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ABSTRACT This paper addresses frequency regulation and the economic dispatch problem of an 

Autonomous Renewable Grid (ARG) primarily composed of Multi Renewable Energy Agents (MRAs), 

interfaced through DC/AC inverters. A large number of MRAs that have an inherent fluctuating nature and 

frequent disturbances in inter-connected systems require fast and robust control to stabilize the frequency and 

to maintain cost-effective operation of an ARG. To address the above control challenges, Distributed 

Averaging Integrator (DAI) based control schemes were proposed in various research works. The main flaws 

of such schemes were slow convergence, sluggish response, poor transient performance and a difficult 

selection of an appropriate damping-factor. The proposed approach introduces a Distributed Sliding Mode 

Control (DSMC) based solution for fast convergence and improved transient response. The DSMC control is 

based on a distributed sliding surface, designed using a combination of local information and information 

from neighboring MRAs. The control is implemented locally at each MRA and achieves the asymptotic 

global consensus. Finally, the convergence of the proposed control scheme is proved mathematically, and 

performance is validated using the MRA system which has been implemented using MATLAB/Simulink. 

The results of the proposed control technique are compared with conventional DAI control, which  shows 

that the proposed scheme outperforms the conventional scheme in terms of fast convergence, considering 

renewable resources as distributed generation. 

INDEX TERMS Distributed SMC, Secondary Control, Frequency Regulation, Distributed Generation, 

Renewable Grid, System Stability. 

I. INTRODUCTION 

The Autonomous Renewable Grid (ARG) is primarily 

composed of inverter-interfaced Multi-Renewable Agents 

(MRAs)/Distributed Generation [1], [2]. The increased 

number of MRAs is challenging the successful operation of 

the ARG due to their low inertia [3]. Due to the intermittent 

nature of MRA’s as well as their widely distributed 

geographical nature, small capacity and the large number of 

them they demand a fast and robust distributed control 

system for frequency regulation and economically optimized 

power production. The Distributed Averaging Integrator 

(DAI) based control schemes proposed in contemporary 

research work exhibit a slow response especially in 

providing Economic Dispatch (ED). This paper proposes 

Distributed Cooperative Sliding Mode Control (DCSMC) to 

comply with the control demands of an ARG. 

 Unlike large synchronous generators with constant 50/60 

Hz frequency, MRAs either produce power in the form of 

DC (PV plants, fuel cells, and storage batteries) or variable 

speed AC (wind and micro-turbines). In both cases a DC to 

AC inverter is required to connect to the wider AC network 

[4]. Moreover, the large synchronous generators possess 

inherent synchronization capabilities, while the MRAs rely 

on their associated control to achieve synchronization [5], 

[6].  

The conventional approach to address the aforementioned 

control challenges is to divide it into four main categories 

namely; inner-control, primary, secondary and tertiary 

control [7], [8]. The inner-control is the local control of the 

inverter that provides the current, voltage, output impedance 

regulation, and synchronization with the grid. Inner-control 

provides high frequency switching pulses for the inverter to 

produces the sinusoidal voltage of desired phase/frequency 

and amplitude. The primary control uses a proportional 

droop-control technique to provide active and reactive power 

sharing among the MRAs but forces the frequency and 
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voltage to deviate from their nominal values [9], [10]. This 

naturally requires an additional layer of control; the 

secondary control, to minimize the deviations produced by 

the primary control. The ED is provided by tertiary control 

that forces the MRAs to follow the optimum power injection 

profiles for cost effective operation of the system. However, 

recent research has merged the tertiary control into the 

secondary control, providing ED and frequency regulation at 

the same level [11-13]. 

Figure 1 represents the inverter with associated 

hierarchical control architecture and inter-MRA connection 

through power lines and communication links. The 

susceptance of the power line connecting the 𝑖𝑡ℎ and 𝑗𝑡ℎ 

MRAs, is labelled as 𝑏𝑖𝑗  (𝑏𝑖𝑗 = 𝑏𝑗𝑖). The secondary and 

tertiary controls require the power feedback from local and 

neighboring MRAs to generate the control input for 

frequency stabilization and ED. The information from 

neighboring MRAs is obtained through inter-MRA 

communication links. Based on the control input from 

secondary control, the primary control generates the 

reference values of frequency and voltage for inner control. 

The inner control works on a faster scale to provide 

synchronization with the grid system and tracks the reference 

values from the primary control by producing appropriate 

gate pulses for the inverter. 

The secondary (and tertiary) control of MRAs could be 

centralized [14], [15], decentralized [16], [17] as well as 

distributed [11-13], [18], [19]. The centralized control 

provides frequency regulation and ED, with the help of 

communication links with individual MRAs. The 

communication links are used to obtain the information 

about frequency and local power generation and transmits 

the control input to the MRAs.  Similarly, in distributed 

control, MRA units develop a co-operative control with the 

help of peer-to-peer communication links between the 

MRAs, while the decentralized control is a local control 

without any communication link. However, the distributed 

control which provides the flexibility of a plug-and-play 

feature as the  number of MRAs increases has gained 

significant attention recently, especially in case of ARG [12], 

[13]. In centralized control a single communication link 

failure results in isolation/disconnection of an MRA and may 

compromise the frequency regulation of the system. 

However, in distributed control, multiple communication 

paths can exist in the network and failure of communication 

link/links would not affect the overall performance as long 

as the MRAs form a connected graph with active 

communication links.  

A variety of distributed secondary control solutions were 

proposed in recent research and extensively discussed, 

among them is the DAI (or Distributed Averaging 

Proportional Integrator (DAPI)). The DAI based control 

schemes were proposed for bulk-hybrid power systems [20], 

[21] as well as for microgrids [10], [12], [22]. The author in 

[23] introduced the distributed averaging filter technique 

where the agents achieved a common consensus throughout 

the network with the help of communication links. The work 

formed the basis for different averaging-based techniques. 

The author in [21], proposed the distributed proportional 

integral for bulk power system, while the author in [22] 

presented the same technique for medium voltage, MG, with 

slight modifications to provide proportional power sharing. 

The optimum resource allocation criterion was developed in 

[12] and implemented using the DAI control technique for 

heterogeneous power systems. Detailed analysis of DAI with 

stability analysis in the presence of communication delays, 

link failures and dynamic network topologies was presented 

in [13]. The author in [24] discussed the performance 

limitation and problematic tuning of DAI. 

The DAI control is based on the integration of local state-

errors and weighted-summation of inter-MRA state-errors. 

