models yields results around 40% worse than optimal.

While the first 3 issues can be directly solved by moving to
workload-specific tuning, the typical way to solve the dimensional-
ity problem is to employ dimensionality-reduction methods such
as factor analysis, PCA, autoencoders, etc. The assumption is that
almost all information can be retained in a lower-dimensionality
space. This is certainly true for configurations when looking at
individual workloads (Fig. 1). However, the problem is that dif-
ferent workloads are sensitive to different sets of parameters and
respond to each in different ways, increasing the minimal number
of dimensions that need to be considered. This makes it difficult to
obtain models that generalize well, even after hundreds of training
examples (workload executions).

We see a similar issue with generically-tuned configurations
suggested by PaaS Spark services from Amazon and Google, which
are tuned only taking into account available cluster resources. In
the typical case, those yield execution times 43 - 68% longer than
the optimum for a given workload. Where available, those config-
urations are a significantly better starting point than the default
Spark configuration. However, it is difficult to bring them closer
to the optimum while staying workload-agnostic. There is no con-
figuration that is close-to-optimum for numerous workload types.
Lacking workload-similarity measures, running a workload with
the optimum configuration of another leads to unpredictable results.
As an extreme example, the best configuration for Pagerank run on
10 million pages yields the worst runtime for input size 15 million.
Dynamic configuration tuning: The idea of workload and data-
aware tuning is further strengthened if we consider a dynamic
context, where both the input data and the cluster resources may
change. This means that the conditions under which we ask for
predictions drift away from the conditions during training, unless
we spend resources for updating the model.

Thus, a changing environment suggests tuning that is not done
as an offline stage but incrementally using real workload executions,
aiming to provide a better configuration each time. This can also
consider similarities between workloads to reduce exploration costs
and provide faster amortization.
When does dynamic tuning pay off? An entire class of work-
loads can be optimizedwithout considering the cost of tuning: those
are workloads that will be recurring indefinitely (e.g. every day,
week), without significant input size changes (e.g. stable size of

Figure 2: Execution time savings when retuning the configu-
ration for each input size, compared against reusing the best
configuration found for input size 20GB (TPCH benchmark)

data since last execution). It is also likely that those workloads will
not require dynamic resource allocation, having stable computa-
tional, I/O, and network requirements (e.g. delta log processing).
This is intuitive: a static, predictable workload can be tuned once
and executed optimally thereafter. However, any departure from
those characteristics implies a finite window of time to amortize
optimization costs:

If the workload will only be executed x times, then the cost
of exploring the search space for a good configuration needs to
amortize well within those x runs; In the extreme case of a single
execution, tuning can only be cost effective if "guessing" a good
configuration by static analysis or matching to similar workloads.

If the input data size grows over time, previous optimal configu-
rations lose their efficiency, as data gets re-partitioned, communi-
cation costs grow (i.e. increased data shuffling) or some processing
gets serialized. At some point, more resources (cores, disks, VM
instances) need to be allocated at the cluster level. Taken together,
those will change the performance characteristics and invalidate
previously learned models, requiring re-tuning (shown in Fig. 2).
Here, the window to get benefits from optimization depends both
on the workload execution frequency, the data growth rate and
how quickly an existing performance model becomes obsolete.

1.2 A Simple Amortization Model
Building on those observations, we introduce a simple model for
tuning cost amortization (Fig. 3). This compares the cumulative
execution time of running with a fixed configuration to the one ob-
tained through incremental tuning. In the search phase, the tuning
algorithm will incur higher costs as it tries to find good configura-
tions. Once a stopping criteria is met, the best found configuration
is used for the following executions. The sufficient condition for
tuning profitability is for the expenses to be recovered before the
cost model built through tuning becomes obsolete. This might hap-
pen due to changes in input data size or in the environment where
the workload executes. Once that happens, it is impossible to pre-
dict how either the original configuration or the tuned one will
behave, and re-tuning needs to be triggered.

The amortization model we just described can be used to obtain
a rough measure on whether breaking even is likely or possible at
all. First, one must estimate after how many workload executions a
tuned configuration will no longer provide the optimal execution.

This estimate is our a break-even deadline (longest possible time
for the tuning cost recovery phase while not losing money), after d
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Figure 3: An idealized model for cost amortization

executions. In Fig. 3,d = 9. In practice, one setsd as a rough estimate
for when workload performance characteristics will change (due to
increase in input data size, cluster resource allocation, etc). Based on
this, for execution i taking timeui we can compute howmuch faster
the next configuration needs to be such that all costs are recovered
exactly at execution d . We determine this in (1) by constraining the
next point, (i + 1,

∑i+1
j=1 uj ) to be on the line connecting the current

tuning cumulative time and the time of running with the initial
configuration d times (td ).

ui+1 =
td −

∑i
j=1 uj

d − i
(1) ∆% =

ui − ui+1
ui

· 100 (2)

We can consider stopping the tuning if the best configuration
found so far, min1≤j≤i uj would amortize the cost before d .

When comparing two subsequent executions during tuning in
our experiments, the second execution is faster 54% of the time,
and on average reduces the execution cost by 23% (4% at the 25th

percentile, 13% at median and 34% at the 75th percentile). Those
can be considered as guidelines to see if the cost decrease required
to break even, ∆% as computed in (2) after plugging in ui and ui+1
can be achieved.

