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Abstract 

For two decades, Rosetta has consistently been at the forefront of protein structure prediction. While it has 

become a very large package comprising programs, scripts, and tools, for different types of macromolecular 

modelling such as ligand docking, protein-protein docking, protein design, and loop modelling, it started as the 

implementation of an algorithm for ab initio protein structure prediction. The term ’Rosetta’ appeared for the first 

time twenty years ago in the literature to describe that algorithm and its contribution to the third edition of the 

community wide Critical Assessment of techniques for protein Structure Prediction (CASP3). Similar to the Rosetta 

stone that allowed deciphering the ancient Egyptian civilisation, David Baker and his co-workers have been 

contributing to deciphering ’the second half of the genetic code’. Although the focus of Baker’s team has expended 

to de novo protein design in the past few years, Rosetta’s ‘fame’ is associated with its fragment-assembly protein 

structure prediction approach. Following a presentation of the main concepts underpinning its foundation, especially 

sequence-structure correlation and usage of fragments, we review the main stages of its developments and highlight 

the milestones it has achieved in terms of protein structure prediction, particularly in CASP. 
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1. Introduction

Currently, Rosetta is a very large open source software suite encompassing several algorithms  for different

types of macromolecular modelling and protein structures analysis such as ligand docking [1], protein-protein 

docking [2], de novo protein design [3], and loop modelling [4]. Rosetta has moved from being a property of the 

University of Washington to ‘RosettaCommons’, i.e. a collaborative project that includes more than 150 developers 

in 23 different counties (rosettacommons.org).  However, its first version was initially an implementation of a single 

algorithm for ab initio protein structure prediction written in FORTRAN [5]. In 2005, Rosetta 2 was launched using 

C++. However, the automatic translation process adopted then to move from FORTRAN to C++ made it unsuitable 

for further development. Consequently, to ensure its future, Rosetta had to be rewritten from scratch as a fully 

object-oriented C++ suite known as Rosetta 3 that was launched in 2009 [6] – its latest sub-version is 3.11. Different 

programs have been gradually added and improvements have taken place during the course of development, which 

has led to the current Rosetta software suite. Although the Baker lab has been focusing on de novo protein design in 

the past few years leading to prominent findings [7–13], predicting the structure of proteins has remained their 

utmost goal.  



 ‘Rosetta’ was first mentioned in the literature in 1999 in a paper entitled “Ab initio Protein Structure 

Prediction of CASP III Targets Using ROSETTA” [14]. While they had used variable-length fragments during the 

pre-Rosetta phase (discussed later), they eventually decided to adopt fragments of fixed size; 9-mers represented the 

core of the building process, whereas 3-mers played a refinement role. Since then, those fragments’ lengths have 

been continuously adopted in Rosetta. Results were truly encouraging as the group was ranked the best in the ab 

initio PSP category [15] in CASP3. 

Herein, we review Rosetta as a fragment-based PSP describing its main components, such as the fragments 

picker, energy functions and fragments assembly, and related projects such as Robetta, Foldit and Rosetta@home. 

Rosetta’s contributions of to the scientific community are thoroughly investigated by analysing its performance and 

breakthroughs in each CASP’s round from the second to the thirteenth. However, before focusing on Rosetta, we 

present a short overview of fragment assembly PSP methodologies, including Rosetta, and the preliminary studies 

during the 1995-99 period that contributed to its birth. For the reader with an interest in the overall PSP and protein 

folding problems, excellent and recent reviews are available in the literature [16–25] 

 

2. Overview of fragment-based PSP and Rosetta methodology 

Motivated by the fact there is a strong correlation between sequence and structure at the local level, 

fragment-based protein structure prediction methods were first proposed in 1994 by Bowie and Eisenberg [26]. They 

rely on the concatenation of short rigid fragments excised from actual protein structures to construct putative protein 

models. Still, unlike homology and threading modelling, fragment-based predictors are able to handle template-free 

modelling (FM) targets; sometimes with very high accuracy, especially for small proteins [27]. Fragment-based 

protein structure prediction packages can be seen as offering a ‘compromise’ between ab initio and fold recognition 

modelling [28]. Methods such as FRAGFOLD [29], Rosetta [6], I-TASSER [30], and QUARK [31] have 

demonstrated the strength of such approach [32]. Regardless of the fragments’ length used by those methods, their 

popularity is supported by five main points. First, since the smallest element considered in computation is a set of 

amino acids instead of a single one, the entropy of conformational search space is decreased in a dramatic way. 

Second, short sub-sequences converge towards a relatively limited number of sub-structures. Third, usage of Monte 

Carlo simulations instead of Molecular Dynamics allows making those methods much faster than pure physics-

based ones. Fourth, the fragments that are used are already of low-energy, therefore, local interactions need not to be 

calculated within the fragments after each substitution; this feature makes such approach much less expensive than 

its competitors. Fifth, from a short fragment perspective, a structure can be built from fragments of other structures 

that belong to totally different architectures, folds and structures. 

Early studies conducted by Rosetta’s creators during the pre-Rosetta phase highlighted local sequence-

structure relationships [33] suggesting that methods built on Bowie and Eisenberg’s principles should only consider 

short fragments. As a result, the design of Rosetta relied on the assembly of short fragments (3-mers and 9-mers) 

excised from high resolution protein structures. Using the target’s sequence, for each position, the best 9-mers and 

3-mers are selected. This is performed, not only using sequence similarity and the sequence profile, but also by 

considering secondary structure prediction information generated from several sources as well as Ramachandran 

map probabilities. Then, the process of building conformations is conducted using two levels of search and 

refinement: coarse and fine grained associated with their respective energy functions. In the first level, low-

resolution conformations are generated by representing the chain by heavy atoms of the backbone besides a single 

centroid for the side chains, whereas in the second one, all atoms are modelled. In addition to keeping the fragments 

rigid during the simulation as most methods do, Rosetta maintains bond angles and length at some ideal values to 

reduce the search space. Accordingly, the sole degrees of freedom in the coarse-grained search are the backbone 

torsion angles, whereas side chains are only taken into account in the fine-grained stage [27]. A noteworthy 

observation concerning the force fields type used in both scoring functions is the usage of both physics and 

knowledge-based terms [34]. 



During the coarse-grained search and refinement and in order to generate a conformation’s backbone along 

with its side chain centroids, Rosetta operates in two main steps: first, 9-mer fragments are inserted within the initial 

fully extended conformation; second, insertions of 3-mer fragments are used to refine the structure previously 

generated. 9-mers and 3-mers are protein fragments extracted for each amino acid - except for the protein C 

terminus - of the protein of interest from a template database according to some similarity criteria. Eventually, 

Rosetta converts the coarse-grained conformation into an all-atom representation by adding all missing atoms using 

knowledge-based information extracted from known structures [27].  