The inter-MRA state-errors are formed with the help of 

communication links. The prime short-coming of DAI 

control is the slow response, especially, in minimizing the 

inter-MRA state-errors.  

The MRA based ARG experiences frequent changes in 

real power consumption, perturbations and MRA 

intermittence causing imbalance of real power, resulting in 

frequency deviation [25], [26]. Under such conditions, 

consensus development for ED becomes an even more 

challenging task, thus demanding a fast and robust 

cooperative control for low inertia ARG. 

This research work focuses on the frequency stabilization 

and optimum resource allocation aspect of secondary control 

and proposes a novel DCSMC scheme. It is the foremost 

attempt to design DSMC based secondary control. The 

proposed (DCSMC) adds the robustness and fast 

convergence attributes of Sliding Mode Control to the 

secondary control resulting in improved stability and better 

transient response for the ARG. The main contributions of 

this paper are listed below; 

 In this paper, we propose a DCSMC for MRA based 

ARG. The control is implemented in a distributed 

manner at each MRA and creates a global consensus 
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Figure 1. Hierarchical control structure of inverter and 

inter-MRA power lines 
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throughout the network with the help of 

communication links between the MRAs. 

 Our proposed work provides fast and robust 

convergence in frequency regulation and ED. The 

control maintains the real power balance to regulate the 

frequency and utilizes the identical incremental cost 

criteria for ED. 

 We provide rigorous mathematical proof of the 

proposed control scheme using Lyapunov Candidate 

Function. 

 In order to critically investigate the performance of 

DCSMC, a ‘seven’ node system is designed and 

evaluated in MATLAB/Simulink that validates our 

control performance, compared to prior works. 

 

The paper is organized as follows; Section 2 starts with, 

an introduction to various Notations, Graph Theory and a 

mathematical model of inverter-based ARG. The section 

also contains control objectives and a brief introduction of a 

DAI control technique. Section 3 presents the design of a 

distributed sliding surface for DCSMC. The stability and 

convergence proof are discussed in Section 4. Section 5 

presents the performance analysis and comparison with DAI 

control using a MATLAB/Simulink based model. 

Conclusions and future work are presented in Section 6. 

II. Mathematical Model of ARG 

This section discusses the primary control dynamics and 

control objectives for secondary control. The section also 

presents a brief introduction of DAI control. The section 

starts with nomenclature, an introduction to the various 

notations used in the paper and graph theory. 

A. Nomenclature 

The scalar parameters are related to individual MRAs, while 

the vector/matrix form represents the whole network. 
Scalar 

Value 

Vector/Matrix 

Form 

Description 

𝜃𝑖 ∈ ℝ 𝜃 ≔ 𝑐𝑜𝑙(𝜃𝑖)
∈ ℝ𝕒𝑃×1 

Voltage phase angle 

𝜔𝑖 ∈ ℝ 𝜔 ≔ 𝑐𝑜𝑙(𝜔𝑖)
∈ ℝ𝕒𝑃×1 

Angular frequency 

𝜔𝑑 ∈ ℝ>0  Nominal Frequency 

𝑚𝑖 ∈ ℝ>0 𝑀 ≔ 𝑑𝑖𝑎𝑔(𝑚𝑖)
∈ ℝ𝕒𝑃×𝕒𝑃  

(virtual) Inertia of MRA 

𝑑𝑖 ∈ ℝ>0 𝐷 = 𝑑𝑖𝑎𝑔(𝑑𝑖)
∈ ℝ𝕒𝑃×𝕒𝑃  

Damping coefficient 

𝑝𝑖 ∈ ℝ>0 𝑃 ≔ 𝑐𝑜𝑙(𝑝𝑖)

∈ ℝ𝑁𝕒×1 

Power production of MRA 

𝑝𝑖
𝑑 ∈ ℝ≥0  Power set point 

𝑢𝑖 ∈ ℝ 𝑢 ≔ 𝑐𝑜𝑙(𝑢𝑖)

∈ ℝ𝑁𝕒×1 

Control input (provided by 

secondary control) 

𝑝𝕒.𝑖 ∈ ℝ 𝑃𝑛 ≔ 𝑐𝑜𝑙(𝑝𝕒,𝑖)

∈ ℝ𝑁𝕒×1 

Power flow to neighboring 

MRAs 

𝑝𝐿𝐿,𝑖 ∈ ℝ≥0 𝑃𝐿𝐿 ≔ 𝑐𝑜𝑙(𝑝𝐿𝐿,𝑖)

∈ ℝ𝑁𝕒×1 

Local load at MRA 

𝑣𝑖 ∈ ℝ>0  Voltage amplitude 

𝑏𝑖𝑗 ∈ ℝ≥0  Susceptance between 𝑖𝑡ℎ 

and 𝑗𝑡ℎ MRAs 

𝑔𝑖 ∈ ℝ≥0  Conductance of local load 

𝑝𝑙,𝑖 ∈ ℝ≥0 𝐿 ≔ 𝑐𝑜𝑙(𝑝𝑙,𝑖)

∈ ℝ𝑛𝐿×1 

Power absorption of load-

units 

𝑐𝑖 ∈ ℝ>0 𝐶 = 𝑑𝑖𝑎𝑔(𝑐𝑖)

∈ ℝ𝑁𝕒×𝑁𝕒  

Production Cost-rate of 

MRA 

𝑘𝑤& 𝑘𝑝

∈ ℝ>0 

 Tuning parameters of DAI 

B. Notations 

Let 𝑋1 and 𝑋2, be the set of elements and notation 𝑋1∩2, 

denotes the set of elements {𝑥| 𝑥 ∈ 𝑋1 ∩ 𝑋2}. While 𝑋1−2, 

denotes the set of elements {𝑥|𝑥 ∈ 𝑋1 − 𝑋2}. The cardinality 

of a set 𝑋 is denoted by |𝑋|. Let 𝕆, denote a null set, ℝ denote 

the set of real numbers and the notation ℝ≥0, denotes a set 

{𝑥 ∈ ℝ|𝑥 ≥ 0}, and ℝ>0 ≔ {𝑥 ∈ ℝ|𝑥 > 0}. 𝑥: = 𝑐𝑜𝑙(𝑥𝑖) ∈
ℝ𝑛×1, 𝑖 = 1, … , 𝑛, represents the elements 𝑥𝑖 as a column 

matrix of length 𝑛. 𝟏𝒏 ∈ ℝ𝑛×1 denotes a column matrix of 

ones and 𝐼𝑛 ∈ ℝ𝑛×𝑛 is an identity matrix. The  𝑋 =
𝑑𝑖𝑎𝑔(𝑥𝑖) ∈ ℝ𝑛×𝑛, denotes a diagonal matrix, with 𝑥𝑖 as the 

diagonal elements. For a matrix 𝑋 ∈ ℝ𝑛×𝑛 , 𝑋 > 0 indicates 

that 𝑋 is a positive definite matrix, while 𝑋 < 0 indicates that 

𝑋 is a negative definite matrix. 