2 AN INCREMENTAL TUNING FRAMEWORK
The presented amortization model can of course be made more
realistic, but has all the required components for a more nuanced
discussion around tuning. Based on its characteristics, we explore
ML techniques that are suitable for tuning configurations in prac-
tice. The resulting framework, Tuneful, aims to use information
from each execution sample efficiently, in order to minimize the
time spent in the search phase and allow the best chances for cost
recovery and profit, even when considering evolving workloads.

2.1 System Overview
Tuneful is designed to efficiently tune the high-dimensional config-
urations of various data analytics workloads (e.g., graph analytics,
machine learning, SQL, text analysis).

Unlike usual configuration tuning approaches, Tuneful is de-
signed to avoid expensive offline phases for significant parameters
identification or tuning, computing everything as part of incremen-
tal optimization. An illustration of the framework is shown in Fig. 4.
It consists of three main components controlled by the Tuneful Man-
ager: Significance Analyzer, Cost Modeler and Similarity Analyzer.

Tuned Conf

Runtime metrics

Tuned
task set

Configuration
Sampler

Tuneful Manager

Find next conf

Exec history
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Config

 Sampled config  Tuned configor

Gaussian
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Workload 
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Figure 4: Tuneful–Spark integration: (1) On workload sub-
mission, the Driver requests the next configuration from
Tuneful. (4) After workload execution, metrics are collected
and used to update existing optimization models.

We have explored multiple solutions for each component in order
to obtain the fastest amortization of costs, but every component
is pluggable in the sense of allowing new techniques to be tested
while keeping every other component fixed. At the beginning of
the search phase, the Significance Analyzer uses executions to pick
configurations that enable a quick exploration of workload-specific
influential parameters. Once those are determined, the CostModeler
can take over and build a lower-dimensionality model. However,
our experiments show that those two steps still require around 35
workload executions to obtain good results. Once sufficient work-
load/environment changes and types of workloads have been seen,
the Similarity Analyzer reduces the exploration costs further by
reusing existing information when tuning new workloads.

When a workload is submitted for execution, as shown in Fig. 4,
Tuneful suggests either an exploratory configuration (generated
by the Significance Analyzer), a tuned one (generated by the Cost
Modeler), or starts tuning from an existing model based on work-
load similarities (determined by the Similarity Analyzer). After
execution, performance and cost metrics are fed back into Tuneful
where they are used to update choices for the next configuration.
Over time, the Similarity Analyzer is able to match more and more
workloads, which significantly improves the tuning speed as we
demonstrate in § 3.

2.2 Exploring Significant Parameters
All complex systems have numerous configuration parameters that
can be set to user-given values. However, we have observed that
for each workload only a small subset of those parameters has
a significant impact on overall performance. Attempting to tune
the non-influential parameters simply wastes resources and slows
down the search for a near-optimal solution. This is especially true
for Bayesian optimization (BO) strategies. In spite of their wide
adoption as an efficient state-of-art solution for configuration tun-
ing in various domains [8, 12], the problem of providing quick
convergence in high dimensional configuration spaces (more than
10 parameters) remains [21]. A common approach for identifying
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parameter significance is to perform sensitivity analysis (SA) [10].
In our context, SA studies how the variation of the cost function
(e.g., execution time) can be attributed to the different configura-
tion parameters. This is usually done by running intensive offline
benchmarks under numerous configuration values, analyzing the
variance in performance with respect to each configuration pa-
rameter and ultimately building a system-wide set of influential
parameters. This approach has been applied to tune systems such
as DBMSs [20, 24].

Applying such techniques directly is not only expensive, requir-
ing hundreds of executions, but also impractical given the diver-
sity of Spark workloads. Instead, Tuneful incrementally identifies
workload-specific influential parameters using a multi-round SA
method that is efficient in our problem domain.

Fig. 5 shows the general strategy used, with each workload exe-
cution being used to advance through the steps of the algorithm.
In each SA round, the aim is to prune some low-influence parame-
ters in order to get better information about the highly influential
ones in the next round. To achieve that efficiently, we first build a
metamodel for predicting the execution cost of a given configura-
tion. Our implementation uses Random Forest Regression (RFR), as
it improves the prediction accuracy compared to single learning
models [19]. Because we know most parameters will have little
effect, this metamodel doesn’t need to be extremely accurate; even
a rough approximation will enable correct detection of important
parameters. However, the metamodel needs to provide estimates in
a wide area of the configuration search space. This is why Tuneful
will first suggest configurations sampled using low-discrepancy
sequences [22]. Experimentally, we have determined that the lowest
number of executions that provides acceptable accuracy of the RFR
model (less than 40%) is 10 (§ A.2).

We then calculate the importance of each input configuration
parameter in the metamodel based on Gini importance [26]. This
is a measure of each feature’s contribution to the prediction of the
execution time, considering the number of times a given feature is
used in a tree split.

This allows us to select the most influential parameters and
consider the remaining ones as non-influential. Those are fixed
for the remaining SA rounds to the mean of their value range (int
and float parameters) or their default values (boolean and enum
parameters). Then the next SA round is started to determine the
most influential parameters among the ones that can still vary.
With the significant parameter detection approach described, we
can still detect dependencies between parameters by including
polynomial features, similar to [24], i.e. the method does not change,
the metamodel just works on polynomial representation of the
parameters- instead of individual parameters. For example, to detect
if two parameters depend on each other, we can include a feature
that represents the product of these parameters’ values. If this
feature has high importance, then those two dependent parameters
will be detected.