Figure 1 shows a high-level Rosetta’s timeline that reveals the lifetime of the main phases, versions, 

scoring functions and additional tools, i.e. extensions (discussed later). 

 

Figure 1: Rosetta’s timeline since 1995. 

3. Preliminary studies during the pre-Rosetta phase 

Before the launch of an ab initio protein structure prediction based on fragment-assembly, David Baker and 

his co-workers had been investigating some ideas related the conformational conservation of the short sequences 

found in different proteins [35], the recurring short sequence motifs used to identify protein family borders [36] and 

the strong correlations between local sequences and structures [37]. Regardless of a specific secondary structure, 

their thorough study illustrated that the sequence-structure correlation shows dramatically increasing relative 

entropy as the length goes from 3 to 8 amino acids, then a slow increase till 10 amino acids (the peak of relative 

entropy value) followed by a slow decrease till 15 amino acids. More specifically, the authors investigated some 

inconsistencies researchers had faced to reach an accurate local sequence-structure mapping. Taking into account 

fragments of length range of 3 to 15 amino acids, another study was conducted to investigate all types of fragments 

including those that lie in a transition region between different secondary structures; the latter was considered new 

as previous papers had excluded such parts. Some ‘ideal’ sequence lengths were found as follows: 13 and 15 amino 

acids for helix caps (helix-turn-helix motifs), 7 to 11 for helices, 3 and 5 for β-strands, loops and turns. As for the 

transition fragments results were not as accurate as pure secondary structure regions, however sequences of length 7 

and 9 residues showed some level of successful mapping for turn-to-sheet. Furthermore, another study reveals that 

local sequence motifs that are likely to recur within a protein family. They concluded that local interactions favour a 

limited number of substructures which in turn dramatically decreases the search space, i.e. reduces its entropy. The 

University of Washington’s researchers suggested that most probably this is what happens in vivo giving a 



reasonable explanation of the fast folding process. All those findings had paved the way for the Baker research 

group to adopt a simple hypothesis: a protein structure can be constructed from a set of short substructures. 

In 1997, a paper was published by the Baker lab describing a relatively simple algorithm for predicting the 

tertiary structure of a protein using a fragment assembly approach aided by simulated annealing and a Bayesian 

scoring function [38]. Although some concepts have been changed in the subsequent releases, one can consider this 

paper as the first step towards Rosetta. Once fragments are determined based on sequence similarity a purely 

knowledge-based scoring function is employed for measuring non-local interactions to build the final conformation. 

An important particularity of this scoring function is exploitation of Bayes’ statistical theorem using a large database 

where the sequences have known structures: it allows identifying the most likely structure that could be associated 

with a given sequence.  

P (Structure | Sequence) = P (Structure) x P (Sequence | Structure) / P(Sequence) 

Less than two years later, a follow-up paper was published suggesting an improvement to the scoring 

function [39]. It introduced some sequence-independent terms, such as the properties of packing β-strands to form β-

sheets, besides the old sequence-dependent ones; yet using the same Bayes’ statistical theorem. Eventually, based on 

their previous work previously described, David Baker and Christopher Bystroff contributed to CASP2 in the ’ab 

initio’ category (8 targets) under the group ’BAKER’; the fragment library was called “I-Sites” and comprised 

fragments of 3 to 15 residues length [40]. Although, overall, their results were generally not satisfactory, they 

succeeded to reach a reasonable accuracy for one of the targets. 

 

4. Energy functions 

Rosetta’s energy function, which combines knowledge-based and physics-based terms, has passed through 

four main phases: Score12 [34], Talaris13 [41], Talaris14 [42] and REF2015 [43].  

The Score12 force field lasted for around 10 years as the default energy function of Rosetta3 [34]. It has 

been considered to be the ‘gold standard’ as during those years Rosetta achieved many milestones such as reaching 

native-like conformations for small proteins [27] as well as some of CASP’s targets’ for high accurate predictions 

[44–47]. The Score12 energy function comprises two versions: coarse-grained for low resolution, where a residue is 

represented by the backbone’s heavy atoms besides the centroid of the side chain, and fine-grained for high 

resolution, that is, for all-atom representation. Low resolution terms include (i) secondary structure pairing terms – a 

knowledge-based score to evaluate the favourable hydrogen bonding value between any couple of strands and helix-

strand packing, (ii) radius of gyration, also known as packing density, which is used to favour compact folds using 

van der Waals attraction forces, (iii) van der Waals repulsion term, (iv) solvation term [48] that includes both a 

bonus and penalty value and (v) pair-interaction electrostatic forces for up to 12 Å distance of separation. High 

resolution terms include, in addition to the last three terms above: (i) a Hydrogen bond score [49] (ii) Ramachandran 

and torsion angles (phi and psi) preferences, (iii) Dunbrak rotamer energy – a knowledge-based term to assess the 

likelihood of a certain rotamer to exist [50, 51] and (iv) the reference energy for each residue type in its unfolded 

state. 

Relying mainly on a new Dunbrack rotamer library [52], a wider range of experimentally high resolution 

conformations in the PDB, and a thorough optimisation process to adjust weights, Talaris13 was introduced instead 

of Score12. Talaris14 was simply an error-corrected version of Talaris13 as only a hydrogen bond’s weight was 

changed and the remaining weights were adjusted accordingly. Although the paper giving details of Talaris14 paper 

was published in 2014, its widespread usage commenced in 2016. REF2015 has been Rosetta’s official energy 

function since July 2017; it includes some updates such as optimised electrostatic parameters and additional terms 

using the Lennard-Jones potential for hydrogen atoms. It is worth mentioning that the four versions of the energy 

functions comprise weighted-based terms and none of the changes that took place could be considered as ‘major’. 

Moreover, the unit of all energy functions is Rosetta energy unit (REU); a Rosetta-specific metric that cannot be 

converted into standard physical units such as kilocalories per mole (kcal/mol).  



5. Fragment picking 

The process of creating libraries of fragments (9-mers and 3-mers) is treated as an independent task that is 

performed prior to the execution of the main ab initio Rosetta PSP.  In 2011, a new fragment picking tool called 

‘picker’ was introduced to replace the previous one – ‘nnmake’ (written in FORTRAN) - and has been in use since 

then [53]. The main enhancement provided by ‘picker’ is that restraints such as distances between some atoms were 

introduced in the protocol used to build fragments for the ab initio prediction of proteins. In addition, it was written 

in an object-oriented modular approach. 

