
Montgomery, Gallin and McPhee, Jamie and Pääsuke, Mati and Sipilä,
Sarianna and Maier, Andrea B and Hogrel, Jean-Yves and Degens, Hans
(2020)Determinants of Performance in the Timed Up-and-Go and Six-Minute
Walk Tests in Young and Old Healthy Adults. Journal of Clinical Medicine, 9
(5). p. 1561.

Downloaded from: http://e-space.mmu.ac.uk/625821/

Version: Published Version

Publisher: MDPI AG

DOI: https://doi.org/10.3390/jcm9051561

Usage rights: Creative Commons: Attribution 4.0

Please cite the published version

https://e-space.mmu.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by E-space: Manchester Metropolitan University's Research Repository

https://core.ac.uk/display/323303343?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://e-space.mmu.ac.uk/view/creators/Montgomery=3AGallin=3A=3A.html
http://e-space.mmu.ac.uk/view/creators/McPhee=3AJamie=3A=3A.html
http://e-space.mmu.ac.uk/view/creators/P=E4=E4suke=3AMati=3A=3A.html
http://e-space.mmu.ac.uk/view/creators/Sipil=E4=3ASarianna=3A=3A.html
http://e-space.mmu.ac.uk/view/creators/Sipil=E4=3ASarianna=3A=3A.html
http://e-space.mmu.ac.uk/view/creators/Maier=3AAndrea_B=3A=3A.html
http://e-space.mmu.ac.uk/view/creators/Hogrel=3AJean-Yves=3A=3A.html
http://e-space.mmu.ac.uk/view/creators/Degens=3AHans=3A=3A.html
http://e-space.mmu.ac.uk/625821/
https://doi.org/10.3390/jcm9051561
https://e-space.mmu.ac.uk


  

J. Clin. Med. 2020, 9, 1561; doi:10.3390/jcm9051561 www.mdpi.com/journal/jcm 

Article 

Determinants of Performance in the Timed Up-and-

Go and Six-Minute Walk Tests in Young and Old 

Healthy Adults 

Gallin Montgomery 1,*, Jamie McPhee 1, Mati Pääsuke 2, Sarianna Sipilä 3, Andrea B Maier 4,5,  

Jean-Yves Hogrel 6 and Hans Degens 7,8,9 

1 Musculoskeletal Science and Sports Medicine, Department of Sport and Exercise Sciences, Manchester 

Metropolitan University, Manchester M15 6BH, UK; J.S.McPhee@mmu.ac.uk 
2 Institute of Sport Sciences and Physiotherapy, Faculty of Medicine, University of Tartu,  

51014 Tartu, Estonia; mati.paasuke@ut.ee  
3 Gerontology Research Center, Faculty of Sport and Health Sciences, University of Jyvsäkylä,  

FI-40014 Jyvsäkylä, Finland; sarianna.sipila@jyu.fi  
4 Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement 

Sciences, 1081 BT Amsterdam, The Netherlands; andrea.maier@unimelb.edu.au  
5 Department of Medicine and Aged Care, The Royal Melbourne Hospital, The University of Melbourne, 

Melbourne, VIC 3010, Australia 
6 Neuromuscular Investigation Center, Institute of Myology, Pitié-Salpêtrière Hospital, 73013 Paris, France; 

jy.hogrel@institut-myologie.org  
7 Musculoskeletal Science and Sports Medicine, School of Healthcare Science, Manchester Metropolitan 

University, Manchester M1 5GD, UK; H.Degens@mmu.ac.uk  
8 Institute of Sport Science and Innovations, Lithuanian Sports University, LT-44221 Kaunas, Lithuania 
9 University of Medicine and Pharmacy of Targu Mures, 540142 Targu Mures, Romania 

* Correspondence: G.montgomery@mmu.ac.uk 

Received: 8 April 2020; Accepted: 15 May 2020; Published: 21 May 2020 

Abstract: The aim of this study was to assess associations between performance in the timed up-

and-go (TUG) and six-minute walk distance (6MWD) with physiological characteristics in young 

and old healthy adults. Thereto, we determined TUG, 6MWD, normalised jump power, centre of 

pressure displacement during 1-leg standing, forced expiratory volume in 1 s, percentage of age-

predicted maximal heart rate (HR%) and height in 419 healthy young (men: 23.5 ± 2.8 years, women: 

23.2 ± 2.9 years) and old (men: 74.6 ± 3.2 years, women: 74.1 ± 3.2 years) adults. Normalised jump 

power explained 8% and 19% of TUG in young (p = 0.025) and older men (p < 0.001), respectively. 

When fat mass percentage and age were added to normalised jump power, 30% of TUG was 

explained in older men (R2adj = 0.30, p < 0.001 to 0.106). Appendicular lean muscle mass percentage 

(ALM%) and age were the best determinants of TUG for older women (R2adj = 0.16, p < 0.001 to 0.01). 

HR% explained 17–39% of 6MWD across all groups (R2adj = 0.17 to 39, p < 0.001). In conclusion, in 

men, jump power was a key determinant for TUG, while in old women only it was the ALM%. As 

HR% was the most important determinant of 6MWD, motivational bias needs to be considered in 

the interpretation of this test. 

