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Abstract 

 

Researchers, policymakers, trades unions and employees are all interested in the employment 

effects of innovation and technological change. This interest has generated a long-standing 

debate and a rich set of theoretical and empirical findings. Because the innovation-employment 

relationship is conditional on innovation and skill types and a wide range of compensation and 

displacement mechanisms, reported findings have remained varied. This chapter draws on 

meta-analysis and mixed-method systematic review evidence to establish where the balance of 

the evidence lies and what explains the heterogeneity therein. After controlling for publication 

selection bias, the ‘average’ effect of innovation on employment is positive but small; and 

conceals a high degree of heterogeneity. Other findings indicate that: (i) the effect on unskilled 

labor employment is negative and the adverse effect is more pronounced in developing 

countries; (ii) the job-creation effect is relatively smaller  in innovation-intensive industries 

apart from the ICT industry; (iii) patented innovations are  associated with a relatively smaller 

employment effect; (iv) the difference between the employment effects of  product and process 

innovation is more evident in less developed countries; (v) job-creating effects tend to diminish 

over time; (vi) the structure of North-South and South-South trade is likely to accentuate the 

skill bias of technological change; and (vii) the effect of innovation on employment follows a 

U-pattern when plotted against employment protection legislation in OECD countries. The 

chapter concludes with a brief discussion on what these findings imply for future research and 

public policy debate.  
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1. Introduction 

 

Innovation and technological change are considered as main drivers of economic growth in the 

long run. This is the case both in first-generation endogenous growth models (Romer, 1990; 

1994) and second-generation Schumpeterian models with creative destruction (Aghion and 

Howitt, 1992; 2006). The effect of innovation on employment, however, is less amenable to 

firm conclusions for several reasons. First, innovation may drive growth and employment in 

the long run, but the adjustment process may be protracted and could lead to job losses in the 

short-to-medium run (Aghion and Howitt, 1992). There is also a wealth of evidence indicating 

that technological change may be skill biased (Acemoglu, 1998 and 2003; Berman, Bound and 

Griliches, 1994; Berman and Machin, 2000; Berman et al., 2005; Machin and Van Reenen, 

1998). The balance between job creation for skilled labor and job destruction for unskilled 

labor may be negative, depending on the speed of skill upgrading and labor-market institutions. 

Furthermore, the type of innovation and technology adoption matters: while product innovation 

and product-oriented technology adoption are usually expected to have a positive effect on 

employment, process-oriented innovation and technology adoption are expected to have 

adverse effects on employment (Katsoulacos, 1986; Harrison et al, 2014; Edquist et al., 2001).  

Finally, firm conclusions become even more elusive when one takes into account the wide 

range of displacement and compensation mechanisms that determine the balance between job-

creating and job-destroying effects of the innovation on employment (Vivarelli, 2011; 2013; 

2014).  

 

The aim of this chapter is to establish where the balance of the evidence lies and what explains 

heterogeneity in the employment effects of innovation. Due to comparability issues and space 

https://doi.org/10.1007/978-3-319-57365-6_2-1


limitations, however, this aim can be achieved only for a subset of the evidence base – namely 

the employment effects of innovation estimated from a derived labor demand model (DLDM). 

In this model, the demand for labor depends on innovation after controlling for wages and 

capital stock in general and four output in majority of the empirical work (see van Reenen, 

1997).  In the case of wage- or employment-share models, however, the dependent variable is 

usually the employment- or wage-share of skilled labor as a function of relative wages, the 

capital/output ratio and technological change (see, for example, Berman and Machin, 2000; 

Berman et al., 2005; Cirillo, 2014). Finally, in the innovation decomposition models, the 

outcome variable is employment but the latter depends on two measures of innovation: a binary 

variable that indicates whether the firm has introduced process innovation and the number of 

new products as a proxy for product innovation (see, for example, Harrison et al., 2008; 2014). 

Given these specification differences discussed in Ugur et al. (2018), the evidence from the 

latter sources will not be examined systematically. Nevertheless, a summary of these 

theoretical models, together with recent models of routine-biased technological change will be 

provided in section 2 below.  

 

There are several reviews of the literature on employment effects of innovation and 

technological change in both developed and developing countries (Pianta, 2004; Piva, 2003; 

Spiezia and Vivarelli, 2002; and Vivarelli, 2011, 2012, 2013 and 2014). These narrative 

reviews offer three general conclusions. First, the employment effect of technological change 

is contingent on a range of moderating factors, including labor market flexibility, product 

market competition, types of innovation, and international trade. Second, process innovation is 

more likely to be associated with job destruction whereas product innovation is more likely to 

be associated with job creation. Finally, the effect is more likely to be negative when the data 

relates to unskilled labor.  

 

With respect to moderating factors, the narrative reviews suggest that the positive relationship 

between innovation and employment is more likely to be reported as positive when R&D 

and/or product innovation are used as proxies for technological change and when the data is 

related to innovation-intensive firms and industries (Vivarelli, 2014). In contrast, process 

innovation is reported to have a negative effect on employment and the adverse effect may be 

exacerbated as trade openness increases (Spiezia and Vivarelli, 2002; Piva, 2003; Pianta, 

2004). A third conclusion is that labor market flexibility is usually associated with positive or 

less adverse innovation effects on employment (Benavente and Lauterbach, 2008). Finally, the 



effect of innovation and technological change on the demand for skilled (unskilled) labor is 

more likely to be positive (negative).  

 

This chapter aims to contribute to existing reviews along four paths. First, it reviews published 

and unpublished work (i.e., journal articles and book chapters as well as working papers, 

reports or PhD theses) to avoid reviewer-induced selection. Secondly, it synthesizes the 

evidence from two strands of the literature through: (i) a meta-analysis of the relatively more 

visible work that reports estimates from the derived labor demand (DLDM) with data from 

developed and developing countries; and (ii) a mixed-method synthesis of the relatively less 

visible work that focuses on technology adoption and employment in low-income and lower-

middle-income countries (LMICs). Third, it addresses the issue of publication selection bias 

that arises when researchers tend to publish ‘significant’ evidence more often than otherwise 

with a view to support a preferred hypothesis. Finally, it provides both quantitative and 

qualitative assessment of how moderating factors (e.g., innovation type, skill type, innovation 

intensity in the industry, institutional quality, international trade, data period, model 

specification, estimation methods, etc.) affect the relationship between 

innovation/technological change and employment. Congruity between meta-analysis and 

mixed-method findings would allow for ‘firmer’ conclusions about where the balance of the 

evidence lies and how the employment effect may vary by the type of the moderating factors. 