 The latest protein database file, where fragments are excised from, comprises 16,801 high resolution 

template structures of average size of 257 amino acids. The “picker” tool comprises three protocols: best fragments, 

quota and flexible loop design protocols. Whereas the last one is used for protein design, the first two are used for 

fragment picking. The Quota protocol is the one that is dedicated primarily for ab initio protein structure prediction. 

As its name implies, it applies the principle of “quota” for secondary structure prediction taken from at least two 

different resources (explained further below). 

The scoring function, on which the selection of candidate fragments is based, is evaluated at each position 

in the sequence in question (except the last 8 and 2 positions in case of 9-mer and 3-mers respectively) typically to 

generate 25 and 200 9-mers and 3-mers respectively. More specifically, the fragments are chosen based on: 

secondary structure predictions from at least two resources such as  PsiPred [54], Jufo [55],  SAM [56] or Porter 

[57], their corresponding scores in the Ramachandran map, and the sequence profile by PSI-BLAST [58]. Note that 

the secondary structure prediction of the middle residue is the one that determines the ’overall’ secondary structure 

of the fragment. For the sake of further explanation of the ‘quota’ protocol, we will assume that three secondary 

structure predictors are used: PsiPred, Jufo and SAM. It is worth noting that due to the overall higher accuracy 

achieved by PsiPred, predictions produced by PsiPred, Jufo and SAM could be associated to the following weights: 

0.6, 0.2 and 0.2 respectively. In this regard, the Quota protocol works as follows. Since none of these three 

predictors is optimal, an approach using a unique total score based on which all 9-mers and 3-mers will be selected 

would be biased. For instance, if a fragment’s middle residue is predicted with a confidence to be 50% a helix, 30% 

a strand and 20% loop, all fragments could be chosen as helix. Instead, the Quota protocol guarantees that the 

corresponding percentages of fragments will be generated from each pool. In such a case, amongst the 200 3-mers, 

100 fragments will be helical and taken as follows: 60 from PsiPred, 20 from Jufo and 20 from SAM pools.  The 

following three terms: profile, secondary structure prediction of the middle residue and the Ramachandran map 

probability value of the middle residue constitutes the scoring function based on which the fragments from the 

corresponding pool are picked. The default weights of each term are as follows: 1, 1 and 2 respectively.  

 

6. Fragment assembly 

Starting from a fully extended chain, the fragment assembly process takes place via a Monte Carlo search; 

a sequence window of length 9 is randomly selected and one of the available 25 candidate fragments in its turn is 

randomly selected. Once the torsion angles of that window are replaced by those of the chosen fragment’s, the 

coarse-grained energy score is calculated; the minimisation process is performed using Simulated Annealing [59]. 

Therefore, if the energy score after an insertion is smaller than that of the previous conformation, it will be accepted, 

otherwise, the Metropolis criterion [60], for the sake of avoiding getting trapped local minima, may also accept it 

with lower probability for larger energy increases. In short, probability of accepting ‘bad’ moves, whose formula is 

shown below, decreases exponentially with the ΔE, which describes how worse the energy increases. 

P = 𝑒−ΔE/𝑘𝑇 

Whilst k is constant known as the Boltzmann constant, T represents the temperature, a parameter that plays 

a key role in the Metropolis criterion. In natural annealing, temperature is first set to a high value, then, gradually, 

decreases until the material reaches the shape needed. In simulated annealing, temperature changes in the same 

context; it is first set to a certain high value, then decreased, consequently decreases the probability of accepting a 



‘bad’ move (in Rosetta, it is fragment insertion that results in increasing the energy of the conformation). In both 

natural and simulated annealing, the heating and gradual cooling cycle can be repeated several times. Indeed, once a 

fragment replacement is accepted, the temperature is reset to its initial value, i.e. the acceptance probability is back 

to its default value. 

The 9-mer insertion phase involves 28,000 insertion attempts, however terms of the coarse-grained energy 

score are added gradually. For instance, in the first 2,000 attempts, only steric overlaps, i.e. van der Waals terms, are 

considered, whereas in the last 4,000 insertion attempts, the complete energy function is estimated. Once the 9-mer 

insertion phase is completed, 8,000 insertion attempts using fragments of size 3 are performed, taking into account 

the whole coarse-grained energy function. After the overall 36,000 insertion attempts, the simulation produces a 

conformation with heavy backbone atoms only. Optionally, all additional atoms are then added using ideal values, 

and fine-tuned using an all-atom energy score, also known as a fine-grained energy function. The technical term of 

this phase in Rosetta is called ‘relax’. 

 

7. Rosetta’s extensions  

From a hierarchical perspective, Robetta protein structure prediction server [61] is considered the ’mother’ 

of Rosetta whenever it participates in CASP. In the ‘abstracts’ book (found at 

http://www.predictioncenter.org/casp12/index.cgi) where participants describe their method, Rosetta’s team explain 

that targets’ sequences are firstly passed through Robetta. Robetta is a fully automated server that, when fed with a 

sequence of interest, follows two different routes: first, a comparative modelling one and second, a de novo 

approach using Rosetta. While domains and/or regions with high sequence similarity score are forwarded to the 

Rosetta-based tool for homology modelling called RosettaCM [62], regions with low homologs detection (mainly 

long loops) are modelled using the standard de novo Rosetta. Once all those regions have been built independently, 

they are combined by an iterative domain assembly method [63] where fragments are inserted into the areas 

connecting those regions using de novo Rosetta’s scoring function. Side chains are then added following the same 

standard as in de novo modelling. Accordingly, whenever an FM target is submitted, Robetta will simply act as de 

novo Rosetta. Robetta’s initial key step is determining domains’ start and ending and candidate templates for easy 

regions. Such a procedure is achieved using highly ranked sequence alignment tools for homology and threading 

modelling: HHSearch [64], Sparks [65], RaptorX [66], BLAST [67], PSI-BLAST [58], FFAS03 [68, 69] or 3D-Jury 

[70]. Furthermore, if GREMLIN [71], a state-of-the-art contact prediction method that employs meta-genome 

sequences [72] provides accurate results, those results are fed to Rosetta as restraints for both sampling and 

refinement phases. For the sake of quality assessment phase – where top model(s) should be chosen amongst a large 

set of decoys (up to 300,000) – ProQ2 is carried out [73]. The steps described in this section correspond to those of 

the pipeline followed by “BAKER-ROSETTASERVER” group that is mentioned in the next section. In 2003, 

Robetta went online – Robetta Server - allowing users to submit their sequences for prediction using either 

comparative modelling or ab initio. Moreover, users could build Rosetta’s fragments online for local execution of 

Rosetta [61].  

