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Neuromodulation of Neuromorphic Circuits
Luka Ribar and Rodolphe Sepulchre

Abstract—We present a novel methodology to enable control
of a neuromorphic circuit in close analogy with the physiological
neuromodulation of a single neuron. The methodology is general
in that it only relies on a parallel interconnection of elementary
voltage-controlled current sources. In contrast to controlling a
nonlinear circuit through the parameter tuning of a state-space
model, our approach is purely input-output. The circuit elements
are controlled and interconnected to shape the current-voltage
characteristics (I-V curves) of the circuit in prescribed timescales.
In turn, shaping those I-V curves determines the excitability
properties of the circuit. We show that this methodology enables
both robust and accurate control of the circuit behavior and
resembles the biophysical mechanisms of neuromodulation. As
a proof of concept, we simulate a SPICE model composed of
MOSFET transconductance amplifiers operating in the weak
inversion regime.

Index Terms—Neuromorphic engineering, neuromodulation,
neuronal bursting, I-V curve shaping.

I. INTRODUCTION

ALTHOUGH digital technology has been evolving at an
amazing pace, a large gap persists between the state-

of-the-art hardware and even the simplest animal organisms
at tasks that involve sensory-motor integration. Instead of
relying on the standard digital electronics architecture, neu-
romorphic engineering aims at bridging this gap by emulating
the structure of biological neurons, so that neuromorphic
circuits could potentially undertake information processing in
a fundamentally more efficient way [1], [2].

Biological neural networks possess an astonishing level
of control capabilities spanning from whole brain regions
controlling phenomena like attention and cognition, to ion
channels that control the spiking behavior of single neurons. In
particular, neuromodulators are able to modify the collective
conductance of ion channels in a neuron and thus shape the
neural spikes in a precise manner [3]. These mechanisms can
lead to qualitatively different spiking regimes such as burst
firing that can have a distinct function in sensory information
processing [4]–[8]. In particular, the transition between regular
spiking and bursting oscillations is an essential mechanism
of capturing the sensing scale of certain sensory systems [8].
Understanding and designing simple circuits that are able to
reproduce these precise controlling mechanisms could lead to
novel information processing paradigms.

One of the main design choices that we face when approach-
ing the development of neuromorphic hardware is finding the
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right level of abstraction of the neural behavior [9]. Previous
approaches have focused on replicating in silico the differential
equations of neuronal conductance-based models [10]–[15],
or reduced models such as FitzHugh-Nagumo [16]–[18] and
integrate-and-fire [19]–[22]. The trade-off is often between the
level of biophysical details accounted for and the circuit com-
plexity [23]. Simple abstract models have been proposed that
can reproduce many distinct spiking waveforms [19], but they
require fine-tuning of the parameters and lack the robust and
smooth neuromodulation capabilities of physiological neurons
[24].

The present paper departs from earlier approaches by root-
ing the design and analysis in an input-output rather than
state-space model of the circuit. Preliminary results have been
reported in [25]. We assume the specific circuit architecture
common to all voltage-gated conductance-based models of
neurophysiology: the excitable membrane is modeled as a
passive RC circuit in parallel with (possibly many) circuit
elements, each of which controls the circuit conductance in
a specific voltage and dynamic range. This architecture is
also common to recently introduced low-dimensional model
of bursting [26], [27]. By separating the circuit elements in
distinct timescales, we propose that shaping the circuit’s I-
V characteristics in those distinct timescales is modular and
sufficient to control the excitability properties of the circuit.
The curve shaping methodology maps with surprising ease
to the dynamical behaviors of the circuit, and allows us to
generalize the intuitive spike-generation mechanisms of the
FitzHugh-Nagumo circuit to the more complex neuronal be-
haviors such as bursting, while also enabling easy modulation
between distinct behaviors.

Although the proposed methodology is rooted in the rig-
orous mathematical analysis of a low-dimensional bursting
model [26], [27], the key contribution of this paper is to
present a qualitative approach to tuning the neuronal behaviors
which is purely input-output and entirely by-passes the state-
space realization of the circuit for its design and analysis.
This is in contrast with recent efforts in designing spiking
and bursting feedback circuits from simplified state-space
models [28], [29]. Here we directly formulate the task of
controlling a given excitable behavior as an I-V curve synthesis
problem, independent of the circuit implementation specifics.
Most importantly, our circuits are inherently neuromodulable
as the control of each current element directly maps to the
modulation of a maximal conductance parameter in biophysi-
cal conductance-based models [30]–[33]. This is regarded as a
key step towards neuromorphic circuits with neuromodulation
capabilities. As a proof of concept, we also discuss how the
circuit structure can be implemented in hardware and include
a SPICE simulation of the proposed circuit.

Our paper is organized as follows: We start by describing
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the general structure of the neural circuit, relating it to standard
examples of excitable circuits such as the FitzHugh-Nagumo
model, as well as more recent bursting models. We then define
the notion of I-V curves in separate timescales, and describe
a simple yet general circuit architecture that allows us to
shape the I-V curves through parallel interconnections of basic
elements with localized conductance and first-order dynamics.
In the following sections, we show how, similarly to the classic
FitzHugh-Nagumo circuit, a tunable spiking neuron is realized
as an interconnection of the passive membrane, a fast negative
conductance element, and a slow positive conductance ele-
ment. We further show how the interconnection of additional
slow negative conductance and ultra-slow positive conductance
elements leads to a tunable bursting circuit, mirroring the
ionic conductance structure of the bursting neurons [34], [35].
We also compare the bursting mechanism we present with
alternative mechanisms studied in neurodynamical models
[36]. We show why such mechanisms do not allow for robust
control due to their fragile parameter choice requirements.
Finally, we propose a circuit implementation of the localized
conductance element, and present a feasibility study through
a SPICE simulation of the circuit using the TSMC 0.35 µm
process parameters.