Keywords: muscle; spirometry; ageing; physical functional performance 

 

1. Introduction 

The timed-up-and-go test (TUG) [1] was originally used to assess physical mobility in frail 

elderly individuals and was thought to represent a simple and effective means of evaluating balance, 



J. Clin. Med. 2020, 9, 1561 2 of 15 

 

gait speed, and the ability to perform daily life tasks that are required for autonomy [1]. Since then, 

the TUG has been used as a reliable measure of physical function in a variety of populations [2–6] 

and has been recommended for identifying dynamic balance parameters [7–9] and the onset of 

physical disabilities [10]. Indeed, poor TUG performance has been related to higher recurrent fall 

prevalence [11–13], lower bone mineral density and higher fracture rates [14]. Perhaps an even 

stronger indicator is that balance mobility training improved TUG in older adults [15]. In light of this, 

the TUG has been suggested as a valid screening tool to identify balance deficits in older adults [16]. 

In addition to measures of balance, jump power normalised to body mass is strongly related to 

TUG and six-minute walk distance (6MWD), and more so than maximal force normalised to body 

mass [17–19]. In the oldest populations, performance in the TUG and 6MWD is also more closely 

related to lower limb extensor explosive force than maximal force [20] indicating that changes in the 

shortening velocity in addition to force loss do contribute to the lower TUG in old age [17]. This 

suggests that muscle contractile properties and force-generating capacity are both important for 

retaining physical function in old adults. As TUG is a widely used measure of physical function for 

a range of clinical populations, it is important to establish the determinants of TUG performance in 

healthy young and older adults. 

The 6MWD has been used to predict maximal aerobic capacity in healthy middle-aged and older 

adults [21,22] and is reduced in geriatric patients with cardiopulmonary disease [23]. Other common 

uses include diagnosis of sarcopenia [24], a measure of maximal aerobic capacity in lung disease and 

spinal muscular atrophy patients [25–27], and an indicator of all-cause mortality risk in older adults 

[28]. In young healthy individuals, standing height and changes in heart rate accounted for 31% to 

38% of the variance in the 6MWD. Also age, height, heart rate change and pre and post-test systolic 

and diastolic blood pressure showed significant associations with the 6MWD [29,30]. When factors 

such as body mass index, lower limb muscle power, habitual physical activity, and strength were 

added, a larger proportion of the variance in 6MWD could be explained in severely obese middle-

aged adults [19,31–33]. Ventilatory function has also been found to positively correlate with the 

6MWD, in healthy older and pulmonary disease patients [34–36]. In addition, in older adults, poor 

balance is associated with lower walking speeds [37]. The determinants of 6MWD have been reported 

in previous clinical populations but the determinants of 6MWD in healthy young and older adults 

are currently unclear. 

Previous studies have been limited by small homogeneous populations and have assessed a 

limited number of variables to explain the TUG and 6MWD. Few studies have analysed whether the 

determinants of performance in the TUG and 6MWD differ between young and old men and women. 

Further investigation is therefore warranted in a larger multicentre cohort of healthy young and old 

men and women applying an integrative analysis of determinants of physical function across the 

lifespan to inform clinical practice. Specifically, the objective of this study was to examine associations 

between performance in the TUG and 6MWD with normalised jump power, balance, lung function, 

percentage of age-predicted maximal heart rate (HR%) and height in a large multicentre cohort of 

healthy young and old men and women. We hypothesised that normalised jump power and balance 

are determinants of performance in the TUG and that normalised jump power, lung function, and 

HR% [29] are determinants of performance in the 6MWD. 

2. Experimental Section 

2.1. Participants 

Four hundred and nineteen participants were recruited from the European multi-centre MYOAGE 

cohort [38]. Participants were healthy young adults (18–30 years) and older (69–81 years) men and 

women. Testing was undertaken from 2009 to 2012 across four European institutions [Leiden, The 

Netherlands (35 young, 75 old participants); Paris, France (35 young; 70 old participants); Tartu, Estonia 

(38 young, 61 old participants); Jyväskylä, Finland (35 young, 70 old participants)]. Potential 

participants were excluded if they suffered from known musculoskeletal, metabolic, cardiovascular 

(except controlled hypertension), severe chronic obstructive pulmonary disease defined as GOLD 
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stages 3 and 4, neurological or mental conditions, or used medication as indicated in previous work 

[38]. Participants with a body mass index <18 and >32 kg/m2 were also excluded along with those 

undertaking competitive sports (except recreational sports participation). Participants avoided 

strenuous exercise 48 h prior to the testing session and refrained from smoking two hours before the 

testing session. All studies were approved by the respective local ethical committees (Leiden University 

Medical Center, P10.060, May, 31 2010; CPP Ile-de-France VI, 2010-A00614-35, April, 8 2011; University 

of Tartu, 189M-12, January, 28 2010; Ethical Committee of Central Finland Health Care District, March, 

2010) and adhered to the 1964 Helsinki declaration and its later amendments or comparable ethical 

standards. Informed consent was obtained from all individual participants included in the study and 

all participants were medically screened prior to participation. 

2.2. Anthropometrics 

Standing height (m) was measured to an accuracy of one millimeter whilst body mass was 

measured to an accuracy of 0.1 kg. Body mass index (BMI) was calculated as mass/height2 (kg/m2). 