On the other hand, discrepancies between the findings from two exercises would indicate the 

need for further research and verification, which meta-analysis research aims to encourage in 

any research field.  

 

The rest of the chapter is organized as follows. Section 2 provides a summary of the theoretical 

models on technological change and employment. The section aims to take stock of the 

modelling effort and distil some implications for future research. Section 3 presents meta-

analysis evidence based on 570 estimates from 35 primary studies that estimate a DLDM. It 

reports that: (i) the average employment effect of innovation and technological change is 

positive but small; (ii) the effect is highly heterogeneous; (iii) observable sources of 

heterogeneity include skill type, measure of innovation, innovation intensity of the 

firm/industry, estimation methods, inclusion/exclusion of output from the DLDM, lag length 

between innovation and measured effect on employment, and country characteristics (e.g., 

labor-market regulation).  

 



Section 4 provides meta-analysis evidence from 12 empirical studies reporting 180 estimates 

and a narrative synthesis of the qualitative evidence from 43 studies on lower-middle-income 

and low-income countries. Mapped evidence from both sources indicates that: (i) the ‘average’ 

effect in the full sample is not different from zero; and (ii) the effect of product innovation is 

larger than that of process innovation in sub-samples. There is also qualitative evidence 

indicating that international trade, weak forward and backward linkages, and weaknesses in 

governance and labor-market institutions tend to weaken the job-creating effects of technology 

adoption. Section 5 distils conclusions informed by the findings and identifies some 

implications for policy and future research.  

 

2. Technological change and employment: Competing models 

 

This chapter synthesizes the evidence on the employment effects of technological change based 

on a DLDM (van Reenen, 1997; Chenneles and van Reenen, 2002). The latter draws on an 

industry-level production with perfect competition, constant returns to scale (CRS) and a 

constant elasticity of substitution (CES) between capital and labor, as stated in (1) below.  

 

𝑌 = 𝑇[ (𝐴𝐿)(𝜎−1) 𝜎⁄ + (𝐵𝐾)(𝜎−1) 𝜎⁄  ]𝜎/(1−𝜎)     (1) 

 

Here, 𝑌 is output, 𝐿 is employment, and 𝐾 is capital stock. Of the technology parameters, the 

Hicks-neutral technological change  (T) leaves the relative factor shares constant for a given 

capital-labor ratio (K/L) ratio; the Harrod-neutral technological change (A) is labor-saving and 

leaves the relative factor shares constant at any capital-output (K/Y) ratio; and the Solow-

neutral technological change (B) is capital-augmenting and leaves relative factor shares 

constant at any labor-output (L/Y) ratio. The constant elasticity of substitution is 𝜎 and lies 

between 0 and 1 (0< 𝜎<1). 

 

Assuming perfect competition and hence equality of real wages (𝑊/𝑃) with the marginal 

product of labor, the level of employment (L) that maximizes productivity is as stated in (2) 

below.  

 

𝑙𝑜𝑔𝐿 = 𝑙𝑜𝑔𝑌 − 𝜎 log(𝑊 𝑃⁄ ) + (𝜎 − 1)𝑙𝑜𝑔𝐴    (2) 

 



From (2), the elasticity of employment with respect to labor-augmenting technology 

(𝜕𝑙𝑜𝑔𝐿 𝜕𝑙𝑜𝑔𝐴⁄ ) is: 

 

𝜕𝑙𝑜𝑔𝐿

𝜕𝑙𝑜𝑔𝐴
= (

𝜕𝑙𝑜𝑔𝑌

𝜕𝑙𝑜𝑔𝑃
) (

𝜕log (𝑊
𝑃⁄ )

𝜕𝑙𝑜𝑔𝐴
) + 𝜎 − 1      (3) 

 

The first term on the right-hand side is price elasticity of demand, whilst the second term is the 

elasticity of the real wage with respect to labor-saving technology (A). Given that the elasticity 

of substitution (𝜎) is between 0 and 1, the effect of labor-saving technology (A) on labor 

demand (L) depends on the price elasticity of output (
𝜕𝑙𝑜𝑔𝑌

𝜕𝑙𝑜𝑔𝑃
) and the elasticity real wage with 

respect to labor-saving technology (
𝜕log (𝑊

𝑃⁄ )

𝜕𝑙𝑜𝑔𝐴
). If the absolute value of the product of these 

elasticities is larger (smaller) than (𝜎 − 1), an increase in technological change is conducive to 

an increase (decrease) in the demand for labor.  

 

The DLDM is the empirical counterpart of this framework and can be stated as:  

𝑙𝑜𝑔𝐿 = (𝜎 − 1) log(𝐴 𝐵⁄ ) − 𝜎 log(𝑊/𝑃) + 𝑙𝑜𝑔𝐾 + 𝜎𝑙𝑜𝑔𝑅   (4) 

 

In (4), capital (K) satisfies the condition of profit maximization , given the cost of capital 

denoted with R. Replacing the unobserved technology variables (𝐴 and 𝐵) with an appropriate 

measure of technological change, and assuming that the cost of capital is constant across 

industries but varies over time, the DLDM model estimated in majority of empirical studies 

can written as: 

 

𝑙𝑜𝑔𝐿𝑖𝑡 = 𝛾log (𝑇𝑒𝑐ℎ_𝑐ℎ𝑛𝑎𝑔𝑒)𝑖𝑡 + 𝛽1 log(𝑊/𝑃)𝑖𝑡 + 𝛽2𝑙𝑜𝑔𝐾𝑖𝑡 + 𝜏𝑡 + 𝜀𝑖𝑡  (5) 

 

 

where  i is industry; 𝜏𝑡 is a set of time dummies that capture the cost of capital over time; 𝜀𝑖𝑡 is 

a white noise error term; 𝛽1 is the elasticity of labor demand with respect to real wage (which 

is equivalent to the elasticity of substitution between capital and labor); and Tech_change is a 

proxy for technological change.   