C.  Graph Theory 

Let 𝒢 be a static, undirected and connected graph with 𝑁 =
{1, … 𝑛}, representing the set of nodes and 𝐸 ∈ 𝑁 × 𝑁, 

representing the set of edges.  The adjacency matrix of 𝒢 is 

represented by a symmetric matrix; 𝐴 ∈ ℝ𝑛×𝑛 with elements 

𝑎𝑖𝑗 = 𝑎𝑗𝑖 = 1, if the MRAs are connected directly by an edge 

and 𝑎𝑖𝑗 = 𝑎𝑗𝑖 = 0, otherwise. The degree matrix of 𝒢 is 

defined as ℚ = 𝑑𝑖𝑎𝑔(𝕕𝑖) ∈ ℝ𝑛×𝑛, where 𝕕𝑖 = ∑ 𝑎𝑖𝑗
𝑛
𝑗=1 . The 

Laplacian matrix ℒ, of 𝒢 is defined as ℒ = ℚ − 𝐴, ∈ ℝ𝑛×𝑛. 

D. Power Network 

We consider a power network represented by a graph 𝒢 with 

𝑛 nodes. The nodes in 𝒢 are categorized as; MRAs and load-

units. MRAs possess a distributed renewable energy source 

(DG) with an optional local-load. The set of MRAs is 

represented by 𝑁𝕒 =  {1, … . 𝑛𝕒}, while the set of load-units is 

represented as 𝑁𝐿 = {𝑛𝕒 + 1, … , 𝑛𝕒 + 𝑛𝐿}, such that N =
 {𝑁𝕒 ∪ 𝑁𝐿} (𝑛 = 𝑛𝕒 + 𝑛𝐿). The load-units consists of active 

power loads. 𝒢 is connected in terms of power lines (as shown 

in Figure 1) and for simplicity we assume that the power lines 

are purely inductive and a susceptance bij > 0, i,j∈ 𝑁, if a 

power line exists between the 𝑖𝑡ℎ and 𝑗𝑡ℎ MRAs and 𝑏𝑖𝑗 = 0 

represents the absence of power line. The set of neighboring 
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MRAs of 𝑖𝑡ℎ MRA are defined as 𝑁𝑏,𝑖 = {𝑛𝑗 ∈ 𝑁|𝑏𝑖𝑗 ≠ 0}. 

The communication links in the network are represented by an 

Adjacency Matrix (𝐴𝑐). The presence of a communication link 

between 𝑖𝑡ℎ and 𝑗𝑡ℎ MRAs is indicated by the corresponding 

element of the Adjacency Matrix as; 𝑎𝑖𝑗 = 𝑎𝑗𝑖 = 1, while the 

absence of a link is represented by 𝑎𝑖𝑗 = 𝑎𝑗𝑖 = 0. The 

associated Laplacian Mtrix is represented by ℒ. The set of 

neighboring MRAs of 𝑖𝑡ℎ MRA, in terms of communication 

links, is defined as 𝑁𝑐,𝑖 = {𝑛𝑗 ∈ 𝑁𝕒|𝑎𝑖𝑗 ≠ 0}. 

Assumption 1: For simplicity, we assume the MRAs are 

connected through pure inductive power lines, so the real 

power loss in the power lines is zero. The voltage magnitude 

on each MRA is assumed to be 1 𝑝𝑢. 
Assumption 2: MRAs are equipped with power and phase 

measurement units. 

Power measurement is an integral part of conventional 

hierarchical control as shown in Figure 1, while instantaneous 

phase can be extracted from associated inner-control of 

inverter-interfaced MRA units.  

Assumption 3: For each MRA, we have two different types 

of neighboring MRAs; 𝑁𝑎,𝑖 and 𝑁𝑏,𝑖, and we relax the 

condition of identical power and communication neighbors, 

instead we assume that for 𝑖𝑡ℎ, MRA 𝑁𝑐∩𝑏,𝑖 = {𝑁𝑐,𝑖⋂𝑁𝑏,𝑖} ∉
𝕆, 𝑖 ∈ 𝑁𝑝 

We consider the real power loads and inverter-interfaced 

MRA, with primary control emulating the behavior of a 

synchronous generator [8], [10], [11]. The dynamics of 𝑖𝑡ℎ 

MRA (𝑖 ∈ 𝑁𝕒) is given by, 

                                                𝜃̇𝑖 = 𝜔𝑖, 

 𝑚𝑖𝜔̇𝑖 + 𝑑𝑖(𝜔𝑖 − 𝜔𝑑) + 𝑝𝑖
𝑑+𝑝𝑖 = 𝑢𝑖.                (1) 

In the case of inverter interfaced MRA, the virtual inertia 

𝑚𝑖 = 𝜏𝑖𝑑𝑖 , where 𝜏𝑖 ∈ ℝ>0 represents the time constant of 

low pass filter for power measurement [13]. Without loss of 

generality, the power set point 𝑝𝑖
𝑑 is set to zero. The power 

produced by the MRA (𝑝𝑖) is given by, 

𝑝𝑖 = 𝑝𝕒,𝑖 + 𝑝𝐿𝐿,𝑖,   𝑖 ∈ 𝑁𝕒.                           (2) 

Where, 𝑝𝕒.𝑖 is the power flow to neighboring MRAs, while 

𝑝𝐿𝐿,𝑖 is the power flow to local-load. 

 𝑝𝕒,𝑖 = ∑ 𝑏𝑖𝑗𝑣𝑖𝑣𝑗sin (𝜃𝑖 − 𝜃𝑗)𝑗∈𝑁𝑏,𝑖
,       (3) 

𝑝𝐿𝐿,𝑖 = 𝑣𝑖
2𝑔𝑖. 