2.3. Dual-Energy X-Ray Absorptiometry (DEXA) 

Following a 12-h overnight fast, body composition was assessed using whole-body dual-energy 

x-ray absorptiometry (Finland—Lunar Prodigy, version en-Core 9.30; Estonia–Lunar Prodigy 

Advanced, version en-Core 10.51.006; France—Lunar Prodigy, version en-Core 12.30; GE Healthcare, 

Chalfont St Giles, UK). DEXA scans were performed by a trained technician according to the 

manufacturer’s quality control procedures including daily calibration. After manual offline 

adjustment, whole-body lean mass and fat mass were calculated. Lean mass was calculated as:  

lean mass = total mass − fat mass − (1.82 × BMC)  

Appendicular lean muscle mass (ALM) was also given as ALM/height2 and areas were 

demarcated as described previously [17]. 

2.4. Balance 

The majority of participants undertook a balance assessment (n = 309), where postural sway was 

measured as centre of pressure displacement during one-leg standing with eyes open as measured 

from force platform data (Finland—Good Balance, Metitur, Finland; Estonia—Kistler, Winterthur, 

Switzerland; France—AMTI OR6-7, Watertown, MA, USA) [39]. The participant was asked to stand 

on one leg for a maximum of 30 s (contralateral leg maintained 5 cm from the ground) or until the 

test was stopped due to them moving their arms or touching the floor with their contralateral leg. 

Trial duration was determined as the time that the participant remained in the required stance. If the 

trial duration lasted 30 s, the trial was ended and classed as the participant’s best trial. Participants 

were barefoot and asked to stand quietly, hands by their side and visually focus on a black circle 

target (0.15 m in diameter) situated 3 m away aligned at eye level. Centre of pressure displacement 

(mm) was expressed as the root mean square of the centre of pressure displacements in the 

mediolateral direction (COP-MLd). 

2.5. Six-Minute Walk Distance and Heart Rate 

For the 6MWD, participants were instructed to complete as many 20-m laps (25-m in France) as 

possible in six minutes without running and the distance covered recorded [40]. Verbal 

encouragement was given every minute during the test. Heart rate was recorded during the test 

(Polar Electro, Oy, Finland) and the final heart rate upon completion of the six minutes was given as 

a percentage of the age-predicted maximum heart rate (HR%) using the following formula [41]:  

HR% = [final heart rate/(220 − age in years)] × 100  
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2.6. Timed up-and-go 

The TUG test involved getting up from a standard chair without armrests, walking around a cone 

3 m in front of the chair and returning to the original sitting position as quickly as possible without 

running [1]. The test was initiated with a verbal “go” instruction from the investigator, and the time 

taken to complete the test was recorded. After a familiarisation attempt, three recorded efforts were 

undertaken with one minute rest intervals. Verbal encouragement was given in the rest intervals to 

promote faster tests. The quickest of the three attempts was recorded and used in the analysis. 

2.7. Muscle Power 

Leg extension power was assessed with a maximal effort countermovement vertical jump on a 

force platform (France: AMTI OR6-7, Watertown, MA, USA; Estonia: Kistler, Switzerland; Finland: 

custom built force platform). Three maximal-effort countermovement vertical jumps were performed 

with a 1-min rest between efforts. Vertical ground reaction force was recorded throughout the 

movement at 1000 Hz. Maximum power was calculated using the following equations from the 

vertical force trace (Fz) and body mass of the participant (m) with acceleration due to gravity (g) at a 

constant of 9.81 m/s2. Instantaneous vertical acceleration (a) was calculated and integrated to obtain 

instantaneous vertical velocity (v) and then power (P) was calculated from the instantaneous force 

and vertical velocity [42]: 

Fz = m·a 

� =  � �(�)�� 
�

�

=  � �
��(�)

�
− �� ��

�

�

  

P = Fz·v  

The maximum power generated during the take-off phase of the three-countermovement 

vertical jumps was recorded, normalised to the body mass of the participant and used in the final 

analysis. 

2.8. Spirometry 

Participants completed three maximal spirometry tests whilst seated with their hips and knees 

flexed at 90° and wore a nose clip throughout the procedure. Participants were instructed to “blow 

into the mouthpiece as forcefully and as quickly as possible” and to continue blowing until no further 

air could be expelled (SpiroStar DX and Spiro2000 software, Medikro, Kuopio, Finland. Micro 

Medical Spiro USB spirometer and Spida 5 software, Cardinal Health, Dublin, OH, USA). Spirometric 

pulmonary function was not undertaken at the Estonia site. Forced expiratory volume in 1 s (FEV1) 

was recorded in litres according to the criteria of the American Thoracic and European Respiratory 

Society [43] and the highest recorded FEV1 value was used in the final analysis. 