 

 

 



The skill share model (SSM) and the technology decomposition model (TDM) share a common 

ground with but also differ from the derived labor demand model (DLDM). Both are based on 

maximizing behavior under perfect competition. In the TDM (Hall et al., 2008; Harrison et al., 

2008 and 2014), a firm is assumed to be producing two product types: old products produced 

with old technology (j = 1) and new or significantly improved products produced with new 

technology (j=2). The firm is also observed in two different periods, t=1 and t=2. Outputs of 

old and new products in period t are denoted by Y1t and Y2t, respectively. When t = 1, Y12 is 

zero because all products are old products. In period t = 2, the firm may produce old and new 

products, represented by Y21 and Y22. Given this set-up, inputs in the production function are 

associated with technology types indexed by j – as stated in (8) below.  

 

𝑌𝑗𝑡 = 𝑇 ∗ 𝐹(𝐾𝑗𝑡 +  𝐿𝑗𝑡 + 𝑀𝑗𝑡)𝑒(𝜂+𝜋𝑗𝑡)       (6) 

 

Here, T is Hicks-neutral technology; K is capital, L is labor, and M is materials. The firm-

specific fixed effect (η) represents all unobservable factors that make a firm more (or less) 

productive compared to the average firm using the same technology.  Finally, π represents all 

unobservable shifts in the production function for reasons other than technological change, 

with an expected value of E(πit)=0. Employment growth in TDM is decomposed as follows: 

 

𝛥𝐿

𝐿
=  −(𝑙𝑛𝑇12 − 𝑙𝑛𝑇11) + (𝑙𝑛𝑌12 − 𝑙𝑛𝑌11) +

𝑇11

𝑇22

𝑌22

𝑌11
− (𝜋12 − 𝜋11)   (7) 

 

Using small case letter to represent growth, the model can be re-written as follows: 

 

𝑙 =  𝛼0 + 𝛼1𝑑 + 𝑦1 +  𝛽2𝑦2 + 𝑢       (8) 

 

Here y1 and y2 are rates of growth in output due to change in the production of old and new 

products, respectively. Parameter α0 is expected to have a negative sign and represents the 

relative inefficiency in the production of old product. Parameter α1 measures the effect of 

process innovation on employment, with process innovation measured as a binary variable d. 

The effect of output growth due to production of old products is captured by the unitary 

coefficient on y1. Finally, the effect of product innovation on employment is captured by β2.  

 



The difference between the DLDM and TDM is the omission of wages in the latter. Wages 

disappear in TDM because the labor demand is determined by the production of old and new 

products taking wages as given. Furthermore, there are two measures of technological 

innovation: a binary measure for process innovation and new product count (or value) as a 

measure of product innovation. 

 

The SSM (Berman et al., 1994; 1998 and Machin, 2001) also differs from the DLDM in two 

ways. On the one hand, it draws on a translog cost function as the dual of the production 

function. On the other, it relaxes the assumption of Hicks-neutral technology by assuming that 

the rate of substitution between inputs (i.e., capital and labor) is not constant across skill types. 

It derives the shares of unskilled (Su) and skilled (Ss) labor in total cost (total wage bill) as 

follows: 

 

𝑆𝑢 = 𝑊𝑢𝐿𝑢 𝑇𝐶⁄ = 𝛼𝑢 + 𝛾𝑢𝑙𝑛𝑊𝑢 + 𝜃𝑢𝑙𝑛𝑌 +  𝛿𝑡     (9a) 

𝑆𝑠 = 𝑊𝑠𝐿𝑠 𝑇𝐶⁄ = 𝛼𝑠 + 𝛾𝑠𝑙𝑛𝑊𝑠 + 𝜃𝑠𝑙𝑛𝑌 +  𝛿𝑡     (9b) 

 

Here W is wage of unskilled and skilled labor, TC is wage bill, Y is output, and t is time that 

represents technological change. Replacing the time-oriented technology measure with 

observable proxy for technology (T) and assuming that capital (K) is a quasi-fixed input, the 

wage shares can be rewritten as: 

 

𝑆𝑢 = 𝑊𝑢𝐿𝑢 𝑇𝐶⁄ = 𝛼𝑢 + 𝛾𝑢𝑙𝑛𝑊𝑢 + 𝜃𝑢𝑙𝑛𝑌 +  𝛽1𝑢𝑙𝑛𝐾 +  𝛽2𝑢𝑇   (10a) 

𝑆𝑠 = 𝑊𝑠𝐿𝑠 𝑇𝐶⁄ = 𝛼𝑠 + 𝛾𝑠𝑙𝑛𝑊𝑠 + 𝜃𝑠𝑙𝑛𝑌 +  𝛽1𝑠𝑙𝑛𝐾 + 𝛽2𝑠𝑇    (10b) 

 

Empirical work within the SSM framework (Berman et al., 1994; 1998 and Machin, 2001) 

tends to report that technological change is skill-biased in that technological innovation 

increases the demand for skilled labor at the expense of unskilled labor. The skill bias is usually 

confirmed with findings that indicate falling wage or employment shares for unskilled labor. 

Acemoglu (1998, 2002, 2003) extend the theoretical framework for skill-biased technological 

change by demonstrating that the direction of technological change is endogenous. Whereas 

the technological change of the 19th century was mainly skill-replacing, the increase in the skill 

pool (i.e., the increase in the number of graduates) has instigated a wave of skill-

complementary technological change from the second half of the twentieth century. Evidence 



to that effect consists of an initial fall in graduate earnings when the number of graduates 

increased significantly in the United states, followed by sustained increase in graduate earnings 

after the emergence of skill-directed technologies. Extensive reviews of the skill-biased 

technological change and its effects on employment are provided by Katz and Autor (1999), 

Goldin and Katz (2008, 2009); and Acemoglu and Autor (2011).  

