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Abstract

State Machine Replication (SMR) is a technique to replicate information across servers,
also called replicas, providing fault tolerance to services. Instead of execute in a single
server, requests from multiple clients are ordered and executed in a set of replicas. Results
are confirmed to the clients once a predefined quorum of replicas replies. Several studies
prove possible to tolerate up to f faults using 2f + 1 replicas. Byzantine Fault Tolerant
(BFT) SMR configurations, where replicas can behave in an arbitrary mode, require f

additional replicas, with the total of 3f + 1 replicas.
When a replica is detected faulty, it has to be recovered with an updated state to reduce

the vulnerability of the system. This state is generated during the service execution, when
write operations are logged. To bind the size of the log and the time to replay it, periodic
snapshots of the service state, or checkpoints, are taken and the log reset. During recovery
the checkpoint and the log are transferred from other replicas.

To provide resilience to co-related faults, information has to be logged in durable stor-
age. Synchronous writes in durable storage and constant checkpoints can affect through-
put and latency of the system as replicas have to wait for information to be stored before
reply. When a checkpoint is being taken the system cannot make progress because the
state cannot be changed. This may cause the service to be interrupted for several seconds
during a checkpoint. The state transfer to a recovering replica can also cause perturbations
in the system execution, as correct replicas has to read and transfer the state, composed
by the checkpoint, log and digests of messages in case of BFT systems.

In this dissertation we present three techniques to improve the performance of state
storage and transfer in a BFT SMR protocol - BFT-SMART. The first, Parallel Logging
stores information in the log in parallel with its execution by the application. The sec-
ond, Sequential Checkpointing makes only one replica take a checkpoint at a time, in a
round-robin fashion, allowing the system to make progress during that period. The last
technique, Collaborative State Transfer (CST) reduces the perturbation in a system dur-
ing state transfer to a recovering replica by having one replica providing the checkpoint
and the remaining providing portions of the log. We also present algorithms that address
the problem of co-related failures. When several replicas fail at the same time it is pos-
sible to start them simultaneously and compare the stored state before having the service
available again. After presenting the techniques, we provide a prototype implementation
called Dura-SMaRt with an evaluation against BFT-SMART to compare the efficiency
of the new techniques. We performed the evaluation with two applications: a consistent
key-value store – SCKV-store – and a coordination service that stores information in tuple
spaces – DepSpace.
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Next, we evaluate Dura-SMaRt in a complex use, having a database replication mid-
dleware built on top of it. SteelDB, provide fault tolerance for transaction processing in
database management systems (DBMS).

Transactional databases provide durability for information systems executing oper-
ations inside boundaries called transactions. Transactions guarantee several properties,
amongst which, atomicity and isolation. Atomicity enforces that all operations executed
inside a transaction are confirmed, or none is. Isolation guarantees that operations inside
a transaction are only visible for other transactions after it is finished. Concurrency mech-
anisms implementations allow several transactions, from several clients to be executed
at the same time, improving the performance of a DBMS. To provide dependability to
DBMS, several DBMS vendors provide replications mechanisms that usually rely on the
efficiency of fail detection and recovery. Such replication mechanisms are also attached
to the vendor implementation. With SteelDB we provide transparent Byzantine fault tol-
erance with 3f + 1 replicated databases. SteelDB requires no changes in the client code
as it provides a driver implementation of the JDBC specification. Clients have only to
switch the current driver provided by the database vendor it is using to the driver provided
by SteelDB.

After describing the concepts and implementation of SteelDB we present an evalu-
ation performed on SteelDB during the last year of the FP7 TClouds project. We eval-
uated SteelDB for functional and performance aspects with a real application executing
different types of transactions and comparing results with executions on different envi-
ronments. We compared SteelDB executions in local area networks, private, public and
hybrid clouds discussing the differences in performance and efficiency of optimizations
present in the middleware.

After SteelDB evaluation we discuss the related work to state management in SMR
and database replication middlewares.

Finally we will conclude the work with a discussion on the results obtained and pur-
poses for future work.

Keywords: Dependability, Replication, Fault Tolerance, Database, Disaster Recovery
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Resumo

Replicação de Máquina de Estados (SMR) é uma técnica para replicar informações
entre vários servidores, também chamados de réplicas, provendo tolerância a faltas para
aplicações. Ao invés de executar os pedidos dos clientes em um único servidor, pedidos
de vários clientes que alteram o estado de uma aplicação passam por um protocolo de
ordenação e são entregues na mesma ordem para um conjunto de réplicas. Os resultados
somente são confirmados aos clientes após um quórum pré-definido de réplicas responder.
Vários estudos provaram ser possı́vel tolerar até f faltas com o uso de 2f + 1 réplicas.
Configurações para SMR com Tolerância a Faltas Bizantinas (BFT), onde réplicas podem
apresentar comportamento arbitrário, necessitam de f réplicas adicionais, com o total de
3f + 1 réplicas.

Quando uma réplica percebe que esta atrasada em relação às demais, ou uma nova
réplica é adicionada ao sistema, ela precisa instalar uma a versão atualizada do estado,
para poder participar do protocolo de ordenação e processamento dos pedidos, restau-
rando assim a tolerância do sistema a faltas. Réplicas geram um log das operações execu-
tadas para terem uma cópia atualizada do estado, necessária a uma possı́vel recuperação.
As operações de escrita são armazenadas de forma sequencial no log. Para limitar seu
tamanho e o tempo para reproduzı́-lo em uma réplica que está recuperar-se, as réplicas
tiram cópias do estado periodicamente em checkpoints e, apagam o log em seguida. Du-
rante a recuperação de uma réplica, o checkpoint e o log são transferidos pelas demais.
A réplica que está a recuperar-se instala o checkpoint recebido e executa as operações do
log antes de confirmar às demais que está pronta a processar pedidos novamente.

Para oferecer tolerância a faltas co-relacionadas, onde várias réplicas podem apresen-
tar falhas ao mesmo tempo, informações precisam ser armazenadas em mı́dia durável.
Escritas sı́ncronas em mı́dia durável e checkpoints constantes podem diminuir o through-
put e aumentar a latência do sistema pois as réplicas precisam esperar até que a escrita seja
concluı́da, antes de confirmar a operação ao cliente. De outra forma, no caso de uma falha
antes do fim da escrita, poderı́amos ter dados confirmados ao cliente mas não armazena-
dos. Realizamos experimentos que provam que a substituição da mı́dia por opçoes mais
rápidas, nomeadamente, disco rı́gido por SSD, apesar de diminuir o tempo de escrita
ainda afeta consideravelmente o throughput da aplicação.

Enquanto um checkpoint do estado é gerado, a aplicação não pode estar a processar
operações de escrita, pois estas podem alterar este estado. Isto faz com que o throughput
do sistema seja zero durante este perı́odo, que pode demorar vários segundos, dependendo
do tamanho do estado. Conforme demonstramos através de gráficos de desempenho da
aplicação, a transferência de estado a uma réplica que está a recuperar-se pode também
causar perturbações nas réplicas que estão a transferı́-lo, pois estas precisam ler dados em
mı́dia durável e transferir o estado pela rede. Em situações onde o tamanho do estado
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é grande, a tranferência pode afectar a comunicação com as demais réplicas e com os
clientes.

Apresentamos neste trabalho três técnicas puramente algorı́tmicas que melhoram o
desempenho no armazenamento e transferência de estado em um protocolo BFT SMR
chamado BFT-SMART. A primeira, Parallel Logging, faz as réplcias armazenarem as
operações no log em paralelo com sua execução pela aplicação. Em aplicações onde o
tempo para se executar uma operação é considerável, pode-se reduzir o tempo total ao
executar a operação e o log em threads diferentes. A segunda, Sequential Checkpointing
faz somente uma das réplicas tirar um checkpoint por vez, sequencialmente, permitindo
ao sistema fazer progresso nesse perı́odo. A terceira técnica, Collaborative State Transfer
(CST) define uma estratégia para transferência de estado onde uma réplica envia o check-
point da aplicação e as demais enviam partes do log, reduzindo o efeito da transferência
de estado nas réplicas que estão a enviá-lo. Apresentamos também algorı́tmos para re-
solver o problema de faltas co-relacionadas. No caso de uma falta onde todas as réplicas
vão abaixo, é possı́vel fazê-las retomar o serviço e iniciar a execução novamente, após
iniciadas.

Implementamos as novas técnicas apresentadas em um protótipo chamado Dura-SMaRt
para obtermos uma avaliação de seu efeito no desempenho de um sistema replicado. Ap-
resentamos uma avaliação do protótipo e do BFT-SMART com duas aplicações difer-
entes construı́das sobre estes, uma consistent key-value store chamada SCKV-Store e um
serviço de coordenação que utiliza um espaço de tuplos para armazenamento de dados
chamado DepSpace.

Comparamos os resultados de diversos experimentos para demonstrar que as novas
técnicas reduzem o impacto da escrita de operações em mı́dia durável. Apresentamos
resultados que mostram que a execução das operações de escrita em paralelo com seu
armazenamento no log não afectam o throughput em para aplicaçoes onde o tempo de
execuçao de mensagens é considerável. As novas técnicas também reduzem o impacto
que a geração de um checkpoint tem no throughput do sistema. Por fim demonstramos
que a transferência de estado tem menor impacto no throughput do sistema com as novas
técnicas quando comparadas ao modelo anterior onde uma réplica era responsável por
enviar o checkpoint e o log das operações.

De seguida, avaliamos o Dura-SMaRt em um caso de uso complexo: um middle-
ware para replicação de bases de dados chamado SteelDB. Este middleware utilizou o
Dura-SMaRt para replicação de dados, oferecendo tolerância a faltas para transações em
sistemas de gerenciamento de bases de dados (DBMS).

Bases de dados transacionais fornecem durabilidade para sistemas de informação ao
executar operações dentro de barreiras chamadas transações. Uma transação garante al-
gumas propriedades, entre as quais atomicidade e isolamento. Atomicidade implica que
todas as operações executadas são confirmadas, ou nenhuma é. Isolamento garante que
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alterações presentes dentro de uma transação só serão visı́veis às demais após o fim desta.
Estas propriedades permitem a utilização da base de dados simultaneamente por vários
clientes, aumentando a concorrência na execução de operações. Para aumentar a disponi-
bilidade e recuperação a faltas, vários desenvolvedores de DBMS fornecem mecanismos
de replicação de dados. Estes mecanismos geralmente estão ligados a eficiência dos sis-
temas de detecção de falha e recuperação. Eles também estão intrinsicamente ligados ao
fabricante da base de dados escolhido. Com o SteelDB nós oferecemos tolerância trans-
parente a faltas Byzantinas, com o uso de 3f + 1 bases de dados. O SteelDB fornece aos
clientes uma implementação da especificação JDBC, portanto, clientes que já utilizam
um driver JDBC para aceder a uma base de dados, somente precisam trocá-lo pelo driver
fornecido pelo SteelDB.

Depois de descrever os conceitos e implementação do middleware SteelDB, apre-
sentamos uma avaliação deste, realizada no último ano do projeto FP7 TClouds. Esta
avaliação testou diversos aspectos de desempenho e funcionalidade em uma aplicação real
com diversos tipos de transações, fornecida por um dos parceiros do projeto. Descreve-
mos a configuração e execução do SteelDB em diversos ambientes como redes locais,
clouds privadas, públicas e hı́bridas. Comparamos de seguida os resultados da execução
nestes diferentes ambientes para avaliar a eficiência de optimizações incluı́das no mid-
dleware. Apesar da utilização de bases locais ter desempenho consideravelmente melhor
com relaçao à replicação com o SteelDB, bases locais não fornecem tolerância a faltas.
Também demonstramos que quando o tamanho das transações aumenta, a diferença en-
tre os tempos de execução diminui, evidenciando o custo da troca de mensagens entre
redes remotas. Otimizações incluı́das no SteelDB, entretanto, diminuem o número de
mensagens necessarias por operação, reduzindo também o seu tempo de execução total.

Avaliamos também o desempenho do SteelDB em simulações com diferentes tipos
de faltas. Nos casos de teste que avaliamos, as faltas não afectam consideravelmente o
desempenho do SteelDB, uma vez que o protocolo de replicação Dura-SMaRt não precisa
esperar por respostas de todas as réplicas antes de confirmar as operações aos clientes.

Após apresentarmos a avaliação do SteelDB, discutimos os trabalhos relacionados
com o gerenciamento de estado em sistemas SMR e também estudos e alternativas para
replicação de bases de dados com o uso de SMR.

Concluı́mos com uma discussão dos resulados obtidos e propostas de trabalhos fu-
turos.

Palavras-chave: Segurança de Funcionamento, Replicação, Tolerância a Faltas, Bases
de Dados, Recuperação de Desastres
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Chapter 1

Introduction

1.1 Context

Information systems with client-server architectures are a common approach to manipu-
late data since decades ago.

Although deployments with a single server can tolerate multiple requests at the same
time, they can represent a single point of failure. Problems like server crashes, network
disruption, software bugs or malicious faults can lead to the unavailability of the service
or even data corruption.

Replication is an alternative to provide resilience and availability for information sys-
tems. It allows the system to tolerate faults on a predefined number of servers, according
to the defined fault model.

1.1.1 State Machine Replication

State Machine Replication (SMR) [54] is a technique to replicate data through different
servers (replicas), providing tolerance to faults in up to a predefined number of replicas.

The SMR model requires replicas to be in the same state after executing the same set
of requests, to make possible a consistent global state [54]. To provide that, all replicas
need to start in the same state S0 and execute operations that change the state in the same
order. An additional requirement is that operations must be deterministic.

To make possible for all replicas to execute update operations in the same order, a total
order multicast [30] protocol can be used. This protocol enforces that all messages are
delivered in the same order for all participants. If, for instance, one participant receives a
sequence of messages having a message from client A after a message from client B, then
all participants will receive a sequence of messages having client B after client A.

Many systems in production use variations of this approach to tolerate crash faults
(e.g., [11, 12, 16, 20, 32]). Usually, in a crash fault tolerant system (CFT), the number of
replicas required to tolerate f crash faults is 2f +1. Some works shows that it is possible
to reduce this number using some assumptions. Research systems have also shown that
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Chapter 1. Introduction 2

SMR can be employed to tolerate Byzantine faults [43] with reasonable costs. Usually
Byzantine fault tolerant (BFT) systems require 3f + 1 replicas to tolerate f faults (e.g.,
[13, 17, 29, 36, 40, 59, 58]). A system with Byzantine faults presents arbitrary behavior,
not only crashing or delaying messages but also corrupting its local state or presenting
incorrect or inconsistent output.

1.1.2 Durability in State Machine Replication

The state transfer protocol is a protocol where correct replicas in a SMR system provide
an updated version of the application state to a new or recovering replica. After receiving
the current state, the replica can update itself and be able to participate in the system,
restoring or increasing the fault tolerance threshold.