While the dynamics of 𝑖𝑡ℎ load-unit is given by, 

𝑝𝑙,𝑖 + ∑ 𝑏𝑖𝑗𝑣𝑖𝑣𝑗sin (𝜃𝑖 − 𝜃𝑗)𝑗∈𝑁𝑏,𝑖
= 0,         𝑖 ∈ 𝑁𝐿.        (4) 

Where, 𝑝𝑙,𝑖 is the real power consumption of the load-unit. 

Now, the dynamics of MRAs can be represented compactly in 

matrix form as, 

                                                       𝜃̇ = 𝜔, 

𝑀𝜔̇ + 𝐷(𝜔 − 𝟏𝑛𝑃
𝜔𝑑) + 𝑃𝑛 + 𝑃𝐿𝐿 = 𝑢,               (5) 

While the load-units are represented as, 

𝐿 + 𝐿̃ = 0.                   (6) 

Where, 𝐿̃ = 𝑐𝑜𝑙(∑ 𝑏𝑖𝑗𝑣𝑖𝑣𝑗sin (𝜃𝑖 − 𝜃𝑗)𝑗∈𝑁𝑏,𝑖
= 0) ∈

ℝ𝑛𝐿×1, 𝑖 ∈ 𝑁𝐿. 

Now, from the dynamics of the ARG in (1) and (4), the 

system would operate at nominal frequency only when,  

𝑢𝑖 = 𝑝𝐿𝐿,𝑖 + 𝑝𝕒,𝑖.             (7) 

While, for the complete network the frequency regulation 

would be achieved when,  

𝟏𝑛𝐿
𝑇 𝐿 = 𝟏𝑛𝕒

𝑇 𝑃𝑛.               (8) 

Equation (8) holds because of Assumption 1 which 

considers a lossless ARG model where, the sum of power 

delivered to the neighboring nodes is equal to the sum of 

power consumed by the load nodes.  

E. Control Objectives 

The control objectives for the secondary control are, to 

regulate the frequency to its nominal value (𝜔𝑑) and to provide 

ED. It is clear from (8) that frequency regulation depends upon 

the balance of real power. The criterion for optimum power 

production is based on identical incremental cost [12]. So, the 

control objectives can be written as, 

a. 𝜔𝑖 − 𝜔𝑑 = 0,           ∀𝑖 ∈ 𝑁𝕒,                (9) 

b. 𝑐𝑖𝑢𝑖 − 𝑐𝑗𝑢𝑗 = 0,             ∀𝑖, 𝑗 ∈ 𝑁𝕒.               (10) 

Frequency regulation of the system is represented in (9), 

while (10) represents the criteria for ED. The system would 

operate at optimum cost when the incremental cost (𝑐𝑖𝑢𝑖) is 

identical for a complete network. The system reaches 

equilibrium when it satisfies the control objectives in (9) and 

(10) simultaneously for all MRAs. 

F. Distributed Averaging Integral based Secondary 
Control 

DAI based secondary control uses peer-to-peer 

communication between the nearby neighboring MRAs to 

create the consensus in the network. The control is based on 

integration of error in (9) and (10). The control law DAI is 

given by, 

𝑢̇𝑖 = −𝑘𝑤(𝜔𝑖 − 𝜔𝑑) − 𝑘𝑝 ∑ (𝑐𝑖𝑢𝑖 − 𝑐𝑗𝑢𝑗)𝑗∈𝑁𝑐,𝑖
, 𝑖 ∈ 𝑁𝕒   (11) 

Where, 𝑘𝑤 and 𝑘𝑝 represents the weight on error in (9) and 

(10), respectively. The control objective in (10) is based on 

consensus to identical incremental cost, for the complete 

network. However, control law in (11) uses neighboring 

communication set (𝑁𝑐,𝑖) to form the error.  

The control law in (11) is implemented locally at each MRA 

and creates consensus throughout the network. The control 

law in (11) provides active frequency regulation but possesses 

slow convergence to identical cost. In the presence of an 

increased number of small-scale MRA units with fluctuating 

outputs and frequent disturbances in the system, the DAI 

based secondary control would become ineffective. 

III. Distributed Cooperative Sliding Mode Control 
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DCSMC is proposed in the work for fast convergence, 

effectively complying with the control requirements of 

ARG. The design of DCSMC possesses two essential parts; 

distributed sliding surface design and reaching law design. 

Firstly, an intermediate local sliding surface is designed 

based on state-errors, then distributed sliding surface is 

designed using weighted summation of local and 

neighboring intermediate sliding surfaces. The control law 

forces the system trajectories to asymptotically converge to 

the distributed sliding surface. 

For ease of formulation, we start with translating the 

dynamics in (5) into deviation variables. Let, ∆𝜔 = 𝜔 − 𝜔𝑑 

and ∆𝜃 = 𝜃 − 𝜔𝑑𝑡. So, (5) becomes, 

                        ∆𝜃̇ = ∆𝜔,  

𝑀∆𝜔̇ + 𝐷∆𝜔 + 𝑃 = 𝑢.      (12) 

Let, 𝜒𝑖 = [Δ𝜃𝑖   Δ𝜔𝑖]𝑇 ∈ ℝ2×1 collectively represent the 

states in (12) and 𝜒𝑖
∗ = [Δ𝜃𝑖

∗  Δω𝑖
∗]𝑇 ∈ ℝ2×1 represents the 

optimum or the equilibrium value. The optimum state 𝜒𝑖
∗ is 

defined to satisfy the control objective in (9) and (10) 

simultaneously. From (9), Δω𝑖
∗ = 0, the equilibrium value of 

angular frequency is the same for each MRA (ω𝑖
∗ = 𝜔𝑑). 

Now, the equilibrium information of Δ𝜃𝑖
∗ should be obtained 

using (10). Using the same technique of near-neighbor 

communication adopted in (11), (10) can be represented as: 

∑ 𝑎𝑖𝑗(𝑐𝑖𝑢𝑖 − 𝑐𝑗𝑢𝑗)
𝑛𝕒
𝑗=1 = 0,    𝑖 ∈ 𝑁𝕒.     (13) 

Here, 𝑎𝑖𝑗  is used to represent the neighboring 

communication set 𝑁𝑐,𝑖. Now, rewriting (13) using the result 

in (7) and then representing it in matrix form. Note that, (7) 

is based on nominal operational frequency of the system. 