In 2005, Rosetta@Home, a distributed grid computing system that uses volunteers’ idle processors all 

around the world to execute processes related to different Rosetta applications and studies including CASP 

predictions, was introduced [46, 74, 75]. Besides Rosetta@Home, another initiative was taken to involve the public 

mainly in protein structure prediction: a game called ’Foldit’ was launched in 2008 [76]. Outcomes have been 

beyond the developers’ expectations as valuable findings were produced and published using this gaming 

environment [77–80]. A highly improved version called “Foldit StandAlone” was made available three years ago 

[81]. In 2012, a much bigger server than Robetta called ROSIE (the Rosetta Online Server that Includes Everyone) 

was launched [49]. Currently it includes 18 Rosetta applications that can be executed without usage of local 

computers. It is worth noting that Rosetta@Home is used to run a large amount of processes being submitted every 

day to ROSIE. 

 



8. CASP Contributions and Results 

The state of the field of PSP has been monitored and quantitatively evaluated since 1994 by the biennial CASP 

event. This community-wide experiment has grown significantly from a set of 33 targets which attracted 27 

contributing groups who submitted 186 models (CASP1, 1994) to a set of 194 targets which led to the submission of 

around 57,000 models from 185 participating groups (CASP13, 2018). Since the second CASP round, Rosetta has 

continuously contributed to that competition achieving notable results comparing to other groups. Herein, we first 

introduce the main concepts of CASP such as the different types of targets, evaluation metrics and domain 

definition, then we review the contribution of Rosetta for each round. 

8.1 CASP Overview 

Typically, a set of protein sequences are released gradually across a couple of months during which research groups 

from around the world attempt to predict their 3D structures by submitting putative models (up to 5 per target). Once 

a target’s submission deadline has passed, determination of its native structure is conducted in vitro. If successful, a 

thorough evaluation is performed on the submitted models. In the first 6 rounds – that is, till CASP6 – targets were 

classified into three categories: ‘Comparative modelling’, ‘fold recognition’ and ‘ab initio’; the latter was renamed 

to ‘native fold’ then ‘new fold’ in CASP4 and CASP5 respectively. Afterwards, targets released by CASP have 

usually been classified into two main categories: template-based modelling (TBM) and Free modelling (FM). In 

addition, since CASP8, domains have been widely adopted, leading targets to split, mainly large ones, for fairer 

assessment. However, interestingly, both the domain determination and classification (FM/TBM) operations are 

carried out after the completion of submission phase. This procedure relies mainly on two sources: first, the 

availability of templates for specific units and second, comparison between the scores of servers of the whole targets 

versus those of the split domains. There are several reasons that led to taking into consideration domains rather than 

the whole conformation for evaluation purposes. First, some targets are relatively long and therefore contain several 

domains; evaluating the whole prediction may seem unfair especially that a global structural superimposition is 

likely to yield bad scores and therefore may not reveal the prediction accuracy of ’independent’ regions, namely 

domains. Second, some targets contain domains of different nature: whereas some of them may be classified as FM, 

the other(s) might be classified as TBM. One should also note that even in single-domain targets, evaluation of only 

a subset of the structure might take place. Indeed, as structures of tails are often classified as coils, i.e. they have no 

defined secondary structure according to the dictionary of secondary structures of proteins (DSSP) [82], their 

prediction is not relevant as their inclusion would most likely only lead to a lowering of model quality [83–87]. 

Since CASP4, the only information about targets during the pre-submission phase is if they have been released as 

either ‘server only’ or ‘all groups’. While models for the ‘server only’ targets must be produced automatically, those 

for the ‘all groups’ targets may include manual interventions, such as bending, that are carried out by field experts. 

Typically, those tunings are performed on models produced by the automated server used by each group. 

Consequently, the period for submitting models following the release of a target’s sequence is much longer for ‘all 

groups’ than for ‘server only’ targets. 

As mentioned earlier, each group can submit up to five models per target, one of them should be designated as first 

model; taking into account the best of the five models is referred to as best model. Up to CASP4, in addition to 

visual inspection, accuracy of submitted models was assessed according to the root mean square deviation (RMSD) 

of the longest reasonable well-predicted continuous subset of the target. Since CASP5, Global Distance Test Total 

Score (GDT_TS) [88, 89] started to emerge as a better metric as it is less sensible to outliers. It has eventually 

become the main evaluation criterion. GDT_TS is the average of residues whose superimpositions with the native 

structure is below 1, 2, 4 and 8Å. The range is [0-100] where 100 is achieved by two completely identical structures. 

We will refer to it as “GDT” in the text. In order to rank groups, the community organisers have adopted the 

cumulative z-score of the GDT of the first model after removing the outliers where Z-score is below a certain 

threshold (typically -2.0). Z-score range is typically from -3 to +3. The rationale behind using the z-score is to avoid 

penalising groups for very bad predictions.  

 

 



8.2 Rosetta in CASP 

In the next sections, we summarise the achievements of Rosetta in each round of CASP since the second one. We 

highlight the targets for which the Baker group achieved significantly better results than its competitors. To this end, 

we have chosen for each round one target where Rosetta made a relatively breakthrough, showing their best model 

along with the corresponding native structure in Figures 1, 2 and 3. Coordinates of the submitted models were 

retrieved from the archive of CASP (http://predictioncenter.org/download_area/) and those of the native 

conformations from the PDB; visualisations were carried out using PyMol [90]. Although some models shown in 

Figures 2, 3, 4 and 6 may seem quite different from the native structures, they actually displayed remarkable 

accuracy relatively to either the difficulty of the target or to the models produced by the competing groups. Since the 

main aim of this review is to assess Rosetta as an ab initio PSP, the focus will be on FM and ‘server only’ targets. In 

the same context, the best model will be considered besides the first model since protein Quality Assessment  – the 

set of techniques used to select the most accurate decoy out of a pool – may be considered as a research area on its 

own; it was even included as a separate category in some rounds since CASP7 [91, 92].  