A common approach for replicas to manage state is to store the sequence of update
messages in a log, transferring the log to a replica when it requests the current state. To
bound the size of the log and reduce the number or operations to be executed during a
recover, checkpoints of the application state can be taken. When a replica requests the
current state, the others transfer the last checkpoint taken plus the log of messages to be
replayed.

1.1.3 BFT-SMART

BFT-SMART [8] is a Byzantine Fault Tolerant State Machine Replication library that
started to be developed in 2007 to implement a BFT total order multicast protocol for the
replication layer of the DepSpace coordination service [9]. In 2009 the development was
ramped to implement a complete BFT replication library.

BFT-SMART was developed using the Java language and offers a small and clear API
to build clients and services on top of it. BFT-SMART was designed from the beginning
with some principles intended to provide a robust yet efficient BFT SMR library. To ease
the utilization from clients, it provides a simple and extensible API with methods for
clients to invoke operations on a service. On the server side the library provide several
classes that can be extended to perform different operations like execution of ordered and
unordered requests, batch of ordered requests and state management.

1.2 Motivation

Durable state management is commonly overlooked in several SMR studies. State size
may be too small to be considered or studies focuses on performance of fault free execu-
tions disregarding state transfer protocols.

The integration of durability techniques – logging, checkpointing, and state transfer –
with the SMR approach can be difficult [16]. First of all, these techniques can drastically
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decrease the performance of a service1. In particular, synchronous logging can make the
system throughput as low as the number of appends that can be performed on the disk per
second, typically just a few hundreds [39]. Although the use of SSDs can alleviate the
problem, it cannot solve it completely (see Section 2.2). Additionally, checkpointing re-
quires stopping the service during this operation [13, 16], unless non-trivial optimizations
are used at the application layer, such as copy-on-write [16, 17]. Moreover, recovering
faulty replicas involves running a state transfer protocol, which can impact normal exe-
cution, as correct replicas need to transmit their state.

Second, these durability techniques can complicate the programming model. In the-
ory, SMR requires only that the service exposes an execute() method, called by the repli-
cation library when an operation is ready to be executed. However this leads to logs that
grow forever, so in practice the interface has to support service state checkpointing. Two
simple methods can be added to the interface, one to collect a snapshot of the state and an-
other to install it during recovery. This basic setup defines a simple interface, which eases
the programming of the service, and allows a complete separation between the replication
management logic and the service implementation. However, this interface can become
much more complex, if certain optimizations are used (see Section 2.2).

SMR implementations usually uses as applications key-value stores or even simpler
test cases like counters. While such applications may be useful to evaluate aspects like
latency and throughput, in practice they do not require complex or large states to be taken
and stored by the service. Clients with concurrent executions of transactions and multiple
sessions constitute a complex exercise to attest the functionality of the state management
protocol.

1.3 Goals

This dissertation presents new techniques for implementing data durability in crash and
Byzantine fault-tolerant (BFT) SMR services. These techniques are transparent with re-
spect to both the service being replicated and the replication protocol, so they do not
impact the programming model; they greatly improve the performance in comparison to
standard techniques; they can be used in commodity servers with ordinary hardware con-
figurations (no need for extra hardware, such as disks, special memories or replicas); and,
they can be implemented in a modular way, as a durability layer placed in between the
SMR library and the service.

The techniques are three: parallel logging, for diluting the latency of synchronous
logging; sequential checkpointing, to avoid stopping the replicated system during check-

1The performance results presented in the literature often exclude the impact of durability, as the authors
intend to evaluate other aspects of the solutions, such as the behavior of the agreement protocol. Therefore,
high throughput numbers can be observed (in req/sec) since the overheads of logging/checkpointing are not
considered.
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points; and collaborative state transfer, for reducing the effect of replica recoveries on
the system performance. This is the first time that the durability of fault-tolerant SMR
is tackled in a principled way with a set of algorithms organized in an abstraction to be
used between SMR protocols and the application.

The proposed techniques were implemented in a durability layer on the BFT-SMART

state machine replication library [8], on top of which we built two typical SMR-based
services: a consistent key-value store (SCKV-Store) and a non-trivial BFT coordination
service (Durable DepSpace). Our experimental evaluation shows that the proposed tech-
niques can remove most of the performance degradation due to the addition of durability.

Furthermore, we implemented a complex system in which our novel techniques were
employed: SteelDB, a database replication middeware allows replication of database
management systems requiring no changes in the client or server codebase. SteelDB
efficiently manages state transfer through database replicas requiring no changes in the
BFT-SMART library. It also does not require knowledge of database internals, using
only common database dumps to manage snapshots of the state plus information on open
sessions to keep open connections.

1.4 Contributions

This dissertation presents the following contributions:

1. A description of the performance problems affecting durable state machine replica-
tion, often overlooked in previous works;

2. Three new algorithmic techniques for removing the negative effects of logging,
checkpointing and faulty replica recovery from SMR, without requiring more re-
sources, specialized hardware, or changing the service code;

3. An analysis showing that exchanging disks by SSDs neither solves the identified
problems nor improves our techniques beyond what is achieved with disks;

4. The description of an implementation these techniques in BFT-SMART, and an
experimental evaluation under write-intensive loads, highlighting the performance
limitations of previous solutions and how our techniques mitigate them;

5. The implementation of database replication middleware on top of BFT-SMART,
with efficient and durable state management. After that we present an experimental
evaluation of the middleware with replicas in public and private clouds, providing
fault tolerance to typical database systems including disaster recovery.

Portions of this work were published both in conferences and project deliverables
[4, 7, 46].
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1.5 Document Organization

This document is organized as follows:
Chapter 2 discusses the problems encountered by dealing with the state management

in state machine replication protocols. It demonstrates that taking checkpoints and logs
and dealing with state transfer can affect the performance of a system. It also proposes
three new techniques to alleviate the cost of state management.

Chapter 3 describes the implementation of the new techniques over BFT-SMART in
a prototype we called Dura-SMaRt. We present the architecture created for the durability
layer included and a brief description of the services implemented. After that we evaluate
the new techniques showing how they can improve the performance in state management
while providing durability to SMR.

Chapter 4 describes the effort made to create a complex service (SteelDB) on top
of the durable BFT-SMART using the techniques described and providing durability for
database management systems.

Chapter 5 describes the evaluation of SteelDB. It describes the environment and re-
sults achieved replicating a database management system over public and private clouds.

Chapter 6 discusses the related work performed in the area of state machine replication
and state management. More specifically, it discusses how previous works dealt with state
management and how our work can improves what was done. We also discuss previous
works on database replication middleware and common issues faced during the design
and implementation of such systems.

Chapter 7 concludes this work with an overview of the work that was done and the
issues we had to deal during the execution. It will also point out possible ideas to be
explored in the future.
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Chapter 2

Improving the Efficiency of Durable
State Machine Replication

This chapter presents the durable SMR model, and then analyzes the effect of durability
mechanisms on the performance of the system. We start by discussing the several perfor-
mance problems that the creation of checkpoints and logs can cause. Also we will discuss
the effect of a state transfer in the execution of operations by replicas. After that we will
propose algorithms to alleviate the cost of state management while providing durability
to the system.

2.1 System Model and Properties

We follow the standard SMR model [54]. Clients send requests to invoke operations on
a service, which is implemented in a set of replicas (see Figure 2.1). Operations are
executed in the same order by all replicas, by running some form of agreement protocol.
Service operations are assumed to be deterministic, so an operation that updates the state
(abstracted as a write) produces the same new state in all replicas. The state required for
processing the operations is kept in main memory, just like in most practical applications
for SMR [11, 16, 32].

SMR$Client$Side$ SMR$Server$Side$

Client$App.$

invoke execute getState 
setState 

Service$

Stable$
Storage$

log+ 
ckpt 

log+ 
ckpt 

Figure 2.1: A durable state machine replication architecture.

The replication library implementing SMR has a client and a server side (layers at
the bottom of the figure), which interact respectively with the client application and the
service code. The library ensures standard safety and liveness properties [13, 42], such as

7
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correct clients eventually receive a response to their requests if enough synchrony exists
in the system.

SMR is built under the assumption that at most f replicas fail out of a total of n

replicas (we assume n = 2f + 1 on a crash fault-tolerant system and n = 3f + 1 on a
BFT system). A crash of more than f replicas breaks this assumption, causing the system
to stop processing requests as the necessary agreement quorums are no longer available.
Furthermore, depending on which replicas were affected and on the number of crashes,
some state changes may be lost. This behavior is undesirable, as clients may have already
been informed about the changes in a response (i.e., the request completed) and there is
the expectation that the execution of operations is persistent.

To address this limitation, the SMR system should also ensure the following property:

Durability: Any request completed at a client is reflected in the service state
after a recovery.

Traditional mechanisms for enforcing durability in SMR-based main memory databases
are logging, checkpointing and state transfer [16, 26]. A replica can recover from a crash
by using the information saved in stable storage and the state available in other replicas. It
is important to notice that a recovering replica is considered faulty until it obtains enough
data to reconstruct the state (which typically occurs after state transfer finishes).

Logging writes to stable storage information about the progress of the agreement pro-
tocol (e.g., when certain messages arrive in Paxos-like protocols [16, 35]) and about the
operations executed on the service. Therefore, data is logged either by the replication
library or the service itself, and a record describing the operation has to be stored before
a reply is returned to the client.

The replication library and the service code synchronize the creation of checkpoints
with the truncation of logs. The service is responsible for generating snapshots of its
state (method getState) and for setting the state to a snapshot provided by the replication
library (method setState). The replication library also implements a state transfer protocol
to initiate replicas from an updated state (e.g., when recovering from a failure or if they
are too late processing requests), akin to previous SMR works [13, 14, 16, 17, 52]. The
state is fetched from the other replicas that are currently running.

2.2 Identifying Performance Problems

This section discusses performance problems caused by the use of logging, checkpointing
and state transfer in SMR systems. We illustrate the problems with a consistent key-value
store (SCKV-Store) implemented using BFT-SMART [8]. In any case, the results in the
chapter are mostly orthogonal to the fault model and also affect systems subject to only
crash faults. We consider write-only workloads of 8-byte keys and 4kB values, in a key
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space of 250k keys, which creates a service state size of 1GB in 4 replicas. A complete
description of our experimental environment appears in Section 3.3.2.

2.2.1 High Latency of Logging

As mentioned in Section 2.1, events related to the agreement protocol and operations that
change the state of the service need to be logged in stable storage. Table 2.1 illustrates the
effects of several logging approaches on the SCKV-Store, with a client load that keeps a
high sustainable throughput:

Metric No log Asynchronous Synchronous SSD Synchronous Disk
Minimun Latency (ms) 1.98 2.16 2.89 19.61

Peak Throughput (ops/s) 4772 4312 1017 63

Table 2.1: Effect of logging on the SCKV-Store. Single-client minimum latency and peak
throughput of 4kB-writes.

The table shows that synchronous1 logging to disk can cripple the performance of such
system. To address this issue, some works have suggested the use of faster non-volatile
memory, such as flash memory solid state drives (SSDs) or/in NVCaches [52]. As the
table demonstrates, there is a huge performance improvement when the log is written
synchronously to SSD storage, but still only 23% of the “No log” throughput is achieved.
Additionally, by employing specialized hardware, one arguably increases the costs and
the management complexity of the nodes, especially in virtualized/cloud environments
where such hardware may not be available in all machines.

There are works that avoid this penalty by using asynchronous writes to disk, allowing
replicas to present a performance closer to the main-memory system (e.g., Harp [44] and
BFS [13]). The problem with this solution is that writing asynchronously does not give
durability guarantees if all the replicas crash (and later recover), something that produc-
tion systems need to address as correlated failures do happen [21, 24, 47, 53].

We would like to have a general solution that makes the performance of durable sys-
tems similar to pure memory systems, and that achieves this by exploring the logging
latency to process the requests and by optimizing log writes.

2.2.2 Perturbations Caused by Checkpoints

Checkpoints are necessary to limit the log size, but their creation usually degrades the
performance of the service. Figure 2.2 shows how the throughput of the SCKV-Store is
affected by creating checkpoints at every 200k client requests. Taking a snapshot after
processing a certain number of operations, as proposed in most works in SMR (e.g., [13,

1Synchronous writes are optimized to update only the file contents, and not the metadata, using the rwd
mode in the Java’ RandomAccessFile class (equivalent to using the O DSYNC flag in POSIX open). This is
important to avoid unnecessary disk head positioning.
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42]), can make the system halt for a few seconds. This happens because requests are no
longer processed while replicas save their state. Moreover, if the replicas are not fully
synchronized, delays may also occur because the necessary agreement quorum might not
be available.
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Figure 2.2: Throughput of a SCKV-Store with checkpoints in memory, disk and SSD considering
a state of 1GB.

The figure indicates an equivalent performance degradation for checkpoints written in
disk or SSD, meaning that there is no extra benefit in using the latter (both require roughly
the same amount of time to synchronously write the checkpoints). More importantly,
the problem occurs even if the checkpoints are kept in memory, since the fundamental
limitation is not due to storage accesses (as in logging), but to the cost to serialize a large
state (1 GB).

Often, the performance decrease caused by checkpointing is not observed in the liter-
ature, either because no checkpoints were taken or because the service had a very small
state (e.g., a counter with 8 bytes) [13, 18, 29, 36, 40, 59, 58]. Most of these works
were focusing on ordering requests efficiently, and therefore checkpointing could be dis-
regarded as an orthogonal issue. Additionally, one could think that checkpoints need only
to be created sporadically, and therefore, their impact is small on the overall execution.
We argue that this is not true in many scenarios. For example, the SCKV-Store can pro-
cess around 4700 4kB-writes per second, which means that the log can grow at the rate of
more than 1.1 GB/min, and thus checkpoints need to be taken rather frequently to avoid
outrageous log sizes. Leader-based protocols, such as those based on Paxos, have to log
information about most of the exchanged messages, contributing to the log growth. Fur-
thermore, recent SMR protocols require frequent checkpoints (every few hundred opera-
tions) to allow the service to recover efficiently from failed speculative request ordering
attempts [29, 36, 40].

Some systems use copy-on-write techniques for doing checkpointing without stop-
ping replicas (e.g., [17]), but this approach has two limitations. First, copy-on-write may
be complicated to implement at application level in non-trivial services, as the service
needs to keep track of which data objects were modified by the requests. Second, even if
such techniques are employed, the creation of checkpoints still consumes resources and
degrades the performance of the system. For example, writing a checkpoint to disk makes
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logging much slower since the disk head has to move between the log and checkpoint
files, with the consequent disk seek times. In practice, this limitation could be addressed
in part with extra hardware, such as by using two disks per server.

Another technique to deal with the problem is fuzzy snapshots, used in ZooKeeper [32].
A fuzzy snapshot is essentially a checkpoint that is done without stopping the execution
of operations. The downside is that some operations may be executed more than once
during recovery, an issue that ZooKeeper solves by forcing all operations to be idempo-
tent. However, making operations idempotent requires non-trivial request pre-processing
before they are ordered, and increases the difficulty of decoupling the replication library
from the service [32, 35].