2.3 Tuning of Significant Parameters
Unlike the SA rounds where a perfectly accurate model was not
essential, in this stage we need more fidelity to ensure we are able
to get as close to the optimal configuration as possible, using the

Figure 5: Tuneful’s incremental algorithm for detecting the
significant parameters and tuning them.

minimum number of executions. Tuneful leverages Gaussian Pro-
cesses (GP) due to their data efficient learning performance, which
makes them ideal for modelling expensive functions such as the ex-
ecution cost of the analytics workloads [8, 11]. GP enables Tuneful
to model the execution cost under different configurations quickly,
suggesting the samples that most likely contain the minimum point,
and leaving the other costly samples unexplored.

Furthermore, GP is non-parametric, which means that it does
not need users to pre-commit to the shape of the function that
models the cost. This flexibility allows GP to model the runtime of
heterogeneousworkloads and the influence of various configuration
parameters on them. In practice, directly applying GP to the high-
dimensional configuration parameter space of Spark is insufficient
for obtaining satisfactory results, and therefore this stage is only
called after the workload-specific significant parameters have been
detected, as shown in Fig. 5. The GP incrementally builds the cost
model considering only the significant parameters. After execution
i , the model guides the choice for the point in the configuration
space that has the best chances of minimizing the objective function
at execution i + 1.

The GP modeling stops after suggesting a minimum of n sam-
ples (e.g., 10 samples) and then after the expected improvement
(EI) drops below 10%. We made this decision to make sure that we
balance between the exploration of the tuning space and exploita-
tion of the best configuration found. Our empirical evaluation of
this stopping criteria shows that it guarantees near-optimal tuning
within 15 executions at maximum.

Tuneful Manager monitors the difference between the GP pre-
dicted execution cost and the actual execution cost of the workload
over time. If a continuous degradation is captured, it is a sign that
the current model has become obsolete and re-tuning is necessary.
Once a performance degradation is detected, the Tuneful process
restarts (leveraging previously gained knowledge to speed up opti-
mization, as we explain in § 2.4).

2.4 Similarity Analysis
Tuneful adopts a similarity-aware tuning approach to further ac-
commodate the need for efficient configuration tuning. The aim of
the Similarity Analysis is to find a source – already tuned – work-
load and use knowledge acquired during its tuning for the current
workload (the target). This knowledge is leveraged to effectively
accelerate the tuning process for: 1) tuning a new similar workload,
2) retuning an already seen workload to accommodate workload
changes. Characterizing workloads for similarity matching is an
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offline step that can be performed once a sufficient number of work-
loads have been executed by Tuneful. This characterization involves
capturing numerous runtime metrics and expressing them as ra-
tios comparable across workloads (e.g., GC time relative to total
CPU time, shuffled data relative to input size etc.). Based on those
offline executions, a nonlinear autoencoder is trained to predict
a low-dimensionality fingerprint for each given workload. Data
enabling this type of training is published in our dataset (§ A.1.3).

At runtime, we find the workload most similar to the current
one based on the Manhattan distance between their fingerprints.
The knowledge gained while tuning the source is then transferred
to the target. This includes: 1) significant configuration parameters;
2) the source execution samples and their runtime costs.

Sharing the knowledge of influential parameters saves the cost
of running SA rounds, and the previous experience in tuning them
helps to guide the tuning process. This ultimately accelerates the
convergence to a near-optimal configuration and enables a quicker
amortization of the tuning costs.

We employ multitask GP (MTGP) [23] to share the tuning sam-
ples across similar workloads (with each workload modelled as a
task in the GP). The full similarity-aware tuning algorithm can be
found in Alg. 2. We can detect inaccuracies in workload matching
through monitoring the gap between the predicted execution time
by the MTGP model and the actual execution time. If a continu-
ous degradation takes place, we re-trigger workload matching (if
we haven’t yet seen sufficient workloads, we perform standalone
tuning as described in § 2.2 and § 2.3 instead).

3 EVALUATION
We’ll now examine how the set of techniques described above work
together to ensure tuning in a variety of scenarios typical for data
analytics workloads. We consider the execution time of the tuned
configurations, the search time required to get close to the optimum,
and importantly the way in which tuning cost are amortized. To
achieve this, we evaluate Tuneful in three stages: 1) zero-knowledge
tuning, the evaluation of tuning a new workload in a new cluster.
We assume that there is no previous knowledge about tuning this or
other workloads, which would be a typical scenario if you have just
adopted a tuning strategy. In this bootstrapping context, we only
look at workloads that do not evolve; Therefore, it is possible to
compare the behaviour of our strategies against existing state-of-art
tuners and establish a performance baseline. 2) we then evaluate
Tuneful’s effectiveness as workloads evolve, but assuming the need
of running a limited number of types of workloads – this would
be the case for targeted use of cloud data processing. 3) finally, we
asses the impact of having more extended tuning knowledge on
Tuneful’s performance and the speed of tuning cost amortization.
The context might be one where the user executes a wide array
of types of workloads, or that of a cloud provider offering a PaaS
solution to its customers.

3.1 Experimental setup
Cluster and configuration specification:We use two different
clusters: a GCP cluster of 20 nodes (over-provisioned for most of our
workloads) and an AWS cluster of 4 nodes (used to test tuning in a
more resource-constrained environment). The detailed specification

of each cluster and the configuration parameters considered for
tuning can be found in § A.1.2.
Applications: We chose 5 applications of different characteristics
to evaluate the effectiveness of Tuneful. The applications are chosen
from the well known big data benchmarks (Hibench [15] and TPC-
H [1]): 1) Bayes: an application that builds a Bayesian classification
model. 2) Pagerank (PR): a graph analytics workload that ranks
the influence of graph vertices. 3) Wordcount (WC): a text analysis
application that counts word occurrences. 4) TPC-H: a benchmark
that runs 22 decision support SQL queries. We use SparkSQL to run
these queries. 5) Terasort (TS): a numeric data sorter.