 

8.2.1 CASP2: first attempt 

In CASP2, the Baker group was called “I-Sites”, in reference to the name of the fragments library; the library 

contained 82 sequence patterns with their corresponding structures, distributed amongst 13 motifs whose length 

ranges from 3 to 15 [40, 93]. Baker and Bystroff contributed to 9 targets; in terms of performance only a small part 

of a very long target (Target 22) is worth mentioning: out of the whole 592 amino acid structure, the sub-structure 

ranging between positions 200 and 300 – in particular between 216 and 276 – showed remarkable accuracy. Taking 

into account a window of 40 amino acids, ‘good’ superimpositions were recorded where the lowest RMSD achieved 

was 4.9 Å, see Figure 2. It is important to note that no successful prediction was recorded by any participating group 

in the tertiary structure category of CASP2.  
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Figure 2: Short fragment (216 – 276) Structure of the model submitted by ‘Baker and Bystroff’ group (I-Sites) in 

CASP2 for Target T0022 (592 amino acids in total) (left) and the corresponding native structure fragment – PDB 

ID: 1FUI (right). 

8.2.2 From CASP3 to CASP6: world domination 

In CASP3, that took place in 1999, ’Rosetta’ made its formal entrance topping the 61 competing groups in the Ab 

initio category for 15 different targets [14, 15]. 4 targets, respectively 4 and 7, were classified as ‘easy’, ‘medium’ 

and ‘hard’ based on their structural class (mainly-beta sheets proteins are considered to be particularly hard for ab 

initio predictions), architecture or simply according to the accuracy of their predictions. In one ‘medium’ target 

http://predictioncenter.org/download_area/


(T0056), the Baker group was able to predict 69 residues with an RMSD of 4.1 Å, see Figure 3 (a). Moreover, only 

Rosetta was able to predict the correct fold of a hard target (Target 83 – C-terminal domain). Taking into 

consideration fragments superposition and correct architecture, Rosetta ranked the best group overall; it was able to 

hit 7 medium/hard targets with at least one fragment (length ≥ 30) with an RMSD less than or equal to 3.0 Å. 

However, out of the 12 ab initio targets for which Rosetta submitted predictions, only the overall models of four 

targets could be classified as ‘good’.  

By the time Rosetta contributed in CASP4, 3-mers and 9-mers became the standard and fixed-length sizes of the 

fragments it uses. As both methodologies that employ pure physics laws and some knowledge-based ones 

demonstrated the ability to some extent to predict new folds, usage of the term ‘ab initio’ did not seem appropriate 

anymore to the CASP community. Thus, it was replaced by ‘Novel Fold’ (NF) [94]. Rosetta demonstrated 

significant performance in relatively long fragments in 17 out of the 24 CASP4 NF targets. In 14 out of those 17 

targets - in particular T091, T106 and T116, Rosetta submitted the best models amongst the 55 competitors [95]. 

Baker’s team was able to produce fragments whose length ranges from 53 to 139 amino acids with an average 

RMSD of 4.8 Å. Similar to the previous version, Rosetta was the best group for the ‘Novel Fold’ category. Figure 3 

(b) shows the prediction of T106 versus the native structure in which a fragment of length 106 was modelled with an 

RMSD of 6.0 Å.  

For the third consecutive times, the Baker group was assessed as the best one in the NF category that comprised 13 

targets in CASP5, according to the z score-based evaluation of the GDT [89]. Amongst those targets, 5 were 

classified as ‘pure new fold’ whilst the remaining 8 were considered on the ‘edge’ between ‘new fold’ and ‘fold 

recognition’. Four out of those ‘hard’ 5 targets were alpha-beta proteins. Target T0129 contained seven alpha-

helices; as a whole, Rosetta was the only group that was able to predict it correctly, in particular its model 4. In 

addition, although other groups were able to produce accurate models of the ‘easy’ target T0170, small 4-helix 

protein, the Baker group still achieved the best results. Perhaps, the most interesting achievement made by Rosetta 

was with target T0187 – a pure beta sheets domain of 36 amino acids. Although it was categorised on the edge of 

‘comparative modelling’ and ‘fold recognition’, no other group in any category was able to predict the correct fold 

at any ‘acceptable’ level of accuracy. See Figure 3 (c) that shows the first model and the corresponding native 

structure. It is worth noting that during CASP5: the separation between ‘server’  and ‘human/server’ groups started 

to emerge, and ‘Robetta’ started to contribute, however, as an ‘auxiliary’ plan for TBM targets [96].  

In CASP6, among the 17 targets that belonged to the NF category, Rosetta was able to submit the best model for 7 

of them. Overall, once more, it was ranked the best group in that category [44, 97]. Its more notable achievements 

were observed in the targets: T0198, T0212 and T0272. In T0198 – a six-helix bundle - the RMSD over 210 

residues reached 4.0 Å. The average z-score was higher by 80% compared to the group that ranked second. 

However, taking all targets into accounts, the average of the GDT of the Baker group of the best and first models 

was 34.4 and 31.8 respectively, and for the 6 targets that were categorised as ‘new fold hard’, results were a bit 

disappointing. By then, reviewers had become confident that fragment assembly methods like Rosetta and FragFold 

were the most successful approaches. We show in Figure 4 – (a), the submitted model of the first domain of T0272 

(85 residues) along with the native structure.  

Figure 5 presents a pictorial summary of Rosetta’s achievements from CASP2 to CASP6, where we highlight for 

each round the ‘most remarkable’ superimposition in terms of the longest fragments within ‘acceptable’ RMSD 

value (<5Å). The figure clearly shows that Rosetta’ performance has improved continuously during the period. 

While the fragment selected for CASP4 has a RMSD slightly higher than the one used for CASP3, its length is 

significantly larger, which is a better achievement. Comparison between performance at CASP3, CASP5 and 

CASP6 is much simpler as, by chance, all fragments are of length 69 for those three rounds.  



 

Figure 5: Longest fragments that Rosetta was able to predict with RMSD less than or equal to 5Å during the CASP2 

to CASP6 period 

8.2.3 CASP7 and CASP8: competition with I-Tasser 

With CASP7, three notable changes took place: first, the terms FM and TBM were adopted; second, I-TASSER, 

although requiring fewer computational resources, became a serious competitor for Rosetta, even if the Baker group 

still reached the first place for FM targets; and third, Rosetta started to use Rosetta@home to generate its CASP 

predictions [46, 98]. In this round, 15 FM and 4 FM/TBM targets were released. Target T0319 was considered a 

hard one due to the low GDT scores recorded by all groups. However, Rosetta succeeded to show the ‘essential 

features’ of both subdomains despite their incorrect orientation. Although Rosetta’s model of the second domain of 

T0321 was ranked 24th in terms of GDT, it was judged as the best model by visual inspection. Figure 4 (b) shows the 

Baker’s 4th model of the second domain of target T0347; an overall GDT of 52.8 – evaluated as ’moderate’ quality - 

was achieved thanks to the usage of extensive all-atom refinement performed using the grid computing system 

Rosetta@home. 