We aim to have a checkpointing mechanism that minimizes performance degradation
without requiring additional hardware and, at the same time, keeping the SMR program-
ming model simple.

2.2.3 Perturbations Caused by State Transfer

When a replica recovers, it needs to obtain an updated state to catch up with the other
replicas. This state is usually composed of the last checkpoint plus the log up to some
request defined by the recovering replica. Typically, (at least) another replica has to spend
resources to send (part of) the state. If checkpoints and logs are stored in a disk, delays
occur due to the transmission of the state through the network but also because of the
disk accesses. Delta-checkpoint techniques based, for instance, on Merkle trees [13]
can alleviate this problem, but cannot solve it completely since logs have always to be
transferred. Moreover, implementing this kind of technique can add more complexity to
the service code.

Similarly to what is observed with checkpointing, there can be the temptation to dis-
regard the state transfer impact on performance because it is perceived to occur rarely.
However, techniques such as replica rejuvenation [31] and proactive recovery [13, 56]
use state transfer to bring refreshed replicas up to date. Moreover, reconfigurations [45]
and even leader change protocols (that need to be executed periodically for resilient BFT
replication [18]) may require replicas to synchronize themselves [13, 55]. In conclusion,
state transfer protocols may be invoked much more often than when there is a crash and a
subsequent recovery.

Figure 2.3 illustrates the effect of state transmission during a replica recovery in a
4 -node BFT system using the PBFT’s state transfer protocol [13]. This protocol requires
just one replica to send the state (checkpoint plus log) – similarly to crash FT Paxos-based
systems – while others just provide authenticated hashes for state validation (as the sender
of the state may suffer a Byzantine fault). The figure shows that the system performance
drops to less than 1/3 of its normal performance during the 30 seconds required to com-
plete state transfer. While one replica is recovering, another one is slowed because it is
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Figure 2.3: Throughput of a SCKV-Store when a failed replica recovers and asks for a state
transfer.

sending the state, and thus the remaining two are unable to order and execute requests
(with f = 1, quorums of 3 replicas are needed to order requests).

One way to avoid this performance degradation is to ignore the state transfer requests
until the load is low enough to process both the state transfers and normal request order-
ing [32]. However, this approach tends to delay the recovery of faulty replicas and makes
the system vulnerable to extended unavailability periods (if more faults occur). Another
possible solution is to add extra replicas to avoid interruptions on the service during re-
covery [56]. This solution is undesirable as it can increase the costs of deploying the
system.

We would like to have a state transfer protocol that minimizes the performance degra-
dation due to state transfer without delaying the recovery of faulty replicas.

2.3 Efficient Durability for SMR

In this section we present three techniques to solve the problems identified in the previous
section.

2.3.1 Parallel Logging

Parallel logging has the objective of hiding the high latency of logging. It is based on
two ideas: (1) log groups of operations instead of single operations; and (2) process the
operations in parallel with their storage.

The first idea explores the fact that disks have a high bandwidth, so the latency for
writing 1 or 100 log entries can be similar, but the throughput would be naturally increased
by a factor of roughly 100 in the second case. This technique requires the replication
library to deliver groups of service operations (accumulated during the previous batch
execution) to allow the whole batch to be logged at once, whereas previous solutions
normally only provide single operations, one by one. Notice that this approach is different
from the batching commonly used in SMR [13, 18, 40], where a group of operations is
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ordered together to amortize the costs of the agreement protocol (although many times
these costs include logging a batch of requests to stable storage [42]). Here the aim is
to pass batches of operations from the replication library to the service, and a batch may
include (batches of) requests ordered in different agreements.

The second idea requires that the requests of a batch are processed while the corre-
sponding log entries are being written to the secondary storage. Notice, however, that a
reply can only be sent to the client after the corresponding request is executed and logged,
ensuring that the result seen by the client will persist even if all replicas fail and later re-
cover. Naturally, the effectiveness of this technique depends on the relation between the
time for processing a batch and the time for logging it. More specifically, the interval
Tk taken by a service to process a batch of k requests is given by Tk = max (Ek, Lk),
where Ek and Lk represent the latency of executing and logging the batch of k operations,
respectively. This equation shows that the most expensive of the two operations (execu-
tion or logging) defines the delay for processing the batch. For example, in the case of
the SCKV-Store, Ek � Lk for any k, since inserting data in a hash table with chaining
(an O(1) operation) is much faster than logging a 4kB-write (with or without batching).
This is not the case for Durable DepSpace, which takes a much higher benefit from this
technique, as will be demonstrated in Section 3.3.3.

2.3.2 Sequential Checkpointing

Sequential checkpointing aims at minimizing the performance impact of taking replica’s
state snapshots. The key principle is to exploit the natural redundancy that exists in asyn-
chronous distributed systems based on SMR. Since these systems make progress as long
as a quorum of n − f replicas is available, there are f spare replicas in fault-free execu-
tions. The intuition here is to make each replica store its state at different times, to ensure
that n− f replicas can continue processing client requests.

We define global checkpointing period P as the maximum number of (write) requests
that a replica will execute before creating a new checkpoint. This parameter defines also
the maximum size of a replica’s log in number of requests. Although P is the same for
all replicas, they checkpoint their state at different points of the execution. Moreover, all
correct replicas will take at least one checkpoint within that period.

An instantiation of this model is for each replica i = 0, ..., n− 1 to take a checkpoint
after processing the k-th request where k mod P = i ×

⌊
P
n

⌋
, e.g., for P = 1000, n = 4,

replica i takes a checkpoint after processing requests i×250, 1000+i×250, 2000+i×250,
and so on.

Figure 2.4 compares a synchronous (or coordinated) checkpoint with our technique.
Time grows from the bottom of the figure to the top. The shorter rectangles represent
the logging of an operation, whereas the taller rectangles correspond to the creation of
a checkpoint. It can be observed that synchronized checkpoints occur less frequently
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Figure 2.4: Checkpointing strategies (4 replicas).

than sequential checkpoints, but they stop the system during their execution whereas for
sequential checkpointing there is always an agreement quorum of 3 replicas available for
continuing processing requests.

An important requirement of this scheme is to use values of P such that the chance of
more than f overlapping checkpoints is negligible. Let Cmax be the estimated maximum
interval required for a replica to take a checkpoint and Tmax the maximum throughput of
the service. Two consecutive checkpoints will not overlap if:

Cmax <
1

Tmax

×
⌊
P

n

⌋
=⇒

P > n× Cmax × Tmax (2.1)

Equation 2.1 defines the minimum value for P that can be used with sequential check-
points. In our SCKV-Store example, for a state of 1GB and a 100% 4kB-write workload,
we have Cmax ≈ 15s and Tmax ≈ 4700 ops/s, which means P > 282000. If more frequent
checkpoints are required, the replicas can be organized in groups of at most f replicas to
take checkpoints together.

2.3.3 Collaborative State Transfer

The state transfer protocol is used to update the state of a replica during recovery, by
transmitting log records (L) and checkpoints (C) from other replicas (see Figure 2.5(a)).
Typically only one of the replicas returns the full state and log, while the others may just
send a hash of this data for validation (only required in the BFT case). As showed in Sec-
tion 2.2.3, this approach can degrade performance during recoveries. Furthermore, it does
not work with sequential checkpoints, as the received state can not be directly validated
with hashes of other replicas’ checkpoints (as they are different). These limitations are
addressed with the collaborative state transfer (CST) protocol.

Although the two previous techniques work both with crash-tolerant and BFT SMR,
the CST protocol is substantially more complex with Byzantine faults. Consequently, we
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Figure 2.5: Data transfer in different state transfer strategies.

start by describing a BFT version of the protocol (which also works for crash faults) and
later, at the end of the section, we explain how CST can be simplified on a crash-tolerant
system2.

We designate by leecher the recovering replica and by seeders the replicas that send
(parts of) their state. CST is triggered when a replica (leecher) starts (see Figure 2.6). Its
first action is to use the local log and checkpoint to determine the last logged request and
its sequence number (assigned by the ordering protocol), from now on called agreement
id. The leecher then asks for the most recent logged agreement id of the other replicas,
and waits for replies until n − f of them are collected (including its own id). The ids

are placed in a vector in descending order, and the largest id available in f + 1 replicas
is selected, to ensure that such agreement id was logged by at least one correct replica
(steps 1-3).

In BFT-SMaRt there is no parallel execution of agreements, so if one correct replica
has ordered the id-th batch, it means with certainty that agreement id was already pro-
cessed by at least f + 1 correct replicas3. The other correct replicas, which might be
a bit late, will also eventually process this agreement, when they receive the necessary
messages.

Next, the leecher proceeds to obtain the state up to id from a seeder and the associated
validation data from f other replicas. The active replicas are ordered by the freshness
of the checkpoints, from the most recent to the oldest (step 4). A leecher can make this
calculation based on id, as replicas take checkpoints at deterministic points, as explained
in Section 2.3.2. We call the replica with i-th oldest checkpoint the i-th replica and the
checkpoint Ci. The log of a replica is divided in segments, and each segment Li is the
portion of the log required to update the state from Ci to the more recent state Ci−1.

2Even though crash fault tolerance is by far more used in production systems, our choice is justified
by two factors. First, the subtleties of BFT protocols require a more extensive discussion. Second, given
the lack of a stable and widely-used open-source implementation of a crash fault tolerance SMR library, we
choose to develop our techniques in a BFT SMR library, so the description is in accordance to our prototype.

3If one employs protocols such as Paxos/PBFT, low and high watermarks may need to be considered.
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Therefore, we use the following notion of equivalence: Ci−1 ≡ Ci + Li. Notice that L1

corresponds to the log records of the requests that were executed after the most recent
checkpoint C1 (see Figure 2.5(b) for n = 7).

The leecher fetches the state from the (f +1)-th replica (seeder), which comprises the
log segments L1, ..., Lf+1 and checkpoint Cf+1 (step 8). To validate this state, it also gets
hashes of the log segments and checkpoints from the other f replicas with more recent
checkpoints (from the 1st until the f -th replica) (step 6a). Then, the leecher sets its state
to the checkpoint and replays the log segments received from the seeder, in order to bring
up to date its state (steps 10 and 12a).

The state validation is performed by comparing the hashes of the f replicas with the
hashes of the log segments from the seeder and intermediate checkpoints. For each replica
i, the leecher replays Li+1 to reach a state equivalent to the checkpoint of this replica.
Then, it creates an intermediate checkpoint of its state and calculates the corresponding
hash (steps 12a and 12b). The leecher finds out if the log segments sent by the seeder and
the current state (after executing Li+1) match the hashes provided by this replica (step
12c).

If the check succeeds for f replicas, the reached state is valid and the CST protocol
can finish (step 13). If the validation fails, the leecher fetches the data from the (f + 2)-
th replica, which includes the log segments L1, ..., Lf+2 and checkpoint Cf+2 (step 13
goes back to step 8). Then, it re-executes the validation protocol, considering as extra
validation information the hashes that were produced with the data from the (f + 1)-th
replica (step 9). Notice that the validation still requires f + 1 matching log segments and
checkpoints, but now there are f + 2 replicas involved, and the validation is successful
even with one Byzantine replica. In the worst case, f faulty replicas participate in the
protocol, which requires 2f + 1 replicas to send some data, ensuring a correct majority
and at least one valid state (log and checkpoint).

In the scenario of Figure 2.5(b), the 3rd replica (the (f + 1)-th replica) sends L1,
L2, L3 and C3, while the 2nd replica only transmits HL1 = H(L1), HL2 = H(L2) and
HC 2 = H(C2), and the 1st replica sends HL1 = H(L1) and HC 1 = H(C1). The leecher
next replays L3 to get to state C3 + L3, and takes the intermediate checkpoint C ′2 and
calculates the hash HC ′2 = H(C ′2). If HC ′2 matches HC 2 from the 2nd replica, and the
hashes of log segments L2 and L1 from the 3rd replica are equal to HL2 and HL1 from
the 2nd replica, then the first validation is successful. Next, a similar procedure is applied
to replay L2 and the validation data from the 1st replica. Now, the leecher only needs to
replay L1 to reach the state corresponding to the execution of request id.

While the state transfer protocol is running, replicas continue to create new check-
points and logs since the recovery does not stop the processing of new requests. There-
fore, they are required to keep old log segments and checkpoints to improve their chances
to support the recovery of a slow leecher. However, to bound the required storage space,
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1. Look at the local log to discover the last executed agreement;

2. Fetch the id of the last executed agreement from n − f replicas (including itself) and save the
identifier of these replicas;

3. id = largest agreement id that is available in f + 1 replicas;

4. Using id , P and n, order the replicas (including itself) with the ones with most recent checkpoints
first;

5. V ← ∅; // the set containing state and log hashes

6. For i = 1 to f do:

(a) Fetch Vi = 〈HL1, ...,HLi,HC i〉 from i-th replica;

(b) V ← V ∪ {Vi};

7. r ← f + 1; // replica to fetch state

8. Fetch Sr = 〈L1, ..., Lr, Cr〉 from r-th replica;

9. V ← V ∪ {〈H(Sr.L1), ...,H(Sr.Lr),H(Sr.Cr)〉};

10. Update state using Sr.Cr;

11. v ← 0; // number of validations of Sr

12. For i = r − 1 down to 1 do:

(a) Replay log Sr.Li+1;

(b) Take checkpoint C ′
i and calculate its hash HC ′

i;

(c) If (Vi.HL1..i = Vr.HL1..i) ∧ (Vi.HCi = HC ′
i), v ++;

13. If v ≥ f , replay log Sr.L1 and return; Else, r ++ and go to 8;

Figure 2.6: The CST recovery protocol called by the leecher after a restart. Fetch commands wait
for replies within a timeout and go back to step 2 if they do not complete.

these old files are eventually removed, and the leecher might not be able to collect enough
data to complete recovery. When this happens, it restarts the algorithm using a more re-
cent request id (a similar solution exists in all other state state transfer protocols that we
are aware of, e.g., [13, 16]).

The leecher observes the execution of the other replicas while running CST, and stores
all received messages concerning agreements more recent than id in an out-of-context
buffer. At the end of CST, it uses this buffer to catch up with the other replicas, allowing
it to be re-integrated in the state machine.

Correctness. We present here a brief correctness argument of the CST protocol. As-
sume that b is the actual number of faulty (Byzantine) replicas (lower or equal to f ) and r

the number of recovering replicas.
In terms of safety, the first thing to observe is that CST returns if and only if the state

is validated by at least f +1 replicas. This implies that the state reached by the leecher at
the end of the procedure is valid according to at least one correct replica. To ensure that
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(b) Optimized CST.