3.2 Significant Parameters Exploration
We evaluate the accuracy with which Tuneful’s algorithm detects
the significant configuration parameters in each SA round. The
ground truth parameter importance for each workload is estimated
running Recursive Feature Elimination (RFE) [14] on top of a perfor-
mance model built with a large number of sample executions (100
per workload). We compare this with the output of our algorithm
(identification from small number of executions). Across all work-
loads and the different clusters, Tuneful can correctly detect the
significant configuration parameters within 20 executions (using 2
SA rounds with 10 executions each).

Overall, the proposed algorithm generalizes well across the two
different clusters, adapting to differences in parameter importance
caused by resource availability (cores, memory, I/O). We report
the representative example of Pagerank executed on a 5 million
pages input and deployed in both clusters. Tuneful does not only
detect some entirely expected differences (i.e., CPU and the paral-
lelism level being the most important parameters in the large, over-
provisioned cluster; and memory the most influential parameter in
the small cluster), but also less obvious differences (i.e., speculative
execution and variable compression during broadcast on the large
cluster due to the large number of workers and the resulting data
shuffle; comparatively, on the small cluster the choice of serializer
is more important). The detailed results of Tuneful’s significant
parameters detection can be found in the published data as well
as in [13]. While this proves that dimensionality reduction can be
achieved relatively quickly in our domain space, 20 executions with
unknown cost at the beginning of the search phase already means
that some workloads will only amortize their tuning cost after 60
repetitions (Fig. 8). This is why beyond tuning in zero-knowledge
scenarios or explicit retuning from scratch, we will prefer to reuse
the significant parameters already identified for similar workloads.

3.3 Tuning Effectiveness and Efficiency
We use three metrics to evaluate Tuneful: 1) Execution time: the
execution time of the tuned configuration by Tuneful and the com-
peting approaches. The target here is to obtain tuned configurations
similar to what state-of-the-art tuners achieve. 2) Search Cost: the
amount of time and actual cost (in $) required by each system
to find good configurations. The target is to get close-to-optimal
configurations (within 5-10% of the estimated best configuration)
significantly faster than the state-of-the-art. 3) Amortization speed:
the number of needed workload executions to amortize the tuning
costs. The target is to amortize the tuning cost after a small number
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Figure 6: Search time of the different tuning algorithms to
find configurations within 5% of the optimal (the lower the
better)

.
of workload executions. The results are always presented as the
median of 10 runs, with bars for the 10th and the 90th percentile.

3.3.1 Zero-knowledge Tuning: We first evaluate Tuneful without
prior tuning knowledge (i.e., without leveraging the workload Sim-
ilarity Analyzer) against 3 tuning approaches. The aim of this ex-
periment is to assess the effectiveness of tuning without any earlier
gained knowledge. This ultimately suggests when it is worthwhile
to tune the configuration under different scenarios.
Workloads: 1) Bayes with a total executors input of 350GB. 2) PR
with the Hibench-defined huge data size (5 million pages). 3) WC
with a total executors input of 320GB. 4) TPC-H with a scale factor
of 20. We chose this scale to limit the expenses of our experiments;
however, we make sure that this scale is representative enough,
with 300GB of total input to executors.
Baselines: we use two state-of-the-art techniques and random
search as baselines in this experiment: 1) OpenTuner [9], a general
tuning system that uses an ensembles of search techniques such as
hill climbing, differential evolution, and pattern search. OpenTuner
evaluates which techniques perform well over a window of time
and picks them more frequently than the ones that have a poor
performance (those can even get disabled). We selected OpenTuner
as it covers a wide range of search algorithms. 2) Gunther [18],
is a Hadoop configuration tuning system that leverages genetic
algorithms to search for good configurations. To compare Gunther
with Tuneful, we ported it to Spark following the details given
in the paper. We set the population size to 60 and the number of
generations to 20. We have made this port available online for
future baseline evaluation [6]. 3) A configuration picked through
Random Search (RS) using low-discrepancy sequences [22], since
they cover the search space quicker and more evenly than the
standard random numbers. Other surveyed work either uses search
techniques already covered by OpenTuner, or the implementation
details were too sparse to reproduce the approach.

We allow each state-of-the-art system a maximum budget of 100
executions for reaching a stable tuned configuration. Then we com-
pare the configurations picked by Tuneful with the configuration
tuned by the-state-of-the-art; we used the GCP 20 nodes cluster to
run this experiment.
Tuneful finds configurations comparable to the state of-the-
art tuning systems: Table 1 shows that at median, Tuneful is
able to obtain effective configurations for all workloads. Tuneful
maintains a comparable performance to the other non-incremental

Application Gunther Opentuner RandomSearch Tuneful
Bayes 271.6X 270.5X 287.5X 287.7X

Pagerank 29.4X 28X 30.6X 30.6X
TPC-H 19X 19.7X 18.5X 19.9X

Wordcount 54X 50.7X 53.6X 52X

Table 1: Execution time acceleration (X times) w.r.t Spark de-
fault configuration (higher is better).

tuning systems. We are comparing against the default configuration
as a baseline usable across workloads, so the actual values are not
relevant in practice but the differences between them are (in a
realistic setting the accelerations would be significantly lower when
starting from reasonably hand-tuned configurations). In evaluating
the execution time acceleration with the best configuration found
by each tuner per workload, we don’t penalize other algorithms if
they are slow in finding good configurations. We therefore allow
each of them to use 100 execution samples per workload (our fixed
maximum budget). In comparison, we present the results of Tuneful
using just 35 execution samples per workload (as it would normally
be used, performing 2 SA rounds with 10 execution samples each,
followed by 15 execution samples for tuning at maximum).