 

Recently, the routine-biased technological change (RBTC) literature has shifted the debate 

towards skill polarization instead of skill shares. The central argument is that technological 

change has become biased toward replacing labor in routine tasks. In other words, endogenous 

technology has entered a new wave of routine-biased instead of skill-biased technological 

change (SBTC). The hypothesis is that RBTC decreases the demand for middle- relative to 

high-skilled and low-skilled occupations (Autor, Levy, and Murnane 2003; Autor, Katz, and 

Kearney 2006, 2008; Goos and Manning, 2007; Autor and Dorn 2013). A recent work by Goos, 

Manning and Salomons (2014) develop a model to estimate the importance of RBTC and 

offshoring on job polarization. The authors report that the effect of RBTC is more important 

than offshoring. Also, RBTC explains not only overall job polarization but polarization within 

and between industries.  

 

Nevertheless, Sebastian and Biagi (2018) have pointed out that RBTC models face some 

conceptual, operational, and empirical challenges. Conceptually, RBTC models define routine 

tasks as codifiable tasks that can be performed by machines. However, a measure of 

codifiability tends to be absent in databases usually used in empirical analysis. Furthermore, 

what may be perceived as routine for workers may not be so for machines. There are also 

indications of disconnect between the theoretical models and their operationalization. For 

example, routine task indices in the data sometimes include measures of quality controls, which 

do not reflect the theoretical definition. Similarly, whereas cognitive tasks are theorized to 

reflect problem-solving tasks, the corresponding indices often include measures of managerial 

responsibilities. 

 

The brief review above indicates that the skill share models (SSMs) have been successful in 

opening new lines of empirical research on the relationship between technological change and 

employment. Nevertheless, the evidence informed by SSMs cannot be synthesized in this 

chapter because the outcome they explain is not comparable with the outcome estimated in the 

DLDM. In the former, the outcomes are either the share of skilled (or unskilled) labor in total 



employment (or wage bill), or the polarization of employment. These outcomes are not 

comparable with that of DLDM. Stated differently, the findings from both sets of models 

cannot pooled for meta-analysis.  

 

 

3. Meta-analysis evidence: All countries 

 

The evidence in this section is from Ugur et al. (2018), who utilize meta-analysis tools to 

synthesize the evidence on the relationship between innovation/technological change and 

employment.  The meta-analysis is based on 570 effect-size estimates reported in 35 studies 

and each estimate is coded to establish how the effect-size varies by: (i) publication type 

(journal article, book chapter, working paper, etc.); (ii) model specification (whether the 

DLDM include or exclude capital and output, the data is in levels or growth rates, time/industry 

dummies are included, etc.); (iii) sample characteristics (country of origin for the data, whether 

the firm/industry is innovation-intensive, the data is panel or cross-section, and the firm is small 

or large.); and (iv) estimation methods (ordinary least squares, fixed-effects, and instrumental 

variable estimators such as general method of moments, two- or three-stage least squares).   

 

The unit of measurement for the dependent and independent variables differs between (and 

even within) studies. To ensure comparability, the effect-size estimates are converted into 

partial correlation coefficients (PCCs). The PCC measures the strength of the association 

between technological change and employment, after taking account of other determinants of 

employment such as wages, capital and output. Its standard error represents variations due to 

sampling error.1 Ugur et al (2018) presents the included studies, with information on a range 

of study characteristics.2  

 

Primary studies report multiple estimates, with a range between 2 and 105. Median PCCs 

(proxy for effect size) in 90% of the studies are positive Across studies, the median PCC and 

the associated t-value are 0.036 and 1.850, respectively. Taken at face value, the summary 

measures indicate a positive relationship between innovation and employment on average. 

 
1 See Ugur et al. (2017) for further information on calculation of PCC and its standard error.  
2 The majority of the studies are published journal articles (71%), followed by working papers (26%). While 74% 

of the studies utilised firm-level data, 14% utilised industry-level data, with the remainder using sector-level data. 



However, the summary measures conceal a high degree heterogeneity in the evidence base 

(see, Ugur et al, 2018).  

Another drawback of the summary measures is that they may be affected by publication 

selection. The funnel graph in Figure 1 provides visual information about publication selection 

bias, reflected as funnel asymmetry around the fixed-effect average represented by the vertical 

line. It also indicates a high level of unobserved heterogeneity, captured by the number of 

observations beyond the 95% pseudo-confidence interval limits (dashed lines). The 

heterogeneity estimate from the random-effect meta-regression estimator proposed by Harbord 

and Higgins (2008) is 85% and confirms the visual evidence from the funnel graph.  

 

 

Figure 1: Innovation and employment: Funnel graph of effect-size estimates 

 

 

 

Excessive heterogeneity does not invalidate the summary measures obtained from the evidence 

base but makes them less generalizable to other contexts. However, when summary measures 

ignore the risk of selection bias they can lead to incorrect inference. This is common problem 

in narrative reviews that rely on vote counting or simple averages. That is why it is necessary 

to conduct meta-regression analysis to take account of selection bias and quantify the 
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observable sources of heterogeneity. The meta-regression model informed by the selection 

process discussed in Egger et al. (1997) can be stated as follows:3  

 

𝑃𝐶𝐶𝑖 =  𝛽 + 𝛼𝑆𝐸_𝑃𝐶𝐶𝑖 + 𝑢𝑖        (11) 

 

However, model (11) raises several estimation issues. First, the model is heteroskedastic 

because effect-size estimates have widely different standard errors. This issue is addressed by 

estimating a weighted least squares (WLS) version, where precision-squared (1/𝑆𝐸_𝑃𝐶𝐶𝑖
2) is 

used as analytical weights. This is equivalent to dividing both sides of (2) with the standard 

error (Stanley and Doucouliagos, 2014 and 2012; Stanley, 2008), leading to:  

 

𝑡𝑖 = 𝛼 + 𝛽 (1
𝑆𝐸_𝑃𝐶𝐶𝑖

⁄ ) + 𝑣𝑖       (12) 

 

Here 𝑡𝑖 is the t-value associated with the reported estimate and the error term 𝑣𝑖 is the error 

term in (11) divided with the standard error. Testing for 𝛼 = 0 is a test for funnel asymmetry 

test (FAT) or publication selection bias. The bias is considered as substantial if |α| ≥ 1 or as 

severe if |α| ≥ 2 (Doucouliagos and Stanley, 2009; 2012) 4. On the other hand, testing for  𝛽 =

0  is a ‘genuine effect’ or precision-effect test (PET) after controlling for selection bias. 