∑ 𝑎𝑖𝑗(𝑐𝑖𝑝𝑖 − 𝑐𝑗𝑝𝑗)
𝑛𝕒
𝑗=1 = 0,       𝑖 ∈ 𝑁𝕒,       (14) 

ℒ𝐶𝑃 = 0.        (15) 

Remark 1: Equation (15) does not possess a unique solution 

in terms of ∆𝜃, as 𝐶 is the positive-definite diagonal matrix, 

while the Laplacian matrix ℒ ∈ ℝ𝑛𝕒×𝑛𝕒 has a rank equal to 

𝑛𝕒 − 1 [27]. 

Since the global equilibrium value Δ𝜃𝑖
∗ is not available, 

each MRA finds a local intermediate-optimum state value 

𝜒𝑖
∗ = [Δ𝜃̃𝑖

∗  Δω̃𝑖
∗]𝑇 ∈ ℝ2×1 where Δω̃𝑖

∗ = 0. 𝜒𝑖
∗ is calculated 

with the help of local and neighboring information, and 

locally satisfies the control objectives in (9) and (10). Now 

for Δ𝜃̃𝑖
∗, we represent (14) using (2), 

𝑝𝕒,𝑖 =
1

|𝑁𝑐,𝑖|𝑐𝑖
∑ {𝑐𝑗𝑝𝑗} − 𝑝𝐿𝐿,𝑖𝑗∈𝑁𝑐,𝑖

.     (16) 

Now, rewriting (16) using Assumption 3 to divide the 

neighboring set 𝑁𝑐,𝑖 into 𝑁𝑎∩𝑏,𝑖; the neighboring MRAs with 

both the communication and power links d 𝑁𝑏−𝑐,𝑖; the 

neighboring MRAs with power link but no communication. 

∑ 𝑏𝑖𝑗𝑣𝑖𝑣𝑗 sin(∆𝜃̃𝑖
∗ − ∆𝜃𝑗)𝑗∈𝑁𝑏∩𝑐,𝑖

=

                          
1

|𝑁𝑐,𝑖|𝑐𝑖
{∑ {𝑐𝑗(𝑝𝑗)} − 𝑝𝐿𝐿,𝑖𝑗∈𝑁𝑎𝑖

} − 𝑝́𝑖 ,    (17) 

Where, 𝑝́𝑖 = ∑ 𝑏𝑖𝑗𝑣𝑖𝑣𝑗 sin(∆𝜃̃𝑖
∗ − ∆𝜃𝑗) 𝑗∈𝑁𝑏−𝑐,𝑖

. The value 

of power (𝑝𝑗) and phase deviation (∆𝜃𝑗) of neighboring 

MRAs are obtained through communication links, while 

𝑝𝐿𝐿,𝑖 and 𝑝́𝑖 are measured locally. The value of desired phase 

deviation for 𝑖𝑡ℎ MRA (∆𝜃̃𝑖
∗) can be calculated as,  

∆𝜃̃𝑖
∗ = 𝑠𝑖𝑛−1 {

𝑘𝑖

√𝑥𝑖
2+𝑦𝑖

2
} − 𝑡𝑎𝑛−1 (

𝑦𝑖

𝑥𝑖
),      (18) 

Where, 𝑘𝑖 =
1

|𝑁𝑐,𝑖|𝑐𝑖
{∑ 𝑐𝑗𝑝𝑗 − 𝑝𝐿𝐿,𝑖𝑗∈𝑁𝑐,𝑖

} − 𝑝́𝑖,  𝑥𝑖 =

∑ 𝑏𝑖𝑗𝑣𝑖𝑣𝑗cos (∆𝜃𝑗)𝑗∈𝑁𝑏∩𝑐,𝑖
 and 𝑦𝑖 =

∑ 𝑏𝑖𝑗𝑣𝑖𝑣𝑗sin (∆𝜃𝑗)𝑗∈𝑁𝑏∩𝑐,𝑖
. 

Remark 2: It is clear from the derivation of (18) that the 

intermediate-optimum point ∆𝜃̃𝑖
∗ simultaneously satisfies the 

objectives in (9) and (10), locally at each MRA. Tracking the 

intermediate-optimum state 𝜒𝑖
∗ would lead 𝜒𝑖  to a global 

optimum point 𝜒𝑖
∗ (the proof is discussed in Section 4).  

Now, the control objectives in (9) and (10) transform to; 

𝜒𝑖 − 𝜒𝑖
∗ = 0,   ∀𝑖 ∈ 𝑁𝕒,      (19) 

Remark 3: The global equilibrium would be achieved if (19) 

is satisfied simultaneously for the complete network, that is, 

if 𝜒 − 𝜒∗ = 0, then 𝜒 = 𝜒∗, where  𝜒 = 𝑐𝑜𝑙(𝜒𝑖) ∈ ℝ2𝑛𝕒×1. 

The intermediate sliding surface is designed based on 

state-error with intermediate optimum phase value in (19); 

𝑒1,𝑖 = ∆𝜃𝑖 − ∆𝜃̃𝑖
∗, and 𝑒2,𝑖 = ∆𝜔𝑖. Now using Lyapunov 

design, 

∆𝜔𝑖 = −𝜆(∆𝜃𝑖 − ∆𝜃̃𝑖
∗).             (20) 

Where 𝜆 ∈ ℝ>0 is constant. The intermediate sliding 

surface is given by,  

𝓈𝑖 = 𝑒2,𝑖 + 𝜆𝑒1,𝑖.            (21) 

The sliding surface is the combination of local and 

neighboring intermediate sliding surfaces [28]. 

𝑠𝑖 = ∑ 𝑎𝑖𝑗(𝑗∈𝑁𝑐,𝑖
𝓈𝑖 − 𝓈𝑗) + 𝓈𝑖,         𝑖 ∈ 𝑁𝕒. 

Where, 𝓈𝑗 represents the sliding surfaces of neighboring 

MRAs, obtained through communication links. The sliding 

surface for complete system can be represented in matrix 

form as, 

𝑆 = [

𝑠1

⋮
𝑠𝑛𝕒

] = (ℒ + 𝐼) [

𝓈𝑖

⋮
𝓈𝑛𝕒

].      (22) 

The reaching law for individual MRAs is designed as, 

𝑠̇𝑖 = −𝜓(∑ 𝑎𝑖𝑗𝑗∈𝑁𝑐,𝑖
(𝑠𝑖 − 𝑠𝑗) + 𝑠𝑖) −

𝜑(∑ 𝑎𝑖𝑗𝑗∈𝑁𝑐,𝑖
(𝑠𝑔𝑛(𝑠𝑖) − 𝑠𝑔𝑛(𝑠𝑗)) + 𝑠𝑔𝑛(𝑠𝑖)). 