For evaluating differences in time taken to find configurations
close-to-optimal, we allow each algorithm to execute workloads
until it finds the first configuration resulting in a runtime within 5%
of the one produced by the estimated optimal configuration. This is
defined as the best configuration ever found across all our tests for
each workload, irrespective of the tuning algorithm or experiment.

The median search time for other algorithms is 2.7X longer
when compared to Tuneful: The search time in Tuneful is the
sum of theworkload execution times needed by the tuning algorithm
to: (i) explore for significant configuration parameters (§ 2.2), (ii)
tune those to their optimal values (§ 2.3). It is important to note that
the reported search time does not only depend on the number of
samples but also on the actual samples that are picked, as exploring
a bad configuration leads to a slow execution of the workload
(what we care about in our amortization model). The GP model
suggests samples that most likely have the minimum execution
time, leaving others unexplored. However, it still needs to explore
the configuration space in order to build an accurate cost model
(§ 3.3.2 will show how this exploration cost is minimized when
more tuning knowledge is gained and the similarity-aware tuning
comes into action).

We estimate the search cost based on GCP’s [16] per-second
pricing. The total cost for tuning the four workloads is $379, $354,
$288 using Opentuner, Gunther and Random Search, respectively.
In comparison, tuning the four workloads with Tuneful costs $94.

3.3.2 Tuning With Limited Knowledge: In order to mimic a big data
analytics environment executing dynamic workloads (e.g. growing
input sizes or receiving workloads similar to already seen ones), we
assess the effectiveness of tuning a set of workloads with growing
input data and evaluate how this influences the speed of tuning
cost amortization. We consider a limited set of "auxiliary work-
loads" that represents the workloads already seen and tuned in a
zero-knowledge context, then evaluate tuning a set of similar work-
loads with evolving input sizes using Tuneful’s similarity-aware
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Figure 7: Search time until finding 10% of the optimal configuration using Random search, similarity-aware Tuneful (Sim-
aware) and Standalone Tuneful (in loд2). The dashed bars represent the total Search Time (ST) when a configuration within
10% of the optimal is not found.

tuning algorithm (Alg. 2), comparing against: 1) Direct transfer,
which implies transferring the tuned configuration from the source
workload directly to the target workload (the source workload is
found as described in § 2.4). This comparison will show the im-
portance of retuning the configuration. 2) Independent workload
tuning using Tuneful’s significance aware algorithm (as described
in § 2.2 and § 2.3). We compare against it to assess the accuracy of
reusing the significant parameters of a similar workload against
performing an independent detection of the significant parameters
and tuning. We refer to this as Standalone Tuneful. 3) For the sake
of completeness, we also compare the tuned configuration against
Random Search, with a budget of 100 executions generated using
low-discrepancy sequences [22]. We compare against this approach
to asses how far the configurations provided by a Similarity-Aware
Tuneful is from the best estimated configuration using this inten-
sive exploratory approach. We used the AWS 4 nodes cluster to run
this experiment.

Application Input data sizes (DS{1,2,3,4})
PR 5, 10, 15, 20 (million pages)

Bayes 5, 10, 30, 40 (million pages)
WC 32, 50, 80, 100 (GB)

TPC-H 20 (compressed GB)
TS 200 million rows

Table 2: The set of applications and input sizes used to eval-
uate the dynamic configuration tuning.

Auxiliary workload set: consists of three workloads from three
applications (Bayes-DS1, PR-DS1 and WC-DS1). Table 2 shows the
auxiliary workloads colored in green. We excluded two applications
(TPC-H and Terasort) from the set of the auxiliary workloads to
evaluate the effectiveness of tuning unseen applications.
Workloads: for each application in the auxiliary workload set,
we tune three workloads of evolving input sizes using Tuneful’s
similarity-aware tuning algorithm and compare against the other 3
approaches. Table 2 shows each workload’s input size.

Our experiment with tuning those workloads shows that the di-
rect transfer of the configurations does not guarantee near-optimal

performance. The similarity-aware Tuneful finds configurations
comparable to standalone Tuneful and RandomSearch, outperform-
ing the direct transfer by 32% at median and 79% at the 90th per-
centile. Across all the workloads in Fig. 7, the similarity-aware
Tuneful finds on average a configuration with an execution time
within 8% of the Standalone Tuneful and 12% of RandomSearch.
Similarity-aware Tuneful search times: Fig. 7 shows the search
time of each approach until finding a configuration within 10% of
the estimated optimum. For someworkloads, a configuration within
10% of the estimated optimal configuration is never found, and we
present those cases as dashed bars in the figure, with their height
representing the total search time.