Doucouliagos and Stanley ( 2013) suggest that an effect size (PCC in this case) is small if it is less 

than ±0.07. The PCC indicates strong association (large effect) if it is greater than ±0.33, whilst 

a PCC in between indicates moderate effect.  

 The second issue is the nested nature of the meta-analysis evidence, where effect-size 

estimates are nested within primary studies due to within-study dependence on the same dataset 

or estimation method. The nested nature of the data implies that the publication-selection bias 

and the effect-size estimates may be subject to study-specific random effects. This issue is 

addressed by adopting a multi-level (hierarchical) modelling approach, where unobserved 

 
3 This meta-regression model has been applied and evaluated widely (see, Stanley, 2005 and 2008; Stanley and 

Doucouliagos, 2012). The underpinning theoretical framework is that of Egger et al. (1997), who postulate that 

researchers search across model specifications, econometric techniques and data measures to find sufficiently 

large (hence statistically-significant) effect-size estimates.  
4 Testing for selection bias is justified given the evidence about its prevalence in both social-scientific and medical 

research (Card and Krueger, 1995; Dickersin and Min, 1993; Ioannidis, 2005; and Simmons et al., 2011).   



study characteristics are modeled as random intercepts (RI) or random intercept and slopes 

(RIS).5 The bivariate meta-regression results are presented in Table 1. 

 

Table 1: Technological innovation and employment:  

Effect-size estimates as PCCs - by innovation and skill type 

 

  

Dependent variable: t-value (1) (2) (3) (4) (5) (6) 

Effect size (PCC)   0. 029*** 0.004 0.037*** 0.025*** 0.004* 0.025*** 

 (0.008) (0.004) (0.007) (0.006) (0.002) (0.006) 

Publication selection bias -1.405** 1.895*** 0.210 0.937*** 0.712** 0.461 

 (0.683) (0.141) (0.378) (0.298) (0.287) (0.392) 

       

Observations 66 69 344 42 43 567 

Studies 14 13 21 7 7 35 

Intra-study correlation (ISC) 0.573*** N.A. 0.38*** 0.210*** N.A. 0.121* 

Estimator HM2/RI OLS HM2/RI HM2/RI OLS HM3/RIS 
Notes: Column (1): process innovation and demand for mixed-skills labor; (2) product innovation and demand 

for mixed-skills labor; (3) undifferentiated innovation and demand for mixed-skills labor; (4) undifferentiated 

innovation and skilled labor; (5) undifferentiated innovation and demand for unskilled labor; (6) full sample. 

Estimators: OLS – ordinary least squares; HM2/RI - two-level hierarchical estimation with random intercepts; 

HM3/RIS - three-level hierarchical estimation with random intercepts and slopes. Robust standard errors are in 

brackets. Three observations with undue influence are excluded, using the DFBETA influence statistics. ISC 

indicates the correlation between estimate pairs within each study. *, **, *** indicate significance at 10%, 5% 

and 1%, respectively.  N.A.: Not applicable. 

  

 

In Table 1, the average effect of all innovation types on employment (column 6) is positive but 

small (0.025). In fact, the effect remains small even when demand for skilled labor is estimated 

(0.025 in column 4). Also, the effect on the demand for unskilled labor (column 5) is too small 

to be practically significant (0.004).   These findings are in line with conclusions reported in 

narrative reviews. However, and in contrast to narrative review and innovation decomposition 

findings, the effect of product innovation is statistically insignificant (column 2).  Furthermore, 

the effect of process innovation (column 1) is positive and significant (0.029). These findings 

may well be due to small sample sizes (66 observations for process innovation and 69 for 

product innovation). However, findings from the multivariate meta-regression with the full 

sample (see below) also indicate lack of systematic difference between the employment effects 

of product innovation and other types of innovation.  

 

 
5 Discussion on other issues and the way in which they are addressed is in Ugur et al. (2017). It must also be noted 

that the choice between ordinary least squares (OLS) and hierarchical model (HM) estimations is made on the 

basis of likelihood ratio (LR) tests. The HM estimator is applied if the LR test rejects the null hypothesis that the 

OLS estimates is nested within (i.e., is consistent with) the HM estimate.  



With respect to publication selection, the bias is substantial in columns 1 (employment effect 

of process innovation) and column 2 (employment effect of product innovation). The bias is 

negative in the case of process innovation but positive in the case of product innovation. The 

signs indicate that researchers tend to report evidence in line with theoretical predictions more 

often than otherwise. Hence, after controlling for high levels of selection bias, the average 

effect becomes small or insignificant.6  

 

Ugur et al. (2018) identified 28 moderating factors as potential sources of effect-size 

heterogeneity. These moderating factors reflect variations in innovation type, skill type, 

publication type, sample characteristics, model specification and estimation methods. The 

moderating factors are constructed as binary variables that take the value of 1 if the reported 

estimate is associated with a given characteristic (moderating factor) and zero otherwise. 

Definition and description of these moderating factors are presented in Ugur et al. (2018). Their 

influence on the average employment effect of innovation is estimated through a multivariate 

meta-regression model (a 3-level multivariate HM). In the model, all moderating factors are 

divided by the standard error of the estimate to capture their effects on the average effect-size 

estimate rather than the publication selection bias. Finally, the multivariate meta-regression 

model is estimated with different specifications for the standard error and with frequency 

weights for multiple estimates from the same study.  

A positive (negative) and significant coefficient on the moderating variable indicates that the 

estimates of the innovation’s employment effect are systematically larger (smaller) when they 

are associated with the moderating factor. If the coefficient is insignificant, the innovation’s 

employment effect does not vary with the moderating factor. Non-significant moderating 

factors include: whether the estimate is reported in a journal article versus working papers or 

reports; inclusion of time/industry dummies, wage or capital in the DLDM; whether innovation 

is measured with R&D; whether innovation type is product or process innovation, and whether 

the model is estimated with an instrumental variable (IV) estimator. 