Where 𝜓 and 𝜑 are tuning parameters. In matrix form the 

above equation be represented as, 

𝑆̇ = −(ℒ + 𝐼)(𝜓𝑆 + 𝜑𝑠𝑔𝑛(𝑆)).      (23) 

Comparing (22) and (23),  
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𝓈𝑖̇ = −𝜓𝑠𝑖 − 𝜑𝑠𝑔𝑛(𝑠𝑖).           (24) 

From (21), 

𝓈𝑖̇ = Δ𝜔̇𝑖 + 𝜆∆𝜔𝑖 − 𝜆∆𝜃̇̃𝑖
∗.            (25) 

Using (12), (24) and (25), the control law for individual 

MRAs is given by, 

𝑢𝑖 = −𝑚𝑖{𝜓𝑠𝑖 + 𝜑𝑠𝑔𝑛(𝑠𝑖)} + (𝑑𝑖 − 𝜆𝑚𝑖)∆𝜔𝑖 + 𝑝𝑖 +

                  𝑚𝑖𝜆∆𝜃̇̃𝑖
∗.              (26) 

Remark 4 (Chattering Effect): The secondary control, in 

the proposed control strategy, is based on control law (26), 

containing chattering effect. However, the second order 

dynamics of primary control (12) smooths-out the 

fluctuations in the control law. Moreover, a low-pass filter is 

also present with each inverter to remove the harmonics 

produced due to high frequency switching in inner control. 

Remark 5: The proposed control is designed to provide fast 

and robust convergence for low inertia MG. However, 

following the contemporary secondary control solutions, the 

dynamics of inner-control, inverter, low pass filter and 

delays in communication links are not modelled. 

IV. Stability Analysis 

The stability analysis comprises the stability proof of 

reaching phase and sliding phase. The stability of the former 

is proved using Lyapunov function, while stability of sliding 

phase is intuitively obvious. Now, the following Lemma 

would be helpful in stability proof. 

Lemma 1: The sum of Laplacian matrix; ℒ ∈ ℝ𝑛𝕒×𝑛𝕒, 

corresponding to connected communication graph of MRAs 

and Identity matrix 𝐼𝑛𝕒
, is positive definite (ℒ + 𝐼𝑛𝕒

> 0). 

Proof: The proof of lemma is similar to the ones used for the 

sum of Laplacian matrix and pinning matrix in [27].       ∎ 

A. Reaching Phase 

Theorem 1: Consider the system represented in (12) and 

DCSMC based control law in (26) with 𝜓 > 0, 𝜑 > 0 and 

𝜆 > 0, then the sliding phase, that is 𝑆 = 0 would be reached 

in a finite duration (𝓉) with upper bound 𝓉 <
‖𝑆(0)‖2

𝜑𝜎𝑚𝑖𝑛
, where 

𝜎𝑚𝑖𝑛 represents the smallest eigen value of ℒ + 𝐼𝑛𝕒
. 

Proof: Consider Lyapunov Candidate Function as [28], 

𝑉 =  
1

2
𝑆𝑇𝑆.     

Taking the derivative of Lyapunov Candidate Function 

𝑉̇ = −𝑆𝑇(ℒ + 𝐼𝑛𝕒
)𝜓𝑆−𝑆𝑇(ℒ + 𝐼𝑛𝕒

)𝜑𝑠𝑔𝑛(𝑆),       (27) 

Since (ℒ + 𝐼𝑛𝕒
) > 0, so the first term on R.H.S of (21) is 

negative definite, now using 𝑠𝑔𝑛(𝑆) ≥
𝑆

‖𝑆‖2
, we can write, 

𝑉̇ ≤
−𝑆𝑇(ℒ+𝐼𝑛𝕒)(𝜑𝑆)

‖𝑆‖2
.       (28) 

Hence 𝑉̇ is negative definite, now using Rayleigh’s 

Quotient, we can rewrite (28) as, 

𝑉̇ ≤ −𝜎𝑚𝑖𝑛𝜑‖𝑆‖2.       (29) 

To derive the convergence time, the Lyapunov Candidate 

Function can be rewritten as 𝑉 =
1

2
‖𝑆‖2

2. Now, comparing 

the derivative of Lyapunov Function with (29) we get, 

‖𝑆̇‖
2

≤ −𝜑𝜎𝑚𝑖𝑛        (30) 

Comparing (29) and (30), we can find the upper bound on 

the convergence time as, 𝑡 ≤
‖𝑆(0)‖2

𝜎𝑚𝑖𝑛
.       ∎ 

B. Sliding Phase 

Theorem 2: For the system represented in (12), the 

corresponding sliding surface in (22) is asymptotically stable 

and satisfies (19) and hence the control objective in (9) and 

(10) during sliding phase. 

Proof: During sliding phase 𝑆 = 0, 

(ℒ + 𝐼𝑛𝕒
) [

𝓈𝑖

⋮
𝓈𝑛𝕒

] = 0. 

Since (ℒ + 𝐼𝑛𝕒
) > 0,   

𝑒2,𝑖 + 𝜆𝑒1,𝑖 = 0.  

Since 𝑒̇1,𝑖 = 𝑒2,𝑖 with 𝜆 ∈ ℝ>0, implies that, 𝑒1,𝑖 = 0 and 

𝑒2,𝑖 = 0, (∀𝑖 ∈ 𝑁𝕒). So, 

𝜒𝑖 − 𝜒𝑖
∗ = 0, ∀𝑖 ∈ 𝑁𝕒.       (31) 

⇒ 𝜒 = 𝜒∗         (32) 

Equation (32) exists because (31) satisfies (19) 

collectively for the complete network and hence the control 

objective in (9) and (10).                              ∎ 

V. Performance Analysis 

The performance of the proposed control scheme is 

evaluated using a seven node MATLAB/Simulink model. 

The simulation is performed using DCSMC and DAI based 

secondary controls and performances are compared 

critically. 

A. Simulation Model 

The model contains five MRAs, 𝑁𝕒 = {𝑛1, … 𝑛5} with local 

load 𝑃𝐿𝐿 = {0  0  0  𝑝𝐿𝐿,4  0} and two load-units; 𝑁𝐿 =
{𝑛6, 𝑛7}, as shown in Figure 2. The MRAs are connected 

through inductive power lines and communication links. The 

per unit values of different parameters of the model are 

reported in the Appendix. The values of tuning parameters 

for DCSMC (𝜆, 𝜓, 𝜑) and DAI (𝑘𝑤, 𝑘𝑝) are selected via 

manual tuning. The values are reported in the Appendix, 

along with different parameters of the network. 