Overall, the median search time for the standalone Tuneful and
RandomSearch is 2.3 - 3.7X longer when compared to the similarity-
aware Tuneful. Out of the 11 experimented workloads and given
the limited set of auxiliary workload, the similarity-aware Tuneful
significantly accelerates the search time of 6 workloads while find-
ing a configuration within 10% of the estimated optimal. For the
remaining workloads, the total search time of the similarity-aware
Tuneful is still considerably smaller, with a configuration that is not
only notably outperforming direct transfer, but also comparable
to the standalone Tuneful for most of the workloads and within
17%-37% of RandomSearch.

This shows that a significantly shorter search phase is possible
even with a limited number of source workloads to transfer tuning
data from. However, in around 45% of the cases this also means
that the reached configuration is slightly further away from the op-
timum. The next experiment will suggest that this can be mitigated
by starting the use of similarity-aware tuning once a larger set of
"auxiliary workloads" exists.
Tuningwith extendedknowledge: Wegive an example of better
matching to related workloads by extending the auxiliary workload
set to include the Bayes-DS2 workload. This allows the similarity-
aware algorithm to select it as the source workload for Bayes-DS3,
since it has a closer fingerprint than Bayes-DS1. Extending the aux-
iliary workload set enables the similarity-aware tuning to happen
in 38% less time compared to results in the previous section, while
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Figure 8: Cumulative execution time over 100 workload executions, under iterative tuning. Shallow slopes represent better
configurations (smaller time increment for executing the workload once). Steeper slopes represent worse configurations.

finding a configuration comparable to Tuneful and RandomSearch
(outperforming direct transfer by 54%). This completely eliminates
the trade-off between search time and optimality of the configura-
tion that was present in the limited knowledge case.

It also suggests that cloud providers, if able to observe executions
across clients, would be in the ideal position to offer tuning-as-a-
service in a way that minimizes costs, even for workloads that are
repeated just a couple of times. Individual customers doing their
own tuning will have a more complex decision to make depending
on their workload and estimates provided by an amortization model.
Single tasked versus multitasked tuning: It is important to
note that by leveraging MTGP optimization to perform Tuneful’s
similarity-aware tuning (Alg. 2), we are able to find good config-
urations faster than other approaches while bounding the search
cost. When we experimented with TL+STGP, which transfers the
significant parameters from the source workload then applies the
standard single tasked GP (STGP) optimization. It incurred a higher
exploration cost to find good configurations. In comparison, our
similarity-aware tuning finds configurations comparable in execu-
tion time to TL+STGP, while significantly bounding the exploration
cost by leveraging the data from the tuning of the source workload.
This minimizes the chance of trying costly configurations, eventu-
ally enabling a quicker amortization of the tuning costs. The next
section discusses this in more detail.

3.3.3 The amortization of tuning costs: The previous experiment
does not show the full story on how the different approaches com-
pare in behaviour as they perform incremental tuning from one
execution to the next. For that, it is useful to have a timeline view.
The amortization of tuning costs with zero knowledge: Based
on the experiment in § 3.3.1, Fig. 8 shows the cumulative execution
time of running each workload over multiple configurations, as
determined iteratively by the tuning algorithms considered. The
graphs are the real-data versions of Fig. 3 and can be interpreted
in the same way. Here, the fixed configuration and the starting
point for tuning is a plausible developer-guided configuration that
reduces exploration costs across the large search space. The dotted

line shows cumulative execution time for this configurationwithout
any tuning.

Tuneful explores the search space for 35 executions (20 during
SA and 15 for tuning), then picks the best configuration it found and
continues only using that.We let other tuning algorithms run longer
(100 executions) to see if they find configurations that are better or
equivalent to Tuneful’s. However, most of the time they become
stuck in local minima of the cost function. Better configurations are
shown as lines with shallower slopes (e.g. whenWordcount is tuned
by Gunther, after execution 60), while equivalent configurations
appear as lines parallel to Tuneful’s (e.g. Gunther for the Bayes
workload). For Pagerank, the initial configuration proved to be a
very good one and hard to beat through tuning. While both Tuneful
and Gunther find better configurations than it, the exploration cost
is not amortized in 100 executions. For Tuneful, the difficulty of
cost amortization comes from a couple of very slow configurations
sampled at the beginning of tuning (after execution 20).

This result suggests that if a workload is executed a small num-
ber of times, then tuning does not pay off during the workload’s
lifetime and it is more practical to use a plausible configuration
(developer-guided or default cloud provider configuration), even if
it is suboptimal. On the other hand, if a workload is to be executed
more frequently, then it is worthwhile to tune the configuration
as long as the tuning cost is amortized during workload’s lifetime.
Here, the benefits of the tuning hinge on how long the workload
remains "alive" (with the same characteristics) after amortizing the
tuning cost.
The amortization of tuning costs happens faster with more
tuning knowledge: Based on the experiment in § 3.3.2, Fig. 9
shows the amortization of the tuning cost for Bayes-DS3 under
different tuning scenarios. We compare against the directly trans-
ferred configuration from a source workload. This represents the
static tuning approach followed by most of the existing tuners, in
which the workload is tuned once and the tuned configuration is
reused – ignoring the need for dynamic workload retuning. The
dotted line shows cumulative execution time for this configuration
without any tuning. The dynamic tuning "pays off" only after the
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lines intersect the dotted line. The similarity-aware Tuneful runs a
fingerprinting execution sample once and tunes the configurations
incrementally within 15 executions, then picks the best configura-
tion it found and continues only using that until retuning is needed.
As shown in Fig. 9, it takes less than 5 executions to amortize the
tuning cost using the similarity-aware Tuneful, with a better con-
figuration (shallower slope) found when the tuning knowledge is
extended (Sim-aware extended). This enables a quicker adoption
for workload retuning in a rapidly changing environment. On the
other hand, standalone Tuneful needs more executions to amortize
this cost (e.g. 50 executions), but remains necessary for building
an initial tuning database against which similarity analysis can be
done.