II. I-V CURVE SHAPING BY INTERCONNECTION

We base our methodology on the general neural circuit
architecture shown in Fig. 1. This architecture mirrors the
biophysical modeling principles pioneered by Hodgkin and
Huxley in their seminal work [10]: an excitable membrane is
modeled as the parallel interconnection of a passive RC circuit
with several voltage-gated ionic currents (sodium, potassium,
calcium, etc.). Here, the passive membrane properties are rep-
resented with a membrane capacitor C and a purely resistive
element ip(v), so that its I-V characteristic satisfies:

dip(v)

dv
≥ 0,∀v (1)

We assume that each voltage-controlled current source
obeys the elementary model:

i±x = f±x (vx) (2a)
Txv̇x = v − vx (2b)

so that the output current i±x has a monotonic dependence on
the filtered voltage vx through the function f±x (v) that satisfies

f+x (v)

dv
≥ 0,∀v (3)

for a positive conductance element, or

f−x (v)

dv
≤ 0,∀v (4)

for a negative conductance element. The time constant Tx
defines the timescale of the current.

The behavior of the circuit is then governed simply by
Kirchhoff’s law:

Cv̇ = −ip(v)−
∑

i±x + iapp, (5)

C ip(v)

iapp

Passive RC circuit

i±x

Current sources with localized conductance

v

Fig. 1. The neural circuit: A passive RC circuit is interconnected with
localized conductance current source elements that model the action of the
ionic currents.

and we can define an approximate time constant of the voltage
equation:

C/Tv =
dip(v)

dv

∣∣∣∣
v=ve

(6)

with the derivative taken around the equilibrium point of the
system v = ve. This allows us to consider all time constants
relative to the membrane dynamics:

τx = Tx/Tv (7)

In order to describe both bursting and spiking behaviors,
it is sufficient to include elements that act on three separate
timescales: fast (τf ), slow (τs) and ultra-slow (τus), for which
we assume:

max(τv, τf )� τs � τus (8)

The dynamics of the fast element relative to the membrane
dynamics can be arbitrary, and in particular, the fast dynamics
can be taken as instantaneous. We use an instantaneous fast
element throughout the simulations in the paper, corresponding
to τf = 0.

For modeling purposes, we will consider a dimensionless
representation of this circuit architecture. We will denote the
dimensionless quantities with capital letters, so that equations
(2) and (5) become:

dV

dτ
= −Ip(V )−

∑
I±x + Iapp (9a)

I±x = F±
x (Vx) (9b)

τx
dVx
dτ

= V − Vx, (9c)

with τ being the dimensionless time.
The classic FitzHugh-Nagumo model of excitability as-

sumes this form with the elements:

Ip(V ) = V 3/3 (10a)

F−
f (V ) = −V (10b)

F+
s (V ) = kV, (10c)

with τf = 0 and k > 1. The recent model [27] generalizes
FitzHugh-Nagumo circuit to allow for a modulation between
bursting and spiking behaviors. It assumes the form:

Ip(V ) = V 3/3 (11a)

F−
f (V ) = −V (11b)

F−
s (V ) + F+

s (V ) = (V + V ∗)2 (11c)

F+
us(V ) = V, (11d)
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The bursting behavior relies on a non-monotonic slow cur-
rent and an additional ultra-slow current. The parameter V ∗

controls if the model is spiking or bursting.
Here we will consider those particular circuits as specific

interconnections of standardized elements with I-V character-
istic

F±
x (V ) = ±α±

x tanh(Vx − δ±x ). (12)

Such characteristics retain a fundamental property of biophys-
ical circuits: the conductance has a localized activation range,
as well as a well-defined timescale. The local range is specified
by the linear range of the sigmoid, whereas the timescale is
specified by the time constant τx. The parameter α±

x > 0
controls the gain of the conductance, and the parameter δ±x
determines where in the voltage range the element is active.
In addition, we have the passive element taking form of a
resistor, so that:

Ip(V ) = V (13)

We view the role of localized conductance elements as shap-
ing the I-V characteristics of the circuit in distinct timescales.
Accordingly, we will consider the I-V characteristics of the
circuit in the respective fast, slow, and ultra-slow timescales.
Those curves will be denoted by:

Ix = Ip(V ) +
∑
τy≤τx

F±
y (V ), (14)

so that Ix represents the summation of all the I-V curves of
elements acting on the timescale τx, or faster.

The basic rationale of our design will be the following: we
will use negative conductance elements to create local ranges
of negative conductance in a given timescale and positive
conductance elements to restore the positive conductance in
slower timescales. The circuit behavior will be determined by
shaping the local ranges of negative conductance in the right
voltage ranges and timescales. Our methodology is obviously
qualitative in nature: it does not depend on specific circuit or
mathematical realizations but only on shaping the monotonic-
ity properties of the I-V curves in distinct timescales.

III. SHAPING AN EXCITABLE CIRCUIT

Ever since the early works of Van der Pol [37], Hodgkin
and Huxley [10] and FitzHugh and Nagumo [16], [38], the
property of excitability of a circuit has been rooted in a region
of negative conductance in a specific voltage range [39]. As
a first step, we briefly revisit this construction with our I-V
shaping technique.

The excitable circuit in Fig. 2 uses two localized conduc-
tance elements: a fast negative conductance element I−f and
a slow positive conductance element I+s . The role of I−f is to
create a range (V f1 ,V f2 ) in the total fast I-V curve. The role
of I+s is to restore a positive conductance characteristic in the
total slow I-V curve. The I-V curve shaping is thus determined
by the following two conditions:

dIf
dV

< 0, V ∈ (V f1 , V
f
2 ) (15)

dIs
dV

> 0,∀V (16)

C ip(v)

iapp

Passive membrane

i−f i+s

Excitability

v

Fig. 2. Synthesis of an excitable circuit as the parallel interconnection of a
passive membrane with a fast negative conductance element (I−f ), balanced
by a slow positive conductance element (I+s ).

V

I

Passive I-V

V f
1 V f

2

V

I

Fast I-V

Ve1Ve2

Iapp1
Iapp2

V

I

Slow I-V

V f
1 V f

2

ThresholdsVe2 Ve1

+ - +

Excitable Spiking

Iapp1

Iapp2 t

Iapp

t

V

Fig. 3. Properties of an excitable circuit. Top: Passive, fast and slow I-
V curves of an excitable circuit. The fast curve is “N-shaped”. The slow
curve is monotone and its intersection with the line I = Iapp determines
the system’s equilibrium (Ve). Middle: If the equilibrium voltage lies in the
negative conductance region of the fast I-V curve (Ve1) the system is spiking,
or is excitable otherwise (Ve2). Voltage regions are indicated with the sign of
the slope of the fast I-V curve. Bottom: Transition between the spiking and
excitable regimes through the applied current.

which correspond to the graphs illustrated in Fig. 3: the passive
and slow I-V curves are monotone, whereas the fast I-V curve
has the characteristic “N-shape” of a negative conductance
circuit.