In the 8th round of CASP, 102 groups competed in the FM category that comprised 13 targets; out of the 13, 10 were 

classified as FM and 3 as FM/TBM [99]. Three of the 10 FM were classified under ‘server only predictions’ and the 

remaining under ‘human/server predictions’. For 4 targets, no group was able to submit any model with a 

‘satisfactory’ level of accuracy. Overall and taking into consideration the number of best models, the human/server 

and server groups of Rosetta – ‘DBAKER’ and ‘BAKER-ROBETTA’ – ranked first and third respectively. The 

second place was taken by MUFOLD-MD server group [100]. Figure 4 (c) shows a high-accurate model submitted 

by the server group of Rosetta for the second domain of target T0513. In addition, it is worth noting that the 

‘Robetta’ server achieved remarkable results for the 64 TBM domains of CASP8 [47]. 
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8.2.4 CASP9 and CASP10: a duel between “Baker lab” and “Zhang lab” 

In the ninth version of CASP where around 17,000 models were submitted, visual inspection became secondary and 

was only used for selected targets, when groups achieved similar performances. In CASP9, 30 domains were 

classified as FM, 4 of them were reserved for ‘server only’ [101]. ‘ROSETTASERVER’ ranked third whilst the first 

and second places where achieved by ‘Zhang-server’ (that is, I-TASSER) and ‘Quark’; a similar outcome was 

obtained in the human/server groups where the ‘Zhang’ and ‘Baker’ groups ranked first and second respectively. 

Due to the low number of FM targets, in particular in the ‘server only’ category, one could conclude that differences 

between their statistical-based results might lack ‘significance’. Interestingly, the assessment committee highlighted 

the ‘ROSETTASERVER’ predictions of target T0581 (Model 4) as the ‘winner’ among the CASP9 FM targets. The 

architecture of that target is a sandwich consisting of 2 helices and 4 beta sheets (see Figure 6 (a)). Rosetta was not 

only able to predict correctly the core components, but also to model an unusual helix that consists of two 

perpendicular helix extensions. Another remarkable achievement was the correct modelling of the four beta sheets 

of target T0581, whereas 89% of the models submitted by the other servers modelled those beta sheets as an entirely 

helical part. Even PSI PRED - one of the best secondary structure predictors then - modelled that part to be 3 helices 

and one beta strand. The way Rosetta dealt with that problem was by using two additional resources for secondary 

structure predictions (this feature was presented earlier). However, credits of the success of T0581 that captivated 

the assessment committee of CASP9 should also be shared with ‘Foldit’: one of the accurate models produced by 

Rosetta@home was provided to Foldit game players as a starting conformation where it was further improved before 

its submission to CASP [79]. 

CASP10 was quite similar to CASP9 in terms of the low number of FM targets and group ranking. There were 20 

FM targets (one of them was FM/TBM) that attracted more than 9k models from 147 predictions groups (68 were 

‘server only’) [102]. ‘BAKER-ROSETTASERVER’ ranked third whilst ‘Quark’ and ‘Zhang-server’ ranked first and 

second respectively. Remarkable achievements of Rosetta include targets: T0651-D2 - See Figure 6 (b) - and T0695 

hit by models 3 and 4 respectively. In terms of TBM targets, Rosetta team had developed an amended version of 

Rosetta that can hit TBM targets using comparative modelling called RosettaCM [62]. Their results in CASP10 were 

noteworthy in terms of the accuracy of the backbone and side chain atoms, due mainly to the all-atom refinement 

stage.  
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Figure 3 (a): Structure of part (23-136) of the fifth model submitted by the ‘Baker’ group in CASP3 for Target 56 

(left) and the corresponding part of the native structure – PDB ID: 1EH2 (right). Taking into account a window of 

69, an RMSD of 4.1 Å was recorded for the best fragment. (b): Structure of the first model submitted by the ‘Baker’ 

group for Target 106 (left) in CASP4 and the native structure – PDB ID: 1IJX (right). (c): Structure of the first 

model submitted by the ‘Baker’ group in CASP5 for Target 186 (left) and the native structure – PDB ID: 1O12 

(right). Except the length of the second beta strand, the whole topology was correctly predicted. 
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Figure 4 (a): Structure of the first model in CASP6 for Target T0272 (left) and the native structure – PDB ID: 1WJ9 

(right). A GDT score of 58.53 was recorded. (b): Structure of the fourth model in CASP7 for Target T0347 (left) and 

the native structure – PDB ID: 2HWJ (right). Except for the N-terminal end, the overall shape was predicted with 

high accuracy (c): Structure of the first model submitted in CASP8 for Target T0513 –D2 (left) and the native 

structure – PDB ID: 3DUP (right) of length 69. GDT is 70.65 
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Figure 6 (a): Structure of the fourth model submitted by the Rosetta server group in CASP9 for Target T0581 (left) 

and the native structure – PDB ID: 3NPD (right). A GDT score of 67.86 was recorded. (b): Structure of the third 

model in CASP10 for the second domain of Target T0651 (left) and the native structure – PDB ID: 4F67 (right). 

GDT is 74.10.  

 

8.2.5 CASP11, CASP ROLL and CASP12: back to the top 

Due to the relatively low number of FM targets in CASP9 and CASP10, questions arose regarding the significance 

and fairness of their assessment and consequently the evaluation of the predictor’s methodologies and participating 

groups. Accordingly, the CASP community decided to address that shortage in CASP11 and CASP ROLL. The 

latter was a special continuing version for a one-year period that was dedicated to FM targets [84]. CASP11 and 

ROLL comprised 45 and 38 FM targets respectively; the largest number of ‘hard’ targets that had ever been released 

[103]. Although it was expected that CASP ROLL would release a much larger number of targets, the unexpected 

low number of participating groups led the organising committee to move some targets to the traditional version, i.e. 