4 CONCLUSIONS
The effectiveness of Tuneful firmly shows the need to address the
configuration tuning of data analytics differently. The proposed
data-efficient tuning methods can significantly reduce the explo-
ration costs and accelerate their amortization, while finding con-
figurations that are comparable to the ones of existing state-of-art
tuning algorithms.

Not all workloads will benefit from this approach. However,
the ones that are recurrent and subject to variations in input data
size or in the resources allocated for execution fit our proposed
tuning cost amortization model. They will likely be able to be tuned
in a cost-effective manner using the methods proposed here. Our
experiments suggest that incremental configuration tuning is the
right approach when data analytics workloads are executed in a
dynamic environment.

The dataset we release together with this paper can be used as a
starting point for bootstrapping a database of tuning models and
fingerprints against which similarity-aware tuning is possible. If
maintained in the open-source space, with external contributions,
this could make fast-amortizing tuning a reality even if tuning-as-
a-service does not materialize on the cloud provider side.
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A APPENDIX
A.1 Experiment Reproducibility
A.1.1 Tuneful Usage: In order to use Tuneful, a Spark user simply
adds Tuneful library as a dependency and Tuneful as an extra Spark
listener while submitting his workload to Spark. In other words,
Tuneful can run on an unmodified Spark infrastructure. Listing 1
shows how to clone Tuneful code, build and use to tune one of
Spark’s example workloads (SparkPi).

1 $ git clone https :// github.com/ayat -khairy/tuneful -

code.git

2 $ cd tuneful -code

3 $ mvn clean package

4 $ /usr/lib/spark/bin/spark -submit

5 --jars target/tuneful -0.0.1 - SNAPSHOT -jar -with -

dependencies.jar

6 --conf spark.extraListeners=TunefulListener

7 --class org.apache.spark.examples.SparkPi

8 /path/to/examples.jar 100

Listing 1: Tuneful example usage

A.1.2 Cluster and configuration specification: We use a cluster of
20 Google Compute Engine [16] instances (1 driver + 19 workers),
with the driver being an n1-highmem-8 instance with 8 vCPUs,
52 GB memory and 300GB storage and the 19 workers being n1-
standard-16 instances with 16 vCPUs, 60 GB memory and 500GB
storage each. The total cluster memory and storage size is 1.2 TB
and 5.48 TB respectively. We also use a smaller to validate the
robustness of Tuneful, a cluster of 4 AWS h1.4xlarge instances. We
use HDFS [4] version 2.7 for accessing the shared data and Spark
version 2.2.1.

The default set of parameters that Tuneful tunes is in Table 3.
We selected those parameters as they cover a wide range of Spark’s
internal aspects (memory, processing, shuffle and network aspects)
and represent a superset of the ones used in the relatedwork [27, 28],
with approximatively 2 · 1040 configurations possible in total (this
represents the size of the search space).

A.1.3 Workload characterization Dataset: We built a dataset of
execution metrics using two well known big data benchmarks (Hi-
bench [15] and TPC-H [1]). We selected 5 applications of heteroge-
neous characteristics from these benchmarks. For each application
we experimented with five different input sizes under different con-
figurations for the 30 parameters in Table 3, with a total of 2200
application executions that took 2188 compute hours to execute (
on a cluster of 4 AWS h1.4xlarge instances). The dataset is publicly
available on the project data repository [5] under dataset folder.

A.1.4 Experiment data: The experiment data of Tuneful and the-
state-of-the-art approaches are publicly available on [5] under ex-
periment folder. This data can be leveraged for significant config-
uration parameter analysis for various workloads over different
clusters. This data also shows the benefits of Tuneful’s similarity-
aware tuning in accelerating the tuning of a similar workload or
retuning a seen workloads to accommodate the growing input sizes.

A.2 Significance Parameter Detection
Algorithm

The input arguments are as follows:

• d the number of configuration parameters considered;
• P = {p1, ...,pd } the configuration parameters;
• R = {r1, ..., rd } the range of values of each pi configuration
parameter;
• α the fraction of configuration parameters retained in each
SA round;
• n the number of samples required per SA round;

Conceptually, we consider three global variables: n_SA_rounds ,
the number of SA rounds, n_executions , initialized to 0, and Pfixed
initialized to the empty set. Variable states are maintained between
calls, so that Pfixed grows between SA rounds.

LetXi = {xi1, xi2, ...xid } be a particular configuration chosen by
our algorithm,C(Xi ) its execution cost, andM(X,C) the constructed
meta-model that maps a given configuration X to its execution cost
C , used to distinguish the influential parameters. The goal is to
identify Ps = {p1,p2, ..ps } where |Ps | < |P | such that Ps contains
the selected top s influential parameters.