Provided that the timescale separation is sufficient, the
resulting dynamical behavior of the circuit has the following
properties:

• The circuit has a monotone equilibrium characteristic
given by the slow I-V curve. A unique equilibrium
(Iapp,Ve) exists for every value of Iapp. The equilibrium
voltage is stable except in a finite range included in the
interval (V f1 ,V f2 ).

• The circuit has a stable spiking behavior in a finite
range of constant applied current. The spiking behavior
is characterized by a stable limit cycle oscillation with
sharp upstrokes and downstrokes between a “low” and a
“high” voltage range.

• For equilibrium voltages close to the negative conduc-
tance range (V f1 ,V f2 ), the circuit is excitable: the steady-
state behavior is a stable equilibrium but small current
pulses can trigger “spikes”, i.e. a transient manifestation
of the oscillatory behavior.

The three properties above determine an excitable behavior
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Fig. 4. The “N-shaped” fast I-V curve. The threshold voltages V f
1 and

V f
2 define the bistable region, so that by increasing the current above If1

or decreasing it below If2 makes the system jump to the opposite branch
of the curve, defined by voltages V f and V f respectively. Controlling the
location of these points represents the essential modulation mechanism of the
circuit.

[39]. They primarily owe to the fast-slow decomposition of
the circuit. In the fast timescale, the negative conductance
characteristic makes the circuit bistable and hysteretic: in the
range of currents (If1 ,If2 ), two stable voltage points coexist,
so that the behavior can easily switch between a low voltage
state in the range (V f ,V f1 ) and a high voltage state in the range
(V f2 ,V

f
) (Fig. 4). In the slow timescale, the positive conduc-

tance characteristic makes the circuit monostable, resulting in
either a stable equilibrium or a stable spiking behavior.

This analysis is consistent with the biophysics of excitable
neurons: sodium channel activation is fast and acts as a
negative conductance close to the resting potential, whereas
potassium channel activation is slow and acts as a positive
conductance.

IV. NEUROMODULATING AN EXCITABLE CIRCUIT

Provided a sufficient timescale separation between “fast”
and “slow”, the qualitative behaviors of our excitable circuit
are solely determined by the I-V curve shaping. Classical
dynamical systems tools (see e.g. [40]) show that the unstable
voltage range is delineated by two Hopf bifurcations and
that the unstable range converges to (V f1 ,V f2 ) as the ratio
max(τv, τf )/τs approaches zero. These asymptotic properties
are very convenient to tune the excitable circuit from its fast
and slow I-V curves:

• The amplitude range of the spiking behavior is deter-
mined by the hysteresis of the fast I-V curve. With a
localized conductance like (12), the hysteresis is centered
around δ−f and its range is modulated by the control
parameter α−

f (Fig. 5).
• The spiking frequency is determined by the time spent in

the low and high voltage range (V f ,V f1 ) and (V f2 ,V
f

),
respectively. For a fixed negative conductance element,
this time is primarily modulated by the control parameter

V

I Fast I-V

V 1 V 1V 2 V 2V 3 V 3

Range

V 2

V 2

t

V

V 1

V 1

t

V

V 3

V 3

t

V

Fig. 5. Amplitude of the spikes is determined by the fast I-V curve. The
jumps between the low and the high voltage happen at the local maximum and
minimum of the curve. Increasing the gain of the fast negative conductance
element (α−

f ) widens the negative conductance region and increases the
amplitude of the spikes. In order to keep the frequency of the oscillations
approximately constant, the gain of the slow positive conductance element is
kept the same as the gain of the slow negative conductance in all simulations
(α+

s = α−
f ).

α+
s

Frequency

Increasing slow positive
conductance gain

IHopf

Iapp

Frequency

Increasing applied
current

Fig. 6. Tuning the frequency of spiking. Left: Frequency of the oscillation
can be controlled by varying the slow positive conductance gain (α+

s ). This
controls the “up” and “down” time intervals of the spike, which approximately
determines the period of oscillation due to the fast nature of the jumps. Right:
For fixed α+

s , increasing the applied current increases the frequency, but there
is a discontinuous jump at IHopf due to the oscillations emerging through a
Hopf bifurcation.

α+
s (Fig. 6, left). The frequency can also be modulated

by the applied current (Fig. 6, right). The neuron is of
Type II in the terminology of [40] because of a nonzero
minimal spiking frequency at the Hopf bifurcation.

V. SHAPING A BURSTING CIRCUIT

Our bursting circuit in Fig. 7 closely mimics the architecture
of the spiking circuit in the previous section. We view bursting
as shaped by two, rather than one, ranges of negative conduc-
tance: the first one in the fast timescale, created by I−f , and
a second one in the slow timescale, created by I−s . The first
negative conductance is balanced by a positive conductance I+s
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C ip(v)

iapp

Passive membrane

i−f i+s

Fast excitability

i−s i+us

Slow excitability

v

Fig. 7. Synthesis of a bursting circuit as the parallel interconnection of a
passive membrane with both fast (I−f ) and slow (I−s ) negative conductance
elements, respectively balanced by slow (I+s ) and ultra-slow (I+us) positive
conductance elements.

V

I

Fast I-V

V s
1 V s

2

V

I

Slow I-V

Ve2 Ve1

I1
I2

V

I

Ultra-slow I-V

V s
1 V s

2

Thresholds

+/+ +/- +/+

Ve2 Ve1

Slow excitable Slow spiking

t

V

I1

I2
t

Iapp

Fig. 8. Slow excitable circuit. Without the fast excitability elements, fast I-V
curve is monotonic, slow I-V curve is “N-shaped”, and the ultra-slow I-V
curve is monotonic, so that the system is slow excitable, similarly to Fig. 3.
The voltage regions are now indicated with two signs, so that the first sign
corresponds to the sign of the slope of the fast I-V curve, and the second sign
corresponds to the sign of the slope of the slow I-V curve.

in the slow timescale, whereas the slow negative conductance
is balanced by a positive conductance I+us in the ultra-slow
timescale.