B. Effect of Damping Coefficient 
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The per unit values of different parameters of the network 

(including the damping factor 𝐷 =
{1.6 1.22 1.38 1.42 1.30} 𝑝𝑢) are obtained from [29]. Since 

the performance of DAI is largely affected by the value of 

damping factor (𝐷) used in dynamic (12), different values of 

damping factor (multiple of D; 

10𝐷, 20𝐷, 40𝐷, 100𝐷, 200𝐷) are used and the performance 

of both the control schemes are compared. The results of 

DAI obtained for different damping values are in accordance 

with classical control theory. Large values of 𝐷 result in 

smaller frequency deviation (or over-shoot) and slower 

convergence to steady state, while the smaller values of 𝐷  

exhibit the oscillatory behavior. However, the DCMSC is 

unaffected by the choice of 𝐷 and possess constant 

convergence time.  

C. Step Change in Load 

Figure 3 represents the total power demand (𝑝𝑙,6 + 𝑝𝑙,7 +
𝑝𝐿𝐿,4) of the network with abrupt changes at ‘1 second’ and 

‘3 seconds’. At a simulation time of ‘1 second’, the load 𝑝𝑙,7 

increases from 2.482 𝑝𝑢 to 4.86 𝑝𝑢, while the value of 𝑝𝑙,6 

increases from 1 𝑝𝑢 to 2 𝑝𝑢 at simulation time of ‘3 seconds’ 

causing fluctuations in frequency and power. The simulation 

starts with steady state values, the DAI control (11) and 

DCSMC (26) are used to achieve the control objectives in (9) 

and (10). Both the control schemes are analyzed at different 

values of damping factor. 

1. Frequency Regulation 

Figure 4 shows the frequency (𝑓2 = 2𝜋𝜔2) of a single MRA 

(𝑛2) at different values of damping factor 

(𝐷, 10𝐷, 20𝐷, 40𝐷), for DAI control. Figure 4 represents 

large deviation, slow convergence and oscillations in 

frequency at a damping value of 𝐷. However, increasing the 

damping value significantly improves the performance of 

DAI. Increase in damping value decreases the magnitude of 

frequency deviation but reduces the convergence speed and 

the system takes a long time to reach the steady state. Figure 

5 represents the response of DAI at significantly large 

damping values (100𝐷, 200𝐷), it shows a small deviation in 

frequency due to a disturbance at ‘1 second’ and negligible 

deviation at ‘3 seconds’. However, large damping values 

result in proportionally slow convergence to steady state. 

Figures 6 and 7 represent the corresponding results of 

DCSMC. Both the Figures illustrate that the performance of 

DCSMC is not compromised at different damping values.  

The control possesses fast and identical convergence time for 

all damping values (even at damping values equal to 𝐷). The 

increase in damping value reduces the frequency overshoot, 

without affecting the convergence speed. In both the Figures 

the convergence time of DCSMC is less than ‘0.3 second’. 

For DAI control the best choice for damping value in the 

presented simulation scenario is 20𝐷, where the control does 

not exhibit the oscillations (which are present in the case of 

𝐷 and 10𝐷) and possesses fast convergence (as compared to 

40𝐷 and greater values). Figures 8 and 9 represent the 

frequency regulation of the complete network at a damping 

value of 20𝐷, for DAI and DCSMC respectively. The graphs 

illustrate active frequency regulation with small deviation. 

However, the DAI requires longer time (more than ‘2 

seconds’) to attain nominal frequency, after each 

disturbance. While in the case of DCSMC, all the MRAs 

converge to nominal frequency within ‘0.3 seconds’. 

2. Identical Incremental Cost 

The DAI is particularly slow in achieving the second control 

objective (10) that is, convergence to identical incremental 

cost. The convergence to identical incremental  

cost is analyzed at damping values of 100𝐷 and 20𝐷. Figure 

10 presents the slow response of DAI at a damping value of 

(100𝐷). The control fails to reach the identical incremental  

cost after both the disturbances. The performance of DAI 

improves at a damping value of 20𝐷, as represented in 

Figure 11. However, the control still consumes more than ‘2 

seconds’ to reach the identical incremental cost for both the 

disturbances. 

The response of DCSMC, for 100𝐷 and 20𝐷 is 

represented in Figure 12 and Figure 13, respectively. Figure 

12 and Figure 13 are almost identical and possess the same 

convergence time, which is less than ‘0.3 seconds’. Hence, 

the performance of DCSMC is unaffected by the choice of 

damping value.  

The performance of DCSMC and DAI is summarized in 

Table 1. In Table 1, the DCSMC has comparatively greater  

Power Line

Communication link

pl,6

pl,7
n1 n2

n3

n4
n5

pLL,4

n6

n7

 
Figure 2. Seven node power network with inter-

connecting power and communication lines. 

 
Figure 3. Total power demand 



 

8  

  
Figure 4.  Instantaneous frequency of 2nd MRA at small 

values of damping-factor, with DAI control 
Figure 9. Instantaneous frequency (𝜔𝑖) of each MRA with 

DCSMC 

  
Figure 5.  Instantaneous frequency of 2nd MRA at large 

values of damping-factor, with DAI control 

Figure 10.   Incremental cost (𝑐𝑖𝑝𝑖) at 100𝐷 with DAI control 

  
Figure 6.  Instantaneous frequency of 2nd MRA at small 

values of damping-factor, with DCSMC control 
Figure 11.  Incremental cost (𝑐𝑖𝑝𝑖) at 20𝐷 with DAI control 

  
Figure 7.  Instantaneous frequency of 2nd MRA at large 

values of damping-factor, with DCSMC control 
Figure 12.  Incremental cost (𝑐𝑖𝑝𝑖) at 100𝐷 with DCSMC 

  
Figure 8. Instantaneous frequency (𝜔𝑖) of each MRA with 

DAI control 

Figure 13.  Incremental cost (𝑐𝑖𝑝𝑖) at 20𝐷 with DCSMC 
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overshoot in frequency, however the overshoot values are 

well within the acceptable limit. Both the control schemes  

possess identical overshoot values in incremental cost 

after applying both the disturbances. The performance of 

DCSMC is far superior in terms of fast convergence. The 

DCSMC has comparatively small settling time in both 

frequency and incremental cost curves. Finally, the 

performance index ‘Integral Absolute Error’ (IAE) is used to 

compare the performance of both the control schemes. The 

IAE is defined as; 

 𝐼𝐴𝐸 = ∫ ∑|∆𝜔| 𝑑𝑡
6

1
+ ∫ ∑|𝑐𝑖𝑝𝑖 − 𝕔∗| 𝑑𝑡

6

1
, 

Where 𝕔∗ represents the identical incremental cost value 

of the network, such that; 𝑐1𝑝1
∗ = 𝑐2𝑝2

∗ = ⋯ = 𝑐𝑛𝕒
𝑝𝑛𝕒

∗ = 𝕔∗. 