Algorithm 1: Significant Parameter exploration
Input :d,α,n,n_SA_rounds, P,R
Output :Ps = Pα∗d

1 Xi = sample(P,R, Pfixed)

2 run workload using Xi and get Ci (Xi )
3 n_executions ← n_executions + 1
4 if n_executions > n and n_SA_rounds > 0 then
5 buildM(X,C)
6 find_the_importance imp{p1, ...,pd } usingM
7 find Pα∗d ⊂ P with the highest importance
8 Pfixed ← P − Pα∗d
9 d ← α ∗ d

10 n_SA_rounds ← n_SA_rounds − 1
11 n_executions ← 0;

Design Choices: We empirically observed the impact of different
values of α from 0.1 till 0.9. While a very small value for α leads to
pruning influential parameters, high values for α will eventually
lead to a wider search space that includes many uninfluential pa-
rameters and slows the identification of the highly-influential ones.
We set α = 0.6 in the SA stage as it represents a good compromise
between the accuracy of detecting the influential parameters and
bounding the number of SA runs. We set n to 10 execution samples,
as it guarantees generating an RFR model of an acceptable accuracy
(less than 40% error), enabling a good approximation of the true
dependence between the configuration parameters and execution
time. n_SA_rounds needs to be selected to provide good guarantees,
while minimizing cost. We experimented with different number of
n_SA_rounds for Tuneful in [13].

A.3 Similarity-aware tuning Algorithm
The input arguments are as follows:
• w target workload;
• Wseen = {w1,w2, ..} the matrix of the execution metrics for
the seen workloads;
• α the acquisition function;
• GP = {GP1,GP2, ..} the Gaussian process models of the seen
workloads;
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# Configuration name Range Default Description
1 spark.executor.cores [1,16] 1 The number of cores per each Spark executor
2 spark.executor.memory(GB) [5,43] 1 The memory size of each Spark executor
3 spark.executor.instances [8,48] 2 The number of Spark executor instances
4 spark.default.parallelism [8,50] - The number of partitions in a returned RDD by the distributed shuffle operation,

its default value varies depending on the distributed shuffle operation
5 spark.memory.offHeap.enabled [true,false] false If set to true, Spark will try to use the off-heap space for certain operations
6 spark.memory.offHeap.size(MB) [10,100] 0 The size of memory that can be used for off-heap allocation
7 spark.memory.fraction [0.5,1] 0.6 The fraction of heap space used for execution and storage, if set to a low value

spills and cached data eviction takes place more often.
8 spark.memory.storageFraction [0.5,1] 0.5 The fraction of spark.memory.fraction that is not evicted by Spark, if set to

high value, less memory will be available to execution and disk spill will occur
more frequently

9 spark.shuffle.file.buffer(KB) [2,128] 32 The size of each shuffle buffer output stream in-memory
10 spark.speculation [true,false] false If set to true, Spark will check if one task or more are running slowly in a stage,

it will re-launch them
11 spark.reducer.maxSizeInFlight(MB) [2,128] 48 The maximum allowed size to fetch from a map output of each reduce task
12 spark.shuffle.sort.bypassMergeThreshold [100,1000] 200 How often Spark avoids merge-sorting data in the sort-based shuffle manager
13 spark.speculation.interval(MS) [10,100] 100 How frequently Spark will check for tasks to speculate, Spark speculation is

a procedure that detects the tasks running slower than the median of all the
successful tasks, Spark then restart these tasks

14 spark.speculation.multiplier [1,5] 1.5 Defines how to consider a task for speculation w.r.t the successful tasks median
execution time

15 spark.speculation.quantile [0,1] 0.75 The fraction of tasks that should be finished before starting speculation on a
stage

16 spark.broadcast.blockSize(MB) [2,128] 4 The size of the broadcasted blocks in Spark, larger value would decrease broad-
cast parallelism

17 spark.io.compression.codec [snappy,lzf,lz4] lz4 The compression technique spark uses for its internal data such as RDD
18 spark.io.compression.lz4.blockSize(MB) [2,128] 32 The block size used by lz4 compression
19 spark.io.compression.snappy.blockSize(MB) [2,128] 32 The block size used by snappy compression
20 spark.kryo.referenceTracking [true,false] true Determines if Spark will track references to the same object when using kryo

serializer
21 spark.kryoserializer.buffer.max(MB) [8,128] 64 The maximum size of the buffer used by Kryo serializer
22 spark.kryoserializer.buffer [2,128] 64 The size of kryo serialization buffer initially
23 spark.storage.memoryMapThreshold [50,500] 2 A block size beyond which Spark performs memory mapping of the disk read

blocks, memory mapping very small blocks will incur higher overheads
24 spark.network.timeout [20,500] 120 The timeout of all network interactions in Spark
25 spark.locality.wait [1,10] 3 The amount of time Spark waits to launch a data-local task before moving the

task to a less-local node
26 spark.shuffle.compress [true,false] true Specifies if Spark compresses map output file, compression happens using

spark.io.compression.codec
27 spark.shuffle.spill.compress [true,false true Determines if Spark compresses data spilled during shuffles
28 spark.broadcast.compress [true,false] true Decides if Spark compresses broadcast variables before sending them
29 spark.rdd.compress [true,false] false Specifies if Spark compresses serialized RDD partitions
30 spark.serializer [JavaSerializer, KryoSe-

rializer]
JavaSerializer Sets the serialization strategy in Spark

Table 3: Configuration parameters description and values range.

Algorithm 2: Similarity-aware configuration tuning
Input :α,w,Wseen,GP

1 forall xi ∈Wseen do
2 calculate distance d betweenwmetr ics and xi ;
3 Find workload s with the smallest d
4 Transfer s significant parameters tow
5 Add new task tj for workloadw to GPs
6 Find config: xi ← arg

x
max α(GPs (x, tj ))

7 Evaluate config: yi ← Cw (xi )

8 Update: GPs ← GPs |(tj , xi ,yi )
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