Fig. 8 illustrates the design of the slow excitable circuit (in
the absence of I−f and I+s ) exactly as in the previous section.

Bursting is obtained by shaping the fast and slow I-V curves
as illustrated in Fig. 9. Each curve has a range of negative
conductance and the two ranges overlap in such a way that

V s1 < V f1 < V s2 < V f2 . (17)

Finally, the ultra-slow positive conductance element restores
monotonicity in the ultra-slow I-V curve, as illustrated in Fig.
10. Provided that the timescale separation is sufficient, the
resulting dynamical behavior has the following properties:

• The circuit has a monotone equilibrium characteristic
given by the ultra-slow I-V curve.

• Depending on the constant applied current, the circuit has
a stable equilibrium (resting state), a stable limit cycle

V f
1 V f

2

V

I

Fast I-V

V s
1 V s

2V s V
s

Is1

Is2

V

I

Slow I-V
B
ista

b
ility

V f
1 V f

2V s
1 V s

2

Thresholds

+/+ +/- -/- -/+ +/+

V f V
f

V s V
s

Range

Fast amplitude

Slow amplitude

Fig. 9. Slow bistability between the rest state and the spiking state. The I-V
curves (top) show a system with a double hysteresis: both the fast and the
slow I-V curves are “N-shaped”. By having the “up” state of the slow curve
correspond to the unstable region of the fast system, the system experiences
rest-spike bistability, given that the slow threshold is at lower voltage than
the fast one, i.e. V s

1 < V f
1 . The system now has two pairs of threshold and

range voltages corresponding to the fast and the slow I-V curves, which gives
the full set of modulation variables for controlling the behavior of the circuit.

behavior (spiking), or a stable limit cycle characterized
by an alternation of spikes and rest (bursting state).

• Close to the bursting range of applied currents, the circuit
is burst excitable. The steady-state behavior is a stable
equilibrium but small current pulses can trigger individual
“bursts”, i.e. a transient manifestation of the bursting
behavior.

It is remarkable that those qualitative properties are entirely
determined by the shaping of I-V curves as in Fig. 10. This
owes to the three timescale decomposition of the dynamical
behaviors. A detailed analysis in [26], [27] shows that the
shaping in Fig. 9 is sufficient to enforce bistability in the slow
timescale between rest and spiking. The rest-spike bistable
range in Fig. 9 is analogous to the rest-rest bistable range in
Fig. 4. It is governed by a transcritical bifurcation at the current
Is2 , as studied in [26], [27] and derived in the Appendix A.

The architecture of the bursting circuit is once again consis-
tent with the biophysics of bursting neurons: the slow negative
conductance is provided by the slow activation of calcium ions
or the slow inactivation of potassium ions, while calcium-
activated potassium channels provide the ultra-slow positive
conductance.

VI. NEUROMODULATING A BURSTING CIRCUIT

Very much like how the fast I-V curve determined the
amplitude of spiking in Fig. 5, the fast and slow I-V curves
of Fig. 9 determine the amplitude tuning of bursting. The
gains of the negative conductance elements I−f and I−s can be
modulated to control the amplitude properties of the bursting
waveforms. For instance Fig. 11 illustrates how moving the
negative conductance regions of the fast and slow I-V curves
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V f
1 V f

2

V

I

Fast I-V

V s
1 V s

2

V

I

Slow I-V

Ve3 Ve2Ve1

I1

I2
I3

V

I

Ultra-slow I-V

V f
1 V f

2V s
1 V s

2

Thresholds

+/+ +/- -/- -/+ +/+

Ve3 Ve2 Ve1

Burst excitable Bursting Spiking

t

V

I1

I2
I3 t

Iapp

Fig. 10. Properties of a bursting circuit. Top: Both fast and slow I-V curves
are “N-shaped”. The ultra-slow I-V curve is monotonically increasing, and
the intersection with the I = Iapp line determines the location of the
system’s equilibrium Ve. Middle: If the equilibrium voltage lies below the
slow threshold, the system is burst excitable (Ve3), if the equilibrium lies in
the negative conductance region of the slow I-V curve the system is bursting
(Ve2), while if the system lies in the negative conductance region of the fast
I-V curve above V s

2 (Ve1), the system is purely fast spiking. Bottom: The
transition between the three regimes through Iapp.

relative to each other as well as modulating their widths, leads
to a transition between plateau and non-plateau bursting.

Likewise, for fixed negative conductance elements, the
gains of the positive conductance elements provide natural
parameters to control intraburst and interburst frequencies of
the bursting attractor (Fig. 12).

Figs. 11 and 12 illustrate the versatility of our approach
and the relevance of tuning a bursting circuit from I-V curves
rather than through an exhaustive exploration of the parameter
space.

A. Bursting/spiking modulation through slow I-V curve

Our bursting circuit has a simple parallel architecture with
four basic control parameters: two negative conductance gains,
α−
f and α−

s , and two positive conductance gains α+
s and α+

us.
Each negative conductance gain controls one mode of ex-
citability : spiking, a fast excitability mode (α−

f ) and bursting,
a slow excitability mode (α−

s ). Each positive conductance gain
controls the corresponding frequency: spiking frequency (α+

s )
and bursting frequency (α+

us).
Those control parameters are in close analogy with the

maximal conductances of the four typical ionic currents of
a bursting neuron: sodium and calcium currents are inward
currents whose activation gating variables control the negative
conductances. The activation of calcium currents is often
five to ten times slower than the activation of a sodium
current. Potassium and calcium-activated potassium currents

t

V

V f V
f

V s V
s

Range

t

V

V f V
f

V s V
s

Range

Fig. 11. Controlling the bursting waveform. The bursting oscillations can
be designed by independently considering the fast and the slow I-V curves,
and shaping both fast and slow spiking. In this way we can design plateau
oscillations (top) and non-plateau oscillations (bottom), by moving the neg-
ative conductance region of the slow I-V curve relative to the the negative
conductance region of the fast I-V curve (see Fig. 9).

t

V

Intraburst frequency

t

V

t

V
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a
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n
g
α
+ s
&
α
− s

t

V

Interburst frequency

t

V

t

VIn
cr
e
a
si
n
g
α
+ u
s

Fig. 12. Controlling the intraburst and interburst frequencies of the circuit.
Increasing the gain of the slow positive conductance element increases the
frequency of the fast spiking, thus increasing the intraburst frequency (left
column); the slow negative conductance is increased by the same amount to
keep the interburst period approximately constant. Increasing the gain of the
ultra-slow positive conductance element increases the frequency of the slow
spiking, thus increasing the interburst frequency (right column).

are outward currents whose activation variables control the
positive conductances. The activation timescale of potassium
and calcium are often similar, whereas the activation of
calcium-activated potassium lags behind. See [41] for a further
analysis of the physiological conductances of a neuron.