The IAE clearly illustrates the effectiveness of DCSMC the 

values are quite low as compared to DAI. 

D. Continuously Varying Load 

The performance of DCSMC is also tested for continuously 

varying power demand. Figure 14 presents the fluctuating 

power demand in the network. Due to the slow response, the 

DAI fails to converge to identical cost in the presence of 

fluctuating power demand, as shown in Figure 15. While the 

DCSMC in Figure 16, exhibits fast response and maintains 

ED in the system by forcing MRAs to operate at identical 

incremental cost.  

E. Phase Deviation 

Figure 17 illustrates the instantaneous phase deviation (∆𝜃) 

of MRAs for DCSMC at a damping value of 20𝐷. The 

second order dynamics of primary control together with an 

increase damping value smooths out the chattering effect in 

control law (26). Hence, the chattering in DCSMC does not 

affect the power quality in the network. 

F. Impact of DCSMC on ARG 

The simulation results highlight the fast convergence of 

DCSMC in the presence of abrupt as well as continuous 

fluctuations in the power demand. The robustness of 

DCSMC to the choice of damping factor is also presented. 

While the DAI fails to maintain the ED in low inertia ARG 

with continuous fluctuations in power demand, resulting in 

Table 1.   Performance Comparison of DAI and DCSMC at damping value of 20𝐷. 

 Performance Parameters 

 

 

 

Control  

 Maximum 

Overshoot 

(∆𝜔) 

 (1 sec) 

Maximum 

Overshoot 

(∆𝜔) 

(3 sec) 

Maximum 

Overshoot 

(𝑐𝑖𝑝𝑖)  

(1 sec) 

Maximum 

Overshoot 

(𝑐𝑖𝑝𝑖)  

(3 sec) 

Settling 

Time 

(∆𝜔) 

(1 sec) 

Settling 

Time  

(∆𝜔)  

(3 sec) 

Settling 

Time 

(𝑐𝑖𝑝𝑖) 

(1 sec) 

Settling 

Time  

(𝑐𝑖𝑝𝑖)  

(3 sec) 

 

 

IAE 

DAI 0.0094 0.0021 1.897 0.6203 >2 2.4 >2 2.4 3.921 

DCSMC 0.0677 0.0435 1.8967 0.6153 0.3 0.25 0.3 0.25 0.637 

  
Figure 14. Continuously Varying Power Demand Figure 16.  Incremental cost (𝑐𝑖𝑝𝑖

) at 20𝐷 with DCSMC 

  

Figure 15.  Incremental cost (𝑐𝑖𝑝𝑖
) at 20𝐷 with DAI control Figure 17. Instantaneous phase deviation with DCSMC 
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increased production cost. The comparative analysis 

highlights the superiority of DCSMC over conventional DAI 

control. 

VI. Conclusion and Future Work 

In this work, we considered an ARG with MRA to meet the 

power demand of the network. Being different in nature, the 

MRA operates the AC network by emulating the behavior of 

a synchronous generator with the help of associated control. 

This implies that the stability of ARG depends upon the 

efficiency of the control. In AC networks, stability of the  

system depends upon stability of frequency, which originates 

from the balance of active power. This assigns a prime 

importance to the role of secondary control providing 

frequency stabilization. Another aspect of the secondary 

control is to provide ED for cost effective optimum operation 

of the system. The DAI based secondary control displays a 

slow response to the non-linear dynamics of the system. This 

work proposes the use of DSMC based, non-linear technique 

to provide fast convergence, robustness and improved 

transient response. It stabilizes the frequency quite 

effectively, while providing the ED for cost reduction. 

DCSMC is implemented as a local control on each MRA. 

At each MRA a distributed sliding surface is formed with the 

help of local measurement and communication with the 

neighboring MRAs. The MRAs calculate the intermediate 

optimum state values and force the local states to track them. 

The intermediate optimum states are continuously updated 

and ultimately lead (asymptotically) to the global optimum 

point. The convergence and stability of the proposed control 

is proved analytically, while the performance is evaluated 

with the help of MATLAB/Simulink based simulation and a 

comparison with DAI control. 

The possible extensions to the presented work include 

analysis of DCSMC for communication delays, link failures, 

and dynamic (power and communication) network 

topologies. The proposed control scheme can also be used 

for the other aspect of secondary control that is voltage 

regulation and reactive power distribution.   
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Appendix  

The per unit values of parameters related to network 

and MRAs are obtained from [29] and are listed below. 

{𝑑1 𝑑2 𝑑3 𝑑4 𝑑5} = {1.6 1.22 1.38 1.42 1.30} 𝑝𝑢. 

{𝑚1 𝑚2 𝑚 𝑚4 𝑚5} = {5.22 3.98 4.49 4.22 5.4} 𝑝𝑢. 

{𝑏12 𝑏13 𝑏23 𝑏34 𝑏45 𝑏51} =
                                  {64.7 61.51 58.75 51.7 54.7 62} 𝑝𝑢, 

{𝑏16 𝑏56 𝑏27 𝑏37} = {50.9 55.26 56.31 2.95} 𝑝𝑢, 

{𝑃𝑙,6 𝑝𝑙,7} = {2.482 1}, 𝑝𝐿𝐿,4 = 0.4167 𝑝𝑢, 

{𝑣1 𝑣2 𝑣3 𝑣4 𝑣5} = {1 1 1 1 1} 𝑝𝑢. 

The cost rate of with each MRA is given below, 

{𝑐1  𝑐2 𝑐3 𝑐4  𝑐5} = {2  1.2 2.3 2.1 1.5} 𝑝𝑢. 

Tuning parameter of DAI and DCSMC. 

{𝐾𝑝  𝐾𝑤  } = {500 2000}, {𝜑 𝜓 𝜆} = {1 1 50}. 
 

 

 
 

 

 
 

 