Figure 2.7: General and optimized CST with f = 1.

this state is recent, the largest agreement id that is returned by f + 1 replicas is used.
Regarding liveness, there are two cases to consider. If b+ r ≤ f , there are still n− f

correct replicas running and therefore the system could have made progress while the r

replicas were crashed. A replica is able to recover as long as checkpoints and logs can be
collected from the other replicas. Blocking is prevented because CST restarts if any of the
Fetch commands fails or takes too much time. Consequently, the protocol is live if correct
replicas keep the logs and checkpoints for a sufficiently long interval. This is a common
assumption for state transfer protocols. If b + r > f , then there may not be enough
replicas for the system to continue processing. In this case the recovering replica(s) will
continuously try to fetch the most up to date agreement id from n − f replicas (possibly
including other recovering replicas) until such quorum exists. Notice that a total system
crash is a special case of this scenario.

Optimizing CST for f = 1. When f = 1 (and thus n = 4), a single recovering
replica can degrade the performance of the system because one of n − f replicas will
be transferring the checkpoint and logs, delaying the execution of the agreements (as
illustrated in Figure 2.7(a)). To avoid this problem, we spread the data transfer between
the active replicas through the following optimization in an initial recovery round: the
2nd replica (f + 1 = 2) sends C2 plus 〈HL1, HL2〉 (instead of the checkpoint plus full
log), while the 1st replica sends L1 and HC1 (instead of only hashes) and the 3rd replica
sends L2 (instead of not participating). If the validation of the received state fails, then
the normal CST protocol is executed. This optimization is represented in Figure 2.7(b).

Simplifications for crash faults. When the SMR only needs to tolerate crash faults, a
much simpler version of CST can be employed. The basic idea is to execute steps 1-4 of
CST and then fetch and use the checkpoint and log from the 1st (most up to date) replica,
since no validation needs to be performed. If f = 1, an analogous optimization can be
used to spread the burden of data transfer among the two replicas: the 1st replica sends
the checkpoint while the 2nd replica sends the log segment.
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2.4 Final Remarks

This chapter discussed the performance problems that state management and state transfer
can cause in a state machine replication protocol. Also, it proposes algorithms that solves
the problems identified.

To provide durability in the SMR protocol, synchronous writes to stable storage would
need to be performed. That can decrease the performance of the system as synchronous
writes can take a long time to be performed and reduce the throughput of the system. We
proposed an algorithm using parallel logging to alleviate the cost of log writing. The algo-
rithm is composed of two parts. The first one consists of executing operations in parallel
with the log writing. The second group requests in batches before processing them. Disks
usually have a large bandwidth and a high access latency, so grouping operations can take
advantage of that.

Another problem identified was that during the generation of a checkpoint by the
replicas, the system stops to make progress as it can not process operations while it is
reading the state. If the state of the application is big enough, to write the checkpoint
to disk can take several seconds, leaving the application not responsive during the whole
process. We defined an algorithm to have replicas taking checkpoints in different instants
in time. As only one replica will be taking the checkpoint at a time, the system will have
the quorum it needs to keep processing the operations.

The final problem we identified is the perturbations caused by the state transfer. When
a replica asks the state to another replica, the replica supposed to send the state can take
a lot of time reading the state from the disk and sending it through the network. We
defined an algorithm where different replicas send parts of the state. The replica asking
for the state combines the information received and updates its state. This can reduce the
perturbation on each replica having a smaller decrease in the throughput of the system.

Next we will describe how we implemented the algorithms proposed in BFT-SMART

and the evaluations performed to assess their efficiency.
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Chapter 3

Dura-SMaRt

In order to validate our techniques, we extended the open-source BFT-SMART replica-
tion library [8] with a durability layer, placed between the request ordering and the ser-
vice. We named the resulting system Dura-SMaRt, and used it to implement two typical
SMR-based applications: a consistent key-value store and a coordination service.

In this chapter we describe the previous version of BFT-SMART and extensions made
to implement the new techniques. We also describe the two applications and the evalu-
ation performed to compare the results from the use of the new techniques with other
approaches commonly used for state management and transfer.

3.1 BFT-SMART

BFT-SMART is a BFT SMR library developed using the Java language, offering a small
and clear API to build clients and services on top of it. BFT-SMART was designed from
the beginning with some principles intended to provide a robust yet efficient library. It
provides a simple and extensible API with methods for clients to invoke operations on a
service. On the server side the library provides several classes that can be extended to
perform different operations like execution of ordered and unordered requests, batch of
ordered requests and state management.

Protocols and building blocks of BFT-SMART were planned from the beginning to
be implemented as independent modules, allowing development to focus on a specific
module at a time. BFT-SMART has different threads executing services like message
transport, ordering and execution. Executing these tasks in parallel reduces the latency
of request processing with multiple clients, as the application can execute requests while
messages from other clients are being ordered. BFT-SMART modules and their relation-
ship are in Figure 3.1.

Clients using the library has to implement API methods to invoke ordered, unordered

21
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Figure 3.1: The modularity of BFT-SMART.

or asynchronous requests1 to the application. In the server side the library provides differ-
ent methods to be implemented by the application to execute the ordered and unordered
requests from the clients. These methods allows the execution of a single ordered request,
a batch of ordered requests and unordered requests. It also provides callback methods to
take and install a snapshot of the application state.

3.1.1 State Management

After a batch or requests are ordered, BFT-SMART logs it in a sequential log before
deliver it to the application. After the it is executed, the reply is returned to the client.
When a replica finds itself to be delayed in relation to other replicas or a new replica is
added to the system, it has to require a state transfer to update itself to the current state.

When a replica invokes a state transfer, it indicates a replica to send checkpoint plus
the log of operations. The remaining replicas return a digest of the checkpoint plus the
log of operations. After receiving a reply from the other replicas for the state transfer
request, the recovering replica will validate the checkpoint with the digests to guarantee
it is correct. The replica also will compare the different logs received. After install the
checkpoint and replay the log operations the replica will be ready to process requests and
participate again in the SMR protocol execution.

3.2 Implementation
3.2.1 Adding Durability to BFT-SMART

BFT-SMaRt originally offered an API for invoking and executing state machine opera-
tions, and some callback operations to fetch and set the service state. The implemented

1Ordered requests are totally ordered before delivered to the application. The client gets a reply only
after the replicas executed and logged the request. Unordered requests are delivered directly to the repli-
cas, skipping the ordering protocol. Unordered requests are not logged. Asynchronous requests may be
requested as ordered or not. The difference from the previous requests is that the reply is sent to the client
when received, without waiting for a quorum of replies.
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Figure 3.2: The Dura-SMaRt architecture.

protocols are described in [55] and follow the basic ideas introduced in PBFT and Aard-
vark [13, 18]. BFT-SMaRt is capable of ordering more than 80k 0-byte msg/s (the 0/0
microbenchmark used to evaluate BFT protocols [29, 40]) in our environment. However,
this throughput drops to 20k and 5k msgs/s for 1kB and 4kB message sizes, respectively
(the workloads we use – see Section 3.3).

We modified BFT-SMART to expose a StateManager interface to implement differ-
ent state transfer strategies. We then moved the existing PBFT-like strategy to a Stan-
dardStateManager class and provided a new DurableStateManager class implementing
the new techniques. The application developer can use one of the state transfer strategies
defined or implement its own. The Durability layer presented in Figure 3.2 implements
the new techniques described in Section 2.3 and uses the DurableStateManager class to
handle the state transfer. Together with the changes in state transfer, we made the follow-
ing modifications on BFT-SMaRt. First, we added a new server side operation to deliver
batches of requests instead of one by one. This operation supplies ordered but not deliv-
ered requests spanning one or more agreements, so they can be logged in a single write
by the Keeper thread. Second, we implemented the parallel checkpoints and collaborative
state transfer in the Dura-Coordinator component, removing the old checkpoint and state
transfer logic from BFT-SMaRt and defining an extensible API for implementing differ-
ent state transfer strategies, as described above. Finally, we created a dedicated thread
and socket to be used for state transfer in order to decrease its interference on request
processing.

3.2.2 SCKV-store

The first application implemented with Dura-SMaRt was a simple and consistent key-
value store (SCKV-Store) that supports the storage and retrieval of key-value pairs, alike
to other services described in the literature, e.g., [19, 48]. The implementation of the
SCKV-Store was greatly simplified, since consistency and availability come directly from
SMR and durability is achieved with our new layer.
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In the client side we exposed a subset of the methods available in the Java utilities
interface java.util.Map. Clients can invoke operations in the replicated SCKV-Store
object as if they were using a local Map instance. In the server side the data is stored in a
java.util.TreeMap. We opted for this class instead of the HashMap to ensure that
serialized versions of the same table (containing the same key-value pairs) are equal. The
process of taking a checkpoint of the application state requires only the serialization and
deserialization of the TreeMap object.

3.2.3 Durable DepSpace (DDS)

The second use case is a durable extension of the DepSpace coordination service [9],
which originally stored all data only in memory. The system, named Durable DepSpace
(DDS) [23], provides a tuple space interface in which tuples (variable-size sequences
of typed fields) can be inserted, retrieved and removed. There are two important char-
acteristics of DDS that differentiate it from similar services such as Chubby [11] and
ZooKeeper [32]: it does not follow a hierarchical data model, since tuple spaces are, by
definition, unstructured; and it tolerates Byzantine faults, instead of only crash faults.

DDS application data is stored in a structure containing configurable depths of the
Java utilities HasMap class and a Tuple class containing the tuples. This is used to
reduce the time necessary to find a tuple in the space. As an example, if a user creates a
tuple containing <A, B, C, D, E> and has configured depth 2 in the application, the
first two fields are stored in maps. When the user searches for tuple by any of the two first
fields, the tuples are searched in the map instead of iterating over all the tuples. In the
scenario described, the tuple would be stored in a structure as HashMap(A, (HashMap

(B, Tuple<A, B, C, D, E>)).

Snapshots in DDS were implemented as a log containing one insert operation for each
tuple in the space, in this way the same code for executing the logged operations can be
used for processing snapshots. Also, as the data structure uses serializable Java classes,
it was not necessary to write additional code to serialize and deserialize the objects.

The addition of durability to DepSpace basically required the replacement of its orig-
inal replication layer by Dura-SMaRt.

3.3 Evaluation

This section evaluates the effectiveness of our techniques for implementing durable SMR
services. In particular, we devised experiments to answer the following questions: (1)
What is the cost of adding durability to SMR services? (2) How much does parallel
logging improve the efficiency of durable SMR with synchronous disk and SSD writes?
(3) Can sequential checkpoints remove the costs of taking checkpoints in durable SMR?
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(4) How does collaborative state transfer affect replica recoveries for different values of
f? Question 1 was addressed in Section 1.2, so we focus on questions 2-4.

3.3.1 Case Studies and Workloads

As already mentioned, we consider two SMR-based services implemented using Dura-
SMaRt: the SCKV-Store and the DDS coordination service. Although in practice, these
systems tend to serve mixed or read-intensive workloads [19, 32], we focus on write
operations because they stress both the ordering protocol and the durable storage (disk or
SSD). Reads, on the other hand, can be served from memory, without running the ordering
protocol. Therefore, we consider a 100%-write workload, which has to be processed by
an agreement, execution and logging. For the SCKV-Store, we use YCSB [19] with a new
workload composed of 100% of replaces of 4kB-values, making our results comparable to
other recent SMR-based storage systems [10, 52, 60]. For DDS, we consider the insertion
of random tuples with four fields containing strings, with a total size of 1kB, creating a
workload with a pattern equivalent to the ZooKeeper evaluation [32, 35].

3.3.2 Experimental Environment

All experiments, including the ones in Section 2.1, were executed in a cluster of 14 ma-
chines interconnected by a gigabit ethernet. Each machine has two quad-core 2.27 GHz
Intel Xeon E5520, 32 GB of RAM memory, a 146 GB 15000 RPM SCSI disk and a 120
GB SATA Flash SSD. We ran the IOzone benchmark2 on our disk and SSD to understand
their performance under the kind of workload we are interested: rewrite (append) for
records of 1MB and 4MB (the maximum size of the request batch to be logged in DDS
and SCKV-Store, respectively). The results are presented in Table 3.1.

Record length Disk SSD
1MB 96.1 MB/s 128.3 MB/s
4MB 135.6 MB/s 130.7 MB/s

Table 3.1: IOZone microbenchmark on the employed disk and SSD.

3.3.3 Parallel Logging

Figure 3.3(a) displays latency-throughput curves for the SCKV-Store considering several
durability variants. The figure shows that naive (synchronous) disk and SSD logging
achieve a throughput of 63 and 1017 ops/s, respectively, while a pure memory version
with no durability reaches a throughput of around 4772 ops/s.

Parallel logging involves two ideas, the storage of batches of operations in a single
write and the execution of operations in parallel with the secondary storage accesses. The

2http://www.iozone.org.

http://www.iozone.org
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Figure 3.3: Latency-throughput curves for several variants of the SCKV-Store and DDS consid-
ering 100%-write workloads of 4kB and 1kB, respectively. Disk and SSD logging are always done
synchronously. The legend in (a) is valid also for (b).

use of batch delivery alone allowed for a throughput of 4739 ops/s with disks (a 75×
improvement over naive disk logging). This roughly represents what would be achieved
in Paxos [39, 42], ZooKeeper [32] or UpRight [17], with requests being logged during the
agreement protocol. Interestingly, the addition of a separated thread to write the batch of
operations, does not improve the throughput of this system. This occurs because a local
put on SCKV-Store replica is very efficient, with almost no effect on the throughput.

The use of parallel logging with SSDs improves the latency of the system by 30-50ms
when compared with disks until a load of 4400 ops/s. After this point, parallel logging
with SSDs achieves a peak throughput of 4500 ops/s, 5% less than parallel logging with
disk (4710 ops/s), with the same observed latency. This is consistent with the IOzone
results, in which the data throughput of our disk is better than SSDs for big records (see
Table 3.1). Overall, parallel logging with disk achieves 98% of the throughput of the
pure memory solution, being the replication layer the main bottleneck of the system.
Moreover, the use of SSDs neither solves the problem that parallel logging addresses, nor
improves the performance of our technique, being thus not effective in eliminating the log
bottleneck of durable SMR.

Figure 3.3(b) presents the results of a similar experiment, but now considering DDS
with the same durability variants as in SCKV-Store. The figure shows that a version of
DDS with naive logging in disk (resp. SSD) achieves a throughput of 143 ops/s (resp.
1900 ops/s), while a pure memory system (DepSpace), reaches 14739 ops/s. The use of
batch delivery improves the performance of disk logging to 7153 ops/s (a 50× improve-
ment). However, differently from what happens with SCKV-Store, the use of parallel
logging in disk further improves the system throughput to 8430 ops/s, an improvement of
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18% when compared with batching alone. This difference is due to the fact that insert-
ing a tuple requires traversing many layers [9] and the update of an hierarchical index,
which takes a non-negligible time (0.04 ms), and impacts the performance of the system
if done sequentially with logging. The difference would be even bigger if the SMR ser-
vice requires more processing. Finally, the use of SSDs with parallel logging in DDS was
more effective than with the SCKV-Store, increasing the peak throughput of the system to
9250 ops/s (an improvement of 10% when compared with disks). Again, this is consistent
with our IOzone results: we use 1kB requests here, so the batches are smaller than in
SCKV-Store, and SSDs are more efficient with smaller writes (see Table 3.1).