The balance between I−s and I+s is particularly important
in the modulation of the circuit activity between spiking
and bursting. The modulation of this balance shapes the
monotonicity of the slow I-V curve: a monotone shape will
lead to spiking behavior whereas an “N-shaped” curve will
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t

V

t

α−
s

V f
1

V

I

V f
1 = V s

1

V

I

Slow I-V

V f
1

V

I

Fig. 13. Controlling the oscillation mode. Top: Transition between bursting
and regular spiking modes by changing the gain of the slow negative
conductance element. Bottom: The transition can be traced locally around the
fast threshold V f

1 through the circuit’s slow I-V curve (bottom). Starting from
a balanced condition (middle), increasing the gain makes the slope locally
negative and creates slow bistability (left), while decreasing the gain makes
the slow curve monotonic (right). Decreasing the size of the bistable region
continuously decreases the number of spikes per burst, changing the behavior
into regular spiking when bistability is lost.

lead to bursting.
Further insight into this regulation is provided by a local

analysis of the I-V curves around critical points. This analysis
makes contact with singularity theory, that has been the key
analysis tool to analyze the modulation of bursting in [27]. We
briefly illustrate the value of singularity theory by studying the
transition from spiking to bursting around the critical point

V = V f1 = V s1 , (18)

obtained by aligning the fast and slow threshold of Fig.
9. The concavity of the slow I-V curve around that point
locally controls the transition from bursting (locally concave)
to spiking (locally convex). The transition is determined by a
change of sign in the second derivative:

d2Is
dV 2

= 0 (19)

which, together with Eq. (18) determines a pitchfork bifurca-
tion in the fast-slow model [27].

Fig. 13 illustrates a smooth transition from bursting to tonic
spiking around that point. The transition is governed by the
modulation of the sole parameter α−

s . Such a transition is
in close analogy with the modulation of calcium currents in
the physiologically significant transition from tonic spiking to
bursting, see e.g. [42].

The balance between I−s and I+s can also be used to control
the properties of a purely spiking circuit, as this balance is
central to controlling the spiking frequency of a neuron in the
low frequency range [43]. Neurons that can spike at arbitrarily
low frequency are referred to as Type I excitable neurons. Fig.

V f
1 = V s

1

ISNIC

V

I

Slow I-V

ISNIC

Iapp

Frequency

Fig. 14. Type 1 excitable neuron. Left: In order to generate oscillations with
arbitrarily low frequency, it is necessary for the slow I-V curve to be non-
monotonic, so that for Iapp = ISNIC the system undergoes a saddle-node
on invariant circle bifurcation. The thresholds are set so that the rest/spike
bistability is lost, i.e. V f

1 = V s
1 . Right: The signature of the saddle-node on

invariant circle bifurcation is the frequency of the oscillation tending to zero
for Iapp close to ISNIC .

14 illustrates the classical Type I neuron model governed by a
SNIC bifurcation [36]. The transition from Type II excitability
in Fig. 6 to Type I in Fig. 14 is achieved by shaping the
slow I-V curve around its transition from monotone to “N-
shape”, so that V f1 and V s1 coincide. In the language of
singularity theory, this transition is governed by a hysteresis
singularity [27]. In our circuit, shaping an I-V curve around
a hysteresis singularity is achieved by balancing a positive
and a negative conductance element. This robust regulatory
mechanism is central to neuromodulation and can be repeated
in any timescale.

VII. FRAGILE AND RIGID BURSTING MECHANISMS

Shaping the monotonicity properties of an I-V curve by
balancing positive and negative conductance elements makes
a bursting circuit robust and controllable [41]. We will now
briefly review two well-known bursting mechanisms [36] that
do not necessitate a negative conductance element I−s . Such
models can burst but they lack the modulation properties
described in the previous section. Both models have been
prevalent in the bursting literature.

The first bursting mechanism is illustrated in Fig. 15. The
fast and the slow I-V curves are the same as for the purely
spiking circuit in Fig. 3. However, because the transition from
resting to spiking is through a subcritical Hopf bifurcation,
there exists a small range of applied current in which the
system exhibits bistability between a fixed point and a stable
limit cycle, separated by an unstable limit cycle. By introduc-
ing the ultra-slow positive conductance element that generates
the ultra-slow oscillation between the two states, the system
undergoes bursting oscillations.

These bursting oscillations only appear for a small range
of values of Iapp, and in addition to this, it is not possible to
precisely determine this range from the ultra-slow I-V curve
as before. The bistability range is also sensitive to timescale
separation. In fact, it shrinks to zero as the timescale separation
is increased [44], unlike the slow bistability discussed in Fig.
9, which is robust to an increased timescale separation.

The second bursting mechanism is illustrated in Fig. 16.
It is achieved by adding the ultra-slow positive conductance
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V

I

Fast I-V

V

I

Slow I-V

Iapp

V

I

Ultra-slow I-V

t

V

Fig. 15. Bursting through a subcritical Hopf bifurcation can be designed by
adding an ultra-slow positive conductance element to a spiking circuit. This
bursting mechanism is fragile to the time scale separation and only exists for
a narrow range of applied current (depicted with the two horizontal lines in
the ultra-slow I-V curve).