2.9. Statistical Analyses 

Differences in participant characteristics by age-group and sex were formally tested using two-

way between-measures analysis of variances (ANOVAs) (2 age groups × 2 sexes). All participant 

characteristics, body composition, and physiological variables were then normalised to the average 

value of the young male population in each individual country to adjust for any systematic 

differences between countries. Data were formally tested and visually inspected for independence, 

linearity, normality of residuals, multi-collinearity and homoscedasticity to ensure suitability for 

entry into multivariate regression analyses. Relationships between each body composition and 

physiological variable and performance in the two physical function tests (TUG and 6MWD) were 

first evaluated using Pearson’s product–moment correlation coefficient stratified by age-group and 

sex. Those variables that had a bivariate correlation with statistical significance of p < 0.1 were then 

selected for inclusion in multivariate regression models. Variables were entered into the models in 

order of the Pearson’s product–moment correlation coefficient (largest first). In age-group and sex-
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specific multivariate regression models, the most parsimonious model was identified as the model 

with the highest explained variance (R2adj), separately across young and old, men and women. Those 

body composition and physiological variables included in the most parsimonious model for any one 

of the separate subgroups (i.e., young-men, young-women, older-men, older women) were then 

included together in a final multivariate regression model that was run in each of the four sub-groups 

to highlight the different outcomes for age and sex groupings. The level of statistical significance was 

set at p < 0.05. All analyses were performed using R (R Foundation for Statistical Computing 2019, 

v3.6.1, Vienna, Austria). 

3. Results 

3.1. Participant characteristics 

Table 1 shows the characteristics of the different age and sex groups. There was a significant age-

by-sex interaction for lean mass (p = 0.010), appendicular lean muscle mass (p = 0.001), appendicular 

lean muscle mass percentage (p = 0.009), ALM/height2 (p = 0.046), normalised jump power (p < 0.001), 

FEV1 (p < 0.001), and 6MWD (p = 0.032), which is reflected by a larger absolute age-related decline in 

men than women (Table 1). There was a significant age-by-sex interaction for fat mass percentage (p = 

0.037), which is reflected by a larger age-related increase in men than women (Table 1). 

In a separate analysis, values were converted to a percentage of the sex-matched average (data 

for women were expressed as a percentage of the average young woman, data for men were 

expressed as a percentage of the average young man in each country). This showed that there were 

no significant age-by-sex interactions, indicating a similar age-related percentage decline in men and 

women. There was, however, a significant age-by-sex interaction for fat mass percentage (p < 0.001), 

which was reflected by a larger age-related increase in fat mass percentage in men than in women. 

3.2. Bivariate Regression Analyses 

Bivariate associations between body composition variables, physiological variables and the 

timed up-and-go test and the six-minute walk distance are presented in Table 2. 

3.3. Multivariate Regression Analyses 

3.3.1. Timed up-and-go 

Normalised jump power as a single determinant explained 8% and 19% of the variance in TUG 

performance for young men (β = −0.24, p = 0.025) and older men (β = −0.88, p < 0.001), respectively, 

(Table 3). Whilst, normalised jump power as a single determinant explained 6% of the variance in 

TUG for older women (β = −0.46, p = 0.008), ALM% was a stronger single determinant and explained 

13% of the variance in TUG for older women (β = −0.92, p < 0.001). Normalised jump power (β = −0.78, 

p < 0.001), fat mass (%) (β = 0.15, p = 0.001) and age (β = 0.01, p = 0.106) were the best determinants of 

TUG for older men (R2adj = 0.30, p < 0.001 to 0.106), whereas ALM% (β = −0.82, p < 0.001) and age (β = 

0.01, p = 0.01) were the best determinants of TUG for older women (R2adj = 0.16, p < 0.001 to 0.01). There 

were no significant determinants of TUG performance for young women.  

When all explanatory independent variables were combined in a separate multivariate 

regression model stratified by age and sex, there were no significant determinants of TUG 

performance for young men, and only height was a significant determinant of TUG performance for 

young women (β = -1.00, p = 0.028) (Table 4). Normalised jump power (β = -0.75, p < 0.001) and fat 

mass (%) (β = 0.15, p < 0.001) were determinants of TUG performance in older men and fat mass (%) 

was a determinant of TUG performance in older women (β = 0.09, p = 0.014). 

3.3.2. Six-minute walk distance 

HR% was the strongest single determinant of 6MWD across all young and old, men and women 

(R2adj = 0.17 to 39, p < 0.001), (Table 5). HR% (β = 0.31, p < 0.001) and lean mass (%) (β = 0.34, p = 0.01) 
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were the best determinants of 6MWD in young men, whereas HR% (β = 0.35, p < 0.001) and COP-MLd 

(β = 0.07, p = 0.010) were the best determinants of 6MWD in young women. 

HR% (β = 0.29, p < 0.001), normalised jump power (β = 0.34, p < 0.001), lean mass (%) (β = 

0.16, p = 0.169) and FEV1 (β = 0.11, p = 0.102), were the best determinants of 6MWD in older men 

(R2adj = 0.53, p < 0.001 to 0.169). However, HR% (β = 0.32, p < 0.001), appendicular lean muscle 

mass percentage (β = 0.49, p < 0.001), FEV1 (β = 0.10, p = 0.076) and age (β = −0.01, p = 0.001) were 

the best determinants of 6MWD in older women (R2adj = 0.60, p < 0.001 to 0.076).  