Notice that DDS could not achieve a throughput similar to a pure memory system.
This happens because, as discussed in Section 2.3.1, the throughput of parallel logging
will be closer to a pure memory system if the time required to process a batch of requests
is akin to the time to log this batch. In the experiments, we observed that the workload
makes BFT-SMaRt deliver batches of approximately 750 requests on average. The local
execution of such batch takes around 30 ms, and the logging of this batch on disk entails
70 ms. This implies a maximum throughput of 10.750 ops/s, which is close to the obtained
values. With this workload, the execution time matches the log time (around 500 ms)
for batches of 30K operations. These batches require the replication library to reach a
throughput of 60K 1kB msgs/s, three times more than what BFT-SMaRt achieves for this
message size.

3.3.4 Sequential Checkpointing

Figure 3.4 illustrates the effect of executing sequential checkpoints in disks with SCKV-
Store3 during a 3-minute execution period.

When compared with the results of Figure 2.2 for synchronized checkpoints, one can
observe that the unavailability periods no longer occur, as the 4 replicas take checkpoints
separately. This is valid both when there is a high and medium load on the service and
with disks and SSDs (not show). However, if the system is under stress (high load), it
is possible to notice a periodic small decrease on the throughput happening with both
500MB and 1GB states (Figures 3.4(a) and 3.4(b)). This behavior is justified because at
every

⌊
P
n

⌋
requests one of the replicas takes a checkpoint. When this occurs, the replica

stops executing the agreements, which causes it to become a bit late (once it resumes
processing) when compared with the other replicas. While the replica is still catching
up, another replica initiates the checkpoint, and therefore, a few agreements get delayed
as the quorum is not immediately available. Notice that this effect does not exist if the

3Although we do not show checkpoint and state transfer results for DDS, the use of our techniques
bring the same advantage as on SCKV-Store. The only noticeable difference is due to the fact that DDS local
tuple insertions are more costly than SCKV-Store local puts, which makes the variance on the throughput of
sequential checkpoints even more noticeable (especially when the leader is taking its checkpoint). However,
as in SCKV-Store, this effect is directly proportional to the load imposed to the system.
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Figure 3.4: SCKV-Store throughput with sequential checkpoints with different write-only loads
and state size.

system has less load or if there is sufficient time between sequential checkpoints to allow
replicas to catch up (“Medium load” line in Figure 3.4).

3.3.5 Collaborative State Transfer

This section evaluates the benefits of CST when compared to a PBFT-like state transfer
in the SCKV-Store with disks, with 4 and 7 replicas, considering two state sizes. In all
experiments a single replica recovery is triggered when the log size is approximately twice
the state size, to simulate the condition of Figure 2.7(b).

Figure 3.5 displays the observed throughput of some executions of a system with
n = 4, running PBFT and the CST algorithm optimized for f = 1, for states of 500MB
and 1GB, respectively. A PBFT-like state transfer takes 30 (resp. 16) seconds to deliver
the whole 1 GB (resp. 500MB) of state with a sole replica transmitter. In this period, the
system processes 741 (resp. 984) ops/sec on average. CST optimized for f = 1 divides
the state transfer by three replicas, where one sends the state and the other two up to
half the log each. Overall, this operation takes 42 (resp. 20) seconds for a state of 1GB
(resp. 500MB), 28% (resp. 20%) more than with the PBFT-like solution for the same
state size. However, during this period the system processes 1809 (resp. 1426) ops/sec
on average. Overall, the SCKV-Store with a state of 1GB achieves only 24% (or 32% for
500MB-state) of its normal throughput with a PBFT-like state transfer, while the use of
CST raises this number to 60% (or 47% for 500MB-state).

Two observations can be made about this experiment. First, the benefit of CST might
not be as good as expected for small states (47% of the normal throughput for a 500MB-
state) due to the fact that when fetching state from different replicas we need to wait for
the slowest one, which always brings some degradation in terms of time to fetch the state
(20% more time). Second, when the state is bigger (1GB), the benefits of dividing the
load among several replicas make state transfer much less damaging to the overall system
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Figure 3.5: Effect of a replica recovery on SCKV-Store throughput using CST with f = 1 and
different state sizes.

throughput (60% of the normal throughput), even considering the extra time required for
fetching the state (+28%).

We did an analogous experiment for n = 7 (see Figure 3.6) and observed that, as
expected, the state transfer no longer causes a degradation on the system throughput (both
for CST and PBFT) since state is fetched from a single replica, which is available since
n = 7 and there is only one faulty replica (see Figure 2.5). We repeated the experiment
for n = 7 with the state of 1GB being fetched from the leader, and we noticed a 65%

degradation on the throughput.

A comparable effect occurs if the state is obtained from the leader in CST. As a
cautionary note, we would like to remark that when using spare replicas for “cheap”
faulty recovery, it is important to avoid fetching the state from the leader replica (as in
[11, 16, 32, 52]) because this replica dictates the overall system performance.
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Figure 3.6: Effect of a replica recovery on SCKV-Store throughput using CST with f = 2 and
1GB state size.
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3.4 Final Remarks
This section described the effort to implement the techniques proposed in Section 2 in
the BFT-SMART replication library. The current version of BFT-SMART available at
http://code.google.com/p/bft-smart contains the durability layer that can be acti-
vated via configuration files.

This chapter also included a detailed evaluation of the impact that the new techniques have
in the protocol performance when compared to the previous version. All three new techniques
proposed were proven effective during the evaluation performed with the two use cases - SCKV -
Store and Durable DepSpace.

We used Dura-SMaRt as the replication layer of a database replication middleware called
SteelDB, which we present next. SteelDB uses Dura-SMaRt to successfully manage communi-
cation between replicas, and also store and transfer state to recovering replicas. We did not need
to perform any changes in Dura-SMaRt code to serve as SteelDB replication layer, proving the
protocol to be robust enough to serve complex applications.

http://code.google.com/p/bft-smart


Chapter 4

A Byzantine Fault-Tolerant
Transactional Database

4.1 Introduction
Database managements systems store and provide access to data to multiple concurrent users.
Usually, this data is stored in tables and is updated or queried using a standard query definition
language (SQL). Several different vendors and open-source projects implements DBMS products.
Such products may differ in several concepts like concurrency control, transaction management,
relationship enforcements and extra tools provided by vendors.

To manage access from concurrent users to the same database, enforcing integrity of data,
transactions are used. Transactions are boundaries applied to a group of operations executed over
a database. A transaction must enforce ACID properties (atomicity, consistency, isolation and
durability) [28]. Atomicity means that all operations must be executed or none is. In a case of
failure during the transaction, the database has to be in the same state it was before. Consistency
guarantees that all operations inside a transaction will bring the database from one valid state to
another. Constraints and relationships should be respected through the entire transaction. Isolation
expects that no change performed from inside a transaction is visible outside it until it is finished.
This is enforced by the concurrency control mechanism employed. Durability enforces that all
changes performed stays visible after the end of a transaction, even in the event of crashes and
power outages.

To isolate the operations executed inside a transaction, multi-version concurrency control
(MVCC) can be used to allow several users to execute read and write operations on values with-
out the need for serialization. Serialization [6] of transactions usually requires locking on tables
and rows, sometimes blocking read operations without need, reducing the concurrency and per-
formance of the system. Snapshot Isolation [5], one of the isolation levels inside MVCC, manages
concurrency by taking snapshots of the state and numbering versions between changes. A write
operation, executed from inside a transaction, will update the value and increment the version
when the transaction finishes. If the value was updated from another transaction, the update fails.
When an operation reads a value, it first checks the version number of the object. When the trans-
action is about to be finished (by a commit operation), the object is checked again to validate if it
was not modified after the read.

Several commercial and open-source DBMSs from different vendors like Oracle, MySQL and
PostgreSQL employ replication to database servers. The replication schemas are designed for
the specific vendor implementation to provide resilience and availability in the presence of faults.
While this can provide availability and some degree of resilience for crash faults, the client is
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tied to that specific vendor DBMS distribution. Also, such schema is limited by the efficiency of
mechanisms of failover/failback to detect failures and switch masters [15].

An alternative to that approach is the use of a database replication middleware [25, 57, 34].
A DBMS middleware is placed between the client and the database servers. Instead of make the
request to the DBMS directly, clients request operations to the middleware that serializes requests
and forward them to multiple servers providing fault tolerance.

According to [15] a DBMS replication middleware may face several issues sometimes ne-
glected during its design. Database internals like temporary tables, and stored procedures and
also database specific idioms may difficult diverse replication with different vendors implementa-
tions and even versions. The use of non-deterministic functions like random number generators or
current timestamp may cause inconsistency between states.

4.2 Byzantium
Byzantium considers all operations executed against databases to run inside transactions. To in-
crease concurrent execution of transactions, Byzantium assumes that DBMS implementation pro-
vides snapshot isolation.

Transactions in Byzantium are flagged as read-write or read-only. By the time a transaction is
created it is considered read-only. Transactions will be promoted to read-write when the first write
message within the transaction is issued.

Byzantium is a database replication middleware tolerant to Byzantine faults. It uses PBFT
[13] as the replication library requiring 3f+1 replicas to tolerate f faults. Byzantium architecture
is presented in Figure 4.1.

Figure 4.1: The Byzantium architecture [25].

To reduce the cost of replication, operations received in read-only transactions are sent only to
f + 1 replicas. The Byzantium client waits for f replies before return the result to the client. By
the time of commit it verifies if the f replies matches the remaining reply before confirming the
transaction. If results diverge, the operation is executed in the remaining replicas to validate the
result. If f + 1 matching replies cannot be confirmed, the transaction is aborted.

Operations that occur in a read-write transaction are sent to all replicas but only executed in
one of them, the master replica. In this way the client do not need to wait for a reply quorum
to confirm the operation. During the processing of a transaction, the client will keep a list of
operations sent to the master and the results returned. By the time of commit, the client sends
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the list of operations and results to all replicas that if the operations were correctly executed. If
the operations match, the replicas will execute all operations and compare the results with results
informed from the master. If the results match the commit will be confirmed. Otherwise, the
transaction will be rolled back and the client will be informed, so that it can proceed with a suspect
master operation.

Byzantium defines also a suspect master protocol to change a faulty master. When a client
notices that the master returned incorrect results or took longer than a predefined timeout to return
results, it sends a ”suspect master” message to the replicas. The replicas try then to confirm with
the master if it received the messages from the client. If confirmed that the master is faulty, the
replicas define the replica with the next id as the master and will inform the client about it. Open
transactions will be aborted and the clients will be informed about that.

Byzantium defines two versions of the protocol, called single-master and multi-master. In the
single-master version, all transactions consider the same replica to be the master. In the multi-
master protocol, at the beginning of a transaction one of the replicas is randomly selected to be the
master replica. In that case, each transaction will have a master and this master can be different
from other transactions. According to evaluation performed in the Byzantium paper [25], the
single-master performs better in read-write dominated workloads while the multi-master version
performs better in read-only dominated workloads. This may be explained by the fact that in
the multi-master version a client can choose a master in the same network it is, reducing the
communication time to the replica. As messages are executed only in the master before commit,
it will have only to send the begin and commit messages to all the replicas.

4.3 SteelDB
SteelDB is a middleware to replicate data, providing resilience for database management systems,
assuming that a predefined number of replicas can be faulty. The source code is available at
http://code.google.com/p/steeldb. SteelDB borrows some ideas from Byzantium,
like the optimistic execution of transactions in the master and the master change protocol. The
SteelDB client is a driver implementing the JDBC [33] specification. Clients already using a
JDBC driver to execute operations in a database need only to change its configuration to use our
driver instead. Although our design uses some ideas from Byzantium, we have some differences
from it. We implemented only the single-master version of the Byzantium, as we decided to focus
our efforts in provide a functional and efficient state transfer and master change protocols. Another
difference is that Byzantium uses PBFT [13] as the replication layer, while we use BFT-SMART

to replicate data and manage state transfer.
Each replica of SteelDB is a client of a database server instance, in which it executes the

operations delivered to it. The architecture of SteelDB is presented in Figure 4.2.
The clients of SteelDB implement the JDBC specification to invoke operations in BFT-SMART

service proxy. We take advantage of the use of transactions to reduce the number of messages
exchanged between clients and replicas. Unlike in Byzantium, when an operation is inside a
transaction, the client sends it only to the master replica. The master executes the operation and
returns the result to the client. When the client tries to commit the transaction, it sends the list
of operations executed and responses received during the transaction to all replicas. The replicas
execute the operations and compare the results with results returned from the master. This makes
the operations simpler to execute but pushes all the validation work to the commit operation.

When a client issues a request to SteelDB client, it is replicated to multiple servers. The
request is delivered to the replica by invoking the callback method invokeOrdered. Depending on
the type of request, it may perform different operations like open a connection to the database,
execute a query or update and commit a transaction. In the Figure 4.3 we present a sequence

http://code.google.com/p/steeldb
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Application
ServiceProxy
 (BFT-SMaRt)

Figure 4.2: The SteelDB architecture.

diagram describing the process of execute an update operation in the database and commit the
open transaction.

The processing of the request starts when the invokeOrdered callback method is in-
voked by BFT-SMART. That method checks the request and call executeUpdate in the
MessageProcessor class. That class contains methods for all operations to be executed in the
database. After MessageProcessor receives the request, it gets a ConnectionManager
from a SessionManager class. SessionManager contains a map with all open connections
from clients, along with the client identification number. The ConnectionManager contains
information about the client session, like connection parameters, the list of requests processed in
the open transaction and flags about the connection state. It also contains the JDBC Connection to
the database, in which the operations are executed.

After the client gets the ConnManager object it opens a Statement object to the database,
in which the database request is generated, using the SQL command and the parameters informed.
After the statement is filled with the information, it is executed in the database, using the database
connection.

That finishes the request execution but if the database connection is not configured as auto-
commit, it is not persisted yet. When the user performs a commit request, it follows the same path
as the executeUpdate method call, with the difference that instead of have a statement created
and executed, it calls a commit operation using the database connection.

In the following subsections we describe some relevant issues we had to address to implement
SteelDB on top of BFT-SMART with the durability layer described in previous chapters.

4.3.1 Enforcing FIFO Order
All previous services developed over BFT-SMART supported simple read, write or read-write
operations, without any support for ACID transactions. In this scenario, there was no problem if
some unordered read operation arrived out of order in f replicas. This happens because the client
expects a number of replicas to execute operations and return matching results before sending its
next request.