V

I

Fast I-V

V

I

Slow I-V

Iapp

V

I

Ultra-slow I-V

t

V

Fig. 16. Generating bursting from a Type I neuron. For a small timescale
separation between fast and slow, the system can have bistability between
resting and spiking, and adding ultra-slow positive conductance element turns
it into a bursting circuit. The range of applied currents for which the system
undergoes bursting oscillations is depicted with the two horizontal lines in
the ultra-slow I-V curve.

element to a Type I neuron. We can construct a Type I neuron
without the use of a slow negative conductance element I−s by
decreasing the linear range of the positive conductance element
I+s compared to the fast negative conductance element I−f , i.e.
by having:

I+s = α+
s tanh(β+

s (Vs − δ+s )), β+
s > 1 (20)

Although a Type I neuron is monostable (Fig. 14), it can be
turned into a bistable system if the fast and slow timescales
are no longer separated. Such a construction is very sensitive
to the particular choice of timescales, and making the slow
timescale slower than approximately 2max(τv, τf ) destroys
the bistability. Bursting achieved in this way is shown in Fig.
16.

The bursting mechanisms illustrated in Fig.15 and Fig. 16
are not only fragile to parameter uncertainty. They are also
rigid in the sense of completely lacking the tuning properties
shown in Figs. 10-13; in the first case, the system necessarily
undergoes elliptic-type bursts, while the second undergoes

plateau bursting oscillations, for which it is not possible to
precisely control the height of the plateau, or the size of the
fast spikes. The bursting synthesis in the previous sections is in
sharp contrast with those mechanisms: the choice of timescales
is inessential and all tuning properties can be directly deduced
and designed by shaping the I-V curves of the circuit. These
alternative constructions underline the value of a bursting
circuit realized as the interconnection of both fast and slow
excitability components in order to fully capture the tuning
and robustness properties of biological neurons.

VIII. CIRCUIT IMPLEMENTATION

A. Implementation of a localized conductance element

We propose a simple hardware implementation of an ele-
ment that satisfies equation (2) and has the I-V characteristic in
(12), as shown in Fig. 17. We use a MOSFET-based transcon-
ductance amplifier operating in the weak inversion regime as
the circuit primitive [45]. For our application, the simplest
implementation of a transconductance amplifier is considered
(Fig. 18). It has the following input-output relationship:

iout = ib tanh

(
κ
v1 − v2
2vT

)
, (21)

where ib is the controlled current that sets the gain, κ ∈ (0, 1)
is a process-dependent variable, and vT ≈ 25mV is the
thermal voltage. Due to its well-defined hyperbolic tangent
function and the adjustable gain, it is a versatile localized
conductance element. The one control parameter, current ib, is
set by the bottom transistor (Fig. 18, right) whose gate voltage
is the third input on the block diagram representation (Fig.
18, left). As the transistor is saturated in the weak inversion
regime, the relationship between its gate voltage and base
current is

ib = i0e
κvb/vT , (22)

where i0 is the zero-bias current. Therefore, there is an
exponential relationship between the gain of the element and
its base voltage.

The conductance element has the following characteristic:

i±x = ±(ib)±x tanh

(
κ
vx − (vδ)

±
x

2vT

)
(23a)

CTx
v̇x = iTx

tanh

(
κ
v − vx
2vT

)
(23b)

Its effective timescale is determined by the capacitance (CTx
)

and the base current (iTx
), so that

Tx = (2vTCTx
)/(κiTx

) (24)

The current source acts as a positive conductance when the
filtered voltage is connected to the negative input terminal, as
in Fig. 17. Instead, it acts as a negative conductance element
if it is connected to the positive input terminal. The other
terminal then defines the voltage offset, by default set to the
middle of the voltage rails.



9

i+xv =
−

+

vTx

CTx

−

+(vδ)
+
x

vx
i+x

(vb)
+
x

i = 0

v

Fig. 17. Implementation of a single localized conductance element. The first
transconductance amplifier and a capacitor form a non-linear first-order filter,
whose output is the filtered voltage vx. This is then the input to the second
transconductance amplifier which forms the output current i+x . The element
in this case is positive conductance (for a negative conductance element the
inputs to the second amplifier are swapped).

ib

v1 v2

vb

iout

VDD

=−

+

vb

v1

v2

iout

Fig. 18. A weak inversion MOSFET transconductance amplifier used as the
circuit primitive. The circuit realizes a hyperbolic tangent mapping from the
differential voltage input to the current output. The gain of the function is
determined by the current flowing through the base transistor (ib), controlled
by its base voltage (vb) that acts as the additional amplifier input.

We map the dimensionless parameters from previous sec-
tions directly to the circuit parameters in the following way:

(ib)
±
x = α±

x

(
2GvT
κ

)
(25a)

(vδ)
±
x = δ±x

(
2vT
κ

)
(25b)

iapp = Iapp

(
2GvT
κ

)
, (25c)

with G being the conductance of the passive element around
equilibrium, i.e.:

G =
dip(v)

dv

∣∣∣∣
v=ve

(26)

This conductance then defines the time constant of the
voltage equation as in (6).

B. SPICE simulation

In order to test the proposed architecture of the paper,
we have simulated the circuit in SPICE environment, using
the BSIM3 MOSFET model with TSMC 0.35 µm process
parameters and a 3.3V voltage supply.

Each current source element of the bursting circuit from
Fig. 7 is realized as described in the previous section. The
passive element is implemented by using a transconductance

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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1.8
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v [V]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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−
s [mV]
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1 1.5 2
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−20

0

20

v [V]

i [nA]
Slow I-V

1 1.5 2

−40

−20

0

20

v [V]

i [nA]

Fig. 19. Transition between bursting and spiking modes in the MOSFET
circuit simulation. The gain of the slow negative conductance element is
controlled through the corresponding base voltage that modifies the gain of the
current element i−s . Decreasing i−s reduced the negative conductance region
of the slow I-V curve, changing the behavior from bursting to spiking.

amplifier with an increased linear range. We linearize the
element by using four diode-connected NMOS transistors to
provide source-degeneration. Note that since currents i−s and
i+s both act on the slow timescale, only one filter is necessary.

All capacitors were chosen to have the same capacitance
C = 100 pF, and G was set so that the period of the oscillation
is of the order of seconds. We achieve this by setting:

Tus = 1 s = 50 Ts = 502 Tv (27)

The input transistors and the source degeneration transistors
were chosen to have the minimal size, so that their width and
length were set to W = 0.6 µm and L = 0.4 µm. The bias
transistors and the current mirror transistors were made larger
in order to minimize the channel length modulation effect and
improve matching, so that a more precise tanh current-voltage
relationship is obtained. Their size was chosen to be W =
2.4 µm and L = 1.6 µm. The total area taken by the transistors
is 84.96 µm2.