 
6 The high levels of publication selection bias are observed despite the inclusion journal articles and non-journal 

articles such as working papers and reports. The evidence on whether selection bias is larger (or smaller) in journal 

articles is mixed. Costa-Font et al. (2013) put forward the ‘winner’s curse’ hypothesis and report that journals 

tend to exploit the quality reputation of the review process and publish more selected evidence. On the other hand, 

Ugur et al. (2016a) report that R&D productivity effect-size estimates published in journals are not larger than 

estimates published in working papers and report.  



Ugur et al. (2018) report that only two narrative review conclusions about sources of 

heterogeneity are supported by findings from the multivariate meta-regression analysis: (i) 

adverse effects of innovation on unskilled labor employment; and (ii) larger effect-size 

estimates in more recent primary studies (those published after 2000). Whilst the first lends 

support to the skill-biased technological change analyzed in the skill/wage share models of 

innovations (see, above); the second lends support to the observation by Vivarelli (2014) that 

increased availability and richness of datasets after 2000 may have contributed to estimating 

effects with higher precision.  

However, there is evidence contradicting the narrative review conclusions with respect to four 

sources of heterogeneity. First, neither product nor process innovation is associated with 

systematically different effects on employment – both moderating factors are statistically 

insignificant in the multivariate meta-regression results. Secondly, estimates based on 

innovation-intensive firm/industry data in primary studies are relatively smaller than those 

associated with the reference category. The difference between the narrative review and meta-

regression findings is due to publication selection bias, which is controlled for in the meta-

regression but not in vote counting or simple average estimates that narrative reviews rely upon.  

 

A third difference between meta-regression and narrative review findings is that, the effect of 

technological innovation on labor demand is dampened over time. This is in contrast to 

narrative review observations that worker displacement in the short run may be reversed as 

compensation mechanisms trigger new demand for labor in the long run. However, this finding 

is in line with the creative destruction argument in Schumpeterian models, where a given 

innovation becomes obsolete as competitors introduce new technology over time (Aghion et 

al., 2014). Finally, there is no systematic difference between the effect-size estimates based on 

R&D and other measures of innovations. This is in contrast to the observation in Vivarelli 

(2014) that the employment effect of innovation is larger when the latter is measured R&D 

investment, which tends to be oriented towards product development. Other findings from the 

multivariate meta-regression analysis are summarized below.  

 

Inclusion of output in the empirical model is associated with smaller estimates compared to 

models that do not control for output. This may be because firm optimization implied by the 

theoretical model does not hold every period. Stated differently, firm/industry employment 



may be responding not only to capital and labor costs but also to demand shocks, the exclusion 

of which may be a source of omitted variable bias in estimates from the DLDM in some studies.  

 

Role of patents: Technological innovation measured by intellectual property assets (IPAs) is 

associated with smaller estimates compared to all other measures of innovation. This finding 

can bridge the evidence gap for two reasons. First, it may indicate that the IPA counts may not 

reflect the true quality of the technological innovation they protect. Secondly, it raises questions 

about the inter-relationship between innovation, market power due to patent protection and 

employment. The finding indicates that innovation and employment models should be 

augmented with market power either by modelling the latter as part of the reduced form or as 

a separate process in a system of equations.  

 

Employment in manufacturing industry: Innovation’s effect on manufacturing employment 

is larger compared to non-manufacturing employment. This is despite the fact that the unit of 

analysis (firm versus industry) is distributed evenly between manufacturing and non-

manufacturing sectors. This finding provides somber reading in that manufacturing 

firms/industries that innovate register higher demand for labor compared to services, but the 

share of manufacturing in total employment is declining in OECD and non-EOCD countries.  

 

OECD vs Non-OECD countries: There is evidence that the innovation’s effect on 

employment is larger in OECD countries. There is also evidence indicating that the 

employment effects are larger in the USA compared to all other countries. This pattern 

suggests that innovation is more likely to be job-creating in developed countries compared to 

developing countries. However, it does not address the question as to whether the job-creation 

and job-destruction effects are associated with different levels of labor market regulations. This 

issue is probed below, where provide estimates from split samples of countries with different 

levels of employment protection. 

 

High innovation intensity: Data based on firms/industries classified as highly innovative by 

primary-study authors is associated with smaller effect-size estimates. This is in contrast to 

frequent policy statements that jobs are created by firms/industries with high innovation 

intensity. The implication for future research is that it is advisable to investigate non-linearities 

in the innovation-employment relationship in the light of two recent work. The first reports an 

inverted-U relationship between innovation intensity and firm survival (Ugur et al., 2016). In 



this work, firms at the high end of the R&D intensity have shorter survival times and tend to 

shed labor in the years before exiting. The second is Bogliacino (2014), who demonstrates that 

the elasticities of employment with respect to R&D investment are non-linear due to a 

combination of scale effects and decreasing returns to R&D.  

 

A final check for sources of heterogeneity is related to the mediating role of labor-market 

institutions in the relationship between innovation and employment. The role is investigated 

by estimating the average employment effect in six OECD countries ranked by the level of 

employment protection legislation (EPL): France, Sweden, Germany, Italy, UK, and US. 

Figure 2 below depicts the relationship between the country average effect and EPL level, 

which is obtained from OECD (Ongoing). In contrast to theoretical predictions that labor-

market flexibility would augment the employment effects of innovation, the country-specific 

effects have a U-shaped relationship with EPL.  The effect is relatively larger in France and 

Sweden at the high-EPL end and in the US at the lower-EPL end.  

 

Figure 2: Effects of innovation on employment: 

By employment protection legislation (EPL) strength 

 

Note: 1 = USA; 2 = UK; 3 = Italy; 4 = Germany; 5 = Sweden; and 6 = France. 

 

The U-shaped pattern indicates that labor-market flexibility may be high in both low-EPL and 

high-EPL countries. In low-EPL countries such as the USA, labor-market flexibility follows 

0.057

0.029
0.033

0.029

0.038

0.07

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 1 2 3 4 5 6 7

Effect of innovation on employment

Employment protection legislation (EPL): Low to high



from relatively easier hiring and firing. In the high-EPL countries such as Sweden and France, 

however, labor-market flexibility result from labor unions’ agreements to wage flexibility in 

exchange for avoiding job destruction. This interpretation is in line with non-linear 

relationships between labor-market regulation and employment reported by Calmfors and 

Driffill (1988) and Amable and Gatti (2004).  