The problem is, with a transactional protocol, if an operation within a transaction arrives at
some replica before the transaction BEGIN (or the database connection is established), it will be
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Figure 4.3: Sequence diagram of a request processinb by a SteelDB replica.

rejected, and the client may observe problems. The reason for this is that BFT-SMART either
considers total order requests or unordered requests, there is no mechanism ensuring FIFO order,
as required in Byzantium [25]. To deal with this limitation without modifying BFT-SMART

we devised an ordering layer that uses application-level sequence numbers (defined in our JDBC
driver and verified in the replica’ service) and locks to ensure messages are processed in the order
that they are sent by a client. After several tests we discovered that this would not work without
changing the internal handling of requests in BFT-SMART.

We found that it would be easier to change the protocol to optimistically execute operations
inside transactions only in the master replica and send them to the other replicas only before
commit (as explained in the previous section). This removed the requirement of execute clients
messages in FIFO order.

4.3.2 Issues with the JDBC Specification
The transaction management in JDBC is slightly different from the way that a DBMS operates.
Usually, the sequence of steps to process a transaction in a database includes: open a connection,
begin a transaction, execute the operations and commit or rollback the transaction. The description
of Byzantium algorithm follows this sequence of operations.

JDBC manages the transaction boundaries transparently. When a user opens a connection to
the database, the connection is opened in auto-commit mode. This means that all operations will
be reflected in the database immediately, without need for an explicit commit operation. If the
client needs to create a transaction, it has to change the connection auto-commit flag to false. This
has the same effect as issuing a begin command to the database. Operations are executed in the
database and the transaction is finished by a commit or an abort (usually called rollback). After
a commit, or a rollback, the auto-commit flag is not changed, which means that the connection is
still not in auto-commit mode, so, one transaction was committed and another started. A client can
also finish a transaction by setting again the auto-commit flag to true. It will commit the current
transaction before the change.

We had to manage client operations to store the auto-commit flag for all operations. Byzantium
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also defines that transactions should not be considered read-write before the first update operation
is issued. To implement that we needed to add another flag to each connection to define if it has
a read-only or read-write transaction. By the time a transaction is promoted to read-write, all
operations are executed only in the master replica. In the other replicas operations are executed
only during a commit.

When a JDBC connection has the auto-commit flag set to true, all operations, even if the read-
only (i.e., SELECT) are totally ordered though replicas. If the flag is false, the only messages that
are totally ordered are the begin (set auto-commit false) and commit or rollback.

4.3.3 State Transfer
State machine replication assumes that a replicated service will make progress even in the presence
of up to f faulty replicas. This means that situations may occur when up to f replicas are not in
the same state of the others. Also there may be times when a replica crashes and recovers after
some time. As the system continues to make progress, the recovered or late replica may not have
an up to date copy of the state, so it has to ask other replicas to provide the state. This recovery
process is managed by the state transfer protocol.

Without the use of a state transfer protocol, after f replicas are compromised, the system is
vulnerable to attacks or crashes. At that point if any additional faults occur, the integrity of the
system cannot be confirmed, as there is no minimum quorum of participants to validate operations.

SteelDB uses the Dura-SMaRt (described in the last two chapters) for managing state transfer.
Following the new state transfer strategy, when a replica starts, the first action is to load state from
durable media and check with the other replicas if they processed the same operations (execution
ids). If this is true, the replica is ready for execution and waits for requests from the clients.
Otherwise, the replica considers itself late and issues a request to other replicas asking for the
state.

One replica is defined to send the state and the others will send digests of the state. After
receiving the state and digests, the replica can compare the data to find if the state is correct. If
confirmed, the state is installed and the replica continues to process the remaining requests. The
state transfer protocol recovers a faulty replica, enabling it to resume request processing.

Byzantium defines an optimization where replicas store operations to be executed before com-
mit. We tried to implement this protocol, but it added a lot of complexity to the state transfer. We
had to manage the state of the application plus partial data that was not stored in the database
but could not be ignored. This data needed to be executed in the new replica after the state was
restored.

To solve this problem, in SteelDB we execute requests that are inside a read-write transaction
optimistically in the master. During commit (or rollback) we totally order the requests through the
replicas and log operations to disk. Using this strategy, we can use the state transfer protocol de-
fined in BFT-SMART (more precisely, the version implementing Dura-SMaRt) without changes.
BFT-SMART state transfer protocol defines a strategy to take copies of the application state to
be transferred to replicas that may request it during the protocol execution (see Section 3.2). This
strategy comprises the log of all operations that changes the state of the application. To prevent
the log from growing indefinitely , in pre defined periods, the application state is saved in a seri-
alized format called checkpoint and the log is erased. In SteelDB we ask the DBMS to generate
a dump of the database information during checkpoint periods. Together with the dump we store
the information about open connections to be restored in the new replicas.

When a replica requests a state transfer, it receives the state from other replicas, comprised of
the checkpoint and log of operations. The checkpoint contains the database dump plus information
about client connections. After receiving the state, the recovering replica installs the dump, and
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opens the connections necessary to perform the requests. After replaying the requests, the replica
is ready to resume processing.

When a recovering replica asks the state from other replicas it receives the dump of the
database together with information about connections. It can then restore the database, open the
connections and execute the logged operations to update itself to the state it received the first
request after start.

As the database dump is managed by the DBMS, the idiom of the queries created during the
dump may vary from vendor to vendor. Vendors may also include comments and change the
order of operation to better suits their needs. That can add a lot of complexity to the process of
comparing dumps from different vendors for authenticity.

The work on [57] provides diversity of database vendors by the use of a module to translate
queries to a common idiom before and after sending it to database. During the state transfer this
translator module will process the database dump to translate all the queries. Although we started
working on a similar module to translate queries, we decided to focus our work on the efficient
management of state transfer and guarantee that SteelDB can restore both state and user sessions
for recovering replicas.

4.3.4 Master Change
Byzantium defines a master change protocol [25] that works as follows: when the master replica
takes more than a predefined timeout to process a request, the client informs the other replicas
about the presence of a faulty master in a ”master change” request. Together with this request, the
client sends the operations executed so far in the current transaction. When the replicas receive the
request for a master change operation, they will update their master id deterministically to a new
one. The new master will execute the requests informed by the client and reply with the results.

To prevent a malicious client from request several master changes, the replicas logs the re-
quests sent from clients. If a client tries to request multiple master changes in less then a predefined
time, the requests are ignored.

After a master change, clients will not know about the new master until the execution of the
next operation. If the next operation is sent only to the old master, it will fail, as the old master is
offline. When the client requests the master change, replicas will know that the change was already
executed and the client will be informed. If instead of send a message only to the master, the client
send a message to all replicas (commit message or message in an auto-commit connection) the
operation will be executed and the replicas will inform the new master together with the reply to
the client.

When the old master recovers, it may still consider itself the current master. To prevent prob-
lems, every message exchange between replicas includes the master id. When the old master sends
a message to other replicas it will get a quorum of replies with the current master id (that is not
itself) and will store that information.

4.3.5 Optimizations
Byzantium defines optimizations in the protocol to increase performance in the presence of read-
dominated workloads.

Messages executed on read-only transactions can be executed speculatively in only two repli-
cas and the first result is returned to client. Only by the time of commit the second result is
compared. This works when the operation is executed inside a transaction. If the connection is
in auto-commit mode, the message has yet to be validated by a quorum of replicas, as there is no
commit time to invalidate the response.
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As described before, the storage of operations in replicas before commit would increase the
complexity of the state transfer protocol. Instead, we decided to execute operations only in the
master replica and execute the whole transaction before commit in the other replicas. If the replicas
are distributed across different networks the latency in communication between the client and the
replica can be reduced by having the initial master as the replica in the same network of the
majority of the clients.

4.4 Final Remarks
We wanted to develop SteelDB as a complex use case on top of BFT-SMART. We borrowed most
of the ideas in SteelDB from the work present on the Byzantium paper [25]. The main difference
from our work to Byzantium is that ours focuses in having a resilient framework through the use
of the efficient state transfer provided by Dura-SMaRt, while Byzantium focuses on performance
of operations execution by the use of several techniques like multiple masters and optimized exe-
cution of messages though different quorum of replicas.

We implemented SteelDB using Dura-SMaRt as a blackbox replication layer, attesting that the
library offers a service that can be implemented without changes. We used SteelDB as a database
replication middleware for a use case in the TClouds project [3]. We performed several functional
and performance tests that we describe in the next chapter.
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SteelDB Evaluation

This chapter describes the evaluation of SteelDB. This evaluation is centered on one of the use
cases of the Tclouds FP7 project.

5.1 Evaluation Context and Environment
SteelDB was used as a component in an integration between partners for a use case scenario of
the TClouds project [3]. The TClouds was a project co-founded by the European Commission,
including several partners like FCUL, Sirrix, EDP, Efacec and IBM Research Zurich. The mission
of TClouds was to develop an advanced cloud infrastructure delivering computing and storage that
achieves a new level of security, privacy, and resilience being cost-efficient, simple, and scalable.

TClouds had as one of its use cases a Smart Lighting System (SLS) scenario. SLS [49] is
a critical web application that maintains a schedule of events (e.g., turn lights on/on) for each
equipment of one or more urban districts. The system end-users access it through a web interface
to define new events or view the schedule of events for each area of a municipality. The SCADA
system that controls the managed equipment accesses such web service to obtain possible changes
on the schedule of events for devices.

The SLS application was hosted by a Tomcat [1] application server. The application uses the
Hibernate ORM (Object-Relational Mapping) [2] to perform the mapping between model objects
and the database queries. It uses the database implementation of the JDBC specification to connect
to the database.

In the final year of TClouds an evaluation of the integration between components developed by
different partners was performed. We replicated the database layer of the Smart Lighting System
to provide dependability to the service. This replication was done on top of a hybrid architecture
containing a private cloud provided by one of the partners and VMs in two public clouds. The
architecture is represented in Figure 5.1. The private cloud, called TrustedInfrastructure Cloud
(TC) contained two application servers for the SLS application simulating two main data centers.
The private cloud contained also two servers with a SteelDB replica and an H2 database each.
The two remaining SteelDB replicas, along with the H2 database server were deployed on public
clouds, one in Amazon EC2 and the other in Microsoft Azure.

In that architecture we simulate two main data centers, one in Lisbon and another in Porto.
Both servers serve requests to the SLS application at the same time. To reduce the delay in com-
munication, we placed the SteelDB master replica in one of the data centers in TC. The master is
switched between both servers in the case of a master change.

The TrustedInfrastructure Cloud was served from an Intel Xeon CPUE5630 @ 2.53GHz ma-
chine, with 8 cores and 16GB of RAM memory. In that machine we had six virtual machines
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Figure 5.1: The Smart Lighting System Architecture.

(VMs) with 2GB of RAM memory each. Two VMs were used for the Tomcat application servers
and four for the SteelDB replicas, containing one SteelDB replica and a H2 database instance each.
Notice that in baseline tests without SteelDB or tests where we had only two SteelDB replicas in
the TC, we didn’t use all the six VMs at the same time. The virtual machine in Amazon EC2 was
a 64bits M1 Standard Medium configuration with one vCPU and 3.75GB of RAM memory. The
virtual machine in Microsoft Azure was an M2 Medium configuration with two virtual cores and
3.5GB of RAM memory.

Servers in the TrustedInfrastructure Cloud are considered secure by mechanisms like access
only from attested clients and over a trusted virtual domain. As we have the SteelDB master always
in one of the two TC data centers, that allowed us to add an optimization in SteelDB to perform
read requests only in the master replica. This version optimized for read queries was only used
during the evaluation activities, in the scenarios described next. We did not include this optimiza-
tion in the code available in SteelDB page (http://code.google.com/p/steeldb), as
we can not assume that replicas are secure in common environments. As we show next, the read
optimization provided results similar to the write requests being executed in the master before
commit.

5.2 Integration Scenarios

The TClouds project contains several use case scenarios, set for validating the Smart Lighting
System [49] integration with other components. Here we describe only the two that are relevant
for SteelDB.

The two main evaluation activities tested the functionality and performance of SteelDB with
and without the presence of failures. Both activities performed multiple executions of different
types of transactions testing some acceptance criteria (i.e., mainly assertions) and calculating the
average time to execute each transaction.

Transactions included different SQL statements to test intensive load in the database. The
characteristics of each transaction are listed in Table 5.1.

http://code.google.com/p/steeldb
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Transaction name Workload type
Schedule Creation Small 100% write workload
User Creation Single write statement
Login Small mixed workload
Logout Single write statement similar to User Creation
Failed Login Small mixed workload having only the last operation as write
Schedule Modification Big mixed workload having a write transaction from the beggining
Schedule Retrieval Small 100% read workload
User Modification Small mixed workload similar to Login
Schedule Deletion Small 100% write workload
User Deletion Single write statement
State Report Big 100% read workload
Auditing Report Single read statement

Table 5.1: Characteristics of the transactions executed during SteelDB evaluation.

We list below the statements contained in each transaction:

Schedule Creation

insert into TIMETABLE (NAME, OPERATIONAL_AREA, VERSION, TIMETABLEUID)
values (?, ?, ?, ?)

insert into PERIOD (END, START, TIMETABLE, VERSION, PERIODUID) values
(?, ?, ?, ?, ?)

--twice:
insert into CONTROL (MODE, OFFSET, RANK, PERIOD, SPECIAL_DAY_SERVICE,
TARGET_STATE, TIME, VERSION, CONTROLUID) values (?, ?, ?, ?, ?, ?, ?,
?, ?)

User Creation

insert into USER (CLIENT, DEATH_DATE, DELETED, EMAIL, FAILED_LOGINS,
LOCKED, LOCKED_DATE, LOGIN, NAME, OPERATIONAL_AREA, PASSWORD, SALT,
VERSION, USERUID) values (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)

Login

select U.USERUID, U.CLIENT, U.DEATH_DATE, U.DELETED, U.EMAIL,
U.FAILED_LOGINS, U.LOCKED, U.LOCKED_DATE, U.LOGIN, U.NAME,
U.OPERATIONAL_AREA, U.PASSWORD, U.SALT, U.VERSION from USER U where
lower(U.LOGIN)=? and U.DELETED=? limit ?

insert into AUDIT_ACTION (CONTEXT, ACTION_DATE, LOGIN, TEXT, TYPE,
USERUID, VERSION, AUDIT_ACTIONUID) values (?, ?, ?, ?, ?, ?, ?, ?)

Logout

insert into AUDIT_ACTION (CONTEXT, ACTION_DATE, LOGIN, TEXT, TYPE,
USERUID, VERSION, AUDIT_ACTIONUID) values (?, ?, ?, ?, ?, ?, ?, ?)
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Failed Login

select U.USERUID, U.CLIENT, U.DEATH_DATE, U.DELETED, U.EMAIL,
U.FAILED_LOGINS, U.LOCKED, U.LOCKED_DATE, U.LOGIN, U.NAME,
U.OPERATIONAL_AREA, U.PASSWORD, U.SALT, U.VERSION from USER U where
lower(U.LOGIN)=? and U.DELETED=? limit ?

select A.PARAMETERUID, A.NAME, A.VALUE, A.VERSION from
APPLICATION_SETTING A where A.NAME=? limit ?

update USER set CLIENT=?, DEATH_DATE=?, DELETED=?, EMAIL=?,
FAILED_LOGINS=?, LOCKED=?, LOCKED_DATE=?, LOGIN=?, NAME=?,
OPERATIONAL_AREA=?, PASSWORD=?, SALT=?, VERSION=? where USERUID=?
and VERSION=?