By using the relationships given in (25) we can set the pa-
rameters of the circuit to replicate any behavior demonstrated
in the previous sections. As an example, we concentrate on
the transition from bursting to spiking from Section VI-A
(Fig. 13). We recreate this transition in Fig. 19. The transition
is controlled by the parameter α−

s , which in the circuit
corresponds to the base current (ib)

−
s of the i−s localized

conductance element. Due to the nonlinearity of the passive
element, the bursts have a slightly larger amplitude of the
slow oscillation for high values of (vb)−s as seen in the figure,
but we observe exactly the same transition as the negative
conductance region of the slow I-V curve is modulated. The
correspondence between the simulations can be improved by
choosing a better linearization technique, but this does not
affect the excitability properties of the circuit.
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Fig. 20. Compensating for process variation. The element gains of a circuit
instance differing from the nominal can be adjusted so that the I-V curves are
restored and the behavior is kept the same. Top: Due to process variation,
the I-V curves of the circuit (blue, solid) are distorted compared to the
nominal (orange, dashed), and the bursting behavior is lost. Bottom: After
compensation, the circuit’s I-V curves closely match the nominal I-V curves,
and the bursting behavior is restored.

The simulated power consumption of the circuit is 0.77 µW
in the bursting regime.

C. Robustness of I-V curve shaping

Due to manufacturing uncertainty, the parameters of the
circuit will vary from the idealistic conditions of the previous
section. To this extent, we would like to stress two important
characteristics of our proposed architecture:

1) Maintaining the I-V curves of the circuit keeps the
behavior intact.

2) The circuit’s I-V curves can be fully controlled through
the gain and offset voltages of the localized conductance
elements.

The first point effectively means that the underlying circuit
structure is inessential: as long as the input-output character-
istic of the circuit consists of a specific set of I-V curves, its
behavior is well-defined. Robustness of the circuit behavior
therefore boils down to the robustness of its I-V curves.

The second point stresses that the internal parameters of the
circuit can be readjusted so that the set of I-V curves is kept
constant. This means that the variability in the components
can be compensated for by tuning the control voltages of the
circuit elements.
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Fig. 21. Temperature dependence of the circuit. As temperature is increased,
the circuit maintains the bursting oscillation with increasing interburst fre-
quency, mimicking the behavior of biological neurons.

To show this, we have investigated how process variability
affects the I-V relationships of the circuit elements by varying
the following process parameters: threshold voltage, surface
mobility at the nominal temperature, gate oxide thickness, and
transistor width and length offset parameters. For each param-
eter, the variability was modeled as a Gaussian distribution
around the nominal value with the standard deviation at 10%
of the nominal value.

The main effect of these process variations on the I-V char-
acteristics of the elements was found to be the variation in the
gains of the localized conductance elements, while the shape
of the tanh relationships remained largely unchanged. As a
result, such variations can be compensated for by readjusting
the base voltages controlling the element gains (vb in Fig. 18).
We show this on a random instance of the circuit in Fig. 20: for
nominal values the bursting behavior is lost, but by rescaling
the element gains the I-V curves are restored, and therefore,
the nominal behavior. Such variability can be compensated for
if the variation in the element’s base currents is between 0.3
and 3 times its nominal value, dictated by the voltage limits
of the subthreshold operating region of MOSFETs. The local
transistor mismatches introduce voltage offsets in the tanh I-
V relationships [12], and such variations are compensated for
through the control of offset voltages of the circuit elements
(v1 or v2 in Fig. 18).

We also consider how temperature variations affect the
behavior of the circuit. In Fig. 21 we can see that the circuit
maintains the bursting behavior for changing temperature,
while the interburst frequency increases with increasing tem-
perature. Such a dependence on temperature is in correspon-
dence with the common behavior of biological neurons [46].

In order to account for the variability in circuit components
as well as temperature variations, additional compensation
techniques can be considered that would allow the circuit
to automatically maintain its behavior irrespective of the
changing conditions (see e.g. [47]). As we have discussed in
this section, the aim of such techniques would be to maintain
the circuit’s input-output properties in the form of its I-V
curves, so that the behavior is subsequently preserved.
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IX. CONCLUSION

We have presented a novel methodology for realizing
neuromorphic circuits with robustness and neuromodulation
properties reminiscent of those observed in physiological
neurons. The methodology is based on shaping the circuit’s
input-output I-V curves in several timescales, which gives a
robust and flexible approach that relies on I-V curve shaping.
It departs from the standard methodology of achieving a
specific behavior by specific parameter tuning, which often
leads to circuits that lack modulation capabilities. As a proof
of concept, we have proposed a simple circuit implementation
using MOSFET transconductance amplifiers operating in the
weak inversion regime.

While the proposed methodology is qualitative, all behaviors
analyzed in this paper have low-dimensional state-space model
realizations amenable to an exhaustive and rigorous bifurcation
analysis. This is because the I-V curve shaping methodology
is closely related to the analysis of those dynamical models
by singularity theory. All the attractors studied in the present
paper are organized by the same algebraic singularity. The
reader interested in a detailed analysis is referred to [27].

The main perspective of our approach is twofold. By
retaining the basic interconnection structure of biophysical
models, the circuit can be utilized to better understand the
modulation principles of real neurons in experimental setups.
Recent work [30] has shown how the transitions in neural
behavior can be predicted and traced by accumulating the
effects of ionic conductances in several relevant timescales.
In turn, our localized conductance elements capture these
collective effects, so that by designing different behaviors
in hardware, we are able to predict which neuromodulators
would need to be utilized to capture the same transitions in
experiments.

Secondly, by retaining the relevant tuning mechanisms in
hardware, we aim to study how the transitions between dif-
ferent neural behaviors are utilized in biology. We are hopeful
this will lead to novel signal processing paradigms, where the
spatio-temporal characteristics of the neural waveforms can
be effectively used to capture the sensory information in more
efficient ways, mimicking the operation and structure of bio-
logical neural architectures. The relevance of such mechanisms
is suggested in studies such as [8]. Robust neuromodulation
is also at the essence of the remarkable adaptability of neural
central pattern generators (CPGs) that generate movement in
animals. Such mechanisms have been extensively investigated
in robotics in order to build autonomous robots that adapt
efficiently to changing environmental conditions. However, a
solid theoretical understanding for the robust and adaptive
hardware of CPGs is still lacking [48], [49]. The I-V curve
shaping methodology offers a promising avenue for building
tunable CPG circuits. For instance, we are confident that the
circuit proposed in the present paper provides a building block
for a CPG with the neuromodulation capabilities described in
the recent paper [50].