When all explanatory independent variables were combined in a separate multivariate 

regression model stratified by age and sex, only HR% was a significant determinant of 6MWD for 

young men (β = 0.33, p = 0.004), and only HR% (β = 0.55, p < 0.001) and lean mass (%) (β = 0.54, p = 

0.008) were significant determinants of 6MWD for young women (Table 6). HR% (β = 0.42, p < 0.001), 

lean mass (%) (β = 0.27, p = 0.025) and age (β = -0.01, p = 0.001) were determinants of 6MWD in older 

men whereas HR% (β = 0.26, p < 0.001), normalized jump power (β = 0.23, p = 0.047) and age (β = -

0.01, p = 0.027) were determinants of 6MWD in older women. 
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Table 1. Characteristics of study participants. 

 n Young men n Young women n Older men n Older women Age Sex Age-Sex interaction 

Age (years) 66 23.5 ± 2.8 77 23.2 ± 2.9 138 74.6 ± 3.2 138 74.1 ± 3.2 <0.001 0.150 0.854 

Body mass (kg) 66 76.1 ± 10.0 77 62.3 ± 9.1 138 77.9 ± 10.3 138 64.9 ± 9.6 0.008 <0.001 0.675 

Height (m) 66 1.81 ± 0.06 77 1.67 ± 0.07 138 1.73 ± 0.06 138 1.61 ± 0.07 <0.001 <0.001 0.294 

BMI (kg/m2) 66 23.3 ± 2.7 77 22.4 ± 2.8 138 25.9 ± 2.8 138 25.1 ± 3.8 <0.001 0.005 0.882 

Fat mass (kg) 65 13.1 ± 5.6 76 18.5 ± 5.8 133 19.9 ± 6.5 136 23.1 ± 6.8 <0.001 <0.001 0.097 

Lean mass (kg) 65 60.5 ± 7.5 76 41.7 ± 5.7 133 55.5 ± 6.3 136 40.1 ± 5.6 <0.001 <0.001 0.010 * 

ALM (kg) 65 27.9 ± 3.4 76 18.4 ± 2.8 133 24.3 ± 3.1 136 16.8 ± 2.7 <0.001 <0.001 0.001 * 

ALM/height2 (kg/m2) 65 8.5 ± 0.9 76 6.6 ± 0.8 133 8.1 ± 0.8 136 6.5 ± 0.7 0.005 <0.001 0.046 * 

Fat mass (%) 65 16.8 ± 6.1 76 29.3 ± 5.9 133 25.2 ± 5.7 136 35.1 ± 6.5 <0.001 <0.001 0.037 * 

Lean mass (%) 65 79.8 ± 6.3 76 67.6 ± 6.1 133 72.0 ± 6.4 136 62.3 ± 6.8 <0.001 <0.001 0.055 

ALM% 65 36.8 ± 3.3 76 29.8 ± 2.7 133 31.4 ± 3.0 136 26.0 ± 3.2 <0.001 <0.001 0.009 * 

Timed up-and-go (s) 65 4.9 ± 0.9 77 5.2 ± 0.9 136 6.1 ± 1.1 138 6.6 ± 1.1 <0.001 <0.001 0.287 

Six-minute walk distance (m) 66 699 ± 114 77 629 ± 100 138 554 ± 95 137 525 ± 65 <0.001 <0.001 0.032 * 

Normalised jump power (W/kg) 51 48.1 ± 8.2 57 35.6 ± 7.2 97 27.1 ± 5.4 101 21.7 ± 5.1 <0.001 <0.001 <0.001 * 

COP-MLd  66 0.6 ± 0.1 77 0.5 ± 0.1 89 0.8 ± 0.2 77 0.7 ± 0.2 <0.001 <0.001 0.980 

HR% 66 76.7 ± 16.9 77 74.8 ± 15.7 138 80.4 ± 16.2 138 84.1 ± 15.2 <0.001 0.262 0.089 

FEV1 49 4.7 ± 0.5 55 3.5 ± 0.4 108 2.8 ± 0.5 106 2.1 ± 0.4 <0.001 <0.001 <0.001 * 

BMI = body mass index; ALM, appendicular lean muscle mass; COP-MLd, root mean square mediolateral sway standing on one leg; HR%, percentage of maximum 

heart rate attained at the end of the six-minute walk test; FEV1, forced expiratory volume in 1 s. * Indicates a significant interaction term. Data are means ± SD. 
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Table 2. Bivariate associations between independent variables, the timed up-and-go test and the six-minute walk distance. 

  Young men Young women Older men Older women 

 Independent variable n r p value n r p value n r p value n r p value 

TUG Normalised jump power (W/kg) 50 −0.32 0.025 57 0.02 0.894 96 −0.45 <0.001 101 −0.26 0.008 