Schedule Modification

select TT.TIMETABLEUID, TT.NAME, TT.OPERATIONAL_AREA, TT.VERSION from
TIMETABLE TT where TT.TIMETABLEUID=?

update TIMETABLE set NAME=?, OPERATIONAL_AREA=?, VERSION=? where
TIMETABLEUID=? and VERSION=?

select P.PROFILEUID, P.DESCRIPTION, P.NAME, P.OPERATIONAL_AREA,
P.TIMETABLE, P.VERSION from PROFILE P where P.TIMETABLE=?

select S.SERVICEUID, S.NAME, S.PROFILE, S.TIMETABLE, S.VERSION from
SERVICE S where S.TIMETABLE=?

select D.DTCUID, D.BIRTH_DATE, D.CLIENTUID, D.DEATH_DATE, D.DELETED,
D.DISTRICTUID, D.HASPHOTOCELL, D.IPADDRESS, D.LATITUDE, D.LONGITUDE,
D.MUNICIPALITYUID, D.NAME, D.OPERATIONAL_AREAUID, D.PROFILEUID,
D.RTUUID, D.SECSUBSTATION, D.TIMETABLEUID, D.VERSION from DTC D where
D.TIMETABLEUID=? and D.DELETED=?

select P.PERIODUID, P.END, P.START, P.TIMETABLE, P.VERSION from
PERIOD P where P.PERIODUID=?

update PERIOD set END=?, START=?, TIMETABLE=?, VERSION=? where
PERIODUID=? and VERSION=?

select C.CONTROLUID, C.MODE, C.OFFSET, C.RANK, C.PERIOD,
C.SPECIAL_DAY_SERVICE, C.TARGET_STATE, C.TIME, C.VERSION from CONTROL
C where C.CONTROLUID=?

update CONTROL set MODE=?, OFFSET=?, RANK=?, PERIOD=?,
SPECIAL_DAY_SERVICE=?, TARGET_STATE=?, TIME=?, VERSION=? where
CONTROLUID=? and VERSION=?

select C.CONTROLUID, C.MODE, C.OFFSET, C.RANK, C.PERIOD,
C.SPECIAL_DAY_SERVICE, C.TARGET_STATE, C.TIME, C.VERSION from CONTROL
C where C.CONTROLUID=?

update CONTROL set MODE=?, OFFSET=?, RANK=?, PERIOD=?,
SPECIAL_DAY_SERVICE=?, TARGET_STATE=?, TIME=?, VERSION=? where
CONTROLUID=? and VERSION=?
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Schedule Retrieval

select TT.TIMETABLEUID, TT.NAME, TT.OPERATIONAL_AREA, TT.VERSION from
TIMETABLE TT where TT.TIMETABLEUID=?

select P.PERIODUID, P.END, P.START, P.TIMETABLE, P.VERSION from
PERIOD P where P.TIMETABLE=?

select C.CONTROLUID, C.MODE, C.OFFSET, C.RANK, C.PERIOD,
C.SPECIAL_DAY_SERVICE, C.TARGET_STATE, C.TIME, C.VERSION from CONTROL
C where C.PERIOD=?

User Modification

select U.USERUID, U.CLIENT, U.DEATH_DATE, U.DELETED, U.EMAIL,
U.FAILED_LOGINS, U.LOCKED, U.LOCKED_DATE, U.LOGIN, U.NAME,
U.OPERATIONAL_AREA, U.PASSWORD, U.SALT, U.VERSION from USER U where
U.USERUID=?

update USER set CLIENT=?, DEATH_DATE=?, DELETED=?, EMAIL=?,
FAILED_LOGINS=?, LOCKED=?, LOCKED_DATE=?, LOGIN=?, NAME=?,
OPERATIONAL_AREA=?, PASSWORD=?, SALT=?, VERSION=? where USERUID=? and
VERSION=?

Schedule Deletion

delete from CONTROL where CONTROLUID=? and VERSION=?

delete from PERIOD where PERIODUID=? and VERSION=?

delete from TIMETABLE where TIMETABLEUID=? and VERSION=?

User Deletion

delete from USER where USERUID=? and VERSION=?

State Report

select SS_.SERVICE_TIMERUID, SS_.BEGIN_DATE, SS_.CLIENTEUID,
SS_.DISTRICTUID, SS_.DTCUID, SS_.DTC_NAME, SS_.END_DATE, SS_.MINUTES,
SS_.MUNICIPALITYUID, SS_.OPERATIONAL_AREAUID, SS_.POWER, SS_.RUNNING,
SS_.SERVICEUID, SS_.SERVICE_NAME, SS_.STATE, SS_.VERSION from
SERVICE_STOPWATCH SS_ where SS_.RUNNING=? limit ?

-- x10:
select DS.DTC_SERVICEUID, DS.BIRTH_DATE, DS.DEATH_DATE, DS.DELETED,
DS.DTCUID, DS.OPMODE, DS.NAME, DS.STATE, DS.VERSION from DTC_SERVICE
DS where DS.DTC_SERVICEUID=?

Auditing Report

select AA.AUDIT_ACTIONUID, AA.CONTEXT, AA.ACTION_DATE, AA.LOGIN,
AA.TEXT, AA.TYPE, AA.USERUID, AA.VERSION from AUDIT_ACTION AA
limit ?
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The first scenario, for functional evaluation, tested if the system could tolerate the expected
faults. Requests were performed from the two SLS application servers executing queries in
SteelDB in three phases, with 5, 10 and 20 simultaneous sessions each.

The tests were executed in three steps, containing different faulty behaviors:
Step 1: A non-master SteelDB replica is offline.
Step 2: A non-master SteelDB replica is compromised, returning inconsistent results.
Step 3: The execution starts with the four SteelDB replicas online and correct but, during the

execution of tests one of the replicas is disconnected.
The second scenario, for performance evaluation, executed similar operations as the first, but

the goal of that scenario was to measure the performance of the components in different architec-
ture configurations.

As in the first scenario, the tests performed simulated two application servers in three phases
having 5, 10 and 20 client sessions.

The tests were executed in four steps, being the first without the presence of faults:
Step 1: All four SteelDB replicas are online and correct during the entire test execution.
Step 2: A non master SteelDB replica is offline.
Step 3: A non master SteelDB replica is compromised, returning inconsistent results.
Step 4: The execution starts with the four SteelDB replicas online and correct but, during the

execution of tests one of the replicas is disconnected.
The different configurations tested during the performance tests were:

• Baseline @TC: Direct connection from two application servers in the TrustedInfrastructure
Cloud to one DB server in the Trusted Infrastructure;

• Baseline @EC2: Direct connection from two application servers in the TrustedInfrastruc-
ture Cloud to one DB server at Amazon EC2;

• Baseline @Azure: Direct connection from two application servers in the TrustedInfrastruc-
ture Cloud to one DB server in Windows Azure;

• SteelDB @CoC: Two application servers and two SteelDB replicas in the TrustedInfras-
tructure Cloud and two replicas in public clouds;

• SteelDB @TC: Two application servers and four SteelDB replicas in the TrustedInfrastruc-
ture Cloud.

While the two evaluation scenarios tested SteelDB execution with and without the presence of
faults, they did not include tests to validate fault recovery.

To validate fault recovery we created a script to execute database operations and simulate
Byzantine and crash scenarios during the execution. Those tests validated the leader change and
state transfer protocols provided by Dura-SMaRt and the use of those protocols by SteelDB. It
also validated SteelDB protocols to change master and transfer state, using database dumps as the
checkpoint plus operations logs.

5.3 Results
After setup the environment for the tests execution, we deployed all the components to the virtual
machines created in the TrustedInfrastructure Cloud and the public clouds.

One of the integration partners provided a script to create several threads, simulating concur-
rent execution and collected result data to be processed later. Every thread executed several times
each transaction (10 for login and logout transactions and 100 for the others) described in table
5.1 and listed in the previous section.
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We executed the scripts several times for each step and each number of clients simulated.
When counting the number of steps, clients and architecture configurations tested we performed
more than 200 script executions.

Results for the Functional Tests

As the tests imposed a huge load on both SteelDB and Dura-SMaRt protocols, including multiple
client sessions and concurrency, we discovered bugs and limitations in the protocol, like the FIFO
order problem described in Section 4.3.1. That allowed us to refine the protocols and have a robust
version tolerating faults and working correctly according to the tests.

Table 5.2 shows that all tests passed having the requests being performed from the two SLS
application servers for all transaction types in the steps defined.

Results for the Performance Tests

The tests for the performance evaluation of SteelDB executed several transactions in different ar-
chitecture configurations. The script used to run the queries measured the average time to execute

Table 5.2: Results for functional tests.
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the transactions. We merged the results obtained from the two application servers from which the
tests were executed to have a final transaction time average for each transaction type. We display
the results in Figure 5.2

In the top box, with the results for the execution of transactions by 20 simultaneous clients
from each application server (40 clients total), it is possible to notice that the TC configuration
has worst results than CoC. Recall that the TC configuration includes the four SteelDB replicas,

Figure 5.2: Results for the performance tests - Step 1.
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while the CoC includes two replicas in the TC and two in the public clouds. In principle, this
is a surprising result, as having four VMs in the same network should yield better results than
having four VMs exchanging messages over a wide area network. This makes clear that the
performance in the TC provided by the partner is affected by having six VMs being executed in a
single physical machine. To minimize this problem we will analyse the following results based on
the configuration with 5 clients in each application server, which is less influenced by the hardware
limitation.

The first thing to notice when comparing the times to execute the different types of transaction
is that configurations with clients in TC invoking queries directly to the database servers hosted
in the public clouds has the worst results. This is true for both read and write-dominated work-
loads. Schedule Modification, for instance, takes 1306 milliseconds, on average, to be executed
in EC2, but takes 73% less time when executed with SteelDB in CoC (318 ms). This is explained
by the optimization made in SteelDB to execute all the statements first in the master replica and
replicate the data only by commit time. That transaction execution would invoke only one wide
area network (WAN) messages, plus the messages from the ordering protocol of BFT-SMART,
against eleven without SteelDB. The gain in performance is also true for the State Report transac-
tion which takes 881 ms in EC2 against 293 ms in CoC, 67% less. This is also explained by the
optimization where we read operations from only the master as we assume the component to be
trusted.

For a transaction with only one statement, the performance is not much different from direct
invoking operations in the cloud, though. User deletion, which has only one statement, takes
213 ms to be executed in EC2 and 265 ms to be executed in CoC, 24% more. This can be ex-
plained by the fact that despite of both cases perform exchange messages for two queries over the
WAN, additional messages are exchanged between the replicas, increasing the total time to exe-
cute the transaction. But executing a transaction with three operations already has better results
with SteelDB. Schedule Deletion takes 527 ms to be executed from the server in TC to EC2, taking
276 ms in CoC with SteelDB, 48% less.

Figure 5.3 displays the ratio between the execution time of transactions in different archi-
tectures. First, it is necessary to say that although executing transactions directly from the SLS
servers to the database server in TC has the fastest responses, but tolerates no faults at all.

Figure 5.3: Ratio between executing transactions in different architecture configurations.
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Comparing results from SteelDB execution in CoC with baseline executions at TC shows that
the baseline at TC performs much faster than SteelDB, as no replication or wide area communi-
cation is needed. Small transactions like User Creation takes 8 ms to be performed in TC while
takes 266 ms in CoC, 33 times more. With bigger transactions, like Schedule Modification, the
difference is not that big, although considerable. It takes 51 ms in TC versus 318 with SteelDB in
CoC, about 6 times more.

Comparing the same scenarios for executions with 20 simultaneous sessions we can notice a
small increase in time for both baseline execution in TC and SteelDB in CoC, for both types of
transactions. Baseline execution of User Creation in TC takes 25 ms, while replication through
SteelDB in CoC takes 308 ms, 12 times more. Baseline execution of Schedule Modification in TC
takes 167 ms versus 688 with SteelDB in CoC, 4 times more.

When comparing SteelDB in CoC with directly connection between the application servers
in TC to a database server in EC2 the difference is much smaller, showing the cost of wide area
communication.

Steps 2, 3 and 4 of the performance tests evaluated the execution of transactions over SteelDB
in the presence of different types of faults. A comparison between results from Step 1, the fault
free scenario with results for step 2, in which one replica is offline during the whole execution of
the test are displayed in Figure 5.4. It is possible to notice that the time to execute transactions
in SteelDB in the presence of faults is never greater than 5% of the time in the execution without
faults. In some cases the time is even smaller. This can be explained by the fact that the normal
replication operation of BFT-SMART expects n− f replicas to reply before returning the results
to the user. That always discards the replies from the f slowest replicas. As displayed in this

Figure 5.4: Performance of SteelDB in the presence of failures.
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section, the response times for Microsoft Azure and Amazon EC2 are pretty close, which could
explain the 5% difference in the results. We omit here the comparison between results from step 1
with steps 3 and 4, since the results are similar to step 2.

TClouds final demo

During the TClouds project final demo we presented the SLS execution over SteelDB with BFT-
SMART deployed in the Cloud-of-Clouds architecture. We simulated server crash and recovery
without service disruption, to present the state transfer mechanism of BFT-SMART. We also dis-
played the tolerance of Byzantine faults simulating a compromised replica. Finally we injected
a BFT-SMART leader change and SteelDB master change in front of a panel of project review-
ers. During the whole presentation the system behaved as expected, having the SLS application
displayed constant execution without errors.

5.4 Final Remarks
The evaluation of SteelDB during the integration tests in the last phase of the TClouds project was
very intensive. Several use cases where defined to attest fault tolerance during the concurrent use
of the middleware. During the tests execution we found problems like the requirement for FIFO
ordering of messages by BFT-SMART described in section 4.3.1. The tests helped us to identify
the problems and have a more resilient version of the protocol.

Tests for functional execution of the middleware proved that it can tolerate different types of
faults provide resilient responses to the application. Tests for performance evaluation showed that,
for some transaction types, SteelDB can present better response times for replication over a cloud-
of-clouds than execution of the client application connecting to a database server over a wide area
network. When comparing the performance of SteelDB over CoC with its execution replicated
over a local area network, the local area execution presents always faster response times, although
it does not tolerate co-related faults like a power outage in the whole data center. Finally, when
comparing database access over SteelDB replicated in a CoC with directly access to the database
in the same network of the client, the results are much faster in the local execution. Tests were
executed from 6 to 40 times faster in local transactions, but did not tolerate any fault.
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Chapter 6

Related Work

In this section we describe the work related to state management and transfer in consensus and state
machine replication frameworks. We also mention the work performed on database management
systems replication middleware.