Our feasibility study of a simplistic MOSFET circuit operat-
ing in the weak inversion regime built on the I-V curve shaping
principles shows the potential of our approach to introduce

neuromodulation principles in neuromorphic hardware. The
hardware implementation of the proposed circuit will be
further discussed in a future study.

APPENDIX A
TRANSCRITICAL BIFURCATION IN THE BURSTING MODEL

We connect the I-V curve analysis presented in this paper
with previous mathematical analysis of a simplified bursting
model [27]. We concentrate on the fast-slow dynamics of
the model that has the rest/spike bistability property. The
simplified model is the following:

ẋ = −x3 + βx− (y + λ)2 + α (28a)
ẏ = ε(x− y) (28b)

with ε� 1 so that x is the fast voltage variable, and y is the
slow variable.

For a range of parameters, this model experiences bistability
between a stable rest state and a stable limit cycle. This
is exhibited in the fast-slow phase portrait as a mirrored
hysteresis fast nullcline; in the limit of timescale separation,
i.e. when ε = 0, the bistability is lost when the two hysteresis
branches meet at a transcritical singularity.

The conditions on the I-V curves stated in Fig. 9 directly
relate our bursting circuit to this model. We will consider the
case where τf = 0, so that the fast-slow system consists of two
state variables, V and Vs. Firstly, we look at the requirements
for the fast I-V curve:

Ip(V ) + I−f (V ) = V − α−
f tanh(V ) (29)

Without loss of generality, we assume δ−f = 0. In order for
the fast I-V curve to be “N-shaped”, we require αf > 1; when
this is the case, the fast I-V curve is locally equivalent to the
instantaneous term in Eq. (28) x3−βx, for β 6= 0, which can
be easily verified by checking the first three derivatives around
the points V = 0 and x = 0, respectively.

Because the slow I-V curve is obtained by adding the slow
conductance characteristic Is(V ) = I+s (V )+I−s (V ) to the fast
I-V curve, we can infer the properties of the slow conductance
from the I-V curve conditions. The conditions that the slow
I-V curve is “N-shaped” and that V s1 < V f1 means that for
V ∈ (V s1 , V

f
1 ), the fast I-V curve has a positive slope and

the slow I-V curve has a negative slope, and vice-versa for
V ∈ (V s2 , V

f
2 ). This means that the slow negative conductance

element necessarily has a negative slope in the first region,
and a positive slope in the second region, therefore having a
local minimum for some V s∗ ∈ (V f1 , V

s
2 ). The characteristic

is therefore locally quadratic around the point V s∗ , so that the
I-V characteristic of the slow conductance elements is locally
equivalent to the quadratic slow term in Eq. (28).

This allows us to find the point of the transcritical singu-
larity by having the following conditions on the derivatives of
the fast nullcline around the point (Vtr,V str):

∂V̇

∂V

∣∣∣∣
V=Vtr,Vs=V s

tr

=
∂V̇

∂Vs

∣∣∣∣
V=Vtr,Vs=V s

tr

= 0 (30)

Solving (30), we obtain:
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TABLE I
PARAMETER VALUES FOR SIMULATIONS IN SECTIONS III - VII

α−
f δ−f α+

s δ+s α−
s δ−s α+

us δ+us Iapp
Fig. 3 2 0 2 0 / / / / 0, -1
Fig. 5 2.5, 2, 1.5 0 2.5, 2, 1.5 0 / / / / 0

Fig. 6 (left) 2 0 [2,4] 0 / / / / -0.8
Fig. 6 (right) 2 0 2 0 / / / / [-1,-0.2]

Fig. 8 / / / / 1.5 -0.88 2 0 -2, -2.6
Fig. 10 2 0 2 0 1.5 -0.88 2 0 -1, -2, -2.6

Fig. 11 (top) 2 0 2 0 1.5 -1.5 1.5 -1.5 -2
Fig. 11 (bottom) 2 0 2 0 1.3 -1 1.3 -1 -1

Fig. 12 (left) 2 0 2, 2.2, 2.6 0 1.5, 1.65, 1.95 -0.88 1.5 -0.88 -1.3
Fig. 12 (right) 2 0 2 0 1.5 -0.88 1.5, 2.5, 3.5 -0.88 -1.3

Fig. 13 2 0 2 0 [0.8,1.6] -0.88 2 0 -2.2
Fig. 14 2 0 2 0 1.2 -0.45 / / [-0.4,-0.3]
Fig. 15 2 0 2 0 / / 0.5 0 -1.2

d

dV

(
I+p (V ) + I−f (V )

)∣∣∣∣∣
V=Vtr

= 0 (31a)

d

dVs

(
I+s (Vs) + I−s (Vs)

)∣∣∣∣∣
Vs=V s

tr

= 0 (31b)

Following from (31), we get:

(Vtr, V
s
tr) = (V f1 , V

s
∗ ) (32)

so that these points correspond to the maximum of the fast
I-V curve, and the minimum of the slow conductance I-V
characteristic, respectively. We find the corresponding Iapp
by imposing that this point lies on the fast nullcline, so that
finally:

Is2 = I+p (V
f
1 ) + I−f (V

f
1 ) + I+s (V

s
∗ ) + I−s (V

s
∗ ) (33)

APPENDIX B
SIMULATION PARAMETERS

All simulations in Sections III - VII were carried out in
MATLAB.

Figs. 3, 5, 6, 8, 10, 11, 12, 13, 14, 15 use the model
described in (9), (12) and (13).

The parameters for each conductance element are given in
Table I, as well as the applied currents. Common parameters
for these figures are the following:

τf = 0

τs = 50

τus = 2500

In Fig. 16 the slow timescale is modified to τs = 2, and
the model described in (20) is used for the slow positive
conductance. The parameters are the following: α−

f = 2,
δ−f = 0, α+

s = 1, β+
s = 3, δ+s = 0.5, α+

us = 1, δ+us = 0.
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