 Height (m) 65 0.19 0.137 77 −0.20 0.084 136 0.04 0.607 138 0.10 0.242 

 COP-MLd 65 −0.07 0.560 77 −0.11 0.363 89 0.13 0.232 77 −0.01 0.943 

 Age (years) 65 0.18 0.158 77 0.14 0.221 136 0.31 <0.001 138 0.26 0.002 

 Body mass (kg) 65 0.09 0.459 77 0.05 0.649 136 0.15 0.080 138 0.20 0.016 

 BMI (kg·m-2) 65 −0.02 0.853 77 0.15 0.179 136 0.14 0.094 138 0.27 0.001 

 Fat mass (kg) 64 −0.06 0.648 76 0.16 0.155 132 0.34 <0.001 136 0.31 <0.001 

 Lean mass (kg) 64 0.16 0.207 76 −0.07 0.563 132 −0.09 0.315 136 −0.13 0.128 

 ALM (kg) 64 0.01 0.934 76 −0.09 0.436 132 −0.11 0.207 136 −0.16 0.058 

 ALM/height2 (kg/m2) 64 −0.11 0.373 76 0.02 0.859 132 −0.18 0.043 136 −0.13 0.142 

 Fat mass (%) 64 −0.10 0.413 76 0.20 0.091 132 0.37 <0.001 136 0.35 <0.001 

 Lean mass (%) 64 0.13 0.322 76 −0.16 0.171 132 −0.34 <0.001 136 −0.34 <0.001 

 ALM% 64 −0.06 0.665 76 −0.18 0.119 132 −0.36 <0.001 136 −0.37 <0.001 

 FEV1 49 −0.14 0.351 55 −0.11 0.410 108 −0.24 0.014 106 −0.18 0.072 

 Leg lean mass (kg) 64 −0.02 0.906 76 −0.06 0.634 132 −0.10 0.264 136 −0.17 0.052 

              

 Independent variable n r p value n r p value  r p value n r p value 

6MWD Normalised jump power (W/kg) 51 0.18 0.201 57 0.08 0.535 97 0.33 <0.001 101 0.37 <0.001 

 Height (m) 66 0.09 0.476 77 0.22 0.059 138 0.03 0.687 137 0.23 0.006 

 COP-MLd 66 −0.20 0.104 77 0.20 0.081 89 0.00 0.976 76 0.01 0.932 

 Age (years) 66 0.18 0.142 77 –0.11 0.351 138 –0.11 0.192 137 –0.27 0.001 

 Body mass (kg) 66 −0.08 0.500 77 0.13 0.245 138 –0.17 0.040 137 –0.03 0.733 

 BMI (kg·m-2) 66 −0.15 0.234 77 0.03 0.818 138 –0.22 0.009 137 –0.17 0.043 

 Fat mass (kg) 65 −0.19 0.128 76 0.03 0.805 133 –0.24 0.006 135 –0.13 0.142 

 Lean mass (kg) 65 0.04 0.745 76 0.18 0.121 133 0.02 0.814 135 0.32 <0.001 

 ALM (kg) 65 0.04 0.748 76 0.13 0.269 133 0.07 0.400 135 0.33 <0.001 

 ALM/height2 (kg/m2) 65 −0.01 0.947 76 0.00 0.994 133 0.06 0.522 135 0.24 0.005 

 Fat mass (%) 65 −0.22 0.080 76 –0.03 0.765 133 –0.22 0.009 135 –0.19 0.024 

 Lean mass (%) 65 0.23 0.070 76 0.02 0.847 133 0.26 0.002 135 0.27 0.002 

 ALM% 65 0.18 0.141 76 –0.01 0.932 133 0.32 <0.001 135 0.33 <0.001 

 FEV1 49 0.21 0.143 55 0.22 0.113 108 0.31 <0.001 105 0.26 0.007 

 Leg lean mass (kg) 65 −0.01 0.908 76 0.10 0.381 133 0.09 0.278 135 0.34 <0.001 

 HR% 66 0.42 <0.001 77 0.59 <0.001 138 0.64 <0.001 137 0.65 <0.001 

TUG, timed up-and-go; 6MWD, six-minute walk distance; COP-MLd, root mean square mediolateral sway standing on one leg; ALM, appendicular lean muscle 

mass; FEV1, forced expiratory volume in 1 s; HR%, percentage of maximum heart rate attained at the end of the six-minute walk test. r = Pearson correlation 

coefficient. 
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Table 3. Parsimonious multivariate regression models with the timed up-and-go test as the dependent variable and body composition and physiological variables 

as independent variables. 

  Young men    Young women   Older men    Older women  

n TUG β R2adj p n  β R2adj p n  β R2adj p n  β R2adj p 

50 Model 1    77 Model 1    96 Model 1    136 
Model 

1 
   

 
Normalised jump 

power (W/kg) 
−0.24 0.08 0.025  

Height 

(m) 
−0.58 0.03 0.084  

Normalised jump 

power (W/kg) 
−0.88 0.19 <0.001  ALM% −0.92 0.13 <0.001 

     76 Model 2    93 Model 2    136 
Model 

2 
   

      
Height 

(m) 
−0.53 0.04 0.121  

Normalised jump 

power (W/kg) 
−0.90 0.29 <0.001  ALM% −0.82 0.16 <0.001 

      
Fat mass 

(%) 
0.04  0.125  Fat mass (%) 0.14  <0.001  Age 0.01  0.01 

          93 Model 3         

           
Normalised jump 

power (W/kg) 
−0.78 0.30 <0.001      

           Fat mass (%) 0.15  <0.001      

           Age 0.01  0.106      

TUG, timed up-and-go; β, standardised coefficient; R2adj, adjusted R squared; p, p-value; ALM, appendicular lean muscle mass. 

Table 4. Explanatory variables - multivariate regression models stratified by age and sex, with the timed up-and-go test as the dependent variable and body 

composition and physiological variables as independent variables. 