6.1 Durability on State Machine Replication
Over the years, there has been a reasonable amount of work about stable state management in main
memory databases (see [26] for an early survey). Parallel logging (see Section 2.3.1) shares some
ideas with classical techniques such as group commit and pre-committed transactions [22] and the
creation of checkpoints in background has also been suggested [41]. Our techniques were however
developed with the SMR model in mind, and therefore, they leverage the specific characteristics
of these systems (e.g., log groups of requests while they are executed, and schedule checkpoints
preserving the agreement quorums).

Durability management is a key aspect of practical crash-FT SMR-like systems [10, 16, 32,
35, 52, 60]. In particular, making the system use the disk efficiently usually requires several
hacks and tricks (e.g., non-transparent copy-on-write, request throttling) on an otherwise small and
simple protocol and service specification [16]. These systems usually resort to dedicated disks for
logging, employ mostly synchronized checkpoints and fetch the state from a leader [16, 32, 52].
A few systems also delay state transfer during load-intensive periods to avoid a noticeable service
degradation [32, 60]. All these approaches either hurt the SMR elegant programming model or
lead to the problems described in Section 2.2, like latency on service response due to log writing
to disk and even stop on service response for several seconds while a checkpoint of the service
state is being taken.

For instance, recent consistent storage systems such as Windows Azure Storage [12] and Span-
ner [20] use Paxos together with several extensions for ensuring durability. We believe works like
ours can improve the modularity of future systems requiring durable SMR techniques.

BFT SMR systems use logging, checkpoints, and state transfer, but the associated perfor-
mance penalties often do not appear in the papers because the state is very small (e.g., a counter)
or the checkpoint period is too large (e.g., [13, 18, 29, 36, 40, 59, 58]). A notable exception is
UpRight [17], which implements durable state machine replication, albeit without focusing on
the efficiency of logging, checkpoints and state transfer. UpRight offers different strategies for
taking checkpoints from the service state. It implements a hybrid checkpoint mechanism where
checkpoint is taken from the service existing code and deltas are generated on predefined peri-
ods. It offers three strategies to generate the deltas: stop and copy, helper processes where it
takes a copy of the data in memory where it applies the changes during the checkpoint genera-
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tion and copy-on-write. UpRight also allows the application to implement custom checkpointing
strategies. UpRight strategies to reduce the impact that checkpoint generation has on the service
execution requires that checkpoints are taken frequently. Tests described in the paper mentioned
checkpoints being taken on every 50 requests. If one wants to sustain a high-throughput (as re-
ported in the papers) for non-trivial states, the use of our techniques is fundamental. Moreover,
any implementation of proactive recovery [13, 56, 51] requires an efficient state transfer to make
rejuvenated replicas up to date.

The work in [16] describes the several challenges faced to implement a Paxos consensus al-
gorithm to be used by the Chubby [11] coordination service. Authors mentioned that during the
implementation of the protocol they found several problems not addressed by the algorithm. The
log of operations decided by a consensus instance includes information view numbers, leader and
client ids, epoch numbers and leases. It was necessary to include these informations in the check-
point together with the application state to make it possible to restore the application state plus the
consensus instance when a checkpoint is installed.

PBFT [13], uses a slightly different message ordering protocol than BFT-SMART. Requests
are sent first to a primary replica that proposes a sequence to backups through pre-prepare, pre-
pare and commit message exchange rounds before providing the request to be executed to the
service. During all phases of the protocol the decisions are logged and only after a checkpoint is
validated the log is discarded. Despite the differences in the ordering protocol, PBFT was one of
the few works that explicitly deal with the problem of optimizing checkpoints and state transfer.
The proposed mechanism was based on copy-on-write and delta-checkpoints. It can store several
checkpoints and only after a checkpoint is confirmed to be valid through an exchange of messages
containing checkpoint digests it can be used in a state transfer. This mechanism is complemen-
tary to our techniques, as we could use it together with sequential checkpoints and also to fetch
checkpoint pages in parallel from different replicas to improve the state transfer. However, the use
of copy-on-write may require the service definition to follow certain abstractions [14, 17], which
can increase the complexity of the programming model. Additionally, this mechanism, which is
referred in many subsequent works (e.g., [29, 40]), only alleviates but does not solve the problems
discussed in Section 2.2. Also, the work [13] does not include an evaluation of the effect of state
manage and transfer in the execution of the protocol.

A few works have described solutions for fetching different portions of a database state from
several “donors” for fast replica recovery or database cluster reconfiguration (e.g., [38]). The same
kind of techniques was employed for fast replica recovery in group communication systems [37]
and, more recently, in main-memory-based storage [48]. There are three differences between these
works and ours. First, these systems try to improve the recovery time of faulty replicas, while CST
main objective is to minimize the effect of replica recovery on the system performance. Second,
we are concerned with the interplay between logging and checkpoints, which is fundamental in
SMR, while these works are more concerned with state snapshots. Our work has a broader scope
in the sense that it includes a set of complementary techniques for Byzantine and crash faults in
SMR systems, while previous works address only crash faults.

6.2 Database Replication
Database management systems provide interfaces and tools to store and manipulate information.
As information is a key component in business operations, mechanisms to provide availability
and performance have been devised since decades ago. To provide scalability, availability and
fault tolerance for database management systems, a common approach is use database replication.
That requires dealing with several problems like network communication, concurrent access, data
partitioning and state management.
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The work in [15] describes several problems that had to be addressed when designing and
implementing a database replication middleware. It shows use cases of fortune 500 companies
where a DBMS outage of only one minute is unacceptable. Several large corporations have strong
requirements where databases have to be available for 99,999% of the time. That means that a
database can be offline for planned or unplanned maintenance for at most five minutes during a
year. To achieve this level of service replication systems must address efficiently several problems
in different layers:

Multi-databse queries: depending on the size of the service being managed, it is common
to have queries and transactions that include different databases or schemas. This requires access
management to databases and the middleware has to consider all databases when managing the
database state.

Isolation level: 1-copy serializability [6] is a powerful technique to isolate transactions and
prevent data corruption. The problem with it is that the constant use of locks on table or row levels
reduces the concurrency access to data and decreases the performance of the system as operations
may have to wait for locks to be released before being executed. Snapshot isolation [5] alleviates
this problem but also brings other problems like the need of rollback transactions due to modified
data.

Heterogeneous clustering: availability can be increased adding servers to clusters. As the
number of clusters increases, problems like different computer architectures, database versions,
operating systems and hardware configurations arises.

Database internals: several vendors design internal mechanisms to increase the performance
of a DBMS. Temporary tables can be created during a transaction to manage temporary data.
Sequences can be created to control the creation of unique numbers to identify objects.

Determinism: replicated systems has to execute deterministic operations to guarantee that a
consistent state is common among different replicas. To achieve that, operations like getting the
current time in a server or generate a random number have to be managed to produce the same
value in all replicas of a system.

SQL-level challenges: databases can have internal tools, reserved words and even languages
to provide additional services like stored procedures and efficient management of large amounts of
data. This can make it difficult for the replication middleware to have access to database internals
and replicate data that is manage by such tools.

Failover and failback: efficient mechanisms to detect that a replica failed and restore it are
necessary to keep the system running and tolerate additional faults.

State management: state has to be checkpointed and logged efficiently, to be able to recover
a faulty replica or include new replicas in the cluster, allowing the replication system to scale out.

Due to the number of challenges to be addressed to design and build a robust database replica-
tion middleware with acceptable availability and performance, some of the items described above
sometimes are neglected or overlooked.

The work on [27] analyses software failures in database products. It analyses the differences
between buying an off-the-shelf DBMS product and develop one, in terms of fault tolerance Off-
the-shelf database management systems are usually cheaper than design and implement a cus-
tomized solution for information management. Most of these systems offer replication to increase
performance and tolerate faults. But buying and installing an off-the-shelf DBMS replication sys-
tem may have some disadvantages like software bugs not yet detected, causing data corruption due
to explicit or silent failures. Experiments performed on that work showed that bugs on both com-
mercial and open-source products are not repeated when the database vendor and sometimes even
the software version is changed. Several types of diversity like language, design, software and data
can be implemented by having a replication middleware between the client and the database man-
agement system. The challenge in this case is that the design and implementation of a database
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replication middleware itself is quite complex and may require a huge time and effort to address
questions like concurrent transaction processing between different vendors, SQL idioms incom-
patibility and state management between different vendors.

The work on [57] describes a Commit Barrier Scheduling scheme, named HRDB (Heteroge-
neous Replicated DB) to replicate databases and tolerate Byzantine faults. HRDB was designed
to support diversity over database vendors. It has a commit barrier component that executes oper-
ations in a primary database before forward them to secondary databases. This logic requires that
databases implement two-phase lock concurrency mechanisms. Some database vendors (Oracle
and PostgreSQL, for instance) uses snapshot isolation [5] instead, so can not be used with HRDB.

HRDB assumes the ordering of statements decoupled from execution in a component called
Shepherd. It is considered a trusted component, so Byzantine faults are expected to happen only
in database replicas. It uses 3f + 1 replicas to order and process the results, while it is necessary
only 2f + 1 replicas to execute the operations, meaning only 2f + 1 databases. The Shepherd is
composed by the agreement protocol along with a coordinator and one manager for each database
replica. The manager can be a primary or a secondary, and the messages are executed first in the
primary and then forwarded to the secondary managers, serializing the requests in the primary.

The recovery strategy used in HRDB assumes that replicas can fail in a crash or Byzantine
way. When a replica is restarted the manager forwards it the operations to be processed. This
mechanism requires the database to have a table to log the last operation executed to enable the
manager to know if it the failure occurred before or after the commit of a transaction. The recovery
protocol do not assume snapshots for database state. The database manager logs operations only
before they are committed but if the database replica spent a long time offline, the log can be quite
large.

In [25] it is defined a protocol to replicate database systems using state machine replication.
This replication system, called Byzantium tolerates crash and Byzantine faults. It requires DBMS
that provide snapshot isolation for concurrency management and messages delivered by the repli-
cation protocol in FIFO order. To optimize the protocol execution, Byzantium executes operations
speculatively in one replica, called master and compares results from other replicas during commit
time. It also has a multi-master version where clients can assume different masters, alleviating the
load on a specific replica. This can also reduce latency when the client chooses a replica closer to
it.

We used several ideas present in that work do define and implement SteelDB. Our work differs
from Byzantium, as we do not assume FIFO ordering of requests from clients. We also do not
implement the multi-master version. We focused though in different aspects like efficient state
management, an aspect not mentioned in the Byzantium paper. We used BFT-SMART with the
durability techniques presented in Chapter 2, without any further modification.
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Conclusion

The work here presented discussed several performance problems caused by the use of logging,
checkpoints and state transfer on SMR systems, and proposes a set of techniques to mitigate
them. The techniques - parallel logging, sequential checkpoints and collaborative state transfer
- are purely algorithmic, and require no additional support (e.g., hardware) to be implemented
in commodity servers. Moreover, they preserve the simple state machine programming model,
and thus can be integrated in any crash or Byzantine fault-tolerant library without impact on the
supported services.

The techniques were implemented in a durability layer for the BFT-SMART library, which
was used to develop two representative services: a KV-store and a coordination service. Our results
show that these services can reach up to 98% of the throughput of main-memory systems, remove
most of the negative effects of checkpoints and substantially decrease the throughput degradation
during state transfer. We also show that the identified performance problems can not be solved by
exchanging disks by SSDs, highlighting the need for techniques such as the ones presented here.

The conception and implementation of a database replication middleware over the new durable
version of BFT-SMART, which we called SteelDB, proved possible to implement complex ser-
vices over the replication protocol without the need to perform internal changes in it. It was
possible to manage complex database state - an area usually overlooked in database middleware
replication protocols [15] - including database dump and session information for multiple clients
using only BFT-SMART durable state management layer.

After the implementation of SteelDB, we evaluated it, together with BFT-SMART during the
integration tests for the TClouds project. The tests exercised not only the fault-free execution
cases but also included several scenarios simulating crash and Byzantine faults. It attested that our
replication protocol is robust enough to be used by multiple clients concurrently.

In a configuration with replicas distributed over a hybrid architecture including a private and
a public clouds we proved possible to add durability to database management systems without
the need for change in client code nor DBMS internals. Although such configuration provides
tolerance for catastrophic failures, replication over wide area networks impose a considerable
drop in the middleware performance.

7.1 Future Work
Although replicas can be added to a BFT-SMART system to increase fault tolerance, this does
not provide scalability, as every replica has to execute all update requests due to the determinism
requirement of state machine replication. A solution to that problem is to split the application state
in several groups and use a SMR group to manage each portion [50]. Mechanisms to measure the
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size of the state and the need for new splits can be employed to provide the desired performance.
Together with the mechanisms to split the state it is necessary to provide ways for clients to know
where each portion of data is stored and perform requests in the correct SMR group or have a
group to redirect requests to the correct group.

Improvements can also be made in SteelDB. During its development and evaluation we used
databases from one vendor at a time (H2, MySQL and PostgreSQL). Although we designed a
module to translate queries between different vendors we did not focus our efforts in implement-
ing an efficient version for state management and transfer. Having a robust translation module
implemented would make possible to have a version of the middleware providing diversity for
vendor implementation. This would make possible to tolerate software bugs common to a vendor
distribution [27].
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Proceedings of the 5th ACM european conference on Computer Systems (EuroSys 2010),
pages 363–376, 2010.

[30] V. Hadzilacos and S. Toueg. A modular approach to the specification and implementation of
fault-tolerant broadcasts. Technical Report TR 94-1425, Department of Computer Science,
Cornell University, May 1994.

[31] Y. Huang, C. Kintala, N. Kolettis, and N. Fulton. Software rejuvenation: analysis, module
and applications. In Proceedings of the 25th International Symposium on Fault-Tolerant
Computing (FTCS 1995), 1995.

[32] P. Hunt, M. Konar, F. Junqueira, and B. Reed. Zookeeper: Wait-free coordination for
Internet-scale services. In Proceedings of the 2010 USENIX conference on Annual Tech-
nical Conference (USENIX ATC 2010), 2010.

[33] Java Community Process. JSR-000221 JDBC API Specification. Available at https:
//jcp.org/aboutJava/communityprocess/mrel/jsr221/index.html,
2011.

[34] E. C. Julie, J. Marguerite, and W. Zwaenepoel. C-JDBC: Flexible database clustering mid-
dleware. In Proceedings of the 2004 USENIX conference on Annual Technical Conference
(USENIX ATC 2004), pages 9–18, 2004.

[35] F. Junqueira, B. Reed, and M. Serafini. Zab: High-performance broadcast for primary-
backup systems. In Proceedings of the 41st International Conference on Dependable Systems
and Networks (DSN 2011), pages 245–256, 2011.

[36] R. Kapitza, B. Johannes, C. Cachin, T. Distler, S. Kuhnle, S. V. Mohammadi, W. Schröder-
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