CASP11. Nevertheless, as the total number of targets was unprecedented in the history of CASP, CASP11 and 

CASP ROLL were considered a ‘crucial occasion’ to clarify the status of ab initio PSP and reveal the strengths and 

weaknesses of the competing research groups. Whilst, I-TASSER, QUARK and RBO_Aleph ranked the second, 

third and fourth best server groups by offering some breakthroughs, ‘BAKER-ROSETTASERVER’ stood out as the 

winner in both CASP11 and CASP ROLL [104–106]; in CASP ROLL, only “Zhang_ab_initio” seems to remain a 

close competitor. Notable accuracy was achieved for large parts of T0790-D2, T0761-D2 and R0021, see Figure 7 

(a). On the human/server side, the following groups: ‘BAKER’, ‘Kiharalab’ and ‘LEER’ ranked the best three 

indistinguishable predictors [106, 107]. A remarkable achievement of the human/server Rosetta group in CASP11 



was the target T0806-D1: Rosetta was able to predict a 256-residue domain with absence of any templates. Such a 

success was considered an outstanding accomplishment as it was the longest FM domain ever predicted. Constraints 

during sampling and refinement like residue-residue contact information – also known as contact maps –greatly 

contributed in the success of many targets [71, 106, 108]. It is important to mention that due to the availability of 

Rosetta’s source code, some successful groups – outside the Baker group – contributed in CASP11 with either an 

amended version of Rosetta or using a Rosetta protocol, such as energy functions or refinement, within their 

prediction pipeline.  Those groups are: “COHVaidehi” [109], “FALCON_TOPO” [110], “FLOUDAS_SERVER” 

[111], “Handl” [112], “MeilerLab” [113], “MULTICOM-CLUSTER” [114], “NEFILIM” [115], “Pareto” [116], 

“RosEda” [117], “HomREM”, and “Rosetta_at_Kingston” [118, 119]. For instance, the server group 

“Rosetta_at_Kingston” that uses structural class prediction for fragment picking was able to perform even better 

than both official Rosetta groups in 6 out of 14 domains. It showed major improvement in the FM domain T0804-

D2, where it achieved a GDT TS score of 44.6, whereas Rosetta’s first model only reached 30.4. The same group 

predicted a TBM domain (T0773 – GDT: 93.3) by a first model more accurately than, not only Rosetta groups’, but 

also all “Zhang-lab” related groups’.   

CASP12 comprised 96 domains/targets classified as follows: 39 FM, 38 TBM and 19 FM/TBM. Overall, results for 

FM targets were substantially improved over the previous round. This is mainly due to the progress that had been 

made in contact maps predictions since many methodologies employed them as restraints while sampling the search 

space. Prominent results were detected with targets whose length exceed 100; ‘very accurate’ models were 

submitted for 16 out of 32 of those medium-sized targets [120]. Whilst in the overall results of all targets, both I-

TASSER and QUARK performed better than Rosetta due to some failures in the FM/TBM domain category, Rosetta 

captured the first place in the hardest category, FM targets and interestingly, in the TBM category as well. In 

CASP12, Rosetta used contact predictions in two new ways: by guiding first, the selection of local fragments; 

second, the human intervention for the human/server targets [121]. In the latter case, improvements - sometimes 

dramatic - were shown for the majority of targets, even if a few models saw their accuracy decreased compared to 

those initially generated by the server. In the case of target T0942-D1, this strategy proved particularly beneficial as 

complicated usage of co-evolution data raised GDT from 35 to 77. Figure 7 (b) shows the first model of ‘BAKER-

ROSETTASERVER’ for the server-only domain T0860-D1 of 136-residue length and the corresponding native 

conformation. Although the target was TBM, superposition with the native conformation resulted in GDT of 81.80; 

the highest amongst all methodologies including comparative modelling and fold recognition (for such targets, 

credits should be awarded to Robetta rather than ‘pure Rosetta’). 

Since the competition amongst the server groups ’Zhang-Server‘, ’Quark‘ and ’BAKER-ROSETTASERVER‘ has 

become quite tight in the past 3 rounds, including CASP12, we have conducted a detailed analysis as an attempt to 

reveal strengths and weaknesses of each of those groups. Further data have been collected from CASP12 archive 

regarding those top three contributors by extracting the GDT of the submitted models in all categories. The average 

of the GDT of each group in each category is calculated and summarised in Table 1. It is worth noting that we have 

collected all data without taking into consideration Z-score values; therefore, Rosetta appears in the third place for 

FM whereas it leads the official Z-score based ranking. 

 

Table 1: CASP12’s Top Three Servers’ Detailed GDT Scores 

  All - 96  FM – 39  TBM - 38  FM/TBM - 19  

Average (Std. 

dev.)  

 

Zhang-Server  52.0 (22.3)  30.9 (12.6)  72.4 (12.5)  54.4 (11.3)  

QUARK  51.3 (22.5)  30.7 (12.1)  71.8 (12.9)  52.6 (14.5)  

BAKER-
ROSETTASERVER  

50.4 (23.9)  30.5 (14.8)  72.3 (14.2)  47.3 (16.1)  

Min - Max  

 
Zhang-Server  9.2 – 96.6  9.2 -54.7  50.9 – 96.6  39.2 – 80.1  

QUARK  9.4 – 96.3  9.4 - 57.0  49.5 – 96.3  23.3 - 79.3  

BAKER-
ROSETTASERVER  

12.1 – 97.6  12.1 – 77.1  34.1 – 97.6  20.3 - 76.5  



Table 1 shows that the best group reached 52/100 as an average of GDT score of 96 targets which is considered as 

of ’moderate’ quality, i.e. within the [40 – 59] scale. However, the status is much worse in FM domains, where on 

average, the best three pipelines deliver models in the ’poor‘ category [0 - 39]. Regarding the TBM category, results 

are quite good; surprisingly, ’pure‘ comparative and threading modelling contributing groups were not able to beat 

those three pipelines (Note that in such category credits should be awarded to Robetta rather than Rosetta). One 

would explain this by the following reason: reliance on several homologs to select fragments from leads probably to 

better conformations rather than usage of one or a very limited number of homologs.  

Regarding the quality of the near-native structure, a study suggests that short fragments are likely to produce higher 

quality; on the other hand, multiple fragment lengths are able to generate overall better decoys as long fragments 

have a positive effect in the early stages of simulations [122].  

Table 1 reveals that Rosetta presents the largest standard deviation amongst the three competitors. This may be 

explained by the facts that (i) whenever Rosetta succeeds to reach a ’good region‘ in the conformational space, its 

ability to explore that region is higher than the others due to its usage of much shorter fragments (maximum value of 

GTD in FM category is by far better than the two remaining competitors), and  (ii) whenever simulations tend to 

reach a ’bad region‘, final structures’ accuracy is relatively low due to the absence of long fragments. 