 

4. Mixed-method evidence: Low-income and lower-middle-income countries (LMICs) 

 

The implications of technology adoption for productivity, income and welfare have been 

studied widely in the context of low- and lower-middle-income countries (LMICs). With 

notable exception of Piva (2003) and Vivarelli (2014), however, the relationship between 

technology adoption and employment in LMICs has largely remained below the radars of 

researchers and reviewers alike. This section is a partial attempt at closing the gap. It draws on 

a mixed-method systematic review by Ugur and Mitra (2017), which maps the qualitative and 

empirical evidence on the employment effects of technology adoption in LMICs.7 

 

The mixed-method systematic review involves mapping qualitative and empirical evidence 

from primary studies that differ with respect to method (qualitative versus quantitative), 

context, and analytical framework (Harden and Thomas, 2005). It combines the strength of the 

narrative synthesis with those of meta-regression analysis.  The strength of the narrative 

synthesis lies in: (i) accounting for how technology adoption affects employment, why and for 

whom; (ii) identifying causal mechanisms and deriving ‘context-specific’ conclusions; and (iii) 

identifying the range of displacement and compensation mechanisms at work. On the other 

hand, meta-analysis allows for obtaining reliable estimates for the effects of technology 

adoption in LMICs and how the effect vary by quantifiable moderating factors when the 

estimates are comparable. The meta-analysis findings are based on 12 quantitative studies, 

whereas the narrative synthesis findings are based on 43 qualitative studies presented Ugur and 

Mitra (2017).  

 

In the LMIC context, the effect of process-oriented technology adoption on skilled-labor 

employment is positive and significant (Table 2, column 1). The effect is larger in the case of 

 
7 Empirical estimates from LMIC studies are also derived from a DLDM. Hence, they are comparable with the 

meta-analysis evidence discussed above. The difference between the two is twofold. On the one hand, the 

agriculture feature more often in LMIC studies. On the other, the link between the empirical and theoretical 

DLDM in LMIC studies is less systematic. 



product-oriented technology adoption and mixed-skill labor employment (0.397 in column 3). 

However, the effect on unskilled labor is insignificant, and this leads to an insignificant average 

effect in the full sample. The positive effect on skilled labor is in line with narrative reviews of 

the wider literature that include studies from developed and developing countries. Also, the 

positive effect of product innovation is in line with innovation-decomposition studies. 

However, it must be noted that the findings are based on a narrow evidence base, which consists 

of 33 and 25 estimates, respectively.  

 

 

Table 2: Technology adoption and employment in LMICs 

 Process-oriented / 

Skilled labor  

Process-oriented / 

Unskilled labor 

Product-oriented 

/ Mixed skills Full sample 

Effect size (PCC)  0.189*** -0.025 0.397* 0.072 

 (0.042) (0.027) (0.224) (0.109) 

 

Selection Bias 

 

-6.908** 

 

1.661* 

 

-4.031 

 

-0.022 

 (2.888) (0.892) (3.654) (3.752) 

Observations 33 93 25 180 

Studies 3 9 4 12 

 

 

Ugur and Mitra (2017) estimate a multivariate meta-regression model to identify the sources 

of heterogeneity in the evidence base. They report that the effects of product-oriented 

technology adoption on employment are systematically larger than those of process-oriented 

or undifferentiated technology adoption. Also, the effects of technology adoption on unskilled 

labor employment are systematically smaller than those in the excluded category (skilled or 

mixed-skill labor Another finding is that technology adoption may not be strictly exogenous 

due to reverse causality in the relationship between technology adoption and employment, 

measurement errors or model misspecification. This is reflected in relatively smaller effect-

size estimates obtained from IV estimators that take account of endogeneity.  

 

The meta-analysis findings above are based on data for agriculture and manufacturing pooled 

together. The qualitative evidence on agriculture only indicates is that mechanization on its 

own tends to have a negative effect on farm employment. However, the effect tends to be 

positive when mechanization is accompanied by extension of the farm size and hiring of 



outside labor.8 With respect to labor type, mechanization is reported to reduce the employment 

of family labor and that of young farmers (Agarwal, 1981; Chopra, 1974); but it tends to 

increase the employment of seasonal labor and child labor (De Clerk, 1984).  

 

A fourth finding is that mechanization tends to have a positive effect on employment when it 

is accompanied with product differentiation and strong forward/backward linkages between 

agriculture and manufacturing industries (Lalwani, 1992; Bhatia and Gangwar, 1981; Chopra, 

1974; Inukai, 1970). Type of process-oriented technology adoption also matters: the effect on 

farm employment is more likely to be positive when it consists of introducing new 

feeds/fertilizers and irrigation techniques (Lalwani, 1992; Bhatia and Gangwar, 1981; Chopra, 

1974). On the other hand, mechanization is associated with adverse effects when it is used for 

ploughing and harvesting operations instead of sowing and the farm size is large to begin with 

(De Clerk, 1984; Agarwal, 1981). 

 

A fifth conclusion relates to the consequences of process-oriented technology adoption for on-

farm/off-farm employment in the context of the Green Revolution (GR). In the short run, GR 

technologies are associated with uncertain employment effects. The long-run effect on on-farm 

employment is negative. The long-run effect on off-farm employment is positive when: (i) the 

demand for new products/services increases as a result of increased farmer income; and (ii) 

forward and backward linkages between farm and non-farm activities are strong.  

 

Finally, some studies examine the role of institutions in the relationship between employment 

and technology adoption. One conclusion from this work is that institutional characteristics of 

the country and those of the labor markets determine the technology choice and hence the scope 

for employment creation (Annable, 1971; Fagerberg, 2010; Garmany, 1978; and Caballero and 

Hammour, 1996).  