  Young men   Young women   Older men   Older women 

n TUG β R2adj p n  β R2adj p n  β R2adj p n  β R2adj p 

50 Model 1    56 Model 1    93 Model 1    100 Model 1    

 

Normalised 

jump power 

(W/kg) 

-

0.22 
0.07 0.068  

Normalised 

jump power 

(W/kg) 

-

0.06 
0.06 0.572  

Normalised 

jump power 

(W/kg) 

-

0.75 
0.30 <0.001  

Normalised 

jump power 

(W/kg) 

-

0.30 
0.11 0.094 

 Height (m) 0.57  0.226  Height (m) 
-

1.00 
 0.028  Height (m) 0.49  0.388  Height (m) 0.31  0.589 

 Fat mass (%) 
-

0.03 
 0.512  Fat mass (%) 0.02  0.520  Fat mass (%) 0.15  <0.001  Fat mass (%) 0.09  0.014 

 Age 
-

0.00 
 0.876  Age 0.00  0.061  Age 0.01  0.081  Age 0.01  0.145 

TUG, timed up-and-go; β, standardised coefficient; R2adj, adjusted R squared; p, p-value.  
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Table 5. Parsimonious multivariate regression models with the six-minute walk distance as the dependent variable and body composition and physiological 

variables as independent variables. 

  Young men   Young women   Older men   Older women 

n 6MWD β R2adj p n  β R2adj p n  β R2adj p n  β R2adj p 

66 Model 1    77 Model 1    138 Model 1    137 Model 1    

 HR% 0.27 0.17 <0.001  HR% 0.36 0.34 <0.001  HR% 0.40 0.39 <0.001  HR% 0.35 0.39 <0.001 

65 Model 2    77 Model 2    97 Model 2    135 Model 2    

 HR% 0.31 0.27 <0.001  HR% 0.35 0.35 <0.001  HR% 0.38 0.43 <0.001  HR% 0.35 0.49 <0.001 

 
Lean mass 

(%) 
0.34  0.010  

COP-

MLd 
0.07  0.010  

Normalised jump power 

(W/kg) 
0.24  0.003  ALM% 0.45  <0.001 

          94 Model 3    104 Model 3    

           HR% 0.40 0.48 <0.001  HR% 0.32 0.55 <0.001 

           
Normalised jump power 

(W/kg) 
0.26  0.001  ALM% 0.55  <0.001 

           Lean Mass (%) 0.16  0.112  FEV1 0.22  0.032 

          65 Model 4    104 Model 4    

           HR% 0.29 0.53 <0.001  HR% 0.32 0.60 <0.001 

           
Normalised jump power 

(W/kg) 
0.34  <0.001  ALM% 0.49  <0.001 

           Lean Mass (%) 0.16  0.169  FEV1 0.10  0.076 

           FEV1 0.11  0.102  Age −0.01  0.001 

6MWD, six-minute walk distance; β, standardised coefficient; R2adj, adjusted R squared; P, P-value; HR%, percentage of maximum heart rate attained at the end of 

the six-minute walk test; COP-MLd, root mean square mediolateral sway standing on one leg; FEV1, forced expiratory volume in 1 s; ALM, appendicular lean muscle 

mass. 

Table 6. Explanatory variables - multivariate regression models stratified by age and sex, with the six-minute walk distance as the dependent variable and body composition 

and physiological variables as independent variables 

  Young men    Young women    Older men   Older women 

n 6MWD β R2adj p n  β R2adj p n  β R2adj p n  β R2adj p 

35 Model 1    35 Model 1    42 Model 1    41 Model 1    

 HR% 0.33 0.28 0.004  HR% 0.55 0.39 <0.001  HR% 0.42 0.70 <0.001  HR% 0.26 0.43 <0.001 

 Normalised jump 

power (W/kg) 

0.04  0.697  Normalised jump 

power (W/kg) 

−0.19  0.156  Normalised jump 

power (W/kg) 

−0.02  0.883  Normalised jump 

power (W/kg) 

0.23  0.047 

 Lean mass (%) 0.22  0.183  Lean mass (%) 0.54  0.008  Lean mass (%) 0.27  0.025  Lean mass (%) 0.15  0.091 

 COP-MLd −0.05  0.462  COP-MLd 0.05  0.486  COP-MLd −0.03  0.364  COP-MLd 0.05  0.058 

 FEV1 0.14  0.191  FEV1 0.06  0.589  FEV1 0.07  0.373  FEV1 0.08  0.453 

 Age 0.00  0.495  Age 0.00  0.747  Age −0.01  0.001  Age −0.01  0.027 

6MWD, six-minute walk distance; R2adj, adjusted R squared; P, P-value; HR%, percentage of maximum heart rate attained at the end of the six-minute walk test; 

COP-MLd, root mean square mediolateral sway standing on one leg; FEV1, forced expiratory volume in 1 s. 
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4. Discussion 

The main observation of the present study was that normalised jump power was the main 

determinant of TUG in men, irrespective of age. In old, but not young women, the main determinant 

of TUG was the ALM%. The largest determinant of 6MWD was HR%, which suggests that 

motivational bias needs to be considered when interpreting this test. Indeed, it has been suggested 

that HR% serves as a measure of physical effort [29]. 