 

8.2.6 CASP13: the start of the deep learning era? 

In the latest round of CASP, i.e. the thirteenth, the overall FM results demonstrated ‘unprecedented 

success’ [123]. The GDT averages of the best models submitted for FM targets in CASP12 and CASP13 increased 

from 52.9 to 65.7 respectively. The main reason was the employment of deep learning techniques to improve inter-

residues distance predictions that were used as restraints for tertiary structure prediction [124]. More accurate 

contact predictions were mainly due to the dramatic fall of the number of template structures needed in the target’s 

family to predict the contact maps. Although many methods employed deep learning techniques and showed 

remarkable results, AlphaFold (Group name: A7D) has shown some outstanding and unprecedented accuracies for 

many targets [125]. This system is the outcome of a collaborative London-based project between DeepMind, The 

Francis Crick Institute and University College London. Amongst the 112 assessed domains, taken from 80 targets, 

32 were classified as FM, 13 as FM/TBM and 22 as TBM-Hard [87]. Taking into account all those ‘hard’ 67 targets 

and server groups only “BAKER-ROSETTASERVER” ranked fifth, while “Zhang-Server”, “Quark”, “RaptorX-

DeepModeller” and “RaptorX-Contact” ranked first, second, third and fourth respectively. However, in terms of 

”research lab”, “Baker-lab” was the third, whilst “Zhang-lab” and “RaptorX-lab” were first and second respectively.  

The same results were shown when only considering the 32 FM targets. On the other hand, it is important to 

mention that taking into account “all groups”, A7D – registered as human/server group - stood out by far as the best 

group outperforming significantly all its competitors : while the sum of A7D’s z-scores was 94.7, the group that 

ranked second -“Zhang”- only achieved 67.2.   

Compared to its competitors, Rosetta server produced remarkable achievements for the following targets: 

T0953s1-D1 (67 residues, GDT 48.88), T0960-D2 (84 residues, GDT 56.55), T0968s1-D1 (118 residues, GDT 

66.74),  T0968s2-D1 (115 residues, GDT 71.30, Figure 7 (c)), T0975-D1 (281 residues, GDT 63.61- highest), 

T0978-D1 (413 residues, GDT 47.34), T0986s1-D1 (92 residues, GDT 68.21), T0992-D1 (107 residues, GDT 

81.78), , T1000-D2 (368 residues, GDT 58.83),  T1001-D1 (139 residues, GDT 73.20), T1005-D1 (326 residues, 

GDT 55.83), T1015s1-D1 (88 residues, GDT 57.67) and T1019s1-D1 (58 residues, GDT 83.62). In addition, the 

human/server group “BAKER” submitted two additional notable models: T0986s1-D1 (92 residues, GDT 79.08) 

and T1000-D2 (368 residues, GDT 63.18). 
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Figure 7 (a): Structure of the third model submitted by the Rosetta sever group in CASP11 for Target T079-D2 (left) 

and the native structure – PDB ID: 4L4W (right). Out of the 130 residues, 92 recorded an RMSD of 3.9 Å. (b) 

Structure of the first model by the Rosetta server in CASP12 for target T0860-D1 (left) and its corresponding native 

structure - PDB ID: 5FJL (right). (c) Structure of the third model by the Rosetta server in CASP13 for target 

T09680- D1 (left) and its corresponding native structure – PDB ID: 6CP9 (right). 



Since CASP7, RMSD of the longest fragment has been no longer adopted, instead relatively small domains have 

been used as evaluation units, and GDT has become the official metric for ranking. Consequently, the pictorial 

summary from CASP7 to CASP13 – shown in Figure 8 and Figure 9 – takes into consideration the GDT that the 

Rosetta server group was able to achieve in FM targets. Figure 7 shows the longest target Rosetta was able to predict 

a model with GDT greater than 40 (since above that threshold, the overall fold is believed to be correct). In addition, 

Figure 8 reveals the highest GDT score Rosetta was able to achieve. 

 

Figure 8: Achievements of Rosetta Server group from CASP7 to CASP13 in terms of the longest FM target where 

one of the models submitted recorded a GDT greater than 40. 

 

Figure 9: Achievements of Rosetta Server group from CASP7 to CASP13 in terms of the highest GDT score for FM 

targets. 
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9. Discussion 

This mini-review describes the journey followed by the Rosetta fragment-based protein structure 

prediction. In its first part, it starts by reporting the preliminary studies that underpinned Rosetta’s rationales and led 

to Rosetta’s birth. It also details Rosetta’s main components such as the fragment picker and fragment assembly. Its 

second part explores the contributions of Rosetta in CASP since the second round until the latest, i.e. CASP13, by 

highlighting Rosetta’s main challenges and achievements in each round. 

From CASP3 to CASP6, Rosetta gained its fame as it dominated the “ab initio” category over all 

competitors. From CASP7 to CASP10, Rosetta’s “Baker-lab” at the University of Washington encountered serious 

competition with the “Zhang-lab” at the University of Michigan. “I-TASSER” and “Quark” took advantage of the 

combination of relatively long fragments, when available, resulting from successful threading modelling of some 

regions of the targets. In CASP11, ROLL and CASP12, Rosetta regained its domination in FM targets category. 

This may be due particularly to its usage of contact maps predictions as restraints whilst building conformations. In 

CASP13, usage of inter-residues distances predictions became generalised among top competitors. Moreover, their 

exploitation of advanced deep learning techniques led them to overtake Rosetta based groups.  

Availability of Rosetta as an open source package has considerably participated in the widespread 

adaptation of some of its components in other molecular structures modelling. Not to add that Baker and his co-

workers were amongst the first who made the ‘public’ contribute through Rosetta@home and Foldit. Arguably, 

Rosetta has been a pioneer that has paved the way to the emergence of many fragment-assembly techniques that 

have succeeded. Its early successes in the very early rounds of CASP were truly remarkable in the ‘hard’ targets 

category. At the time, Rosetta was able to demonstrate that fragment-based protein structure prediction was an 

efficient and accurate alternative to ‘pure ab initio’ approaches, i.e. expensive physics-based techniques to infer new 

folds.  

CASP13 results have dramatically changed the context of the protein structure prediction problem. Whilst 

“Zhang-group” had been a tight competitor in the previous 6 rounds, A7D, thanks to its usage of deep learning 

techniques, showed itself as a much ‘tougher’ rival to Rosetta in the latest round. On the other hand, as there has 

been no article describing Rosetta’s progress regarding contact map prediction since CASP12, it is unclear if Rosetta 

used an improved version in CASP13. The return of Rosetta to the top of the competition will require extensive 

improvements for contact map prediction that are likely to rely on deep learning technology. If Rosetta choses that 

route, the formidable processing power that Rosetta@Home provides could be the key of its success: instead of 

generating tremendous number of decoys, it could provide the means of training the most complex machine learning 

based predictors.  
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