 

Mapping the meta-analysis and narrative synthesis, it can be concluded that the effect of 

technology adoption on employment in LMICs is uncertain at best. Job-creating effects are 

likely to dominate when: (i) skilled-labor employment is investigated; (ii) forward and 

 
8 These conclusions are based on evidence from: Chopra (1974) on farmers in 13 Punjabi villages in India; Bhatia 

and Gangwar (1981) on 965 small farms in Karhal district of India; Agarwal (1981) on 240 farms in India; De 

Klerk (1984) on 61 maize farms in South Africa; Inukai (1970) on rice farmers in Thailand; and Lalwani (1992) 

on dairy farming in India. 



backward linkages are strong; (iii) the evidence relates to India and China as opposed to other 

LMICs; and (iv) institutional quality is conducive to optimal technology choice, investment in 

skills and wage flexibility. On the other hand, job-destroying effects are more likely when: (i) 

new technologies are adopted to cater for the demand of high-income consumers; (ii) 

international trade is capital-intensive; and (iii) mechanization in agriculture is not combined 

with new irrigation systems and fertilizer use. 

 

 

5. Summary 

 

This chapter has provided meta-analysis and mixed-method evidence from two strands of the 

literature: (i) the relatively more visible work that reports estimates from the derived labor 

demand (DLDM) with data from developed and developing countries; and (ii) the relatively 

less visible work that focuses on technology adoption and employment in LMICs.  

 

Meta-analysis of the evidence based on the DLDM indicates partial empirical support to two 

conclusions reported in prior reviews: (i) technological innovation increases the demand for 

skilled labor more than unskilled labor; and (ii) primary studies published after 2000 tend to 

report relatively larger ‘effect-size’ estimates. Other findings, however, does not lend support 

to a range of narrative review conclusions. This was evident with respect to the effects of 

process and product innovation on mixed-skills labor demand. The selection bias in these 

evidence pools is in the direction of theoretical predictions; and the level of selection is so high 

that the effect-size estimates turn out to be the smaller than simple summary measures that 

narrative reviews rely upon. Further findings also contradict the narrative review conclusion 

that the employment effects of innovation are larger in high-innovation-intensity firms or 

industries.  

 

It must be indicated that the absence of support for skill bias and for larger employment effects 

from product innovation may be due to the small number of observations (primary-study 

findings). Therefore, they must be considered in conjunction with the mixed-method findings 

on LMICs. Both meta-analysis and narrative synthesis of evidence on LMICs indicate that the 

employment effects are larger when employment of skilled labor is the outcome variable and 

when product-oriented technology adoption is the independent variable. Given these findings, 

two conclusions may be stated: (i) more research is needed to verify the skill bias and the 



relatively larger employment effects from product innovation; (ii) skill bias and relative effects 

of product innovation may be related to the level of development, with larger skill bias and 

product-innovation effects more likely to be observed in less developed countries.  

 

The meta-analysis findings also shed light on some moderating factors with respect to which 

the narrative reviews are either silent or inconclusive. Specifically, they indicate that: (i) the 

inclusion of output in the DLDM is associated with smaller innovation effects on employment; 

(ii) measuring technological innovation with R&D investment has no systematic effect on 

reported estimates, but the reported estimates are relatively smaller when innovation is 

measured with patents or trademarks and relatively larger when innovation is measured with 

investment in ICT; (iii) the effect of labor-market regulation on the relationship between 

innovation and employment follows a U shape – with larger innovation effects on employment 

in both high and low regulation countries. 

 

On the other hand, the narrative synthesis of qualitative studies indicates that the employment-

effects of technology adoption are more likely to be positive when: (i) there are strong 

forward/backward linkages between innovative firms/farms/industries and their upstream or 

downstream counterparts; and (ii) governance institutions encourage and facilitate technology 

adaptation instead reliance on off-the-shelf technology only. In contrast, the employment 

effects are more likely to be small or negative when technology adoption is dependent on 

imported technology or geared to toward the production of goods/services for high-income 

groups in the country.   

These findings indicate that policy statements that establish or suggest a positive and linear 

relationship between innovation/technological change and employment should be qualified. 

The effect is small and highly heterogeneous and likely to be skill-biased, particularly in the 

context of developing countries. To ensure that the employment-creation effect dominates the 

job-destruction effect, technology adoption should be combined with policies aimed at 

enhancing institutional quality and encouraging investment in skill upgrading.  

With respect to future research, the findings presented above indicate the need for better-quality 

data on innovation. Chennelles and van Reenen (2002) provide an authoritative account of the 

difficulties involved in measuring innovation as a proxy for the unobservable technological 

change. Therefore, investment in better-quality data may be necessary to reduce the risk of 

mismeasurement. The transition to capitalization of R&D expenditures may be a step in the 



right direction because it will bring a common approach to R&D deflators and to the building 

of R&D capital stock from R&D investments. Also, it can be argued that R&D capital should 

be augmented with other intangible assets to obtain a measure of knowledge capital as 

suggested by Clayton et al. (2009).  

A second issue is the lag structure in the relationship between innovation/technology and 

employment. Of the empirical studies included in the meta-analysis, 50% percent use 

contemporaneous values of employment and innovation and 31% use between 1 and 3 lags for 

technological innovation, with the remaining 19% using more than 3 lags. The variation in the 

lag choices appears to be driven by empirical concerns rather than justifications on theoretical 

grounds. Therefore, further research on the lag structure can enhance the existing knowledge 

along several paths: (i) identifying the time gap between the introduction of an innovation and 

the change in employment; (ii) verifying if the innovation’s employment effect persists or 

disappears the lag length increases; and (iii) investigating whether the time gap and degree of 

persistence differs over time.  

 

A third issue concerns the need for explicit incorporation of market power and creative 

destruction into the theoretical and empirical models. The Schumpeterian growth literature 

(Aghion et al., 2014) provides useful insights about the rationale for their inclusion in the 

growth models and their implications for growth. One way in which the Schumpeterian insights 

can be incorporated into the derived labor demand model is to allow for interactions between 

technological innovation and market power. Another way is to treat innovation intensity in the 

industry or the region not only as a source of knowledge spillovers but also as a source of 

creative destruction that makes the firm’s or the industry’s own technology obsolete.  
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