4.1. Timed up-and-go 

Our results show that normalised jump power alone can determine 19% of the variance in TUG 

for older men, which is supported by previous studies that also show that lower limb power can 

explain 14% and 22% of TUG or a similar functional task for older people and severely obese adults, 

respectively [18,19]. Normalised jump power explained a comparable percentage of TUG for older 

men only, where in the other studies only older frail or obese people were studied. Indeed, in young 

men, normalised jump power determined 8% of the TUG, and in both young and older women, 

normalised jump power was not related to TUG. Our analysis showed that there were different 

physiological determinants of TUG dependent upon the age and sex of the participants. 

Power is the product of force and velocity and is indeed to a large extent determined by maximal 

force production [44]. It is, therefore, no surprise that other measures of lower limb maximal muscle 

function have also found to explain TUG including explosive and maximal force production (7 to 8%) 

[8,19]. However, lower limb muscle power is more closely related to performance in physical function 

tests than maximal force production [45,46]. A large proportion of physical function is explained by 

jump take-off velocity (an integral component of power production) during a counter movement 

jump, with older participants showing lower physical function along with lower jump take-off 

velocity [17] which may be attributable to a reduced muscle shortening velocity in old age. A lower 

shortening velocity may be related to a selective type II fibre atrophy, slowing of the contractile 

properties of muscle fibres, and increased tendon compliance [47]. Thus, a lower muscle power and 

TUG score in old age are likely attributable to both muscle weakness and slowing of muscle 

contractile properties. 

For young women, there were no significant determinants of TUG in the parsimonious model, 

which suggests that as young women are not affected by age-related declines in the measured 

variables, TUG performance is largely determined by other factors that were not measured in this 

study. For older women ALM% and age explained 16% of the variance in TUG. Body composition 

appears to be an important factor for TUG, where fat mass (%) explains 10% of the variance for older 

men and ALM% explains 13% of the variance in older women. A greater proportion of lean mass is 

likely to contribute to increasing propulsive forces, which may result in an improved TUG, whereas 

a greater proportion of fat mass will likely hinder TUG due to the larger mass component that reduces 

propulsive forces relative to body mass [17]. The combination of explanatory variables highlights 

these age and sex-related differences (Table 4), for which the only significant determinant variables 

are; height for young women, normalised jump power and fat mass (%) for older men, and fat mass 

(%) for older women. The significance of standing height for young women is probably due to taller 

individuals displaying greater stride lengths and consequently higher walking speeds [48–51]. 

Contrary to our initial hypothesis, COP-MLd did not relate to TUG for any of the groups. 

4.2. Six-Minute Walking Distance 

The current results indicate that HR% explains 17 to 39% of the variance in the 6MWD across 

young and old, men and women. The HR% can serve as a measure of physical effort as a lower HR% 

is associated with a lower 6MWD, irrespective of sex and age. This indicates that the level of 

engagement with the test has a strong impact on the 6MWD, similar to previous observations [29]. 

Interestingly there was a correlation with relative measures of lean mass and 6MWD for young 

men, older men and older women [17,52], that has been shown previously for older men and women, 
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and in older men respectively. We have also shown this association in young men, however, and this 

is most likely due to the association between walking speed and physical fitness. 

Normalised jump power explained an additional 4% of the variance in the 6MWD for older men 

only. Interestingly, normalised jump power was not a significant determinant of 6MWD in any other 

group. Lower limb power has shown a strong correlation with 6MWD in mobility-limited older 

individuals whereas aerobic capacity has shown no relation, suggesting that lower limb power may 

become increasingly important in limiting the 6MWD in populations with mobility impairments [31]. 

The significance of power as a limiting factor is illustrated by the improvements in the 6MWD and 

gait speed after strength and power training [53,54], although in our study, normalised jump power 

has a small, but significant, association with 6MWD only in older men. 

FEV1 explains an additional 6% of the variance in 6MWD for older women and 5% in older men 

although not significant. This is noteworthy, as irrespective of physical activity level FEV1 shows an 

age-related decline that may limit aerobic capacity with advancing ageing [43]. The age-related 

decline in FEV1 may be particularly important when considering that in older adults declines in 

resting lung function can occur with no changes in maximal heart rate over a six year period [55]. 

4.3. Limitations 

The strength of this study was that healthy young and older volunteers were recruited and our 

work thus represents the determinants of performance during healthy ageing. In addition, this study 

had a cross-sectional design and can only highlight associations between physical function tests and 

physiological variables. To establish a causal effect of the measured variables on physical function, 

intervention studies are necessary. The multi-centre design may have meant that testing protocols 

were not exactly identical at different sites. To minimise this effect, (1) staff at all sites were trained 

to deliver the same protocols by the same experienced researcher and all equipment was calibrated 

according to the manufacturer’s requirement and (2) all data from a study centre were normalised to 

the average data from the young men in that centre. 

5. Conclusions 

In conclusion, in men, jump power was a key determinant for TUG, while in old women, it was only 

the ALM%. The largest single determinant of the 6MWD was HR%, which explained 17 to 39% of the 

variance in 6MWD across young and old men and women. When HR% was combined with normalised 

jump power (older men only), relative measures of body composition, FEV1 and age, 53 to 60% of the 

variance in 6MWD was explained in older men and older women respectively. As HR% was the most 

important determinant of 6MWD, motivational bias needs to be considered in the interpretation of this 

test. It is important to consider that individuals with low muscle power or individuals demonstrating a 

low level of effort are at risk of lower functional performance in a clinical setting. 
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